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Abstract—Video analytics systems conduct video preprocessing
to filter out unnecessary frames and model inference using appro-
priately selected neural networks for high analytics speed. Video
preprocessing is instruction-intensive computing (IIC) executed
by CPU, and model inference is data-intensive computing (DIC)
executed by GPU. In this paper, we show the analytics accuracy of
existing systems can largely vary in fields, caused by the dynamic
IIC and DIC workloads of different contents in applications. Un-
fortunately, cameras have fixed CPU/GPU resources and cannot
effectively adapt to workload dynamics. We develop Gemini, a
new edge-side real-time video analytics system enhanced by a
dual-image FPGA. We take the advantage of negligible image
switching time of dual-image FPGAs, pre-configure one CPU
image and one GPU image and elastically multiplex the dual
CPU-GPU resources in time dimension. Gemini requires both
hardware and software revisions. In hardware, we overcome
challenges of hardware-dependent application development, low
communication efficiency between the microprocessor and FPGA,
and high programming complexity by hardware abstraction,
asynchronous data transfer mechanism and stub-skeleton mid-
dleware. In software, we overcome the challenge of adapting
to the dynamic workloads by a bandit learning approach. We
implement Gemini and show that Gemini can improve the
analytics accuracy to 90.35%.

Index Terms—Bandit learning, dual-image FPGA, video ana-
lytics, accelerators, middleware.
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I. INTRODUCTION

Video analytics systems nowadays support many applications
such as video surveillance, vehicle counting, traffic control,
self-driving, and others. These systems feed video frames into
a pre-trained neural network (NN) model and conduct model
inference. In this paper, we study edge-side real-time video
analytics systems, where videos are generated in edge-side
smart cameras and the video analytics are conducted in the edge
for real-time response and/or privacy protection. There are or-
thogonal research directions where video analytics is conducted
on pre-stored videos [1], or the real-time videos are sent to the
cloud for cloud or edge-cloud analytics [2]. The hardware used
for edge-side video analytics systems are smart cameras such as
AWS DeepLens [3], with a CPU and a GPU. Typical edge-side
video analytics systems include Microsoft Rocket [4], Amazon
Rekognition [5], and others.

A real-time video analytics system needs to achieve high
video analytics accuracy while satisfying delay requirements.
To face limited edge-side resources, existing systems have an
execution pipeline to preprocess video frames to filter out un-
necessary frames or to extract only the Region of Interest (ROI)
in a frame. When sending the preprocessed frame to model
inference, existing systems will select appropriate NN models
that best balance the model inference accuracy and delay. In
this execution pipeline, the computing workloads of video pre-
processing, which involve a large number of searching, sorting,
matching operations, are instruction-intensive computing (IIC)
and are executed in the CPU of the edge camera. The computing
workloads of model inference, which involve simple operations
but on a large amount of data, are data-intensive computing
(DIC), and the DIC workloads are executed in the GPU of the
edge camera [6].

When using real-time edge-side video analytics systems in
fields, we observe that the analytics accuracy of the systems can
greatly vary. We take Microsoft Rocket [7] (vehicle counting)
as an example (details in Section II.B). The analytics accuracy
at dawn time is 85.7%, and it drops to 65.2% at rush hours.
We observe that at dawn time with fewer vehicles, 82% of
frames can be filtered and only 18% of frames are fed to model
inference. When it comes to rush hours, only 27% of frames can
be filtered and 73% of frames are fed to model inference. The
video applications have contents, e.g., Dawn Time and Rush
Hours, and different contents can result in dynamic IIC and DIC

0018-9340 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on December 27,2023 at 06:37:38 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-9051-3242
https://orcid.org/0000-0002-2022-3872
https://orcid.org/0009-0005-1563-9434
https://orcid.org/0000-0003-2847-0285
https://orcid.org/0000-0002-0921-2726
https://orcid.org/0000-0003-2869-7623
https://orcid.org/0000-0002-2674-0918
https://orcid.org/0000-0002-6071-473X
https://orcid.org/0000-0002-9811-6831
mailto:csrlu@comp.polyu.edu.hk
csdwang@comp.polyu.edu.hk
csdwang@comp.polyu.edu.hk
mailto:zhangj4@sustech.edu.cn
mailto:liq@pcl.ac.cn


3400 IEEE TRANSACTIONS ON COMPUTERS, VOL. 72, NO. 12, DECEMBER 2023

workloads that most of these content changes are in minute-
level. Unfortunately, the CPU/GPU resources are fixed in field
cameras. This limits the potential to adapt to the workloads and
optimize the video analytics accuracy, as we often see that one
of the CPU/GPU has reached its maximum capacity, yet the
resource utilization of the other is still low.

In this paper, we propose Gemini, a new real-time video
analytics system enhanced by a dual-image FPGA. An image
in FPGA is a bit file to configure every Logic Unit to the target
functions. The newly developed dual-image FPGA, e.g., Intel
Max10, can pre-store two or more images in the FPGA image
flash and fast switch between them. The dual-image FPGA has a
key advantage over current FPGAs on the reconfiguration time,
which can take minutes. Moreover, we can alternatively choose
the image switching address to enable more than two images
stored on FPGA by simply modifying the source codes. Thus,
we can pre-configure CPU and GPU images and switch them in
runtime. As a result, we can have elastic CPU-GPU computing
resources by multiplexing the dual computing resources in the
time dimension.

To develop a new edge-side real-time video analytics system
with the benefits of dual-image FPGAs, we need both hardware
and software revisions. We face four unique challenges.

First, dual-image FPGAs have many variants developed by
different vendors, e.g., Intel Max10, Xilinx Artix-7. The pro-
gramming development of FPGAs is hardware-dependent. We
analyze a set of video analytics applications. We abstract the
commonly used FPGA functions and develop a new logic view
of hardware functions. Different dual-image FPGAs can regis-
ter into the Gemini system through adapters/drivers to support
these functions. Thus, Gemini decouples video analytics appli-
cations from specific FPGA hardware, allowing the applications
to be hardware-agnostic.

Second, there are great communications between the smart
camera microprocessor and the FPGA for video data. Yet the
performance of the two processors can mismatch, leaving one
idle during data transmission. We develop an asynchronous
data transfer mechanism, where the two processors write/read
data into a shared memory asynchronously without block-
ing each other. This achieves high-throughput microprocessor-
FPGA communications.

Third, considering the complex process of data commu-
nication between FPGA and edge devices, incorporating
applications into Gemini brings a great burden to programmers.
Moreover, images with different functions differ in interfaces,
which requires a lot of work to load them into the FPGA and
complete the adaptation of images. We design a middleware us-
ing stub-skeleton structure that creates a remote procedure call
(RPC) style interaction scheme and eliminates the complexity
of image and application adaptation.

Fourth, it is a challenge to adapt to the contents of a video
analytics application and its dynamic IIC and DIC workloads,
to optimize the video analytics accuracy given the dual com-
puting resources. We observe that it is difficult to explicitly
model the application workload dynamics, and then optimize
the dual computing resources. We thus seek a learning-based
approach. We develop a bandit-based algorithm: bandit learning

Fig. 1. The real-time video analytics pipeline.

is particularly suitable since the workloads depend on the video
analytics application, not on the action choices of resource
control algorithm.

We implement a Gemini prototype. We evaluate Gemini us-
ing real video trace-based experiments on two representative
video analytics applications. We show that Gemini significantly
outperforms existing video analytics systems. We develop two
case studies where we use our prototype to support an intrusion
detection application deployed in a laboratory for more than
8 hours and a disaster monitoring application deployed in the
industrial system for two months. This study shows the end-
to-end operations of Gemini in field and its consistent high
accuracy.

In summary, the contributions of this paper are:
• We show through a measurement study that the accuracy

of existing real-time video analytics systems (Section II.B)
can greatly vary in fields. We investigate the root causes
of such a phenomenon.

• We develop Gemini (Sections III and IV), a new real-time
video analytics system enhanced by a dual-image FPGA.
We present a set of hardware and software designs. Gemini
can adapt to application workload dynamics and optimize
the accuracy with dual computing resource control.

• We implement Gemini (Section VI) and evaluate Gemini
with real-world video traces. We present two case studies
(Section VII), showing the end-to-end operations of Gem-
ini in field.

II. MOTIVATION AND APPROACH

A. Background on Real-Time Video Analytics

Real-time video analytics systems perform analytics on pre-
trained neural network (NN) models to recognize spatial or
temporal events (e.g., vehicle counting, object tracking [8])
in a video stream with latency requirements. An example is
Microsoft Rocket [4]. One application atop the Rocket system
is Microsoft Vision Zero [9], where NN models are pre-trained
for the City of Bellevue vehicle counting.

To meet the delay requirements, e.g., the Vision Zero appli-
cation typically requires processing 25 frames per second (fps),
a real-time video analytics system preprocesses a frame and
selects an appropriate NN model for model inference of this
frame to optimize the analytics accuracy and latency. Fig. 1
depicts the execution pipeline. First, there is an execution con-
figuration module, which includes a video resolution selection
sub-module to resize the resolution of this frame by resolution
selection algorithms [10], and an NN model selection sub-
module to select an NN model that best balances the analytics
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Fig. 2. The analytics results of Vision Zero application.

accuracy and delay by model selection algorithms [11]. Sec-
ond, this frame will be sent to a frame filtering/ROI extraction
module to filter out this frame if it does not contain relevant
information by filtering technologies [12], and/or to extract
Region of Interest (ROI) through background subtraction and
object cropping technologies. Finally, this preprocessed frame
and the selected NN model will be sent to a model inference
module to execute analytics and output results.

In the fields, the hardware of a real-time video analytics
system commonly consists of a smart camera enhanced with an
edge device equipped with a CPU and a GPU. For example, Mi-
crosoft Vision Zero used a Webcam camera, with Azure Stack
Edge with Intel Xeon CPU and NVIDIA T4 Tensor Core GPU.
The microprocessor in the camera can conduct the lightweight
execution configuration module and resize the frame into the
appropriate resolution. This frame is then sent to the CPU to
execute frame filtering/ROI extraction, which is computation-
intensive since it requires a large amount of searching, sorting,
matching operations when comparing frames. The computation
is instruction-intensive computing (IIC) suitable for a CPU to
process. There are some NN-based ROI approaches, however
they are heavy-weight and, to the best of our knowledge, less
used in the edge. Finally, this frame is sent to the GPU for
model inference, which is again computational intensive. The
computation is data-intensive computing (DIC) suitable for a
GPU to process, so we consider all the NN-based methods are
DIC tasks and others are IIC tasks.

B. Motivation

We conduct a measurement study on real-time video analyt-
ics systems to show that the analytics accuracy can significantly
vary in fields and investigate the root causes.

Measurement Setup. We measure the Microsoft Rocket
system with the Vision Zero application on an AWS DeepLens
camera with Intel Atom CPU and Intel Gen9 GPU The rocket
system runs the built-in filtering algorithm [9], and the configu-
ration algorithm [10] to select video resolutions from 144, 280,
540, 720, 1080p and the NN model from pre-trained models of
TinyYOLO, SSD300, RetinaNet, and YOLOv3. For the video
dataset, we use the video captured by the traffic cameras in the
city of Bellevue [13] that contains 24 hours video streams of
38GB in a 25fps video frame rate.

Accuracy Dynamics and Causes. Fig. 2 shows the analytics
results at Dawn Time, Rush Hours and Midnight. We observe
that the accuracy varies: at Dawn Time Fig. 2(a), the accuracy is

TABLE I
MEASUREMENT RESULTS

Parameters & Utilization Dawn Time Rush Hours Midnight
Number of Vehicles per Frame 7 23 11

Filtering Rate 82% 27% 64%
Resolution 540p 480p 1080p

Model RetinaNet TinyYOLO SSD300
CPU Utilization Rate 62% 48% 100%
GPU Utilization Rate 99% 97% 76%

85.7%; at Rush Hours Fig. 2(b), the accuracy reduces to 65.2%;
and at Midnight, the accuracy is 63.6%.

We investigate the root causes of the accuracy dynamics.
Table I shows the number of vehicles, the frame filtering rate,
the selected video resolution, the selected NN model, and the
CPU/GPU utilization rate. We observe that the number of ve-
hicles varies in different periods of a day. It leads to various
frame filtering rates, the selected video resolutions and NN
models. For example, when the number of vehicles was 7, 23,
and 11 per frame, the frame filtering rates were 82%, 27%, and
64%, respectively. Intuitively, a greater number of vehicles in a
video stream will increase the differences between two adjacent
frames, leading to fewer frames to be filtered. At Dawn Time,
the optimal video resolution and NN model selected were 540p
and RetinaNet. Here, the CPU and GPU utilization rates were
62% and 99%. At Rush Hours, the frame filtering rate dropped
to 27%. It means that a greater number of frames (73%) were
fed to the GPU, and the GPU workloads increased. To meet the
delay requirement, the video resolution decreased to 480p, and a
small TinyYOLO model was used, leading to the low accuracy.
Here, the GPU utilization was 97%, and the CPU utilization was
only 48% since a low resolution reduces the filtering compu-
tation workloads on the CPU. At Midnight, the frame filtering
rate was 64%. The video resolution and NN model were 1080p
and SSD300. Here, the CPU and GPU utilization rates were
100% and 76%; this is the optimal configuration yet the GPU
utilization is only moderate.

These measurements show that applications have contents,
e.g., Dawn Time, Rush Hours, and Midnight; and different
contents can result in dynamic IIC and DIC workloads. Unfortu-
nately, the CPU/GPU resources are fixed in field cameras. This
limits the potential to adapt to the workloads and optimize video
analytics accuracy, as we can see that one of the CPU/GPU has
reached its maximum capacity, yet the utilization of the other
is still low.

C. Dual-Image FPGA and Potential Approach

An FPGA consists of an array of reconfigurable logic blocks
and can be reconfigured to different customized functions. The
FPGA reconfiguration can take minutes to complete, making
it difficult to be used in runtime. Recent FPGA developments
lead to a brand new dual-image FPGA, which allows two or
more different images to be stored in the user flash memory and
support fast switching counted by FPGA cycles. For example,
Intel Max10 requires about 4.5e5 cycles to switch to another
image in ∼800 ns under 472.5 MHz system clock frequency.
Xilinx Artix-7 can also reach ∼1 ms switching time under max-
imal frequency 464 MHz. Higher maximal frequency tolerance
FPGAs have smaller switching time, e.g., Intel Stratix 10 and
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TABLE II
THE ANALYTICS ACCURACY OF THREE CONTENTS UNDER

DIFFERENT CPU AND GPU RESOURCES

Resource Dawn Time Rush Hours Midnight
CG-10%-90% 96.9% 69.2% 68.5%
CG-20%-80% 95.5% 84.3% 75.0%
CG-30%-70% 93.1% 64.0% 69.7%
CG-40%-60% 82.6% 66.1% 89.2%
CG-50%-50% 78.4% 61.7% 75.9%

Xilinx Zynq UltraScale are 250 ns and 120 ns, respectively (see
Section V for details). With a dual-image FPGA, we can pre-
store a CPU image to support IIC workloads and a GPU image
to support DIC workloads. We can then make elastic CPU/GPU
resources possible by multiplexing the two images in the time
dimension, i.e., by adjusting the FPGA time allocated to the
CPU image and the GPU image.

We now study the potential of dual-image FPGAs. We config-
ure an Intel Max10 FPGA to support Vision Zero. We divide the
FPGA time into one-second periods, and implement an FPGA
time allocation strategy, where in each period, x% and y% of
the FPGA time are allocated to the CPU image and GPU image;
denoted as CG-x%-y%. Table II shows the analytics accuracy
of Dawn Time, Rush Hours and Midnight under different CG-
x%-y%. We observe that there are choices for high accuracy
(bold red values in Table II) in each content.

Intuitively, we can develop a new real-time video analytics
system enhanced by a dual-image FPGA where the system can
optimize the analytics accuracy by resource allocation through
x, y, as well as system configuration on video resolutions and
NN models to adapt to the contents.

III. DESIGN OVERVIEW

A. The Gemini System

We now present Gemini, a new real-time video analytics
system enhanced by a dual-image FPGA. The system hardware
consists of a smart camera1 and a dual-image FPGA.

Gemini (see Fig. 3) has a System Monitor to monitor the
current and historical system states on resources and analytics
accuracy. The core of Gemini is a Workload Adaptation
Controller which takes the dynamics of analytics accuracy
(which can reflect potential content changes) and system states
to compute the optimal resource configuration to process this
frame, i.e., the CPU-GPU time partition of the FPGA, the video
resolution and the NN model. This video frame is resized to the
appropriate resolution and then sent to the FPGA, which will
first switch to the CPU image to execute Frame Filtering/ROI
Extraction. The FPGA will then switch to the GPU image
and take the preprocessed frame and the selected NN model
to execute Model Inference.

B. Challenges and Key Design Choices

Gemini introduces both hardware and software revisions of
an edge-side real-time video analytics system. We thus face four

1The smart camera is general. In this paper, we assume a basic camera,
e.g., a Raspberry Pi Zero camera with an ARM11 microprocessor. It can also
be an upscale camera with extra fixed CPU and GPU resources. We can take
these resources as constant factors into optimization; and all our results hold.

Fig. 3. The Gemini system.

unique challenges. From the FPGA hardware to the workload
adaptation controller, they are:

Challenge 1: Dual-image FPGAs have different types, e.g.,
Intel Max10, Xilinx Artix-7, and the programming development
is hardware-dependent, making it difficult for a video analytics
application to be portable across different FPGAs.

Design 1: A new abstraction of hardware functions to
make the Gemini system FPGA hardware-agnostic. Specifi-
cally, we analyze a set of existing representative video analytics
applications. We abstract the commonly used FPGA functions
and develop a new logic view of hardware functions. Different
dual-image FPGAs can register into the Gemini system through
adapters/drivers to enable the new FPGA functions. In this way,
video analytics programming development is decoupled from
hardware programming development, and a video analytics ap-
plication can be portable across the Gemini system enhanced
by different dual-image FPGAs.

Challenge 2: There are large data communications between
the microprocessor and FPGA; yet the performance of the two
processors is mismatched. One processor will be idle during
data transmission, leading to significant resource waste.

Design 2: An asynchronous data transfer mechanism for
microprocessor-FPGA communication. We design an asyn-
chronous data transfer mechanism where the camera micropro-
cessor and the FPGA write/read data into a shared memory
asynchronously. This can unblock the processors from under-
taking other computing workloads.

Challenge 3: The interface and data communication between
processor and FPGA puts a lot of burden on the programmers,
especially when using High-Level Synthesis (HLS) languages
and tools. At the same time, the Dual image FPGA needs to
be well adapted to different types of images, which makes
applications and images incorporated in Gemini require a lot
of work.

Design 3: A stub-skeleton design that creates a RPC
style interaction scheme. We develop a middleware including
stub-skeleton design and middleware kernel to process data
communication between FPGA and edge device. It can reduce
the complexity of using various accelerators and the workload
of incorporating video analytics applications into Gemini for
programmers.

Challenge 4: Video analytics applications have different
contents, leading to dynamic IIC and DIC tasks and workloads.
It is a challenge to optimize the video analytics accuracy given
the dual computing resources of a dual-image FPGA to adapt
to the contents and the dynamic IIC and DIC workloads. Note
that both IIC and DIC tasks can be run on CPU or GPU if the
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Fig. 4. FPGA image switching codes of Intel Max10.

system utilization is low. However, running IIC tasks on GPU
is much less efficient. One of the design goals is not to run IIC
tasks on the GPU mode or DIC tasks on the CPU mode.

Design 4: A bandit learning approach for elastic dual
computing resource control. We consider it difficult to
explicitly model the contents and the workload dynamics to
allocate resources to optimize the analytics accuracy. We thus
seek a learning-based approach to predict the workloads of
IIC tasks and DIC tasks; and leverage the elastic resources of
the dual-image FPGA to support these tasks. Our problem is
intrinsically a control optimization problem, and the solution
falls into a reinforcement learning (RL) algorithm. We argue
that Bandit Learning is a suitable class of learning algorithms
as compared to other regular RL algorithms. This is because
RL algorithms learn the state-action pairs, i.e., the states
should be affected by the control actions. In our problem,
the workloads rely on the contents (e.g., rush hours) but are
not affected by the resource allocation actions (e.g., FPGA
time partition). However, a great challenge of applying bandit
learning to our application is materializing the components
(e.g., arms, agents, rewards) of bandit learning.

IV. GEMINI DESIGN

A. A Decoupled Design to Make the System FPGA Hardware-
Agnostic

Dual-image FPGAs have many variants, e.g., Intel Max10,
Xilinx Artix-7, etc. Due to their differences in low-level spec-
ifications, e.g., the number of pins and their instruction sets,
programming on different FPGAs is tightly coupled to each
type of FPGA.

An example of FPGA-dependent programming: We take
the implementation of an image switching function as an ex-
ample. Image switching is to program the specified image into
the FPGA logic units for executing the functions implemented
in the image.

Fig. 4 shows the Verilog code of image switching in Intel
Max10. Line 2 loads the image file IMAGE0 to the image
area. Max10 stores the images in fixed memory areas, named
master/slave image areas. Here, the image is stored into the
slave image area (SLAV E_IMAGE); Lines 3–5 initiate the
write/read parameters. The setups here are the read width is
set to 16 bits, the write width is set to 4 bits, the maximum
data width allowed to read/write an image in FPGA is set to

Fig. 5. FPGA image switching codes of Xilinx Artix-7.

32 bits. Line 6 reads the image from the slave image area
and writes the image into the FPGA logic unit supported by
a module (altera_dual_boot) from Intel. Max10 completes
this procedure by sending signals to pre-defined output pins.
Specifically, it sends signal 1 to pin BOOT_SEL, signal 0 to
pin CFG_SEL.

Fig. 5 shows the Verilog code of switching to image
IMAGE0 in Xilinx Artix-7. Lines 2–3 assign the stor-
age memory address and the image size (42230 bytes) of
IMAGE0. This differs from Intel Max10 since Intel Max10
stores the image in a fixed image area, while Xilinx Artix-7
stores images in the dynamically allocated memory area. Lines
4–6 initiate the write/read parameters to set up the read width
and the write width. Compared to Intel Max10, the values of
read and write width are different due to the difference in the
width of the data line in these two types of FPGAs. Lines 7–8
read the image from memory and write the image into the FPGA
logic units. Here, Xilinx Artix-7 completes this procedure with
a read module(xilinx_dual_boot_read) and a write module
(xilinx_dual_boot_write) from Xilinx.

Hardware function abstraction: This example is a simple
illustration that FPGA programming is hardware-dependent,
yet video analytics applications only need the computing re-
sources of the FPGAs. To solve this problem, we develop a
new logic abstraction of hardware functions. This can decouple
the video analytics application development and the FPGA
hardware development, allowing applications to be agnostic to
the FPGA specifics.

To develop a proper hardware function abstraction, we care-
fully analyze four representative video analytics applications,
Reducto [12], FFS-VA [14], FCN-rLSTM [15], Faster-RCNN
[16]. We examine the common hardware functions needed to
support these applications. Table III shows a summary. We find
that we can categorize the computing functions of the four
video analytics applications into: 1) basic controls, 2) filtering,
3) interference, 4) background subtraction, and 5) cropping
bounding box. Their requirements on hardware functions can
be categorized into: 1) Hardware Setup functions that control
the FPGA states such as On/Off/Sleep mode; 2) Image Man-
agement functions that manage the images of the FPGA, and
3) Data Processing that handles the data in the FPGA. We
develop the detailed hardware functions in each category, and
we show their descriptions in Table III.
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TABLE III
ANALYSIS OF FOUR REPRESENTATIVE VIDEO ANALYTICS APPLICATIONS AND THEIR REQUIRED HARDWARE SUPPORT

Video Analytics Applications Reducto [12] FFS-VA [14] FCN-rLSTM [15] Faster-RCNN [16]Function
Abstraction Function Name Description BC Fil Inf BC Fil Inf BC BS CBB Inf BC CBB Inf

FPGA_ON() Turns on or awake FPGA. � � � �
FPGA_OFF() Turns off FPGA. � � � �
FPGA_INIT() Initializes FPGA. � � � �

Hardware
Setup

FPGA_SLEEP() Switches FPGA to sleep mode. � � � �
IMG_UPLOAD_CPU() Uploads a CPU image into FPGA UFM. � � � � �
IMG_UPLOAD_GPU() Uploads a GPU image into FPGA UFM. � � � �
IMG_SWITCH_CPU() Switches to CPU image on FPGA UFM. � � � � �

Image
Management

IMG_SWITCH_GPU() Switches to GPU image on FPGA UFM. � � � �
DATA_WR() Writes in data onto external memory. � � � � � � � � �
DATA_RD() Reads in data onto external memory. � � � � � � � � �
IIC_TASK_PROCESS() Executes IIC task on external memory. � � � � �

Data
Processing

DIC_TASK_PROCESS() Executes DIC task on external memory. � � � � �

BC: Basic Controls. Fil: Filtering. Inf : Inference. BS: Background Subtraction. CBB: Cropping Bounding Box.

Fig. 6. Reducto filtering codes using Gemini hardware functions.

To illustrate how the abstraction can help application de-
velopment, we use the implementation of the filtering func-
tion of Reducto as an example, where we can directly write
Python codes, see Fig. 6. The filtering function computes the
differences of two frames and filters out the one if the value
of differences is less than a predefined threshold. Specifically,
Reducto filtering turns the FPGA on (Lines 2–3), uploads the
CPU image that implements the filtering function to the user
flash memory of FPGA (Line 4), switches to the CPU image
(Line 5), transfers the frames to the FPGA (Lines 6–7), executes
the IIC to filter frame (Line 8), returns the filtering results (Line
9) and turns the FPGA off (Line 10).

B. An Asynchronous Data Transfer Mechanism for
Microprocessor-FPGA Communication

An asynchronous data transfer mechanism. In a video
analytics application, data need to be transmitted between the
host microprocessor and the FPGA. Specifically, each con-
structs a sender thread and a receiver thread to establish a
communication connection. The sender thread consumes clock
cycles to send data, and the receiver thread consumes clock
cycles to receive data. The sender/receiver threads will block
the opposite processor until transmission completion to ensure
communication correctness.

This mechanism performs poorly if the clock frequencies of
the microprocessor and the FPGA mismatch: the fast processor
idles. For example, a typical microprocessor, e.g., STM32f1
has a usual clock frequency of 64 MHz [17], and the clock fre-
quencies of Intel Max10 and Xilinx Artix-7 are 473.5 MHz and
464 MHz, respectively. The clock idling waste is non-trivial,

i.e., as much as four-fifths of the FPGA clock cycles can be
wasted.

We design a new data transfer mechanism where the micro-
processor and the FPGA transfer data by writing/reading an ex-
ternal shared memory in an asynchronous manner. Specifically,
after one processor writes the data into this shared memory, an
interrupt will be triggered for the other processor to read the
data. After finishing reading, the processor will be released for
other computing tasks.

To support such a mechanism, we design an asynchronous
data transfer controller, making sure that it supports the spe-
cific microprocessor and FPGA interface requirements such
as bus width, data transfer rate, and addressing capabilities.
We re-organize the priority level to prevent conflicts between
the FPGAs and microprocessors. We configure the controller’s
arbitration scheme and adjust the priority of competing requests
to minimize contention and reduce latency. We minimize data
dependency between the microprocessor and FPGA. It allows
both devices to perform their operations independently and
concurrently, reducing the need for frequent synchronization
and improving overall performance.

Discussion on the design choice. Our design of the asyn-
chronous data transfer mechanism for microprocessor-FPGA
communication is principally pragmatic. Our rationale is to
eliminate resource waste in the microprocessor-FPGA com-
munication without incurring large overheads. There are other
methods to handle the frequency differences between two pro-
cessors, e.g., frequency scaling, frequency virtualization and
CPU multiplexing [18]. These software-based methods work
for high-capacity CPUs, but are heavy for low-capacity MCUs.
There are also hardware-based methods. For example, we can
add parallel interfaces to FPGA, e.g., the AXI bus and PCI Ex-
press. With high-capacity communication physical lines, these
interfaces can solve the capacity mismatch but would require a
new customized FPGA design.

C. Middleware Between Edge Device and FPGA

Along with hardware function abstraction, we use stub-
skeleton design that creates a RPC style interaction scheme to
call these functions and simplify procedure of switching differ-
ent images. This RPC method has the advantage of simplicity
and practicality, so many heterogeneous systems would benefit
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Fig. 7. Middleware workflow.

from this transparent data communication and control of the
hardware IP-cores [19].

Fig. 7 shows the middleware workflow: 1) Video Analytic
System calls the function with parameter provided by the Stub,
and 2) the Stub packs the data to middleware. 3) The Mid-
dleware kernel (MW in Fig. 7) deployed on the edge device
transmits the data to the FPGA through the asynchronous shared
memory mentioned above. 4) Then the Middleware kernel in
FPGA transmits the data to the corresponding Skeleton of the
accelerator. 5) Data is unpacked by the Skeleton and passed to
the accelerator. Finally, results come back to the original path
after completing the task.

1) Stub and Skeleton: Stub and Skeleton have two main
functions. The first function is to pack data into a specific
data structure for communication. Stub is responsible for data
packing, sending it to the middleware kernel, and waiting for
the result to return. While Skeleton is responsible for unpack-
ing data and sending it to the accelerator, returning the result
after the accelerator finish task. The second function is to pro-
vide a better and clean abstraction both for FPGA image and
video analytics applications. Stub provides a clean abstraction
for the upper video analytic applications, it encapsulates the
hardware-level function and provides the function interfaces
required by each application, such as the filter function Re-
ducto_Fileter_Acc shown in Fig. 6. When different video
analytic systems use their own algorithms to analyze the video,
they simply use the functions provided by the stub. Skeleton
provides an abstraction between middleware and accelerators,
which can implement different data processing patterns, such
as one-shot computations that produce a single result from a
single input, or stream processing of a sequence of data.

2) Middleware Kernel: Middleware kernel connects stub
and skeleton, and its core is the asynchronous communication
mechanism based on the shared memory mentioned above.
Middleware kernel writes data such as function parameters or
return values to a specific area, and notifies stub and skeleton
through interrupt signals. Moreover, the kernel is also responsi-
ble for switching the skeleton of the accelerator. When the video
analytic system calls the functions provided by stub which use
other accelerators than the one loaded in FPGA, the kernel
performs all necessary steps to switch the FPGA image. It loads
the accelerator and skeleton which correspond to the called stub
function onto the FPGA. Furthermore, the middleware kernel
needs to manage the aforementioned FPGA function abstraction
like FPGA_ON. When a function call is encountered, the kernel
will look up the address corresponding to the function and
transfer the data to the corresponding memory address, which
greatly hides the complexities of using FPGA.

D. A Bandit Learning Approach for Elastic Dual Computing
Resource Control

1) Problem Formulation: We consider a video analytics
stream consisting of consecutive frames with a frame rate of
f . For each frame, we need to select the resolution and the NN
model as well as the CPU-GPU time partition of the FPGA, so
that the delay constraint is satisfied, the system completes pro-
cessing a frame before the next frame comes, and the analytics
accuracy is maximized. Formally, Let vi ∈ V be the resolution
variable and mi ∈M be the NN model variable for frame i,
where V and M are the set of resolutions and NN models. Let
T IIC
i (vi) denote the IIC processing time of frame i given vi.

Let TDIC
i (vi,mi) denote the DIC processing time of frame i

given vi and mi. Let D be the delay constraint. We have:

T IIC
i (vi) + TDIC

i (vi,mi)≤D (1)

Let tCi be the FPGA times allocated to CPU image for sup-
porting IIC workload of frame i. Let tGi be the FPGA times
allocated to GPU image for supporting DIC workload of frame
i. tCi and tGi are decision variables to be optimized. We have:

tCi + tGi ≤ 1

f
(2)

T IIC
i (vi)≤ tCi ∧ TDIC

i (vi,mi)≤ tGi (3)

Let A(vi,mi) be the analytics accuracy of frame i. Our objec-
tive is to maximize A(vi,mi).

The Dual Computing Resource Control Problem: given
the video frame i, the frame rate f , the set of video resolutions
V , the set of pre-trained models M, and the delay requirement
D, subject to delay constraint (1) and FPGA time constraints
(2) and (3), determine the FPGA times allocated to CPU image
tCi and GPU image tGi , the resolution vi and the model mi for
frame i, to maximize the analytics accuracy A(vi,mi).2

2) Problem Analysis: Video analytics applications have
contents, and different contents result in dynamic IIC and DIC
workloads. For example, the number of frames fed to the GPU
depends on how many frames are left unfiltered, which further
depends on whether the frames contain relevant information of
the video analytics task. It is difficult to explicitly model the
content and the workload dynamics.

We thus seek a learning-based approach. Our problem falls
into an optimization control problem. There are two major
categories of learning algorithms, reinforcement learning (RL)
and bandit learning (which can also be categorized into RL, yet
we emphasize its differences from RL). At a high level, RL is
commonly used for a control problem where the control actions
have a direct impact on future states, and RL learns the state-
action interactions. Bandit learning is widely used for a control
problem where the emphasis is to learn the statistical outcomes
of the adjustment strategies.

2An edge camera can have additional fixed CPU and GPU resources.
In such cases, we can develop a problem P2 by replacing eq. (3) with
T IIC
i (vi)≤ tCi + t′Ci ∧ TDIC

i (vi,mi)≤ tGi + t′Gi , where t′Ci and t′Gi be
the additional CPU time and GPU time to process frame i. It is easy to verify
that P2 is equivalent to the Dual Computing Resource Control Problem.
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Fig. 8. The workflow of the bandit algorithm.

Bandit learning repeatedly observes a context, chooses an
action, and observes the reward for the selected action. Bandit
learning is suitable for applications where the contexts change
smoothly [20]. This matches video analytics applications well,
e.g., in a vehicle counting application, the traffic intensity
changes smoothly as compared to the video analytics task rate
[12]. Bandit learning requires fewer data and less computational
power, and it is widely used in a large number of applications.

3) The Bandit-Based Computing Resource Control Algo-
rithm: To exploit the bandit learning to solve the dual com-
puting resource control problem, we first present the problem
into the contextual multi-bandit framework, and then design
a Bandit-based Computing Resource Control (BCRC) algo-
rithm. In a contextual multi-bandit problem (Fig. 8), a bandit
agent needs to make a sequence of decisions. At each time
t ∈ {1, 2, . . . , T}, the agent observers different contextut and
different armsat. It then chooses an action, i.e., which arm at
to pull. A rewardrt,at

will be given based on ut and at, with
the rewards of other arms unknown. Let A denote the arm
set. Let xt,a ∈ R

d denote the feature vector capturing all the
available side information, including selected features of the
current context ut and the arm at.

In our problem, a context ut has four dimensions: the CPU
resource utilization rate hC

t , the GPU resource utilization rate
hG
t , the delay requirement dt and the frame rate ft. The agent

can choose an action at at each time t, which has three features:
the CPU-GPU time partition of the FPGA, the video resolution
vt, and the NN model mt.

The system parameter configrurations in BCRC are (1) the
CPU-GPU time partition of the FPGA, (2) the video resolution,
and (3) the NN models. The NN models are discrete in nature.
We discretize the video resolution, e.g., in our case study in
Section VII, it is 144, 280, 540, 720, 1080, and the FPGA
time that nine predefined discrete levels for CPU:GPU-10:90,
20:80, 30:70, 40:60, 50:50, 60:40, 70:30, 80:20, 90:10. This is
the action space of our bandit algorithm. Such discretization is
pragmatic in general, e.g., we can discretize in finer granularity,
yet it achieved good performance in practice.

We define the reward rt as the observed analytics accuracy af-
ter the action. Since we cannot directly get the analytics results
and ground truth once it goes online, we apply the uncertainty
of the analytics results instead, which shows how uncertain they
are in their predictions. The lower uncertainty indicates a higher
probability of correct analytics.

One may want to simply make a decision to maximize the re-
ward. Without sufficient exploration, however, this exploitation-
based strategy can result in an arbitrarily bad outcome: our

agent can be trapped in a local optimum and continuously select
sub-optimal arms without exploring better solutions. Therefore,
we must carefully balance exploration and exploitation. We
design a bandit-based computing resource control algorithm to
achieve a good balance between exploration and exploitation
and has a good efficiency with low complexity. The idea is to
choose the arm with the highest upper confidence bound (UCB)
instead of choosing the arm with the highest mean reward.
Specifically, we model the expected reward of an arm a has
a linear relationship with its feature vector xt,a ∈ R

d, and can
be represented as

E[rt,a|xt,a] = x�
t,aθ

∗
t . (4)

where θ∗
t ∈ R

d, ||θ∗
t || ≤ 1, is a weight vector representing the

accuracy model parameter to be learned online.
We use a LMMSE estimator to estimate θt. Specifically, let

Dt ∈ R
m×d and ct ∈ R

m are the input samples of the feature
matrix and the corresponding reward vector at the round t,
respectively, where m is the number of samples and d is the
feature dimension. By applying the Bayesian Gauss-Markov
Theorem, the estimated coefficient θt at round t is derived as

θ̂t = (D�
t Dt + Id)

−1D�
t ct, (5)

where Id is a d-dimension identity matrix. The covariance of
the estimation error At above is

At =D�
t Dt + Id (6)

Following the proof in [21], we know that for any δ > 0, α=
1 +

√
ln(2/δ)/2, with probability at least 1− δ we have

|x�
t,aθ̂a − x�

t,aθ
∗
a| ≤ α

√
x�
t,aA

−1
t xt,a. (7)

where α is a hyperparameter to balance exploration and ex-
ploitation: the larger α, the more emphasis on exploration, and
vice versa. Accordingly, the UCB of the estimated reward for
selecting arm a at round t can be computed as

st,a = θ̂
�
a xt,a + α

√
x�
t,aA

−1
t xt,a (8)

where At =D�
t Dt + Id. Then, the arm selection rule at t is

at = arg maxa∈A st,a (9)

Finally, we describe the flow of BCRC in Algorithm 1. We
first initialize all UCB of all arms (Lines 1–2). At time t, we
compute the estimated coefficient θ̂t and the covariance of the
estimation error At according to Eqs. (5) and (6) respectively
based on the observed current context and the features of all
arms (Lines 4–7). Then we compute the UCB of all arms (Lines
8–9) and output the most appropriate arm at with the highest
UCB (Line 10).

V. IMPLEMENTATION

We implement a Gemini prototype as shown in Fig. 9.
Here, we use an AWS DeepLens as the camera and an Intel
Max10 as the dual-image FPGA. We overcome a set of chal-
lenges and present three necessary enhancements: 1) the FPGA
images should switch automatically by instructions. However,
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Algorithm 1: Bandit-based Computing Resource Con-
trol

Input: A
Output: At iteration t, output arm at for context ut

1 for all a ∈ A do
2 Initialize st,a = 0;

3 for t= 1, 2, 3, ..., T do
4 Observe current context ut ;
5 Observe features of all arm a ∈ A : xt,a ∈ R

d;
6 Compute θ̂t according to Eq.(5);
7 Compute At according to Eq.(6);
8 for all a ∈ A do

9 st,a = x�
t,aθ̂t + α

√
x�
t,aA

−1
t xt,a;

10 Select arm at with the highest UCB, i.e.,
at = arg maxa∈A st,a;

Fig. 9. Gemini prototype.

off-the-shelf Intel Max10 only provides manual switching. We
conduct a hardware redesign to facilitate instruction-triggered
image switching and enable multi-image functions on dual-
image FPGA by modifying Altera Dual Configuration; 2) we
develop an example adapter for Intel Max10 so that it can be
registered into the Gemini system of a host edge device. The
applications can then use the hardware functions in Section
IV-A to access the FPGA computing resources, and 3) the
BCRC algorithm in Gemini requires the pre-storage of CPU and
GPU images. To allow multiple functions to be used in runtime,
we design a simple and generic processing element (that can be
utilized by different types of NN processing models and image
implementation for generic instructions.

Enhancement to FPGA Image Switching. To complete a
video analytics task, we need both filtering (CPU) and model
inference (GPU), and thus a switch is needed. Intrinsically, the
switch is not triggered by context changes, but by executing
tasks. Context change will trigger our bandit algorithm to set
parameters, e.g., video resolution, NN model choice. FPGA
switch is between images, not the configurations, e.g., there is
no change in the GPU image, only spending more time on the
GPU image. In Max10, there are two control points, SW1 and
SW2, see Fig. 10(a). SW1 is used to select the (next) image by
the CONFIG_SEL pin, and SW2 is used to trigger recon-
figuration by the RU_nCONFIG pin. To complete an image
switch operation, SW1 and SW2 should be triggered manually.

Fig. 10. Image switching enhancement.

TABLE IV
IMAGE SWITCHING TIME OF DIFFERENT FPGAS

FPGA Intel
Max 10

Intel
Stratix 10

Xilinx
Artix-7

Xilinx
Zynq UltraScale

Maximal
Clock Frequency 472.5 MHz 1,066 MHz 464 MHz 1,334 MHz

# Switching Cycle 4.5e5 2.5e5 4.6e5 1.6e5
Minimal

Switching Time ∼800 ns ∼250 ns ∼1 ms ∼120 ns

We conduct a hardware redesign to replace the hand switch
SW1 and SW2 by relays shown in Fig. 10(b). We remove
the switch SW1 and SW2 and solder a relay at the original
place of SW1 and SW2. When switching to the CPU image
stored in the flash area one, Gemini switches CONFIG_SEL
pin by Relay0, then triggers the reconfiguration by pulling the
RU_nCONFIG pins down by Relay1, and vice versa. And
we reprogrammed the Altera Dual Configuration module to
alternatively change the allocation address of images to enable
multiple images functions.

Although the image switching period counted by clock cy-
cles, is fixed in different FPGA types, which is hard to optimize,
we can further reduce it by increasing the FPGA operating
frequency. Therefore, in Gemini, we maintain the operating
frequency of Max10 at the highest level, 472.5 MHz. Compared
with the 9 ms switching time refer to the Intel official reference
frequency, 50 MHz, the switching time is reduced to about 10%
of the original, about 800 ns. We also analyze many popular
FPGAs switching time as shown in Table IV, and find that
under maximum frequency, the switching time is able to satisfy
common video analytics tasks.

FPGA Adapter. We show the workflow of the adapter de-
veloped for Intel Max10 in Fig. 11. The adapter consists of
an FPGA configuration file and a control program. The FPGA
configuration file records the function name, function code,
parameter field, and the result field of each hardware function
in the form of a function block. This file is loaded to the SRAM
of the camera. The middleware monitors whether there is a
hardware function call. Once the middleware detects a hardware
function call, it searches the SRAM to find the corresponding
function, sends the parameters, and finally collects the results
from the result field.

GPU Image Implementation for Generic NN Compu-
tation. For NN processing models, different characters of NN
layers vary in the FPGA implementation, depending on the
computation type and the number of values that need to be
accumulated (we call it accumulation frequency). We design
a simple and generic processing element (SGPE) that can be
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Fig. 11. The FPGA adapter.

Fig. 12. A GPU image implementation for neural network model inference.

utilized by different types of NN computations. We show our
SGPE in Fig. 12: each SGPE consists of a multiplier and an
accumulator. The SGPE can complete the essential operation
in all types of NN computation. In this way, we can implement
one type of NN computation by combining SGPEs, and con-
trol the accumulation frequency by controlling the number of
SGPEs. The GPU image implementation is shown in Fig. 12.
The NN model’s weights and intermediate results are routinely
stowed away in line buffers and regularly swapped with a dy-
namic random-access memory (DRAM). Pipeline multiplexers
(MUXs) govern the data flow exchange between the SGPEs
and line buffers. The NN’s structure is regulated by the buffer
controller, while the weight buffers maintain the NN param-
eters during operation. The input and output results are held
in DRAM and subsequently exchanged with the intermediate
results buffers.

CPU Image Implementation for Generic Instruction In-
tensive Computation. Data flow in each instruction ties closed
in the pipeline for the IIC workload in Frame Filtering/ ROI
Extraction. Consequently, to decrease the total execution time,
we implement a buffer-instruction-core architecture to preload
data into buffers via Data Controller to guarantee that the in-
struction cores (IC) constantly run without idling, as illustrated
in Fig. 13. Note that the instruction core contains an Instruction-
Intensive algorithm that can handle a region of pixels and yield
some intermediate results for the next instruction core. For
instance, we employ Reducto [12] as the filtering algorithm
and implement a CPU image to support it. The function of
instruction cores here is to calculate the feature values in pixels.
For the system resource monitor module, we use mpstat to
record the system states. We implement the Gemini modules
in Python with 2K+ lines of code.

Fig. 13. A frame filtering sample of the CPU image implementation.

TABLE V
THE APPLICATION SPECIFICATIONS

Applications VC VPD
IIC Functions SDD ROI Extraction [22] Reduction Filtering [12]
DIC Functions Model Inference Model Inference
Resolutions (p) 144,280,540,720,1080 280,540,720,1080,2160

NN Models TinyYOLO,SSD300,
RetinaNet,YOLOv3

MobileNet , R-FCN ,
YOLOv3

Delay Requirement 40 ms 70 ms
Frame Rate 25 fps 30 fps

VI. EVALUATION

In this section, we evaluate the performance of Gemini with
the aim to answer the following questions:

• How does Gemini compare to existing video analytics sys-
tems using the fixed CPU/GPU resources? (Section VI-B)

• To what extent can Gemini reduce the development effort
for video analytics applications? (Section VI-C)

• How do the internal factors, e.g., the computing resource
control algorithm, affect the performance? (Section VI-D)

• Why use dual-image FPGA for video analytics accelera-
tion compared to traditional CPU-GPU systems? (Section
VI-E)

A. Methodology

Testbed. We evaluate the Gemini prototype equipped with an
AWS DeepLens camera and an Intel Max10 FPGA. The camera
has an Intel Atom CPU with 8GB memory running Ubuntu OS-
16.04 LTS. Intel Max10 FPGA has 50,000 configurable logic
blocks and 4GB DDR3 memory.

Applications. We use two representative applications to eval-
uate Gemini. The specifications are shown in Table V.
• Vehicle Counting (VC) counts the number of vehicles in

video footage. For the video dataset, we use the video captured
by the traffic cameras in the city of Bellevue [13] that contains
24 hours of video of 38GB.
• Vehicles and Pedestrians Detection (VPD) paints the

bounding box of vehicles and pedestrians in the video. We use
the Auburn dataset [23] that contains 24 hours traffic video of
54GB.

Baselines. We compare Gemini against two state-of-the-
art edge-side video analytics systems and an offline optimal
scheme serving as the performance upper bound. They are
open-source and have been widely used as benchmarks. We run
all the baselines on the DeepLens-Max10 testbed. DeepLens
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Fig. 14. The average analytics accuracy comparison.

responses for transmitting the frame to Max10. We use FPGA to
emulate CPU and GPU resources. Let s-x%-y% denote x% and
y% FPGA time allocated as CPU and GPU resources for system
s. Let s-best represent the best-fixed CPU and GPU resources
allocation for the system s.
• Microsoft Rocket System (MRS) [4] is the status quo real-

time video analytics system. It detects the available computing
resources and uses the built-in resolution selection and model
selection algorithms to balance the accuracy and delay. We
apply two various MRS with different algorithms based on two
existing works [4], [24]. We annotate the system from [24] as
MRS-A that lowers the computation cost and the one from [4] as
MRS-B that is focusing on reducing the latency and improving
the accuracy.
• VideoEdge System (VES) [25] is a real-time video analytics

that collects the available resources of multiple cameras and
then selects the video resolution and models to maximize the
analytics accuracy. For a fair comparison, we implement a
variant VideoEdge that only collects the available resource of
a camera and processes video streams locally.
• Offline Optimal Scheme (OOS) is computed using dy-

namic programming with complete workload information. It
outputs the optimal computing resource allocation strategy,
the resolution, and the NN model. The offline optimal serves
as an upper bound on the accuracy of an omniscient pol-
icy with complete knowledge of the future IIC and DIC
workload.

Evaluation Metrics. We use three metrics to evaluate Gem-
ini and the baselines: 1) Analytics Accuracy is the first priority.
For the VC application, the analytics accuracy is computed as
1− |r−g|

g , where r is the number of vehicles in the analytics
result, and g is the ground truth. For the VPD application, the
analytics accuracy is computed as v

w , where v is the overlapping
area between the localization box of the analytics result and the
correct localization box, w is the area of the correct localization
box; 2) Latency Miss Rate quantifies the percent of the video
analytics tasks that do not meet the latency requirement set
by a video analytics application; and 3) Hardware Utilization
indicates how effectively the computing resource has been used
in video analytics systems.

B. Overall Performance

1) Improvement on Analytics Accuracy: Fig. 14 shows the
average analytics accuracy of Gemini, MRS-A, MRS-B and

Fig. 15. The CDF of analytics accuracy comparison.

VES. For VC as shown in Fig. 14(a), we can see that MRS-
A and VES achieve only 59.36%–81.92% of the accuracy of
the OOS scheme. The average analytics accuracy of MRS-A
is lower than 74% under all fixed CPU and GPU resources,
which are qualitatively similar to VES. The MRS-B has about
7% higher average analytics accuracy than MRS-A. The value
becomes even lower for VPD, as shown in Fig. 14(b), where
MRS-A, MRS-B and VES achieve 58.63%–77.48% accuracy.
It reveals that systems based on fixed CPU/GPU resources are
far from satisfactory.

We can observe that Gemini outperforms MRS-A, MRS-
B and VES over both applications. More specifically, Gemini
outperforms MRS-A with an improvement in average analytics
accuracy of 16.92%–24.67% and MRS-B with 7.58%–17.42%.
The gap widens to 15.97%–27.76% for VES. Both experi-
ments show that the performance gap of Gemini within 4.38%–
5.40% of OOS scheme across both applications. Recall that the
performance of OOS cannot be achieved in practice because
complete knowledge of future workloads is required. It reveals
that little room exists for video analytics systems without future
knowledge to improve over Gemini in these scenarios.

Fig. 15 shows the Cumulative Distribution Function (CDF) of
the average accuracy of Gemini, MRS-A, MRS-B and VES with
the best-fixed CPU/GPU resources (i.e., MRS-A-best, MRS-B-
best), and OOS. CDF is a function that describes the distribu-
tion of the accuracy taking on a value less than or equal to a
given value. Here, it is used to visualize and analyze the dis-
tribution of our system and other’s prediction accuracy across
the dataset. For the application VC as shown in Fig. 15(a), only
19.32%, 20.32% and 19.21% of the accuracy of MRS-A-best,
MRS-B-best and VES-best can reach the accuracy 85%, while
89.78% of the accuracy of Gemini can reach the accuracy 85%.
These values of MRS-A, MRS-B and VES become even smaller
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Fig. 16. The latency miss rate comparison.

in VPD as shown in Fig. 15(b), with only 11.52% of MRS-A-
best, 12.06% of MRS-B-best and 12.88% of VES-best. How-
ever, Gemini can maintain 85.25% accuracy exceeding 85%. It
illustrates Gemini output high accuracy results consistently.

2) Reduction on Latency Miss Rate: Fig. 16 compares the
latency miss rates of Gemini, MRS-A-best, MRS-B-best, VES-
best, and OOS. As shown, Gemini and OOS have similar low
latency miss rates. Gemini outperforms MRS-best and VES-
best by a large margin. Specifically, Gemini achieves a near-
zero latency miss rate (1.94% in VC and 3.48% in VPD),
while MRS-A-best (24.11% in VC and 25.31% in VPD), MRS-
B-best (23.18% in VC and 24.48% in VPD), and VES-best
(28.26% in VC and 33.61% in VPD) are much higher. Com-
pared with MRS-A, MRS-B and VES, Gemini has a latency
miss rate reduction from 85.78% to 93.14%.

Gemini can achieve better performance because MRS and
VES model the workloads of video analytics tasks through
one-time measurement, which leads to significant deviation in
practice deploying, while Gemini learns the workloads through
statistics with a much higher accuracy.

3) Improvement on Hardware Utilization: Fig. 17 shows
the hardware utilization rate of different systems. We can see
that MRS-A, MRS-B and VES suffer low hardware utilization,
while Gemini can achieve a high hardware utilization under all
scenarios. Specifically, the hardware utilization rate of Gemini
reaches up to 93.58% in VC and 95.32% in VPD, and out-
performs MRS-A, MRS-B and VES, with an improvement of
11.60% to 32,78% in VC, and 10.2% to 30.85% in VPD.

Please note that a higher hardware utilization means more
computing resources are used to accelerate video analytics.
Systems using fixed CPU and GPU resources result in a
large amount of idling resources. Gemini can transform fixed
CPU/GPU resources to elastic CPU/GPU resources, thus reduc-
ing the idling computing resources. The high hardware utiliza-
tion explains why Gemini is able to achieve a high accuracy
compared to baselines.

C. Application Development Effort

In this section, we investigate to what extent Gemini can
simplify application development. We develop the application
VC and VPD on two dual-image FPGAs, the Intel Max10
and the Xilinx Artix-7. We compare the development effort
in terms of program length when programming with/without
the hardware function abstraction and middleware provided by
Gemini.

TABLE VI
DEVELOPMENT EFFORT W/O HARDWARE FUNCTION ABSTRACTION (HFA)

AND MIDDLEWARE (MW) AMONG DIFFERENT APPLICATIONS

APP. HFA
Enable

MW
Enable

# Code lines(Reduction Rate)
Max10 Artix-7 Max10+Artix-7

VC

× × 21.1k 26.4k 47.5k
� × 12.4k(-41.2%) 12.4k(-53.3%) 12.4k(-73.9%)
× � 9.6k(-54.5%) 9.6k(-63.7%) 9.6k(-79.8%)
� � 7.9K(-62.6%) 7.9K(-70.0%) 7.9K(-83.4%)

VPD

× × 32.5k 34.9k 67.4k
� × 14.9k(-54.5%) 14.9k(-57.3%) 14.9k(-77.9%)
× � 11.2k(-65.5%) 11.2k(-68.0%) 11.2k(-83.4%)
� � 8.6k(-73.5%) 8.6k(-75.3%) 8.6k(-87.2%)

Table VI shows the development effort of two applications on
two different dual-image FPGAs. There are two key takeaways
from these results. First, we find that the hardware function
abstraction and middleware of Gemini can reduce the develop-
ment effort significantly for all applications. For example, With
hardware function abstraction and middleware, the total lines
of code are reduced by 62.6% and 73.5% for VC and VPD on
Max10.

Second, we observe that Gemini provides portability for ap-
plication development. For example, with hardware function
abstraction, the program length of VC deployed on Max10 and
Artix-7 is 12.4k lines. If the developer develops the application
on both Max10 and Artix-7, the program length is still 12.4k
lines (Max10+Artix-7 in Table VI). It is because hardware
function abstraction enables the developer to reuse the code
without modification for FPGA specifications.

Third, in compile, the compile-time increases slightly on In-
tel Quartus Compiler, e.g., with and without abstraction differs
about 0.21%. It is because the hardware function abstraction
does not change the functional logic of FPGA. Thus, in runtime,
no overhead is added to the execution time.

D. Component Analysis Study

We also explore Gemini’s internal components better to un-
derstand their contributions to the performance of the system.
We implemented three breakdown versions of Gemini to take a
closer look at the contribution of each component: 1) Gemini-
A has the asynchronous data transfer mechanism and middle-
ware but does not enable the bandit-based computing resource
control algorithm. We choose the best CPU/GPU resources
configuration with the highest accuracy, 2) Gemini-B has the
bandit-based computing resource control algorithm and mid-
dleware but does not enable asynchronous data transfer, and
3) Gemini-C has the bandit-based computing resource con-
trol algorithm and asynchronous data transfer but does not en-
able middleware. Figs. 18–20 show the comparison results that
the accuracy gains, transmission time reduction and resolution
selection distribution, brought by Gemini-A, Gemini-B, and
Gemini-C are significant.

Gemini-A, as depicted in Fig. 18, we note a 3.31% decrease
in accuracy relative to Gemini when applied to VC. This can be
attributed to the implementation of elastic computing resource
control in Gemini, which enhances its resource allocation ca-
pabilities, allowing it to determine optimal suitable configu-
rations. For instance, the high-resolution image selection rate,
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Fig. 17. The hardware utilization comparison.

Fig. 18. Accuracy comparison for Component Analysis.

Fig. 19. Transmission time comparison for Component Analysis.

i.e., 1080p, increases from 21% to 35%. Regarding Gemini-B,
Fig. 18 illustrates a 10.80% reduction in accuracy compared
to Gemini in the context of VC. This outcome arises from the
24% reduction in transmission time for Gemini as opposed to
Gemini-B, as demonstrated in Fig. 19, due to the deactivation of
the asynchronous data transfer mechanism. Consequently, the
high-resolution image selection rate, i.e., 1080p, increases from
12% to 35%. For Gemini-C, we observe a 2.01% decline in ac-
curacy as a result of disabling middleware when contrasted with
Gemini in VC, as shown in Fig. 18. This is a consequence of the
24% decrease in transmission time for Gemini in comparison to
Gemini-C, as evidenced in Fig. 19. The saved time contributes
to an increased high-resolution image selection rate, i.e., 1080p,
increases from 17% to 35%.

We observe a similar accuracy reduction in VPD. These
results indicate the importance of asynchronous data transfer

Fig. 20. The resolution selection distributions comparison for Component
Analysis.

TABLE VII
VIDEO ANALYTICS PERFORMANCE OF INTEL MAX10, BANANA PI M2+,

ORANGE PI 3 LTS AND RASPBERRY PI 4

Components Asynchronous
Data Transfer Middleware Bandit-based

Resource Control
Gemini-A � � ×
Gemini-B × � �
Gemini-C � × �

Gemini � � �

mechanisms, elastic computing resource control and middle-
ware. Gemini is able to combine the advantages to achieve
better performance than using only one of them.

E. Between Dual-Image FPGA and CPU-GPU Systems

In this section, we compare the performance of traditional
CPU-GPU systems with Gemini running on dual-image FPGA
to highlight the advantages of dual-image FPGA for video
analytics acceleration. We utilize three single-board computers,
namely the Banana Pi M2+ [26], the Orange Pi 3 LTS [27], and
the Raspberry Pi 4 [28], all equipped with both CPU and GPU.

As shown in Table VII, when executing the application VC,
we observe that the average accuracy of the traditional CPU-
GPU solution with the same price as Intel Max10 is lower than
that of the dual-image FPGA, and the latency miss rate is higher.
This is because the IIC task and DIC task in the application VC
change dynamically, and the fixed CPU and GPU resources on
Banana Pi M2+ and Orange Pi 3 cannot adapt to the changes,
resulting in performance degradation. At the same time, the
utilization rate of Banana Pi M2+ and Orange Pi 3 is also lower
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Fig. 21. The end-to-end operations of Gemini in the field. (The photo has
been informed and approved by the people in it.)

Fig. 22. The end-to-end operations of Gemini when monitoring ice disaster.

than that of Intel Max10, because Gemini can dynamically al-
locate resources on the dual-image FPGA according to changes
in workloads to improve FPGA utilization. Furthermore, the
Raspberry Pi 4 exhibits better average accuracy and latency
miss rates than the Intel Max10, due to its improved hardware
capabilities. However, its hardware utilization rate is signifi-
cantly lower than that of the Intel Max10, resulting in wastage of
hardware resources. Considering that the power consumption of
FPGA is lower than that of CPU and GPU, using a dual-image
FPGA to accelerate video analytics could offer both cost and
efficiency advantages.

VII. CASE STUDIES

In this section, we apply Gemini to support an intrusion de-
tection application and disaster monitor in an industrial system.

A. Case Study I: Intrusion Detection

We present a case study where we use our Gemini prototype
(Fig. 9) to support an intrusion detection application that has
been deployed in a computer laboratory in our department. The
application applies a Hikvision intrusion detection application
indoor [29]. It has three pre-trained models, Mvx-net, AcuSense
[30], and Complete-YOLO. We ran the application supported
by Gemini for over 8 hours.

Table VIII shows the average analytics accuracy, hardware
utilization, and the latency miss rate of three periods on a day.
The accuracy is holding at high accuracy (above 92.4%). The
computing resource can be fully utilized as the hardware uti-
lization ranges from 96.4% to 98.9%. We also observe that only

TABLE VIII
AVERAGE ANALYTICS ACCURACY, HARDWARE UTILIZATION RATE AND

LATENCY MISS RATE OF THREE PERIODS ON A DAY

Hardware Price ($) Average
Accuracy

Latency
Miss Rate

Hardware
Utilization Rate

Banana Pi M2+ 45 88.6% 12.3% 80.6%
Orange Pi 3 LTS 48 90.7% 8.12% 75.4%

Raspberry Pi 4 197 98.4% 0.81% 54.8%
Intel Max 10 50 96.1% 1.02% 98.7%

0.002% of video analytics tasks violate the latency requirement.
It illustrates that Gemini can provide high service quality.

Fig. 21 shows the end-to-end operations of Gemini between
8:30 am to 9:30 am. In Fig. 21, the top graph shows the
frame filtering rate over a period. The bottom three graphs
show the amount of allocated CPU/GPU resources, the selected
resolution, and the employed model over a period of time, re-
spectively. We can see that Gemini adjusts computing resource
allocation, video resolution, and model in runtime successfully.
For example, at the time 9:05 am (green dash line in Fig. 21),
a burst of persons appears in the video, the filter rate drops to
27%, and more frames are fed to the GPU. Gemini detects the
increasing workloads on GPU, thus allocates more resources for
GPU, and downsizes resolution to 280p, and model to Mvx-net
to keep high accuracy.

We further estimate the Gemini overhead by computing the
number of floating-point operations (FLOPs) of Gemini in
this case. We find that Gemini has the computation of 25.63
MFLOPs, which is only 18.3% of MobileNet (140 MFLOPs).
It takes only 1.7 ms to compute the dual computing resource
allocation strategy, which occupied 2% of the total CPU time
of the camera. In short, we believe that Gemini can successfully
be deployed on laptops, mobile phones, or even on low-capacity
cameras.

B. Case Study II: Disaster Monitor

We also apply our Gemini prototype to support edgebox
deployed in an industrial system. The industrial system uses
Jiangxing EdgeBox [31] to collect data from various sensors
and execute video analytics about the frost and icing of the
power grids.

The right top of Fig. 22 is the image collected by the camera
connected with EdgeBox when the ice disaster occurred, and
the right bottom is the prototype of EdgeBox. The subgraph
on the left side of Fig. 22 shows the operation of Gemini in the
ice disaster detection of the power grid in the industrial system.
During the ice disaster monitoring period, Gemini can dynami-
cally adjust computing resource allocation, video resolution and
model. When the ice disaster has not yet appeared, the image of
the power grid always remains unchanged for a long time. At
this time, the filter rate is very high and the load is mainly on
the CPU running the filtering algorithm. Due to the light GPU
load, Gemini will select a higher resolution and more complex
models to improve accuracy. In the range of the purple dash line
in the figure, as the temperature drops, the power grid gradually
freezes. At this time, the useful images of video analytics are
increased, and the filter rate drops to 30%. Due to the increased
load on the GPU, Gemini allocates more time to the GPU, while
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reducing the resolution and changing the model to ensure high
accuracy of the analysis results.

We test the overhead of Gemini in the industrial scenario.
Unlike the previous case, which focuses on FLOPs, we care
whether Gemini can successfully complete the task under the
given delay requirements and frame rate. We found that the
probability of Gemini failing to meet the requirements is less
than 0.1%, which meets the needs of industrial control systems.
Meanwhile, due to Gemini’s low computing overhead, we be-
lieve that Gemini can be successfully used in various industries’
scenarios.

VIII. RELATED WORK

In the research literature, Gemini falls into an edge-side real-
time video analytics system that leverages a newly developed
accelerator, i.e., the dual-image FPGA, with end-to-end video
analytics optimization.

Edge-side video analytics systems: Early video analytics
systems were developed in the cloud environment; some handle
pre-stored videos [1] and some handle real-time videos, e.g.,
AWStream [32] and Chameleon [10]. Edge-cloud video ana-
lytics systems were developed, e.g., DNN Surgery [2], VaBUS
[33], where the workloads are partitioned between the edge
device and the cloud. These systems optimized the analytics
workloads through spatial-temporal contextual filtering, work-
load partitioning between the edge devices and the cloud,
etc., under bottlenecks such as network delays, throughput
variance.

With the increase of the edge-side computing power, real-
time requirements and privacy concerns, edge-side real-time
video analytics systems were developed. Microsoft Rocket
[4] performs on-camera video analytics through dynami-
cally adapting parameters and frame filtering techniques.
VideoEdge [25] is a fully distributed framework to partition
the video analytics pipeline across cameras and the edge clus-
ter. BALB [34] exploits the spatial-temporal data correlations
in multi-view video streams and performs target-to-camera
assignments.

Existing edge-side video analytics systems run on fixed
CPU/GPU resources and cannot effectively adapt to dynamic
IIC/DIC workloads. Gemini leverages a newly developed dual-
image FPGA to provide elastic dual computing resources and
we present a full set of hardware and software designs.

Accelerators for video analytics: In the field of accelerated
video analytics, there are a large number of researches using
the common hardware CPU or GPU on the edge side for ac-
celeration, but it has long been a trend to use FPGAs or ASICs
to accelerate video analytics. And a large number of studies
have shown that FPGAs and ASICs have more advantages in
accelerating video analytics than CPUs or GPUs [35].

In the past years, we see a flourish of dedicated AI processors.
Commercial products emerge such as Google TPU [36]. These
processors specifically focus on DIC workloads. FPGA can
also perform customized hardware acceleration [37]. There are
studies using FPGA for video analytics acceleration, such as
recognition and classification [38]. There is a history to develop

reprogramable FPGAs [39]. Early FPGAs were based on static
memory and cannot be reprogrammed. New generations of
silicon have led to the SRAM-based FPGAs with reprogramma-
bililty. Then the programmable FPGAs can support partial re-
configuration, where a part of the FPGA can be reprogrammed
while another part of the FPGA is being used. However, the
reconfiguration normally takes minutes. The most recent FPGA
development with external non-volatile memory allows dual-
image storage and supports runtime reconfiguration through fast
image switching. Gemini leverages such an advance to support
elastic workloads.

Video analytics optimization techniques: There are op-
timization techniques to reduce the NN model size and thus
decrease the model inference (DIC) workloads, e.g., model
compression, model quantization. Small models have also been
developed: DDSL [40] developed a dynamically distillability-
and-sparsability learning framework for model compression.
DECORE [41] used a reinforcement learning-based approach to
automate the network compression process. PIT [42] performed
light-weight Neural Architecture Search (NAS) to generate
size-optimized and hardware-friendly temporal convolutional
networks. There are also optimization techniques to reduce
the number of frames fed into model inference, e.g., Reducto
[12] has a lightweight filtering algorithm to filter out irrelevant
frames. A region of targeted objects [22] was extracted based
on common-feature analysis. These techniques incur IIC work-
loads, which need to be taken into consideration in resource-
constrained edge devices. Gemini is an end-to-end system that
leverages these techniques as components.

IX. CONCLUSION

In this paper, We developed Gemini, a new real-time video
analytics system enhanced by a dual-image FPGA. Gemini can
provide elastic computing resources in CPU and GPU in run-
time. With its workload adaptation controller running a bandit-
based algorithm, Gemini can adapt to the workload dynamics of
video analytics applications in field, and substantially improve
the video analytics accuracy. We presented a Gemini prototype
implementation and evaluated Gemini through real-world video
trace experiments and two case studies. We believe that Gemini
can be extended into an edge-cloud video analytics system, or a
collaborative video analytics system, where its effective control
on dual computing resources can improve the performance of
these systems as well.
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