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Abstract—In the context of the latest growing popularity of live
video streaming, ensuring high video quality has become one of the
most significant challenges faced by all live streaming platforms.
Insufficient uplink bandwidth is an important factor that influences
these live video transmissions, affecting their bitrate and latency
and consequently the associated video streaming quality. This
paper proposes a novel flexible super-resolution-based video coding
and uploading framework (FlexSRVC) that improves the quality
of live video streaming in limited uplink network bandwidth
conditions. FlexSRVC includes a flexible video coding scheme,
which compresses high-resolution key and non-key video frames to
a lower bitrate in order to reduce the upload delay. A new flexible
bitrate adaptation algorithm is also proposed to select dynamically
the number of frames to be compressed and the compression ratio
by jointly considering uplink network conditions and available
cloud computing resources. Trace-driven emulations demonstrate
that FlexSRVC provides the same quality while reducing up to
25% of the required bandwidth compared to the original encoding
method (H.264). FlexSRVC improves users’ QoE by at least 50%
compared to a super resolution-based method which employs
reconstruction of all video frames in uplink bandwidth constrained
conditions.

Index Terms—Live streaming, super-resolution, video coding,
video delivery.
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I. INTRODUCTION

R ECENTLY, crowdsourced live video streaming has expe-
rienced an unprecedented global growth. A report from

Cisco predicts that live video traffic will take up 17% of Internet
video traffic by the end of 2022 [1]. This rapid increase in crowd-
sourced live video streaming services is highly positive for all
stakeholders, attracting growing numbers of broadcasters and
active viewers alike, but is significantly challenging the current
network infrastructure, especially at network edge. In the context
of crowdsourced live video streaming, broadcasters come from
all over the world, and they distribute their video content to large
number of viewers located worldwide. Low latency and high
throughput are the most critical requirements for high-quality
live video streaming and expected success of such services.
However, the uplink bandwidth of a live broadcaster fundamen-
tally constrains live video quality. The bandwidth required to
transmit a 1080P HD online video is at least 6 Mbit/s [2], whereas
the average uplink transmission rate of commercial live stream-
ing servers is currently less than 1 Mbit/s [3]. In case there is
insufficient uplink network bandwidth, live broadcasters cannot
provide high-quality video, leading to poor video quality of the
entire live streaming service. If high-quality video is uploaded
under limited uplink bandwidth conditions, video rebuffering
and loss may affect the transmission, influencing negatively the
overall user quality of experience (QoE). Therefore, ensuring
high throughput and low latency in limited uplink bandwidth
network environments has become a significant challenge for
live video streaming.

Significant efforts have been put to improve the quality of live
video streams including by proposing innovative content deliv-
ery network (CDN) scheduling solutions [4] and adaptive bitrate
algorithms [5], [6]. However, if the uplink bandwidth is limited
during content delivery from broadcasters to the cloud, meth-
ods that focus on downlink quality improvement cannot help.
Recently, in order to cater for situations with insufficient net-
work bandwidth, Super Resolution (SR) techniques have been
introduced to increase the quality of low resolution video trans-
missions. For instance the Deep Neural Networks (DNN)-based
SR solution proposed in [7] achieved superior image restoration
performance compared with a traditional up-sampling method,
i.e. bicubic. The block-patching-based image post-processing
solution (BIPP) [8] employed DNN-based SR in order to obtain
high video compression ratio and reconstruct non-key frames
in the video. The live neural adaptive streaming scheme (Live-
NAS) [7] uploaded low-resolution videos in the cloud and used
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DNN-based SR to reconstruct all video frames, improving the
video quality of live streaming. However, the SR long processing
time results in high latency, making it hard to satisfy the stringent
delay requirements of live video transmissions [9]. Therefore,
there is an important interest in finding solutions for reducing
the latency caused by limited network bandwidth during broad-
caster video upload and video processing in the cloud, while
continuing to enhance the overall experience of live streaming.

This paper proposes a flexible SR-based video coding and
uploading framework (FlexSRVC) which reduces the upload
latency from broadcasters to cloud servers and enhances the
overall live streaming quality in limited uplink network band-
width conditions. FlexSRVC includes a flexible frame video
coding scheme proposed to compress the key and non-key
frames of high-resolution live streams to lower bitrates. This
efficiently reduces the amount of data to be uploaded and con-
sequently the associated upload delay. An innovative aspect is
provided by an adaptive selection of key and non-key frames for
compression, enabling flexible adaptation to dynamic network
changes. FlexSRCV also includes a new flexible bitrate adaption
algorithm designed to dynamically select the compression ratio
and the number of frames to be compressed by jointly consider-
ing uplink network conditions and availability of cloud comput-
ing resources. By employing FlexSRVC broadcasters can offer
high quality video experience by performing low bitrate live
streaming in limited uplink network bandwidth conditions, ef-
fectively breaking the classic strong dependency between the
uplink bandwidth and live video quality.

Extensive trace-driven simulations were conducted to evalu-
ate FlexSRVC. The results show how FlexSRVC can save up
to 25% of bandwidth in comparison with a classic live stream-
ing method, while achieving the same video quality. The pro-
posed flexible frame coding scheme was also compared to other
state-of-the-art SR-based coding methods. The results show
that the compression rate of our coding method is on average
10% higher than those of alternative solutions. Compared to
the method of reconstructing all frames with SR, FlexSRVC
improves user QoE by at least 50%. These results show how
FlexSRVC and its components outperform other solutions and
consistently achieve high live video streaming quality.

This paper contributions are as follows:
� A novel video SR-based coding and uploading framework:

FlexSRVC is proposed to reduce the upload latency from
broadcasters to cloud servers and enhance the overall view-
ing experience of live video streaming.

� A novel flexible SR-based video coding scheme: A SR based
flexible frame compression scheme is introduced to ac-
commodate live streaming under dynamic network con-
ditions. This scheme compresses key and non-key frames
of a high resolution live stream to a lower bitrate, which
efficiently reduces the size of the video stream and hence
decreases subsequently the upload latency. The key and
non-key frames are adaptively selected for compression,
providing flexibility when adapting to network changes.

� A flexible bitrate adaptation algorithm: A new flexible bi-
trate adaption algorithm (FLBA) is designed to select the
video bitrate and frame compression ratio by considering

the dynamics of the uplink bandwidth and cloud server
computing capabilities. The algorithm goal is to further
improve the quality of the live video streaming.

The next section of the paper presents background knowl-
edge and discusses major related works. Section III describes the
FlexSRVC framework design and Section IV presents the pro-
posed solution evaluation, including simulation testing setup,
scenarios and result analysis. The final section concludes the
paper and presents future work directions.

II. BACKGROUND AND RELATED WORKS

A. Crowdsourced Live Streaming

In a crowdsourced live streaming service, live video streams
are being published and watched at any time, from any loca-
tion, and under any network environments. Due to the com-
plex environment and various network conditions, transmit-
ting high quality video streams with low latency is a funda-
mental challenge for live video streaming services. Several ef-
forts have been put to design solutions to improve the quality
of live video stream delivery. Traditional real-time rate con-
trol methods include sender-based adaptation solutions which
take into consideration various objectives such as fairness, esti-
mated quality [10], energy efficiency [11], load-balancing [12]
and user QoE levels [13] when adjusting the video delivery
in order to match network dynamic situation. More recently,
client-driven adaptive solutions including MPEG-DASH-based
approaches such as those proposed by Yaqoob et al. [14] and Zou
et al. [15] were proposed. Live video streaming specific solu-
tions include loss-based bitrate approaches [16], delay-based bi-
trate solutions [17] and model-based bitrate schemes [18]. Zhang
et al. [4] proposed a deep reinforcement learning-based approach
to deal with the resource scheduling problem in crowdsourced
live streaming. The method proposed in Bakar et al. [19] intro-
duced an adaptive video layer selection scheme based on the VP9
scalable video coding over WebRTC for low latency streaming.
However, such methods that focus on downlink improvement or
balancing real-time sending rate may not help if the uplink net-
work bandwidth is limited during content delivery from broad-
casters to the cloud, so alternative solutions need to be designed.

B. Super-Resolution (SR)-Based Solutions

SR is a computer vision approach which reconstructs high
resolution (HR) images/videos from low resolution (LR) im-
ages or videos [20], [21], [22]. Traditional SR methods, such
as bicubic interpolation [23], double cubic [24] and Lanczos
resampling [25], are very fast and simple, but are limited by
their low accuracy. In order to improve the perceptual quality
of the consecutive video frames, SR methods based on Genera-
tive Adversarial Networks (GAN) were introduced such as Su-
per Resolution Generative Adversarial Networks (SRGAN) [26]
and Enhanced Super-Resolution Generative Adversarial Net-
works (ESRGAN) [27]. A more comprehensive task-driven
Video Restoration with Enhanced Deformable Convolutional
Networks (EDVR) that consists of multiple stages including
super-resolution, deblurring, denoising and de-blocking, was
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TABLE I
COMPARISONS BETWEEN EDSR AND CARN (VIMEO90K-BI DATASET)

proposed in [28]. However, the video SR schemes mentioned
above need a very large number of neighbor frames to be inputted
together into the super-resolved model, which would increase
the amount of uplink video streaming traffic at the broadcaster
side. In addition, the model parameters of ESRGAN and EDVR
exceed 16 million and 20 million, respectively, putting pressure
in terms of computational complexity. Recent methods (i.e., Ef-
ficient Sub-pixel Convolutional Neural Network (ESPCN) [29],
Enhanced Deep Super-Resolution Network (EDSR) [30], and
Convolutional Anchored Regression Network (CARN) [31]) use
deep neural networks (DNN) to analyze the statistical relation-
ship between LR and their corresponding HR counterparts from
a large number of training examples, achieving significant im-
provement in terms of reconstruction quality. DNNs cannot be
applied easily to all real-world applications due to their heavy
computation requirements.

We have evaluated diverse situations when EDSR and CARN
were employed and Table I presents the comparative results ob-
tained. The models are trained and tested with the vimeo90k-bi
dataset on Nvidia GeForce 2080Ti, and results for several scal-
ing options (i.e. ×2, ×3 and ×4) are presented for analysis.
We found that both EDSR and CARN achieve very similar
results regarding image quality scores (i.e. in terms of both
PSNR and SSIM) and inference time. However, the number
of model parameters of CARN is much lower than those of
EDSR. This reduces much the computational requirements in
terms of cloud-based or edge-based GPU hardware [32]. To re-
duce computation overhead while ensuring good performance,
CARN employs an accurate and lightweight DNN for image SR
with a cascading residual network. Therefore, this paper adopts
a CARN-based approach in the cloud server for SR in the quest
to meet the real-time and quality requirements of live video
streaming.

C. SR-Based Hybrid Coding Schemes

Video compression tries to achieve the best trade-off between
video quality and bitrate. Because of the limited network band-
width for data transmission and low storage capacity, very good
video compression is critical for the support of low bitrate deliv-
ery applications. Many studies have focused on developing an
efficient coding method based on SR to improve the low bitrate
compression efficiency of high quality videos [8], [33], [34].
These methods adopt a strategy that downsamples frames before
encoding and upsamples them after decoding. Early in in Shen
et al. [35], the proposed super-resolution model was in fact the
classic non-deep-learning method, which is based on the classic
Local Linear Embedding (LLE) algorithm. A video sequence

is divided into key frames and non-key frames adaptively in
BIPP [8]. BIPP proposed an adaptive downsampling-based cod-
ing model to improve video compression ratio while ensuring
good video quality. Key frames are encoded at high resolution
at the encoder, whereas non-key frames are downsampled at a
lower resolution. A proposed scheme in Liu et al. [36] aims to
super-solve the CTU-level residue based on the intra-frame pre-
diction signal generated by the HEVC encoder, which in general
incurs more blocking artifacts. A DNN-based SR is employed to
reconstruct non-key frames at the decoder. An SR-based block
up-sampling method for intra-frame coding employed in a new
convolutional neural network structure for upsampling is de-
scribed in [33]. However, the methods mentioned above all focus
on improving compression efficiency while taking a long time
to encode and decode and do not consider the delay problem
of actual deployment in a live video transmission system. The
video coding methods proposed in this paper use a lightweight
SR approach and adaptively select frames according to network
conditions, thereby achieving short video processing time and
helping reduce the transmission delay.

D. SR-Based Video Delivery System

Recent research uses DNN-based SR to enhance quality
in video delivery systems. To reduce download latency for
video-on-demand systems, NAS [37] and SRAVS [38] employ
super-resolution on the client-side on top of an adaptive video
streaming solution, which requires strong computing power and
high energy consumption of terminal equipment. LiveNAS [7]
adopts SR in cloud servers for live video streaming, which pro-
vides high-quality live streams, but consumes high computa-
tional resources. Noteworthy is that the existing SR approaches
apply SR to all frames of low bitrate videos. Reconstructing all
video frames in a live transmission is time-consuming, which
results in high latency of the video streaming process. This pa-
per proposes a video coding approach that adaptively selects the
number of frames to be compressed and upscaled in the cloud
server to reduce significantly processing time and reduce the
overall live streaming delay.

III. FLEXSRVC FRAMEWORK DESIGN

A. System Overview

This paper proposes FlexSRVC, a new video coding and
uploading framework that reduces the upload latency from
broadcasters to cloud servers and improves the quality of live
video streaming in scarce uplink network bandwidth conditions.
FlexSRVC includes a flexible frame video coding scheme which
is proposed to encode video chunks flexibly according to net-
work conditions and availability of cloud computing resources.
FlexSRVC also employs a novel flexible bitrate adaptation al-
gorithm which is designed to coordinate with the flexible frame
video coding scheme as part of the live video streaming system.
Fig. 1 illustrates the proposed FlexSRVC, which consists of two
components: at the live broadcaster and at the smart cloud.

At the Broadcaster: The live broadcasters stream their video
content under various network conditions and utilize our flexible
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Fig. 1. System architecture.

Fig. 2. Frame size ratio.

frame video coding scheme to encode the captured raw frames
with the bitrate and frame compression ratio determined by our
flexible bitrate adaptation algorithm (FLBA).

At the smart cloud: The cloud servers, the proposed Online SR
video coding model is deployed to reconstruct the downsampled
frames in the uploaded live stream.

B. Flexible Frame Video Coding Scheme

The video frames in a group of pictures (GOP) are encoded
into key frames (KF) and non-key frames (NKF) sequentially.
For a conventional video coding standard, i.e., H.264, KFs are
encoded by an intra-frame coding method, and NKFs are en-
coded by an inter-frame coding method. Fig. 2 illustrates the
average size of KFs and NKFs in a GOP for three different video
types, respectively. It can be seen that the KF size accounts for
most of the GOP size. As NKFs only contain the difference be-
tween them and the reference KF, the NKF size is smaller than
that of a KF.

In order to further reduce the transmission video bitrate, the
frames are not always transmitted at full resolution. Therefore,
we design a novel flexible frame video coding scheme based on
SR, which downsamples the frames to a desired lower resolu-
tion to reduce GOP size. To be flexible in adapting to network
changes, the proposed video coding scheme compresses KFs
and NKFs of a live video stream flexibly. The proposed scheme
improves the compression efficiency and maintains high-quality
video at a lower bitrate. Figs. 3 and 4 illustrate the stages of the

proposed video coding scheme, which consists of two compo-
nents: the encoding component - deployed at the broadcaster
and the decoding component - deployed at the smart cloud.

At the broadcaster: raw frames are encoded using the bitrate
determined by our flexible bitrate adaptation algorithm most ap-
propriate to the current network conditions and the state of the
cloud computing resources. Fig. 3 illustrates the frame process-
ing overview at the broadcaster side. First, when the broadcaster
acquires the original video frames, they are encoded into GoPs
using a classic video encoder (e.g. H264). A high resolution key
frame (KFH ) and high resolution non-key frames (NKFH )
are then extracted from a GOP. Next, in order to reduce the
bandwidth consumption of the uplink, we further compress the
video frames. Specifically, the proposed flexible bitrate adapta-
tion algorithm dynamically selects the number of video frames
and video compression ratio based on the current uplink net-
work bandwidth and available computing resources. Further,
KFH and NKFHs that are selected for further compression
are downsampled to a low resolution key frame (KFL) and
low resolution non-key frames (NKFL). Next, the downsam-
pled video frames are merged into the original video stream. We
choose KFL as the reference frame to encode NKFLs using
inter-frame coding. Finally, the original KFH and NKFHs
are replaced with newly encoded KFL and NKFLs. Note the
proposed scheme selects some NKFs to be downsampled to
lower resolution only, whereas the other NKFs preserve their
original temporal and spatial characteristics. This improves the
video compression ratio with good temporal and spatial informa-
tion, retaining consistency, while also maintaining good cloud
computing efficiency.

At the Smart Cloud:, the video stream uploaded by the broad-
caster is received. The video is composed of KFLs, KFHs
and NKFHs. The compression information (i.e. which video
frames in a GOP are compressed and the compression ratio) is
also uploaded to the cloud server as metadata. Fig. 4 shows how
the compressed video stream is reconstructed in the cloud. First
the coding information associated with the live video stream is
analysed. Based on this information, KFLs and NKFLs only
are extracted and decoded using intra-frame and inter-frame cod-
ing, respectively. The NKFHs of the video stream are not pro-
cessed yet. KFLs and NKFLs are upsampled to their original
resolution by employing the lightweight SR model CARN [31]
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Fig. 3. Flexible frame processing at the broadcaster side.

Fig. 4. Flexible frame processing at the cloud side.

with low latency. Finally, the SR-upsampled video frames are
re-inserted into the video stream, making sure the smoothness of
video playback is retained, so that the viewer does not perceive
any coding processing. Specifically, the upsampled KFHs are
used as reference frames to encode NKFHs. As other non-key
frames are already at high resolution, NKFs are remultiplexed
with the preserved temporal and spatial details into the encoded
video stream. The entire video coding process is such performed
so that the player can decode the live video content without any
issues.

C. Online SR Video Coding Model

The smart cloud-located Online SR video coding model de-
ploys the proposed SR video coding scheme. As any SR-based
solutions, it requires training for accurate functionality. Unfor-
tunately a single offline training session for the Online SR video
coding model cannot guarantee a good reconstruction perfor-
mance for all live broadcast scenes. A better method is to train
the SR model for the live video content to ensure high percep-
tual quality of the reconstructed video frames. Due to the unique
characteristics of live streaming, we cannot obtain all the con-
tent in advance, and aspects such as scene switching during the
live streaming may occur at any time, i.e., switching from a
game scene to a game commentator. The obvious picture differ-
ence determined following scene switching will lead to quality
degradation in the reconstruction of the new scene using the SR
model trained in the previous scene. Instead, we conduct an on-
line training of the SR model with actual live content to improve
the SR reconstruction quality.

Fig. 5. Online learning quality improvement.

First the impact of various training methods on model perfor-
mance is studied. ConsiderA a set of one second high resolution
video chunks captured at the beginning of a live video stream,
and B a set of video chunks obtained after scene switching. We
compare three training methods as follows: A: only setA is used
for training; A+B: first set A is used and after a scene change is
detected, set B is added and A+aB: similar to A+B, but set B
has a greater weight a, as dataset B reflects the current status of
the live video better [7].

Fig. 5 illustrates comparatively the online learning perfor-
mance with an online gaming video for the three methods.
The performance is expressed in terms of the newly proposed
quantitative indicator Video Multimethod Assessment Fusion
(VMAF) [39], which estimates user perceptual video quality lev-
els. There was an obvious switch in the live video scene around
epoch 12500. As shown in Fig. 5, as the training time increases
before the scene switching occurs, the effect of video enhance-
ment increases, and training gain tends to become saturated.
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Fig. 6. Live streaming popularity.

After the scene switching occurred, the reconstruction quality
of the video dropped rapidly. Comparing the three curves, we see
that A+aB and A+B methods obtain significantly higher VMAF
values than when employing training method A. Noteworthy is
that by increasing the weight of the new video frames added
during training, A+aB achieved the highest VMAF. Therefore,
in this work, an A+aB approach is adopted to ensure the best
quality enhancement of the proposed SR model. The cloud and
broadcaster jointly assist the online model training: the cloud
server regularly checks the video quality enhanced by the SR
model, whereas the broadcaster detects scene changes during
encoding. When the training gain tends to zero, the online train-
ing is paused and when a scene switching is detected, the online
training is restarted.

Online incremental training provides better video enhance-
ment effects than directly using offline pre-trained general mod-
els. However, online training and inference for each channel is
a high computing resource-consuming task. Based on our ob-
servations, the popularity of live broadcasters is highly hetero-
geneous, with the highest proportion of traffic being generated
by the few most popular live broadcasters. Fig. 6(a) shows the
popularity of live broadcasters crawled from Huya (one of the
biggest live streaming platform in China) on May 25, 2020. The
popularity of live broadcasters is highly skewed. Therefore, if
the maximum processing power is used on the top channels, the
most benefit for viewers is obtained from the limited comput-
ing power available. The difficulty in exploiting the skew lies
in quickly and accurately predicting the popularity of individ-
ual channels. We examined the access pattern of 3 representative
channels, ranking 1, 4, and 7, respectively. As shown in Fig. 6(b),
the streams of the same live broadcasters have similar peak pop-
ularity for different days. Based on the finding, the popularity of
the video streams broadcasted by the same broadcaster is pre-
dictable. When a known live broadcaster has uploaded at least
one video stream and uploads a new video stream, the popularity
of the new video stream can be accurately predicted based on
the earlier view counts.

Due to limited computing resources, we divide live channels
into three categories according to their popularity (the number
of views): hot, normal, and cold. We adjust the criteria for as-
signing videos into different categories dynamically according
to cloud computing power availability. To meet the real-time
transmission requirement, we adopt a well-known light-weight
SR model CARN [31]. We provide discriminate computing re-
sources to support each category: 1) For a hot channel, the cloud

server trains the SR-based models based on the live stream con-
tent online and uses the trained model to enhance the video qual-
ity; 2) For a normal channel, only online quality enhancement is
provided to improve quality, without online model training; 3)
For a cold channel, no computing power is provided for training
and enhancement. Two offline-trained SR models adopted for
the normal channel are: a specific model (SP-similar) trained by
other hot channels with similar content in the same category and
an offline pre-trained general model.

D. Flexible Live Bitrate Adaptation Algorithm (FLBA)

The flexible video frame compression proposed to be used
during live streaming requires determination of a targeted reso-
lution for the video stream and selection of the appropriate com-
pression ratio to yield high quality and low transmission latency.
In this context, the flexible frame video coding scheme provides
multiple bitrate options, because it can flexibly choose the num-
ber of compressed KFs and NKFs. In order to best maintain high
live streaming quality given limited uplink network bandwidth
and cloud computing resources, the flexible live adaptation bi-
trate algorithm (FLBA) is proposed. We integrate two parame-
ters into the proposed FLBA algorithm for QoE optimization:
the encoding bitrate R, and the optimal down-sampling scale
scalen. When the broadcaster generates a video chunk, FLBA
algorithm will be called to make a decision based on the available
uplink bandwidth and computing power in the smart cloud.

1) Problem Formulation: The performance of the proposed
FLBA algorithm is determined by both uploading and processing
of the live stream. Compared to the common streaming system,
our proposed flexible coding scheme introduces additional time
cost to compress and reconstruct video frames. Next we present
a model of the network constraint, latency constraint and users’
QoE, and formulate the optimization problem to be solved in
the cloud.

Network Constraint: Let Ct denote the uplink throughput
measured at the time slot t and Cn denote the average uplink
throughput during the period of sending the nth video chunk.
Cn can be expressed as:

Cn =
1

tn+1 − tn

tn+1∑

t=tn

Ct, (1)

where tn is the starting time sending the nth video chunk and
tn+1 is the starting time of sending the next video chunk n+
1. Considering the uplink bandwidth of the live broadcaster,
the throughput of the current uploading video stream must be
less than the uplink bandwidth capacity. Therefore, the network
constraint can be written as:

Rn ≤ Cn, (2)

where Rn is the selected bitrate of the nth video chunk.
Latency Constraint: In this paper the delay refers to the time

spent by the broadcaster uploading a live video chunk to the
cloud server until it is distributed to the end users. This is rel-
evant as the focus is on improving live video delivery quality
on the video uploading side. The latency is then composed of:
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1) the transmission time of uploading a live video chunk from
the broadcaster to the cloud server and 2) the video processing
time of the nth video chunk in the cloud. The latency Ln can be
written as follows:

Ln =
Sn

Cn
+ enhancen ∗ ptn,

enhancen ∈ [0, 1]. (3)

where Sn denotes the size of the nth video chunk. The time
taken to fully upload the video chunk is Sn

Cn
. The video chunk

can be either a compressed chunk or an original high resolution
chunk. enhancen is a binary variable to indicate whether the
video chunk needs to be processed by the SR technique in the
cloud. The video processing time of the nth video chunk is
enhancen ∗ ptn where ptn is the estimated total SR processing
time according to frame downsample scale scalen.

QoE Model: The ultimate goal of the live bitrate adaptation al-
gorithm is to improve QoE in order to achieve long-term user sat-
isfaction. Recent studies show that user perceived video quality
features play a vital role in evaluating the performance of adap-
tive bitrate streaming services [40]. Motivated by these previous
perceptual quality-based studies, we mainly refer to the QoE
model defined in [40]. In particular, the QoE of each live stream
considered in this paper consists of three aspects as follows:
� Cumulative video quality QN : q(.) denotes a non-

decreasing function that maps the bitrate of a video chunk
Rn to the quality q(Rn) perceived by the user. We use
VMAF [39] to measure the perceptual video quality q(Rn).
The cumulative video quality of a live video can be written
as:

QN =

N∑

n=1

q(Rn). (4)

� Cumulative video latencyLn: Since we focus on the upload
latency from live broadcasters to cloud servers, we only
consider the upload latency Ln including the upload time
of the nth chunk from broadcasters to cloud servers and
the video processing time by using the super-resolution
technique. The cumulative video latency of a live video
can be expressed as:

LN =

N∑

n=1

Ln. (5)

� Cumulative video quality switching WN : From a viewer’s
perspective, switching the video quality from a low bitrate
to a high bitrate affects positively the viewing experience,
while switching the quality from a high bitrate to a low
bitrate decreases experienced viewing quality. Therefore,
the QoE model should consider the benefits of switching
from a low bitrate to a high bitrate and penalise switching
from a high bitrate to a low bitrate. The positive video
smoothness WPP , switching from a low bitrate to a high
bitrate, is defined as follows:

WPP =

N−1∑

n=1

[q(Rn+1 − q(Rn))]+. (6)

Algorithm 1: Flexible Bitrate Adaptation Algorithm
Input: C[t1,tn], trainn, enhancen
1: Initialize
2: Target = QoE(vn) + γ · trainn ·Mgain(vn)
3: for n = 1 to N do
4: Ĉ[tn,tn+K ] = ThroughputPred(C[t1,tn])
5: if enhancen = 0
6: Availset = R
7: 1, Rn = fmpc(Ĉ[tn,tn+K ], Rn−1, Availset)
8: encode nth chunk with bitrate Rn

9: elif enhancen = 1
10: Availset = R⋃Rcompressed

11: scalen, Rn = fmpc(Ĉ[tn,tn+K ], Rn−1, Availset)
12: encode nth chunk with bitrate Rn, and

downsample the key and/or non-key frames with
scalen

13: endif
14: end for

The negative video smoothness WPN , associated with
switching from a high to a low bitrate, is written as:

WPN =

N−1∑

n=1

[q(Rn+1 − q(Rn))]−. (7)

However, frequent video quality switches are not desirable
for end viewers. To avoid frequent switching, even from a
low bitrate to a high bitrate, we set the weight of positive
video smoothness to a small value.

Finally, the overall QoE for a live video is the weighted sum
of the above three aspects, namely:

QoE = αQN + βLN + λWPP − σWPN , (8)

where α, β, λ and σ are non-negative weighting parameters cor-
responding to video quality, delay, positive quality smoothness
and negative quality smoothness, respectively.

Additionally, we also need to consider the demand for high
resolution frames to train the SR video coding model. Thus,
our optimization goal is to maximize the overall QoE and the
future quality improvement from online SR video coding model
training:

argmax
scalen,Rn

QoE(vn) + γ · trainn ·Mgain(vn)

subject to Eq. (1) - (8),

trainn ∈ [0, 1]. (9)

The first term QoE(vn) is the user QoE of the nth chunk, and
the second term Mgain(vn) is the gradient of the online train-
ing quality gain curve, which is provided by the cloud server
through periodic feedback. γ is a discount factor of the expected
quality gain if the online training model is used for a particular
channel. trainn is a binary variable that indicates whether the
cloud server provides incremental SR model training, given the
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capacity of the uplink bandwidth Cn. This optimization gener-
ates the following as outputs: 1) encoding bitrate decision Rn,
and 2) frame downsample scale scalen.

2) FLBA Algorithm: As mentioned, the flexible video frame
compression offers a greater number of bitrate options than the
traditional coding methods since we can flexibly compress key
frames and non-key frames. Bitrate adaptation can be consid-
ered a stochastic optimal control problem. The Model Predictive
Control (MPC) algorithm [41] is one of the most well-known
control algorithms for optimizing control problems since MPC
optimizes complex control targets online by using predictions
in dynamic systems under constrained conditions. The proposed
FLBA extends the optimization goal and constraints of MPC to
respond to the requirements and constraints of the flexible frame
video encoding.

Algorithm 1 presents the proposed FLBA algorithm. The al-
gorithm chooses the bitrate Rn for the nth chunk and the down-
sample scale scalen by looking ahead at K future chunks and
solves our QoE maximization problem with throughput predic-
tions Ĉ[tn,tn+K ]. For the nth chunk, the broadcaster side main-
tains a moving horizon from chunk n to n+K − 1 (i.e. K = 3
during testing).

The algorithm performs the following main updates: line 2
is the objective function based on whether the cloud server will
train the specific SR model of the current channel online trainn.
Line 4 estimates the available throughput Ĉ[tn,tn+K ] for the next
K chunks at time t based on history throughput using a common
throughput predictor based on 1D-CNN. According to whether
the cloud server has allocated computing power for video stream
enhancement enhancen, we decide the available bitrate set
Availset that the broadcaster can encode. If the cloud server
provides a certain amount of computing resources to perform the
task of recovering compressed KFs and NKFs (enhancen = 1),
the broadcaster can adopt the SR-based video coding method to
compress the video stream to Rn ∈ R⋃Rcompressed, where R
is the set of bitrates for the original coding and Rcompressed rep-
resents the bitrate set after flexible frame compression. If there
are no computing resources available (enhancen = 0), the nth

video chunk can only be encoded toRn ∈ R. Then the encoding
bitrate and flexible frame compression ratio is selected accord-
ing to the estimated uplink bandwidth with the MPC algorithm.

IV. FLEXSRVC FRAMEWORK EVALUATION

A. Evaluation Setup

Implementation: At the broadcaster side, we implement our
flexible frame video coding scheme by modifying remuxing.c,
decode_video.c, encode_video.c and transcoding_video.c in
FFmpeg [42]. Our proposed flexible live bitrate adaptation al-
gorithm is implemented by the Pytorch framework. At the cloud
server side, we implement the Smart Cloud by employing Ng-
inx [43], uWSGI [44], and Django [45]. The online training
process and the inference process are implemented by the Py-
torch framework in a separate process. We use two GeForce
RTX 2080Ti GPUs on the smart cloud, one for inference and
the other one for the training process. We use the lightweight
model from CARN [31] for video SR and use the benchmark

DIV2K dataset [46] for training offline the pre-trained general
model. The weights of the compression ratio, frame SR quality,
and SR processing time are set to 0.5, 0.5 and 0.01, respectively.

Videos: We select three different stream categories (live news,
live chat, and online gaming) from YouTube. Each video is
split into one-second video chunks (GOP size=24). The high-
resolution chunk is encoded at a bitrate of {2560, 4800} Kps by
H.264 codec, which corresponds to the video resolution {720P,
1080P}. Key and non-key frames can be downsampled from
1080P to 360P/540P and from 720P to 360P, respectively.

Network Traces: We use two types of bandwidth traces:
an open dataset (100 4 G network uplink traces [47]) and a
self-collected dataset. We collected real uplink network band-
width information in different environments (such as airport,
canteen, train and pedestrian) by using the Mobile Intelligent
network measurement tool.1 We recorded uplink throughput ev-
ery 5000 milliseconds. This measurement effort is ongoing, and
we are constantly adding additional traces to our uplink dataset
for future research. To simulate the dynamic changes between
broadcasters and the smart cloud in a realistic network, we use
the Linux Traffic Control tool [48] to control the sending rate on
the broadcaster side. In particular, we select network traces with
an average uplink bandwidth of less than 2.5 Mbps to simulate a
bandwidth-constrained environment. We also use our measured
network uplink traces for evaluation.

QoE Parameters: In our experiments, the weights of video
quality, and quality variations defined in (8) in this QoE crite-
rion are set to α = 0.8, β = 5, λ = 0.2 and σ = 1.06, respec-
tively. The impact of video quality reduction on user viewing
is much greater than that of video quality improvement, so we
set λ < σ when setting hyperparameters. The evaluation index
of VMAF [39] used to measure the video is [0, 100], the over-
all distribution of the rebuffering time will be smaller than the
value of VMAF. To balance the relationship between rebuffer-
ing and video quality, we set the video rebuffering penalty to a
large value. In (9), γ is a discount coefficient less than 1, and
its purpose is to balance the super-resolution computing power
allocated to the current video chunk and the computing power
used for online training of the model. The smaller the γ value is,
the less important is the model training and vice-versa. Hence,
the weight of the training gain γ is is recommended to be set to
0.8.

Baselines: We evaluate the performance of the proposed
FlexSRVC in terms of various aspects by comparing it with
three methods:
� The original method: broadcasters upload live video en-

coded using H.264 based on the uplink available band-
width, and the cloud server does not perform any video
enhancement process.

� LiveNAS: broadcasters send low-resolution video streams,
and the cloud server super-resolves all frames of the low-
resolution streams used in [7].

� NEMO-uplink: NEMO-uplink: it is a modified version of
NEMO [49] to support the uplink streaming scenario in

1MobileIntelligent [Online] https://appsonwindows.com/apk/8486138
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Fig. 7. Compress rate for proposed encoding scheme.

Fig. 8. Self-measured bandwidth.

Fig. 9. Quality improvement.

Fig. 10. Multi-thread processing per GOP.

which broadcasters only apply the DNN training to a sub-
set of selected frames and afterwards send the processed
frames and models to the cloud-side. The cloud server
super-resolves only selected frames based on the received
models and upscales separately the remaining frames from
the cache.

B. Compression Ratio Choice

In order to identify the most appropriate compression ratio to
be used in the proposed SR-based coding scheme, real uplink
network bandwidth information is collected in different envi-
ronments. Fig. 11(a) indicates the original GOP size for each

Fig. 11. Chunk size (i.e. GoP size = 24).

Fig. 12. GOP quality.

resolution. As shown in Fig. 11(a), the size of high-resolution
GOPs is almost double the collected average uplink bandwidth.
It is difficult for a live broadcaster to upload high-resolution
GOPs under limited uplink bandwidth. Suppose a live broad-
caster chooses the low-resolution GOP to upload. Even though
the transmission time can be shorter, the quality of the live video
content degrades and affects users’ QoE. Compared with tradi-
tional image quality metrics, such as Peak Signal-to-Noise Ratio
(PSNR) [50] and Structural Similarity (SSIM) [50], VMAF is
the closest in terms of the subjective perception of the human
eye. A VMAF score ranges from 0 to 100, with a score of 0–20
indicating an unacceptable quality, 20-40 mapping to bad qual-
ity, 40–60 to reasonable, 60-80 to decent, and 80–100 showing
an outstanding quality level [39]. In addition, the quality of the
corresponding different types of videos in different sizes are pre-
sented in Fig. 12(a) in terms of their associated VMAF scores,
indicating how the quality of videos is positively correlated with
the video sizes.

The possible choices for compression include 180P–
720P, 360P–720P, 270P–1080P, 360P–1080P and 540P–1080P.
For example, the combination 180P–720P indicates that
broadcaster-side downsamples several frames of an online video
to 180P, and the cloud-side upsamples the received video to
720P. We set the GOP size to 24 frames in our experiment. Since
there are a variety of compression frame combinations to choose
from, we only show the GOP size obtained by possible compres-
sion choices in Fig. 11(b). As we can see from Fig. 11(b), the
bandwidth consumption for the compressed GOPs obtained by
our proposed video coding module is below the average uplink
bandwidth and is at least 20% smaller than that of the required
bandwidth when delivering a 1080HD online stream. Fig. 12(b)
illustrates the quality of compressed GOPs using SR in terms of
VMAF scores. For all the different types of videos in Fig. 12(b),
it can be seen that the compression choices 360P–720P and
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Fig. 13. Comparison with the original method.

Fig. 14. Compression rate across consecutive frames.

360P–1080P achieve better quality on average than 180P–720P
and 270P-1080P with the similar compressed chunk size shown
in Fig. 11(b), respectively. The compression option 540P–1080P
also achieves good video quality for three types of videos. There-
fore, we select the following compression options: 360P–720P,
360P–1080P and 540P–1080P when aiming at bandwidth saving
while also ensuring high-quality video.

In our considered upload video system, since we can choose to
compress different numbers of video frames and can downsam-
ple them by multiple compression scales, the FLBA algorithm
has a significant number of bitrate options. Assuming that each
resolution corresponds to a bitrate in the initial encoding, D
is the number of different resolutions, each encoded GOP in-
cludes M frames and the number of selectable downsampling
scales is A, there are D ×M ×A optional bitrates. However,
we can not include all possible bitrate choices when performing
bitrate selection for each video chunk since this would be asso-
ciated with a high computational cost. Thus, it is significant to
refine the bitrate choices before performing the FLBA algorithm.
Fig. 14 shows the compression ratio of different frame compres-
sion for online gaming videos. It can be seen from Fig. 14 that
the more frames to be compressed are, the greater the compres-
sion rate is. When the number of frames is one, only the key
frame is compressed for a GOP. We can achieve a compression
rate of 30%–48% when KF and NKFs are compressed. When
compressing NKFs, the increase in compression rate becomes
smaller than that of compressing KFs. In order to reduce the
computational cost, in the case of a relatively fixed scene, the
number of optionally compressed frames is set to a fixed interval
greater than one.

TABLE II
BROADCASTER PROCESSING TIME PER GOP (I.E. 1 S)

TABLE III
CLOUD PROCESSING TIME PER GOP (I.E. 1 S)

C. Performance of the Flexible Frame Video Coding Method

1) Video Compression Efficiency: In order to further study
our flexible frame video coding scheme, we implement our video
coding module on three different video types. Fig. 8 shows two
sample traces for our bandwidth collection process under Airport
and Canteen environments. The range of the uplink bandwidth
is from 0.8 Mbps to 8.39 Mbps. The average uplink bandwidth
is 3.7 Mbps. Fig. 7(a) shows the compression rate of different
video types using our flexible frame video coding method to
downsample 1080P to 360P. KF indicates that we only compress
the key frame of a video stream. KF+4NKF and KF+8NKF
indicate that we compress four non-key frames and key frame,
and eight non-key frames and key frame, respectively.

As we can see in Fig. 7(a), the more compressed frames are,
the higher the video compression is. The overall median video
compression ratio is between 22% and 48%. The median video
compression ratio for KF+4NKF is on average 5% higher than
KF and the median video compression ratio for KF+8NKF is
12% higher than KF+4NKF. The increase in compression ratio
from KF to KF+8NF is getting smaller since the size of a key
frame is greater than the size of a non-key frame due to its
intra-frame coding. Fig. 7(b) shows the average compression
rate of different resolution combinations over different video
types. 360P-720P means we compress 720P key frame to 360P
on the broadcaster side. As shown in Fig. 7(b), the compression
combination of 360P-1080P achieves the highest compression
ratio among all the compression choices since 360P-1080P uses
the largest downsample scale.

2) Processing Time: Compared with the traditional encod-
ing method, the new encoding method introduces an additional
processing time, including 1) time for selectively downsampling
and re-encoding the video frames at the broadcaster side. 2) time
to enhance the downsampled low-resolution video frames and
then re-encode the reconstructed high-resolution framed, at the
cloud server-side. The new encoding method is transparent to
the viewer, and the viewer can decode and play high-definition
video normally without modifying its decoding process.

Although our coding module adds a stage to the traditional
video encoding process in live streaming, the resulting process
latency is incredibly low. Tables III and II show the average ad-
ditional time consumption of the proposed flexible video coding
module for a one-second video chunk which contains one GOP
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Fig. 15. 360P to 1080P super-resolution results.

(GOP size= 24) at the broadcaster and smart cloud side, respec-
tively. The column index KF+4NKF means that the key frame
and first four non-key frames are compressed, and the column
index KF+8NKF indicates that the key frame and first eight
non-key frames are compressed. The row index 360P–720P in-
dicates that the broadcaster compresses 720P key frames to 360P
and the smart cloud super-resolved 360P key frames to the orig-
inal 720P. The definition is repeated in the next two rows.

We employed a regular PC with one CPU (Intel Core i7) for
video frames compression at the broadcaster side and a 2080Ti
GPU for super-resolution at the smart cloud server. As we can
see from Tables II and III, the average additional processing
times and one standard deviation of the mean processing time
at the broadcaster and at the cloud side for all the compression
combination, i.e., compressing five 720P frames to 360P (360P
-720P) is 180 ms with 38.38 ms standard deviation. The higher
the input resolution is, the greater the compression time is, too.
540P-1080P has the greatest processing time on both the broad-
caster and the cloud sides. As the delay associated with our video
coding module is extremely low, this module is appropriate for
live video streaming.

D. Performance of the Online SR Video Coding Model

1) Online Learning Performance: Fig. 15 shows the original
high-resolution 1080P video on the left, and different snapshots
of the marked area after enhancement from 360P to 1080P on the
right. The bottom right corner of each snapshot is the VMAF
score. Compared with the bicubic upsampling method, using
a general model can significantly improve the video quality.
Although the video enhancement quality of the SP-similar model
trained on other channels is lower than that of the specific model,
its performance is still better than that of the offline pre-trained
model due to the similarity of the scene. If there is no SR-similar
model, the offline pre-trained model is used.

2) SR Inference Quality: Fig. 9 indicates the quality im-
provement of super-resolution using our proposed framework
FlexSRVC. We use 360P and 540P as the super-resolution in-
puts from three video categories. The super-resolution model
upgrades 360P to 720P and 1080P and reconstructs 540P to
1080P. We compress the key frame and four non-key frames
(4NKF) and the key frame and eight non-key frames (8NKF)

TABLE IV
COMPARISON OF COMPRESSION METHODS

in H.264 using the fastest option in FFmpeg. It can be seen
from Fig. 9 how FlexSRVC improves the quality of the origi-
nal low-resolution streaming by between 10% and 50% for both
schemes. The overall quality improvement of 4NKF is greater
than that of 8NKF.

3) SR Inference Efficiency: Non-key frame compression re-
quires longer super-resolution processing time and more com-
puting resource consumption compared to key frame compres-
sion. We observe that a single super-resolution task cannot fully
utilize the GPU processing power. Therefore, we conduct several
experiments using a GeForce RTX 2080 Ti GPU to discover the
maximum processing capacity of a single GPU. We use a dif-
ferent number of threads to run a single super-resolution task
through a single GPU.

Fig. 10 shows the super-resolution inference time for a GOP
of 24 frames by reconstructing low-resolution 360P frames to
720P and 1080P and 540P frames to 1080P. As the number of
threads increases, GPU utilization increases, but excessive par-
allelization affects the overall system efficiency. As we can see
from Fig. 10, super-resolution with 2 threads achieves the short-
est processing time. With more than 2 threads, although more
parallelization is employed, the super-resolution processing is
longer than that for 2 threads. Therefore, we adopt multi-thread
super-resolution to optimize the overall GPU utilization effi-
ciency (but keep the number of threads low) and reduce video
processing latency.

E. Comparison of Video Coding Methods

This subsection evaluates our proposed flexible frame video
coding scheme in comparison with BIPP [8] that compresses
the non-key frames only in the video. In our experiments, we
compress non-key frames by a downsampling factor of 2 cor-
responding to a 720P high-resolution chunk (720–360-nonkey),
and by a downsampling factor of 2 and 3 corresponding to a
1080P high-resolution chunk (1080–360-nonkey and 1080-540-
nonkey). Compared to non-key frame compression, key frame
compression is associated with the highest cost-benefit ratio,
as it can achieve a high compression ratio with minimal com-
putational resource consumption. Therefore, we only compress
the key frames of a live video to evaluate the superiority of our
flexible video coding module.

For our video coding module, we use the same combination of
the super-resolution based hybrid coding method (720–360-key,
1080–360-key, 1080–540-key) already described. We evaluate
the compression rate of both coding methods and the inference
time of downsampled frames using the super-resolution model
and compare the quality of outputs. Table IV shows that both
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Fig. 16. Comparative performance assessment when using the open 4 G traces.

methods achieve similar video quality for each combination.
Even though the number of non-key frames in a video chunk
is greater than the number of key frames, the compression rate
of our key frame coding module is on average 10% higher than
that of BIPP since the size of a key frame is greater than the size
of a non-key frame. The inference time of our coding module is
at least 20 times less than that of BIPP, which indicates that our
solution is more efficient than BIPP.

F. Comparison of Live Video Uploading Methods

1) Comparison With the Original Method: Our proposed
video uploading framework, FlexSRVC, can provide higher
video quality than the original method in limited uplink band-
width conditions since our model reduces the influence of the
uplink bandwidth capacity on the live streaming quality. In or-
der to verify the bandwidth consumption reduced by FlexSRVC,
we evaluate the bandwidth usage of FlexSRVC normalized to
the bandwidth usage for the original live streaming when deliv-
ering the same quality video with 1080P under fixed network
traces. The uplink bandwidth in the network traces is {0.5, 1.0,
1.5, 2.0, 2.5}Mbps. As shown in Fig. 13(a), FlexSRVC achieves
similar quality levels as the original method using only 74% -
85% of the required bandwidth for different network conditions.
Fig. 13(b) indicates the transmission time using FlexSRVC and
the super-resolution processing time normalized to the trans-
mission time for the original live streaming when delivering
1080P video. As it can be seen, FlexSRVC reduces the trans-
mission time by on average 20% of the time to upload the original
high-resolution video. Noteworthy is that only 2% -5% of the
transmission time of the original live streaming is used for the
SR inference.

2) Evaluation in the Open 4 G Traces: We evaluate compar-
atively the performance of FlexSRVC, LiveNAS and NEMO-
uplink with our proposed bitrate adaptation algorithm for video
bitrate upgrades from 0.5 Mbps to 2 Mbps when a live video is
encoded in H.264 using the fastest option in FFmpeg. Fig. 16
shows the comparative performance of FlexSRVC, LiveNAS
and NEMO-uplink using our adaptation algorithm. Fig. 16(a),
(b) and (c) illustrate the average latency, quality and QoE of
different uplink bandwidth ranges. Fig. 16(a) indicates the av-
erage upload latency from broadcasters to cloud servers, in-
cluding the video upload time and video processing time in the

cloud, for different uplink bandwidth intervals. FlexSRVC out-
performs LiveNAS and NEMO-uplink since FlexSRVC com-
presses key frames and non-key frames flexibly according to
current network conditions. Even in extremely low uplink band-
width, FlexSRVC still achieves the lowest upload latency while
ensuring the highest video quality and QoE. As the uplink
bandwidth increases, the latency of FlexSRVC reduces sig-
nificantly, while the latency of LiveNAS is maintained at a
relatively high level. NEMO-uplink incurs a much higher de-
lay as it has to train the DNN model at the broadcaster side
and cannot adapt to the network conditions. Since both Live-
NAS and NEMO-uplink need to reconstruct all low-resolution
frames in the cloud, when the uplink bandwidth increases, the
transmission time becomes shorter, but the video processing
time by SR is very time-consuming. Fig. 16(b) and (c) show
that with the assistance of our flexible bitrate adaptation algo-
rithm, FlexSRVC achieves higher video quality for all network
traces, even under a poor uplink bandwidth environment. Finally,
FlexSRVC also achieves the highest users’ QoE for all network
traces. Compared with LiveNAS and NEMO-uplink, the QoE
obtained by FlexSRVC in different network conditions has in-
creased by 61% on average, demonstrating that FlexSRVC can
adapt very well to network situation and supports high service
quality.

3) Evaluation With the Self-Acquired Traces: To further con-
firm the superiority of our proposed framework, FlexSRVC, we
conduct experiments with the self-acquired traces in different
environments. Fig. 17 presents the performance of FlexSRVC,
LiveNAS and NEMO-uplink with our proposed bitrate adapta-
tion algorithm for each network trace. As shown in Fig. 17(a),
FlexSRVC has better performance than LiveNAS and NEMO-
uplink, achieving high video quality under various uplink band-
width conditions. Under extreme low uplink bandwidth, the up-
load latency for FlexSRVC is low since FlexSRVC can flexi-
bly compress key frames and non-key frames and hence adapt
better to the poor uplink bandwidth environment. As the up-
link bandwidth increases, the upload latency of LiveNAS and
NEMO-uplink are maintained at a relatively high level due to the
SR processing of all low-resolution frames in the cloud. Com-
pared with LiveNAS and NEMO-uplink, FlexSRVC reduces on
average the upload latency by 54.8% and 64.2%, and improves
users’ QoE by 81.4% and 94.2%, respectively. Noteworthy is
that the proposed framework, FlexSRVC outperforms LiveNAS
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Fig. 17. Comparative performance assessment when using the self-measured traces.

and NEMO-uplink for all the network traces, providing better
live streaming services under different network conditions.

V. CONCLUSION AND FUTURE WORK

Video quality when employing traditional live video delivery
strategies is strongly related to the available bandwidth. In this
paper, we introduce FlexSRVC, a novel live video stream deliv-
ery framework based on SR, which improves the video quality
for live streaming at low bitrates with short cloud processing
time. Specifically, FlexSRVC integrates a flexible frame video
coding scheme design for improving compression efficiency.
Unlike the previous SR-based hybrid coding algorithms, which
further compress the non-key frames, our coding scheme down-
samples the key frames and non-key frames flexibly at the broad-
caster side. This new coding method increases compression effi-
ciency and reduces the computation load as it processes the key
frames only. FlexSRVC also introduces a novel bitrate adapta-
tion algorithm (FLBA) to adjust content delivery dynamically
to the uplink network bandwidth and cloud server computing
resources. Testing shows how FlexSRVC achieves 10%–50%
video quality improvement when compared to traditional live
streaming approaches and obtains similar video quality while
reducing with up to 25% the associated bandwidth requirements.
Compared to the method of reconstructing all frames with SR
during live streaming, it improves users’ QoE by up to 85%, and
ensures low latency during live video streaming.

Future work will consider using a more complex QoE model
to address other relevant QoE influencing factors such as up-
scaling effects, time the highest quality is employed, and tempo-
ral pooling. Additionally, as the network bandwidth is limited,
proposing an edge-assisted video delivery framework for live
streaming will also be considered.
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