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Abstract—Traffic engineering (TE) has attracted extensive
attention over the years. Operators expect to design a TE
scheme that accommodates traffic dynamics well and achieves
good TE performance with little overhead. Some approaches
like oblivious routing compute an optimal static routing based
on a large traffic matrix (TM) range, which usually leads to
much performance loss. Many approaches compute routing
solutions based on one or a few representative TMs obtained
from observed historical TMs. However, they may suffer from
performance degradation for unexpected TMs and usually
induce much overhead of system operating. In this paper, we
propose ALTE, an adaptive and low-cost TE scheme based on
TM classification. We develop a novel clustering algorithm to
properly group a set of historical TMs into several clusters
and compute a candidate routing solution for each TM cluster.
A machine learning classifier is trained to infer the proper
candidate routing solution online based on the features extracted
from some easily measured statistics. We implement a system
prototype of ALTE and do extensive simulations and experi-
ments using both real and synthetic traffic traces. The results
show that ALTE achieves near-optimal performance for dynamic
traffic and introduces little overhead of routing updates.

Index Terms—Traffic engineering, traffic matrix classification,
machine learning.

I. INTRODUCTION

Traffic engineering (TE) is essential to networks, especially
with the wide deployment of technologies such as cloud,
IoT, 5G, etc. Extensive efforts have been made to route
dynamic traffic properly to improve resource utilization and
network performance [2][3][4][5][6][7]. Operators expect that
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good TE performance can be achieved, e.g., maximizing the
throughput or minimizing the maximum link utilization ratio,
with little overhead while traffic dynamics, including bursts,
can be accommodated.

It is challenging for TE to satisfy both adaptiveness and low
overhead. Typically, optimal routing solutions are computed
based on traffic matrices (TMs). However, computing the
optimal routing solution is time-consuming, especially for
large networks, even though the problem can be solved in
polynomial time theoretically [8]. Researchers make efforts to
compute routing solutions efficiently while preserving good
TE performance, leveraging oblivious routing [2][3][9][10],
pre-computed paths[4], representative TMs [5][11], etc. Some
recent approaches also leverage machine learning (ML) tech-
niques [6][7] to learn from historical TMs and infer the
proper routing for upcoming traffic. Most existing approaches
achieve good TE performance if the upcoming TMs have sim-
ilar traffic characteristics but may face significant performance
degradation for certain traffic patterns. One possible remedy
is to monitor network status frequently and update the routing
adaptively for unexpected TMs in time. Nevertheless, such a
means inevitably induces much overhead (e.g., network mea-
surement and routing computation) and impacts the quality
of service (QoS) (e.g., jitter due to frequent routing updates)
[12]. Besides, obtaining TMs in real time is unaffordable,
especially in a high frequency [13], so approaches based on
TM measurement still suffer from high overhead.

To enable adaptive and low-cost TE, we take a different
method in this paper. We propose to divide all possible TMs
into clusters (categories), each of which includes TMs sharing
similar characteristics. Then, we compute one proper routing
solution for all TMs belonging to the same TM category
and achieve a good performance. These routing solutions
are called candidate routing solutions, and we can achieve
adaptive TE by selecting the best candidate routing solution.
Such an online routing decision can be made by inferring
the category of the currently observed TM quickly. Since the
candidate routing solutions are pre-computed and a different
routing will be enabled only when the TM category changes,
the operating overhead is small, and frequent routing updates
can be avoided.

Such an idea follows the main motivation behind oblivious
routing, which is to cope with uncertainty in estimated TM
that is likely to lie in some subset, and the TM space can
be partitioned into multiple subsets and one routing strategy
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can be selected for each subset. Nevertheless, there are few
studies on how to partition the TM space to the best of our
knowledge. One relevant approach is described in [14], which
treats the TM space as a Euclidean space and partitions the
TM space into subsets orthogonally. However, such a method
fails to encapsulate the fundamental characteristics of the TM
space. TMs belonging to the same subset do not necessarily
have similar TE performance under the routing computed for
this cluster, and TMs that have optimal or near-optimal TE
performance under the same routing may be partitioned into
different subsets by the method in [14], for example, TMs D
and λD. The essence of the TM clustering-based TE remains
unrevealed.

To fill the gap, we first formalize the TM clustering-
based TE problem. We observe that the TMs in the same
cluster should have near-optimal TE performance under the
routing computed for this cluster. Thus, we transform the
performance difference between two TMs to define the “dis-
tance” between the TMs. TMs with small “distances” from
each other should belong to the same cluster, and we can
cluster the historical TMs based on TM distances among
them. To reduce the overhead of computing TM distances,
we further propose to use a neural network to estimate TM
distances efficiently and with high accuracy. With properly
selected TM categories, candidate routings can be optimized,
so these routings have better tolerance of unexpected dynamic
traffic than approaches that use only a few representative TMs
[3][4][11].

We propose ALTE, an Adaptive and Low-cost TE scheme
based on TM classification. First, we propose a novel clus-
tering algorithm to efficiently and stably divide historical
TMs into TM clusters. In particular, ALTE finds a fixed
number of center TMs, so that the maximum distance between
a TM and the nearest center TM is minimized. Second,
we compute the suitable routing for each TM cluster by
solving a modified oblivious routing problem. Then, we must
overcome the challenge of quickly and efficiently inferring the
TM category to decide the best one from candidate routing
solutions in an online manner. We use traffic statistics that can
be easily obtained to classify current TM and infer the best
routing solution online to avoid obtaining TMs in real time,
which is costly. We leverage a supervised learning algorithm,
AdaBoost [15], to map such traffic statistics to the TM
category. We implement the ALTE prototype system based on
Ryu [16] and OpenFlow [17]. We do extensive simulations
and experiments based on real topologies. Evaluation results
show that ALTE outperforms other approaches greatly and
achieves near-optimal TE performance for both real and
synthetic TMs with little cost of routing updates.

The rest of the paper is organized as follows. Section II in-
troduces the related works. Section III describes the overview
of the ALTE approach. Then, we formalize the TM clustering-
based TE problem and present the ALTE algorithms in
Sections IV and V, respectively. Results of simulations and
experiments are shown respectively in Section VI and Section

VII, and the conclusion is summarized in Section VIII.

II. RELATED WORK

In this section, we briefly introduce existing Traffic Engi-
neering (TE) approaches by categorizing them into optimiza-
tion model-based routing and Machine Learning (ML)-based
routing.

Optimization model-based routing usually computes rout-
ing solutions using optimization methods. Some approaches
focus on optimizing TE with respect to one single TM. Xu et
al. [8] propose to transform the optimal TE problem into the
shortest paths in terms of a set of non-negative link weights.
Parham et al. [18] jointly optimize link weights and waypoints
under the segment routing paradigm. To improve the adap-
tiveness to real traffic demands, some other approaches rely
on more TMs. For instance, Leconte et al. [4] measure the
real-time TM at each TE interval. The routing is optimized
specifically for the measured TM by solving a mathematical
optimization problem. Kumar et al. [3] propose to obtain
optimal routing solutions for predicted TMs. Zhang et al.
[11], Casas et al. [19], and Zhang et al. [5] focus on a set
of TMs that represent current TM trends. However, measur-
ing real-time TMs as the input of the optimization model
burdens network management. Also, computing and enabling
new routing solutions at each TE interval may induce some
unnecessary overhead and impact QoS. Applegate et al. [2]
propose oblivious routing (OR). A static routing is optimized
for a wide range of TMs by solving linear programming. OR
avoids routing updates so the cost is very low, while it may
lose much TE performance in practice. Rétvári et al. [14]
propose to partition the TM space into subsets heuristically
based on computing an OR solution for each subset. As
discussed above, the method does not capture the essence
of the TM space. Furthermore, the computation overhead is
unaffordable because linear programming problems for OR
need to be solved several times for each dimension of a
TM, while a TM has O(n2) dimensions for a network with
n nodes. Thus, the method can only be used in very small
topologies, with TMs that have only a few flows.

Our proposed scheme, ALTE, uses an optimization model
to define TM distances and computes candidate routing so-
lutions by solving a modified OR model. However, ALTE
needs neither online TM measurement nor online solving
optimization models, so little overhead is introduced. On
the other hand, we use a set of candidate routing solutions
to achieve adaptiveness to traffic dynamics, further differ-
entiating it from most existing methods. Different from the
TM space partitioning method proposed by [14], our scheme
introduces TM distance and contributes a much more effective
and efficient TM clustering algorithm. In fact, ALTE can be
considered to be a generalization of OR.

Recently, ML techniques have garnered increasing attention
for routing computation in TE. Some approaches [7][20][21]
leverage reinforcement learning (RL) or deep reinforcement
learning (DRL) to learn the mapping from the real-time TM to
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a routing solution. Valadarsky et al. [6] propose a DRL-based
TE scheme that computes routing solutions with a continuous
sequence of historical TMs as the inputs. Cong et al. [22]
propose both centralized and distributed routing schemes
based on DRL, and find that the centralized scheme is suitable
for dynamic networks while the distributed one is better for
coping with large-scale networks. Liu et al. [23] propose
DRL-OR, which utilizes multi-agent reinforcement learning
to generate hop-by-hop routing decisions in a distributed
fashion to satisfy multiple QoS requirements. Zhang et al.
[24] propose CFR-RL, which learns RL policies to select
critical flows to reroute. Singh et al. [25] propose Trailnet,
which leverages DRL to predict an output port of a router
based on the destination IP address. Ye et al. [26] propose to
use supervised learning to generate optimal inter-region TMs.
There are also approaches [27][28][29][30] which compute
routing solutions with other learning techniques such as deep
belief network (DBN) and graph neural network (GNN), etc.
Our scheme leverages ML in a different manner compared
with existing studies. Instead of computing routing solutions
directly, we use ML to estimate TM distances and choose the
best routing solution from several computed candidates by
inferring TM categories. This approach offers adaptiveness
to traffic dynamics without introducing substantial overhead.

In a recent study, Ahuja et al. [31] propose to choose a
set of dominating TMs which cover the main characteristics
of the network topology and are used to solve a network
planning problem efficiently. To this end, TM similarity is
defined, and the TMs which share the least similarity are
computed as the dominating TMs. In contrast, our scheme
defines TM distance in a way that considers routing perfor-
mance, with the objective of minimizing the distances from a
set of center TMs to other TMs, rather than identifying TMs
with the largest distance.

III. OVERVIEW

In general, demand is defined as an aggregation of traffic
that enters the network from an ingress node and leaves the
network from an egress node. The set of all the demands in
the network is called TM. A routing solution of TE decides
how to deliver the traffic of TM through the network properly
for a TE objective. In this paper, we consider the objective of
minimizing the maximum link utilization ratio (MLU) which
is a typical and common TE objective [3][4][6]. Generally,
a routing solution includes: 1) the forwarding paths carrying
each demand from the ingress node to the egress node, and
2) the splitting ratios of each demand over these paths. For
brevity, we use “routing” to represent “routing solution”.

ALTE is an adaptive TE scheme that periodically adopts
the best among several candidate routings. In particular, time
is divided into small TE intervals. At each TE interval, a
controller collects traffic statistics, i.e., the total traffic enter-
ing/leaving each ingress/egress node, which can be obtained
easily by reading the port counts of routers. Then, an ML
classifier is used to select the best routing solution from the
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Fig. 1: The workflow of ALTE.

set of candidates. In the next interval, ALTE would change the
routing solution used only if the classification result differs
from the current one. In other words, ALTE monitors network
traffic at each TE interval, but the routing is changed only
when needed. Therefore, ALTE can efficiently perceive TM
category changes with a relatively small interval and without
worrying about route oscillation. Meanwhile, frequent but
low-cost traffic perceiving enables ALTE to accommodate
unexpected traffic changes quickly.

ALTE aims to minimize the MLU for various TMs. To
achieve good TE performance online, some preparatory steps
should be taken carefully in the offline phase. Fig. 1 shows the
workflow of ALTE. In the offline phase, we properly cluster
historical TMs into several categories and obtain a candidate
routing solution fitting each TM category. We develop the ML
classifier to infer the proper routing solution (also the TM
category) in the online phase. We use traffic features that can
be easily measured for classification. We use labeled data to
train our ML classifier in the offline phase. The offline phase
takes place periodically to adapt to new traffic trends.

IV. TM CLUSTERING-BASED TE PROBLEM

A. Formulation

We gradually define our problem, starting from the classic
multi-commodity flow-based optimal routing problem, which
considers a certain TM. We extend the problem to the optimal
routing for a set of TMs. Then, we present the TM clustering-
based TE problem.

1) Optimal routing for a TM: Formally, a network can be
modeled as an undirected graph G(V,E) with node set V
and link set E. Each traffic demand (s, t) with demand size
dst enters the network from ingress node s ∈ V and leaves
from egress node t ∈ V . Let rstl (rstij ) be the fraction of traffic
demand (s, t) that traverses link l ∈ E ((i, j) ∈ E). A valid
routing solution is the collection of rstl that satisfies routing
consistency. In particular, we have∑

link(s,j)∈E

rstsj = 1,
∑

link(i,t)∈E

rstit = 1, (1)

for any traffic demand (s, t); and for any node k ∈ V that
satisfies k ̸= s, t, we have∑

link(i,k)∈E

rstik =
∑

link(k,j)∈E

rstkj . (2)
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We say that a routing solution is valid if constraints (1) and
(2) are satisfied. Note that the definition is independent of
traffic demands. We organize a routing solution into matrix
R, which includes |E| rows corresponding to the links, and
each row has |V | × |V | elements corresponding to the traffic
demands.

Let D⃗ be the vector that consists of all elements in the
traffic matrix D = (dst). R×D⃗ is then the vector that consists
of traffic amounts on all links. Let cl be the capacity of link
l ∈ E, and C⃗ = (cl) be the vector that consists of capacities
of all |E| links. For given TM D, the optimal routing solution
RD minimizes the maximum link utilization ratio (MLU). RD

can be obtained by solving the well-known multi-commodity
flow model (P1).

min u (P1)

s.t. RD is valid, (3)
RD × D⃗ ⩽ uC⃗. (4)

Constraint (4) means that the traffic amount on each link
cannot exceed MLU u. It is well-known that P1 is a linear
programming problem and can be solved in polynomial time.

2) Optimal routing for a set of TMs: With the basic model
in mind, we define the optimal routing solution for a set of
TMs. Let D be a TM set. For D ∈ D and routing solution
R, let uR

D be the MLU when R is used for D. Let u0
D be the

optimal (minimal) MLU with traffic matrix D as the input.
uR
D/u0

D is the performance ratio of routing solution R with
respect to D. If we scale the TM to 1

u0
D
D, the optimal routing

solution does not change, and the minimal MLU becomes 1,
so the performance ratio of routing solution R equals MLU
uR
D. The optimal routing solution RD is a routing solution that

minimizes the maximum performance ratio over all D ∈ D.
Formally, RD can be obtained by solving P2.

min u (P2)

s.t. RD is valid, (5)

∀D ∈ D : RD × 1

u0
D

D⃗ ⩽ uC. (6)

P2 is a general form of P1 because P1 has only one TM in
D. It is clear that P2 is also a linear programming problem.

Discussion: Note that we scale each TM D to 1
u0
D
D and

minimize the performance ratio in P2, instead of directly
minimizing the MLU for a set of TMs. This is because our
target is to compute routings that minimize the MLUs under
both existing TMs and upcoming TMs. Our definition of P2
is consistent with the oblivious routing model [2] if the TM
set is continuous.

3) TM Clustering-Based TE: We intend to partition D
into K TM clusters D1,D2, . . . ,DK for given integer K
and compute K routing solutions R1, R2, . . . , RK , s.t. each
TM cluster uses the corresponding routing solution, and the
maximum performance ratio is minimized. The problem is
formulated as P3.

min u (P3)

s.t. R1, R2, . . . , RK are valid, (7)

∀D ∈ Di(0 ⩽ i ⩽ K) : Ri ×
1

u0
D

D⃗ ⩽ uC, (8)

∀1 ⩽ i, j ⩽ K and i ̸= j : Di ∩ Dj = ϕ, (9)
D1 ∪ D2 ∪ · · · ∪ DK = D. (10)

Note that optimal routing solutions R1, R2, . . . , RK can be
obtained by solving P2 K times if D1,D2, . . . ,DK are given.
In fact, the difficulty of P3 mainly lies in partitioning D into
K clusters.

B. Modeling TM Clustering

We transform the TM set partitioning problem into a TM
clustering problem by specifying the “distance” between two
TMs. Recall that given TM set D in P2, we optimize the
MLU of each TM D under the optimal routing solution RD,
divided by the optimal MLU of D, i.e., u0

D, as shown in Eq.
(6). Note that RD can also be the optimal routing solution of
some TM D′, which may be in D or not. In other words, P2
can be considered as finding TM D′, to which each TM in D
has the minimum distance. This naturally defines the distance
from TM D to TM D′. The same observation can be made
when we consider P3.

Formally, the distance from TM D to TM D′, denoted
by dis(D,D′), is the MLU of D under the optimal routing
solution of D′, divided by the optimal MLU of D. We have

dis(D,D′) =
u
RD′
D

u0
D

. (11)

We can obtain the distance between any pair of TMs
according to the distance definition. In particular, we first
solve a multi-commodity flow (MCF) problem for the optimal
routing solution of D′ and obtain RD′ . We apply RD′ on
TM D and compute the MLU, i.e u

RD′
D . Then, we solve

another MCF problem for the optimal routing solution of D
and obtain u0

D. Finally the distance from TM D to TM D′,
dis(D,D′), can be figured out from (11). Clearly, dis(D,D′)
is not less than 1 because RD′ may be unoptimal for D.
A smaller dis(D,D′) indicates that D and D′ share more
similarities with regard to routing performance because the
optimal routing solution of D′ performs well on TM D.

We emphasize that the definition of distance is not re-
stricted to Maximum Link Utilization (MLU). In fact, the
proposed distance definition can be naturally extended to
other practical performance metrics, such as end-to-end de-
lays. Formally, we define RD as a routing solution that
optimizes f(·, D) under a certain TM D, where f(R,D) is
a performance metric function of routing solution R and TM
D. We have

dis(D,D′) =
f(RD′ , D)

f(RD, D)
. (12)

This adaptability demonstrates the versatility of our approach
in accommodating various network performance objectives
and addressing diverse optimization requirements.
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C. Estimating TM Distances

The TM distance can be measured by solving MCF prob-
lems as discussed above. An MCF problem can be solved in
polynomial time by linear programming theoretically, but in
practice, the time cost increases significantly when consider-
ing large topologies, because the linear programming prob-
lem becomes massive and solving them is computationally
expensive. Since our TM clustering-based TE strongly relies
on TM distances, it is necessary to estimate TM distances by
an efficient means.

To address the issue, we observe that given the network
topology, a TM distance is a mapping from two TMs to a
real number greater than or equal to 1. In other words, it is
not necessary to compute the optimal routing solution if the
mapping can be figured out. Note that the solution space of
an MCF problem is a polytope [32]. Thus, according to Eq.
(11), we can infer that the solution space of the TM distance
mapping is also a polytope, which can be well estimated by a
neural network (NN) efficiently. This method avoids the time-
consuming process of solving linear programming problems.

1) Neural Network Structure: We develop the neural net-
work to estimate the TM distances. The input of the neural
network is a vector that consists of the concatenation of two
flattened TMs, i.e., D⃗ and D⃗′. The output is the estimated
distance dis(D,D′). The neural network consists of multiple
fully connected layers. The input features of an intermediate
layer are the output features of the previous layer. The
activation function used for intermediate layers is Rectified
Linear Unit (ReLU) [33].

The input and output nodes of a neural network are
determined by the target network topology. In particular, for
a network topology with n nodes, the neural network has
2n(n− 1) input nodes and precisely one output node. As for
the intermediate layers, we empirically design the structure
for each target network topology. In particular, for a topology
with n nodes, the first intermediate layer has ⌊n(n−1)⌋ nodes,
the second layer has ⌊n(n− 1)/2⌋ nodes, the k-th layer has
⌊n(n − 1)/2k−1⌋ nodes, and so on. When the number falls
below a certain threshold of 30, it is set to 30, and these nodes
are directly connected to the output layer. For instance, we
use a neural network with layers of 220, 110, 55, 30, and 1
nodes for the Abilene topology [34], with 11 nodes.

We also try neural networks with different intermediate
layers. Table I summarizes some results of the minimum
mean squared error (MSE) between the ground truth and
the estimated TM distances on Abilene. We find that the
estimation accuracy does not change much with different
neural network structures. This implies that the solution space
of the TM distance mapping is not so complicated and can
be well captured by an extensive range of neural networks.

Note that this simple NN cannot generalize to other net-
works, because it does not take graph information as input,
and the input size is fixed. It is an open and interesting
question to design NNs to estimate TM distances with good
generalizability, e.g., by using GNN. In this paper, we focus

on the efficiency of solving the TE problem, and a simple NN
can best meet our requirement because the solution space
polytope is simple. We show below the accuracy and time
overhead of our TM distance estimation.

2) Estimation Accuracy and Time Overhead: We build
neural networks using PyTorch [35], a well-known library
for deep learning. The objective of training is to minimize the
minimum mean squared error (MSE). We employ the early
stopping rule [36] to avoid overfitting and record MSE before
the training procedure eventually stops.

We use four topologies (Abilene, GEANT, NSFNET and
Colt) with real and synthetic TMs to show the effectiveness
of neural networks. Details about the topologies and TMs are
given later in Section VI, and we omit them here for the
sake of simplicity. The TMs for a topology are split into a
training set that has 20% of the TMs and a testing set that
has 80% of the TMs. We also enlarge the training set to
80% of the TMs to compare the accuracy. We compute the
TM distance between each TM pair according to Eq. (11).
We use these TM distances from the training set to train our
neural networks for each topology before testing.

Fig. 2 shows the CDF of the absolute error. We can observe
that the absolute error is smaller than 0.1 for more than 90%
of TM pairs, and the maximum absolute error is about 0.15
for NSFNET. These results show that our neural network
can estimate TM distances with small errors. Note that we
utilize a small proportion of TMs (20%) as training sets but
still achieve relatively high accuracy, compared with using
80% of TMs for training. The training time is 2min31s,
2min8s, 1min1s, and 12min4s for Abilene (20% of 2,016
TMs), GEANT (20% of 672 TMs), NSFNET (20% of 1,400
TMs), and Colt (20% of 1,400 TMs), respectively. The time
to solve TM distances for training datasets is 52s, 2min30s,
1min52s and 2.9h, respectively.

Discussion: Labeling of training datasets for TM distance
estimation requires the solution of linear programming, which
could be a little computationally expensive but necessary.
However, compared to computing the distances between all
TM pairs, NN-based TM distance estimation greatly reduces
the complexity by labeling only a small number of TMs.
Other TM distances are estimated by NNs in a much more
efficient way, and this is just the advantage of employing NNs.
Furthermore, network operators can run the entire TE scheme
regularly, so the amortized offline cost would be acceptable.

Fig. 3 compares the average time needed to compute and
estimate one TM distance. We observe that for Abilene
and NSFNET, the average times of the two methods are
similar to each other. However, for the Colt topology with
a larger scale, computing one TM distance needs 37,800 ms
on average, and the neural network needs only 565 ms, a
98.5% reduction. Actually, the computation time of estimating
a TM distance does not change much for different topologies.
This is because the neural network leverages deterministic
mathematical operations, and does not need to solve MCF
problems. As a result, our neural networks can accelerate
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TABLE I: Minimum MSE under different network structures.
Intermediate layer size (55) (110,55) (110,55,30) (110,55,110) (110,110,110) (110,55,110,55) (110,55,110,220)

Minimum MSE 0.0183 0.0174 0.0134 0.0144 0.0144 0.0135 0.0136

the process of computing TM distances greatly on large
topologies, with high accuracy.

V. ALGORITHMS

We develop algorithms for TM clustering-based TE. We
first develop a clustering algorithm in Section V.A to partition
historical TMs into proper clusters D1,D2, . . . ,DK , based on
TM distance and estimated TM distance defined above. Sec-
ond, we compute optimal routing solutions R1, R2, . . . , RK

for the TM clusters efficiently in Section V.B. Then, we
present how to select the best routing solution online without
measuring exact TM, i.e. online TM classification. Section
V.C shows the features and the classification algorithm used.

A. TM Clustering

Clustering is a well-studied topic and there are a number of
advanced algorithms. However, we still need to develop our
TM cluster-based TE carefully from the routing point of view.
Recall that for a TM cluster D, there is a “center” TM D′,
to which each TM in D has the minimum distance, and D′

may be in D or not. Although we can compute the optimal
routing solution without being aware of D′ by solving P2,
the process is excessively time-consuming for large networks
when D includes many TMs. Thus, we select one TM from
each TM cluster D as the center TM and compute the routing
solution by leveraging this center TM. So we need to find K
center TMs to minimize the maximum distance between any
TM and the nearest center TM. The process is similar to the
partition-based clustering [37].

We tried to develop an exploration-based algorithm accord-
ing to K-Medoids [37]. The main idea is to try a set of center
TMs at each iteration and store the center TM set which gets
a better objective value. The algorithm stops after a given
maximum iteration number. However, we find this algorithm
inefficient, and it is not easy to get a good result and bad
results may be obtained sometimes, because the search space
is large. To address the issue, we observe that the cluster-
ing process will be accelerated greatly if the K-clustering
problem can be derived from the (K-1)-clustering problem.
In particular, suppose some feasible solutions of the (K-1)-
clustering problem have been obtained, and each solution
contains (K-1) center TMs. An approximate solution of the
K-clustering problem can be obtained by appending one more
center TM to the most appropriate feasible solution. Inspired
by the idea, we propose a clustering algorithm that divides the
original problem into several subproblems. Each subproblem
can also be divided further. By solving subproblems firstly,
we can tackle their parent problems easily.

Assume there are N historical TMs. We index the TMs
(i.e., D1, D2, ..., DN ) and compute the distance matrix Θ as

shown in Fig 4. Each item Θ[y][x] is the value of dis(Dy, Dx)
which is the distance (or estimated distance) between Dy

and Dx, and we denote it by dist(y, x) in Fig 4. We define
the variable C[k][x] as the optimal set of k center TMs
under two conditions: 1) Dx must be selected as a fixed
center TM and 2) the other k − 1 center TMs must be
selected from {Dx|x = 1, 2, ..., x− 1}. We can find C[k][x]
corresponds to a clustering subproblem which is determined
by both k and x. We then define d[k][x][y] as the distance
between Dy and its center TM with respect to C[k][x].
Obviously, maxy=1,2,...,N (d[k][x][y]) is the objective value
of the clustering subproblem corresponding to C[k][x]. Since
1 ⩽ k ⩽ K and 1 ⩽ x ⩽ N , we get total of K ·N clustering
subproblems/problems.

When k = 1, C[k][x] and d[k][x][y] can be obtained
directly for any x since the unique center TM is determined
by the specific value of x. When k > 1, C[k][x] and d[k][x][y]
can be updated according to Eq. (13) and Eq. (14).

C[k][x] = C[k − 1][x∗] + {Dx}, (13)
d[k][x][y] = min(d[k − 1][x∗][y],Θ[y][x]) (14)
where x∗ = argmin

x=k−1,...,x−1
θ(x), and (15)

θ(x) = max
y=1,2,...,N

min(d[k − 1][x][y],Θ[y][x]). (16)

Here, θ represents the objective value of the corresponding
clustering subproblem. x∗ indicates the most appropriate
C[k−1][x] which results in the smallest objective value of the
k-clustering problem. The final result we want is C[K][x∗]
where

x∗ = argmin
x=K,...,N

max
y=1,2,...,N

(d[K][x][y])), (17)

and maxy=1,2,...,N (d[K][x∗][y]) is the optimized objective
value of the original K-clustering problem. Note that,
C[K][x∗] may not be the optimal solution since optimal
subproblem solutions may not result in optimal solutions of
parent problems. The details of the approximation algorithm
of clustering are shown in Algorithm 1.

The input includes distance matrix Θ and the target number
of clusters K. The output is the solution of K-clustering
problem CK . Lines 1 to 4 initialize C and d when K = 1.
Lines 5 and 6 traverse all the combinations of cluster number
k and the fixed center TM Dx. Lines 7 to 10 update d[k][x][y]
and C[k][x], which is the core of the algorithm. Lines 11 to
12 obtain the final result, i.e., CK . The time complexity of
Algorithm 1 is O(K ·N3).

We compare our algorithm with Brute Force and the
exploration algorithm proposed in [37]. We only consider 150
TMs so that we can obtain the Brute Force results within
acceptable running time. For the exploration algorithm, we
set 100,000 iterations to guarantee enough explorations. We
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Algorithm 1 Approximation Algorithm of Clustering
Input: Distance matrix Θ, the target number of clusters K;
Output: The solution of K-clustering problem CK ;

1: for x = 1 to N do
2: C[1][x] = {Dx};
3: for y = 1 to N do
4: d[1][x][y] = Θ[y][x];
5: for k = 2 to K do
6: for x = k to N do
7: Get x∗ through Eq. (15) and Eq. (16);
8: for y = 1 to N do
9: d[k][x][y] = min(d[k − 1][x∗][y],Θ[y][x]);

10: C[k][x] = C[k − 1][x∗] + {Dx};
11: Get x∗ through Eq. (17);
12: CK = C[K][x∗];
13: return CK

implement algorithms using Python and do simulations on a
server with an 8-core Intel 3.6 GHz CPU.

Fig. 5 shows the results. The performance ratio gets smaller
when K becomes larger because more TM clusters naturally
result in a smaller link utilization ratio. We also find that
our approximation algorithm outperforms the exploration
algorithm and gets closer results to Brute Force. Note that,
the performance of the exploration algorithm will decrease
greatly when N and K increase because of the huge search
space. Table II shows the running time of different clustering
algorithms. The time of Brute Force increases rapidly as
K increases. In contrast, the exploration and approximation
algorithms reduce running time significantly, and the approxi-
mation algorithm is the best. When K = 5, our approximation
algorithm takes only 1.91 seconds, but Brute Force and the
exploration algorithm take 17.5 hours and nearly 2 minutes,
respectively. Overall, our algorithm makes good results and
works more efficiently and stably.

Discussion: It is important to choose a proper value of
K for our TM clustering algorithm. We will later show by
simulations that using a small K (e.g., 3 or 4) can achieve a
good performance ratio (less than 1.1), and using a greater
K will not make much improvement. In practice, we can run
the clustering algorithm multiple times with different choices
of K, compare the performance ratios of each TM cluster,

TABLE II: Running time of different clustering algorithms.

K 1 2 3 4 5

Brute Force 11ms 873ms 47s 32min 17.5h
Exploration 31s 1min20s 1min30s 1min40s 2min

Approximation 2ms 464ms 933ms 1.40s 1.91s

and then select an appropriate K value. Note that, running
the algorithm with varying K values is not time-consuming,
because pre-computed TM distances can be reused, and the
clustering algorithm has a low complexity. This approach
allows for the selection of an optimal K value that best suits
the specific network conditions and requirements.

Non-parametric clustering algorithms may be an alternative
approach. We attempted to employ non-parametric clustering
algorithms such as DBSCAN [38], a density-based clustering
algorithm. However, DBSCAN either identifies most sample
TMs as noise or assigns the majority of sample TMs to a
single cluster. So DBSCAN is unable to partition the TM
space satisfactorily, let alone achieve comparable performance
to our approach. Thus, the proposed parametric approach
remains a more effective solution for this specific problem.

B. Routing Computation

We compute a suitable routing solution of the center TM
of each TM cluster. The suitable routing solutions of the
center TMs are treated as candidate routing solutions finally.
A candidate routing solution should be able to achieve good
TE performance (i.e., small performance ratio) for the TMs
belonging to the corresponding cluster. That is to say, these
solutions should have the potential to fit other TMs sharing
similar traffic characteristics.

The simplest way is to compute an optimal routing solution
for each center TM. However, such a solution usually overfits
the TM and limits the generality [3]. In fact, the solution
computed by oblivious routing [2] has high generality because
it optimizes the routing with respect to a range of TMs.
Inspired by this, we apply oblivious routing to compute the
suitable routing of each center TM. Next, we describe the
modified oblivious routing problem used in our design as well
as how to compute suitable routing solutions.

Note that to enable a new routing solution, forwarding
rules need to be updated on routers/switches to reconstruct
forwarding paths and execute new splitting ratios. However,
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reconstructing forwarding paths on the fly may cause transient
network performance degradation [3], e.g., packet loss and
jitter. In contrast, modification of splitting ratios is a relatively
inexpensive operation in practice. Previous works [3][4] and
our tests have validated that a limited number of forwarding
paths have the potential to balance various TMs well if the
paths are selected carefully. Thus, we choose to pre-compute
a small number (e.g., three) of forwarding paths for every
demand in advance, using the method in [3]. When enabling a
new routing solution, only splitting ratios need to be updated.

Let D be the target center TM. Each demand (i, j) ∈ D
with demand size di,j enters the network from ingress node i
and leaves from egress node j. Let D∗ be the TM set where
di,j is restricted to [ai,j , bi,j] (i.e., 0 ⩽ ai,j ⩽ di,j ⩽ bi,j). Let
e(u, v) and e(v, u) be the edges of link l(u, v). Let Pi,j be
the pre-computed forwarding paths of demand (i, j) ∈ D. Let
fi,j(p) be the fraction of di,j that traverses path p ∈ Pi,j , and∑

p∈Pi,j
fi,j(p) = 1. Let r denote the objective value (i.e.,

performance ratio) that we want to minimize with respect to
D∗. The following shows the oblivious routing problem with
path limitations (denoted as P4), derived from [2]. The main
difference of P4 against the problem in [2] is that we limit
the forwarding paths of each demand.

min r (18)

s.t. ∀(i, j) ∈ D :
∑

p∈Pi,j

fi,j(p) = 1, (19)

∀l ∈ E :
∑
m∈E

cmπ(l,m) ⩽ r, (20)

∀l ∈ E,∀(i, j) ∈ D :∑
p:l∈p,p∈Pi,j

fi,j(p)/cl − g+l (i, j) + g−l (i, j) = ql(i, j), (21)

∀l ∈ E,∀i ∈ V,∀m : e(u, v) ∈ m,m ∈ E :

π(l,m) + ql(i, u)− ql(i, v) ⩾ 0, (22)

∀l ∈ E :
∑
i,j

(bijg
+
l (i, j)− ai,jg

−
l (i, j)) ⩽ 0, (23)

∀(i, j) ∈ D,∀p ∈ Pi,j : fi,j(p) ⩾ 0, (24)
∀l,m ∈ E : π(l,m) ⩾ 0, (25)
∀l ∈ E,∀(i, j) ∈ D : ql(i, j) ⩾ 0, ql(i, i) = 0,(26)
∀l ∈ E,∀(i, j) ∈ D : g+l (i, j) ⩾ 0, g−l (i, j) ⩾ 0.(27)

The decision variables include fi,j(p) which is the oblivious
routing solution, π(l,m) which is the weight of link m with
respect to link l, ql(i, j) which is the path weight of the
shortest path from i to j by taking π(l,m) as the link weight
of each link m on the path, and slack variables g+l (i, j) and
g−l (i, j) for the lower and upper bound of di,j . Eq. (19) means
all traffic amount of each demand needs to be delivered. Eq.
(20) and Eq. (21) imply that r is the performance ratio. Eq.
(22) guarantees ql(i, j) is the path weight of the shortest path.
Eq. (23) means that di,j is restricted to [ai,j , bi,j]. Note that
P4 can be solved in polynomial time.

To apply P4 to compute the suitable routing solution for
a given TM, firstly, we transfer the center TM to TM set

D∗. Specifically, given a center TM, we range each demand
with a small positive constant ∆, i.e., di,j is restricted to
[max(0, di,j −∆), di,j +∆]. The suitable routing solution of
the given center TM is the optimal oblivious routing obtained
by solving P4 with respect to the TMs within the range.
Compared with the optimal routing solution which overfits
the TM, the optimal oblivious routing fits the TMs within the
range and thus has better generality.

Note that routing computation in ALTE is uncoupled
with other components of the entire framework. Alternative
oblivious routing models can also be employed to generate
candidate routing solutions. For instance, SMORE [3], a
semi-oblivious routing model, can serve as an alternative to
improve the scalability. We call this approach ALTE-SMORE,
which will be used in the simulations when the network size
is large.

C. Classifier Selection

Given TM clusters, the best routing solution for a coming
TM can be obtained by computing the TM distance between
the coming TM and the center TMs. However, it is difficult
and costly to obtain a coming TM exactly in real time. We
need to determine the best routing solution based on traffic
features that can be obtained easily. In other words, we clas-
sify a coming TM without knowing the exact traffic demand
values. We leverage a classifier to map traffic features to the
choice of candidate routing solutions (also TM categories).

Features, the input of ML algorithms, should contain the
necessary information of TMs so that ML algorithms can
classify TMs accurately. We consider two kinds of traffic
statistics that can be easily obtained, i.e., the total traffic
amount entering each ingress node denoted as din and the
total traffic amount leaving each egress node denoted as dout.
For each ingress node (resp. egress node) we can get a din

(resp. dout). The features can be extracted from din and dout.
Table III shows the features selected for our ML algorithm.

We use the Gini Coefficient [39] to assess the importance
of the features. Table III shows the importance ranking of
the features with respect to the TM set of a network (see
Section VII) when K equals three. We can see the top
three features are InMin, InVar, and InMaxAveRatio in this
table. We discover that the features have different importance
rankings for different TM datasets and different K values.
This is because different TM datasets have diverse traffic
patterns. On the other hand, different K values may result in
two TMs belonging to the same cluster for some K settings
and belonging to different clusters for other K settings. Thus,
the common features shared by TMs in the same cluster may
differ under different K values. To use supervised learning
algorithms, we need to label the data for training. Features
are extracted from each TM in a training set. We compute
the performance ratios for the TM under different candidate
routing solutions and then label this TM using the index of
the best candidate routing solution for the TM.
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TABLE III: The description of the selected features.
Feature Description Gini
InAve The average of din 11
InVar The variance of din 2
InMax The maximum of din 10
InMin The minimum of din 1
OutVar The variance of dout 9
OutMax The maximum of dout 7
OutMin The minimum of dout 5

InMaxAveRatio The ratio of InMax and InAve 3
InMinAveRatio The ratio of InMin and InAve 8

OutMaxAveRatio The ratio of OutMax and InAve 6
OutMinAveRatio The ratio of OutMin and InAve 4

TABLE IV: The mean accuracy of different classifiers.

Classifier K
2 3 4 5

Decision Tree 89.2% 86.5% 81.8% 69.8%
Random Forest 89.8% 87.1% 85.9% 73.1%

AdaBoost 90.3% 87.3% 84.7% 75.2%
Naive Bayes 85.0% 79.6% 69.5% 47.4%

* Accuracy: the number of samples classified correctly / the total number
of samples for validation.

Next, we choose an ML algorithm as the classifier. We
hope it is effective, even when labeled samples for training
are few. Thus, a neural network which needs a large training
set is not suitable. We compare the performance of some
classification algorithms, including Decision Tree (DT) [40],
Random Forest (RF) [41], AdaBoost [15], and Naive Bayes
(NB) [42]. Parameters of classifiers are fine-tuned for good
performance. We use 400 TMs of a network (see Section VII)
for computing candidate routing solutions. We also prepare
1,000 TM samples for training and validating the classifiers.

Table IV shows the mean accuracy of different classifiers
by 10-fold cross-validation [43]. We can see AdaBoost gets
the highest accuracy for most K settings. DT and NB
overfit the training samples, which induces low accuracy for
validation sets. RF and AdaBoost have the ability to avoid
the overfitting problem and are better than DT and NB,
but AdaBoost outperforms RF in most cases. Besides, the
training time of every classifier is no larger than 10 seconds
because our training set in our test (also in practice) is small.
Therefore, we choose AdaBoost as our classifier.

VI. SIMULATIONS

A. Simulation Setup

We implement ALTE using Python 3. In particular, we
implement the scheme which computes TM distances by lin-
ear programming (denoted by ALTE-MCF), and the scheme
which uses neural networks to estimate TM distances (de-
noted by ALTE-NN). For the convenience of discussion,
ALTE-NN and ALTE-MCF are collectively referred to as
ALTE. We have to point out that in the routing computation
phase, the oblivious routing (OR)-based algorithm is unable
to scale to large networks. So we substitute the algorithm
with a more efficient one, i.e., SMORE [3], for large network

topologies. This variation of ALTE is denoted by ALTE-
SMORE-MCF and ALTE-SMORE-NN, respectively.

Some default parameters are set as follows: We precompute
three forwarding paths for each demand. ∆ is set to 4 Mbps
for the computation of suitable routing solutions. K is set to
three. The AdaBoost classifier contains 35 RF classifiers, and
each RF classifier contains 35 DT classifiers whose maximum
depth is set to 8. The AdaBoost classifier is developed with
scikit-learn [44], an open-source ML tool. Simulations are
conducted on a server equipped with an Intel i7-9700K CPU
and a GeForce RTX 2080 Ti GPU.

For comparison, we implement three model-based routing
schemes, i.e., the shortest path routing (SP), oblivious routing
(OR) [2], and SMORE [3]. OR computes an optimal static
routing solution for all possible TMs. SMORE precomputes
a set of forwarding paths and obtains traffic-splitting ratios
over these paths by solving linear programming based on a
predicted TM. The predicted TM is computed by the expo-
nentially weighted moving average of a continuous sequence
of TMs. We also compare ALTE with an ML-based approach
proposed in [6], which is one of the state-of-the-art schemes.
For brevity, we name this scheme as TRPO.

1) Topologies and TMs: Numerical simulations are con-
ducted on four real topologies from Topology Zoo [45]. First,
we adopt the Abilene topology with 11 nodes and 14 links.
The link capacities and weights are set according to [34]. We
use real TMs of seven days captured from Mar. 1st, 2004 [34]
as a TM dataset. In particular, each TM is collected every 5
minutes, so there are 2,016 TMs in total.

Second, we use the GEANT topology with 23 nodes and
37 links. We use the link weights and TMs provided by
the author of [46]. The link capacity is set to 2.5 Gbps
identically. We use real TMs of seven days starting from Jan.
8th, 2005, and each TM is summarized every 15 minutes, so
there are 672 TMs in total. Additionally, we generate 1,400
synthetic TMs as a supplementary dataset. We employ the
Gravity Model [47] to synthesize TMs and introduce uni-
formly distributed random noise to each traffic demand. Both
the initial dataset and this supplementary dataset are evaluated
separately to assess the performance of our proposed method.

The third one is the NSFNET topology with 14 nodes and
21 links. We set identical link weights (i.e., 1) and identical
link capacities (i.e., 1,000 Mbps). We utilize 1,400 synthetic
TMs generated using the same method as employed for the
GEANT topology. For brevity, we consider the 1,400 TMs as
seven-day TMs (200 TMs for each day).

The last one is a large topology, Colt, with 92 nodes and
116 links. We also set identical link weights (i.e., 1) and
identical link capacities (i.e., 1,000 Mbps). 1,400 TMs are
synthesized using the aforementioned method. We employ
ALTE-SMORE on Colt due to the large network size.

For all four topologies, the first 400 TMs are used for TM
clustering to get K candidate routing solutions. TMs of the
first five days are used to train our ML classifier. The rest
two-day TMs are used as test datasets for the ML classifier.
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(a) Abilene (b) GEANT (real TMs) (c) GEANT (synthetic TMs) (d) Colt

Fig. 6: The performance ratio of different schemes including ALTE-MCF. Each result contains 5%-quantile, 25%-quantile,
50%-quantile, 75%-quantile, and 95%-quantile. The maximum value, minimum value, and average value are marked in the
form of circles.

(a) Abilene (b) GEANT (real TMs) (c) GEANT (synthetic TMs) (d) Colt

Fig. 7: The performance ratio of different schemes including ALTE-NN. Each result contains 5%-quantile, 25%-quantile, 50%-
quantile, 75%-quantile, and 95%-quantile. The maximum value, minimum value, and average value are marked in the form of
circles.

2) Metrics: First, we evaluate performance ratios which
reflect the effectiveness of schemes. Second, we compare the
number of routing updates (i.e., the number of switching
current routing to another one) to evaluate the overhead of
enabling routing solutions. Then, we observe the classification
accuracy of our classifier. We also explore the effect of some
parameter settings.

B. Simulation Results

1) Performance ratio: Fig. 6(a) shows the effectiveness
of ALTE-MCF for the Abilene topology. ALTE1 to ALTE5
represent ALTE-MCF with K being from 1 to 5, respectively.
We find that the median performance ratio of our scheme
is much better than SP and OR, and close to SMORE and
TRPO. Meanwhile, our scheme performs more stably than
SMORE and TRPO. This is because SMORE and TRPO
suffer from significant performance degradation if they do
not predict upcoming TMs accurately. We see that the per-
formance of ALTE-MCF is closer to the optimal as K gets
larger, because more candidate routing solutions are more
likely to accommodate various TMs, and good enough TE
performance can be achieved when K = 3. Similar results
can be found for the GEANT topology shown in Fig. 6(b)(c).
However, TRPO in Fig. 6(b)(c)(d) performs worse than that
in Fig. 6(a). This may be because TMs of GEANT and Colt
change more irregularly than those of the Abilene topology,
which makes the DRL agent hard to converge well.

Fig. 7(a) shows the performance of ALTE-NN for the
Abilene topology. Similar to ALTE-MCF, we find ALTE-NN
achieves good and stable enough performance when K = 3,
and it achieves performance closer to the optimal as K

increases. ALTE-NN also achieves more stable performance
than SMORE and TRPO. Compared to SP and OR, ALTE3
can reduce the median performance ratio by 28.7% and 13.9%
respectively. We can see similar results for the other topolo-
gies in Fig. 7(b)(c)(d). By comparing Fig. 6 and Fig. 7, we
find ALTE-MCF and ALTE-NN achieve close performance
under the same K setting, implying that neural networks in
ALTE-NN can estimate TM distances accurately.

2) The number of routing updates: Fig. 8 shows the
number of routing updates of ALTE-MCF, compared with
different traffic-adaptive schemes. We see that ALTE-MCF
induces little update overhead because the routing is altered
only when the TM category changes. We also find ALTE-
MCF needs more updates as K increases. This is mainly
because more candidate routing solutions naturally provide
more choices to adapt to TM changes. In contrast, SMORE
and TRPO introduce a relatively large number of routing
updates because they update routings at every TE interval. For
the Abilene topology, ALTE3 reduces the updates by 84.3%
compared to SMORE and TRPO when all schemes have the
same TE interval. Fig. 9 shows the number of routing updates
of ALTE-NN and other schemes. ALTE-NN induces update
overhead similar to ALTE-MCF.

3) Classification accuracy: Fig. 10 and 13 show the ac-
curacy of the ML classifier of ALTE-MCF and ALTE-NN,
respectively. We observe that as K increases, the accuracy
tends to decrease because it becomes harder to distinguish
TMs when the total number of categories gets larger. We also
find the accuracy for GEANT is lower than that for Abilene
and NSFNET. This may be because there are many TMs
located at the boundaries of two categories. Because both cat-
egories have candidate routing solutions that can achieve good
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(a) Abilene (b) GEANT (c) NSFNET
Fig. 8: The number of routing updates under different schemes including ALTE-MCF.

(a) Abilene (b) GEANT (c) NSFNET
Fig. 9: The number of routing updates under different schemes including ALTE-NN.
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Fig. 12: The effect of different ∆ settings
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number of ALTE-NN.
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Fig. 15: The effect of different ∆ settings
of ALTE-NN.

performance, ALTE-MCF and ALTE-NN can still achieve
small performance ratios even though the accuracy is low,
as shown in Fig. 6(b) and Fig. 7(b).

4) Performance ratio under different parameter settings:
We study how parameter settings affect the performance of
ALTE. When we explore one parameter, other parameters are
set to their default values throughout the experiments.

First, we test the effect of the decision tree’s maximum
depth on the accuracy of the classifier on GEANT topology.
Results in Fig. 10 and Fig. 13 show that the classifier is
not sensitive to the parameter and gets similar results for
different settings. We set the maximum depth to 8 after a
comprehensive empirical study.

Second, we study the effect of pre-computed forwarding
path numbers. Fig. 11 and Fig. 14 show the median perfor-
mance ratios under different path number settings. As the path

number increases, the result value tends to become smaller
because more paths provide more flexible routing solutions,
leading to performance improvement. We also discover that
more paths do not necessarily result in better performance,
although more paths offer a larger solution space of problem
P4 and lead to a smaller optimal value theoretically. To
balance performance and overhead, we set the default path
number to three.

Third, we explore the effect of different ∆ settings. ∆ is
used in computing suitable routing solutions. Fig. 12 shows
the median performance ratios under different ∆ settings. We
can see the result value decreases first and then increases
as ∆ gets larger for all three topologies. When ∆ equals
0, the optimal routing solution of the center TM is used
as the candidate routing solution, which lacks generality,
as mentioned in Section V.B. When ∆ is too large, the
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TABLE V: Offline running time of ALTE.

Topology
Offline Phase

Training NNs
+ Estimating TM Distances

Calculating
TM Distances

Clustering
TMs

Computing Suitable
Routing Solutions

Training
Classfiers

Abilene 2min2s+58s 48s 19s 3s 3s
GEANT 9min33s+1min4s 6min18s 21s 14s 4s
NSFNET 3min40s+1min 2min26s 20s 4s 4s

Colt 24min25s+3min46s 4.2h 25s 20s 5s

candidate routing solution loses much performance, just like
OR. For ALTE-MCF, ∆ = 4, 2, 2, 4 are the best settings
for Abilene, GEANT, NSFNET, and Colt, respectively. For
ALTE-NN, the best settings are ∆ = 4, 4, 2, 4. We observe
that for NSFNET, a small ∆ value is better because the traffic
amount is relatively small. The traffic amount of Abilene is
relatively large, so a slightly larger ∆ value will be better. For
simplicity, we set ∆ to 4 Mbps in ALTE-MCF and ALTE-NN.

5) Offline running time: Offline running time refers to the
total time spent in the offline phases. The average running
times of 10 simulations under default parameters are pre-
sented in Table V. For the convenience of comparison, 400
TMs are used to train NNs for each topology. The running
time increases with the scale of the topology, and using neural
networks to estimate TM distances is more efficient than
computing distances by solving MCF problems.

VII. EXPERIMENTS

A. Experiment Setup
We implement a prototype of ALTE using the Ryu [16]

controller with OpenFlow [48]. We use Mininet [49] to
construct the network. Forwarding rules of the pre-computed
forwarding paths are installed into switches in advance. Be-
sides, each ingress switch maintains a few select group tables
to enable the splitting ratios of routing solutions. In particular,
select group tables tag flows (also packets) with hash values,
and flows with the same tag value will be delivered through
the same forwarding path. At each TE interval, the controller
collects traffic statistics from switches. Then, the classifier
infers the proper routing solution based on the extracted
features. If this routing solution is the same as the one in
the last TE interval, nothing needs to be done. Otherwise, the
splitting ratios of the new routing solution will be updated.

Due to the performance limitation of the physical machine,
we choose a small-scale real network and capture TMs for the

experiment, so that the replayed TMs can keep the original
features. We set link capacities to 1,000 Mbps. Each TM is
summarized every 5 minutes from Nov. 1st to 7th, 2018.
We scale down TMs to fit the performance limit. The first
400 TMs are used to do TM clustering and get K candidate
routing solutions. The TMs of the first five days are used to
train our ML classifier. The rest two-day TMs are used as the
test dataset. In the experiments, each TM is replayed for 5
seconds. The TE interval is 2.5 seconds. Other default values
are the same as the simulations. We consider MLU to evaluate
the effectiveness of ALTE. Then, we observe the number of
routing updates and the accuracy of our classifier.

B. Experiment Results

For the sake of simplicity, we omit the results of ALTE-
MCF and only present the results of ALTE-NN, which are
very similar to those of ALTE-MCF.

Fig. 16 shows the evolution of MLU as time goes by
under different routing schemes, including ALTE-NN. We
can see ALTE3 (i.e., ALTE-NN with K = 3) and SMORE
achieve almost the same performance. This is because there
are few bursts in the captured TMs, and SMORE can adapt
to traffic dynamics well. We also find ALTE3 outperforms
TRPO, SP, and OR, especially when the traffic amount is
large. Specifically, at the 20th minute, ALTE3 reduces the
MLU by 33.7%, 37.2%, and 26.5% compared to TRPO, SP,
and OR, respectively. However, TRPO achieves very unstable
TE performance.

Fig. 17 presents the number of routing updates. ALTE
induces more routing updates as K increases, but the cost is
still small (e.g., only 81 updates during 1,152 TE intervals for
ALTE5). SMORE and TRPO introduce more routing updates.
Results of Fig. 16 and Fig. 17 show that ALTE achieves good
load balancing and needs fewer routing updates.

This article has been accepted for publication in IEEE Journal on Selected Areas in Communications. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JSAC.2025.3528818

© 2025 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on January 17,2025 at 06:13:39 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 18 shows the accuracy of the classifier. Similar to
the results of the simulations, the accuracy decreases as K
increases. When K = 3, the accuracy is 82%. In fact, ALTE3
can achieve good enough performance, as shown in Fig. 16.

VIII. CONCLUSION

In this paper, we proposed ALTE. We developed a novel
clustering algorithm to group TMs and computed candidate
routing solutions for each TM category. We trained an ML
classifier to infer the best candidate routing solution online
based on easily measured statistics. Evaluation results showed
both schemes of ALTE perform well for various TMs with
negligible overhead.
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[40] B. Kamiński, M. Jakubczyk, and P. Szufel, “A framework for sensitivity

analysis of decision trees,” Central European journal of operations
research, vol. 26, no. 1, pp. 135–159, 2018.

[41] L. Breiman, “Random forests,” Machine learning, 2001.
[42] R. Caruana and A. Niculescu-Mizil, “An empirical comparison of

supervised learning algorithms,” in ACM ICML, 2006.
[43] R. Kohavi et al., “A study of cross-validation and bootstrap for accuracy

estimation and model selection,” in IJCAI, 1995.

This article has been accepted for publication in IEEE Journal on Selected Areas in Communications. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JSAC.2025.3528818

© 2025 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on January 17,2025 at 06:13:39 UTC from IEEE Xplore.  Restrictions apply. 



[44] “scikit-learn,” https://scikit-learn.org/stable, 2019.
[45] S. Knight, H. X. Nguyen, N. Falkner, R. Bowden, and M. Roughan,

“The internet topology zoo,” IEEE Journal on Selected Areas in
Communications, vol. 29, no. 9, pp. 1765–1775, 2011.

[46] S. Uhlig, B. Quoitin, J. Lepropre, and S. Balon, “Providing public
intradomain traffic matrices to the research community,” in ACM
SIGCOMM, 2006.

[47] M. Roughan, “Simplifying the synthesis of internet traffic matrices,”
ACM SIGCOMM Computer Communication Review, vol. 35, no. 5, pp.
93–96, 2005.

[48] “Openflow v1.3,” https://www.opennetworking.org/product-
certification.

[49] “Mininet,” http://mininet.org, 2018.

Yi Liu received his B.Sc. degree in automation
from Tsinghua University in 2022. He is currently
pursuing a Ph.D. degree at the Department of Com-
puter Science and Technology of Tsinghua Univer-
sity. His main research interests include network
routing and network security.

Nan Geng received the Ph.D. degree from Ts-
inghua University in 2021. He is currently an
Internet Routing Protocol Researcher at Huawei
Technology.

Mingwei Xu (Senior Member, IEEE) received the
B.Sc. and Ph.D. degrees from Tsinghua University.
He is currently a Full Professor with the Depart-
ment of Computer Science, Tsinghua University.
His research interests include computer network
architecture, high-speed router architecture, and
network security.

Yuan Yang (Member, IEEE) received the B.Sc.,
M.Sc., and Ph.D. degrees from Tsinghua University.
He was a Visiting Ph.D. Student with The Hong
Kong Polytechnic University from 2012 to 2013.
He is currently an Assistant Researcher with the
Department of Computer Science and Technology,
Tsinghua University. His research interests include
computer network architecture, routing protocol,
and green networking.

Enhuan Dong received the B.E. (2013) degree
from Harbin Institute of Technology, Harbin, China,
and the Ph.D. (2019) degree from Tsinghua Univer-
sity, Beijing, China. He was a visiting Ph.D. student
at the University of Goettingen in 2016-2017. He
is an Assistant Research Professor in the Institute
for Network Sciences and Cyberspace, Tsinghua
University. His research interests include network
security, network operations and network transport.

Chenyi Liu received his B.Sc. degree in computer
science and technology from Tsinghua University
in 2019. He is currently a PhD candidate at the
Department of Computer Science and Technology
of Tsinghua University. His main research interests
include traffic engineering and machine learning.

Qiaoyin Gan received his B.Sc. degree in com-
puter science from Tsinghua University in 2023.
He is currently a master’s student at the Institute
of Computing Technology, Chinese Academy of
Sciences. His main research interests include smart
network interface cards (SmartNICs) and RDMA
transmission.

Qing Li (Senior Member, IEEE) received the B.S.
degree in computer science and technology from
the Dalian University of Technology, Dalian, China,
in 2008, and the Ph.D. degree in computer sci-
ence and technology from Tsinghua University,
Beijing, China, in 2013. He is currently an Asso-
ciate Researcher with the Peng Cheng Laboratory,
China. His research interests include reliable and
scalable routing of the internet, software defined
networks, network function virtualization and in-
network caching/computing.

Jianping Wu (Fellow, IEEE) received the B.Sc.,
M.Sc., and Ph.D. degrees from Tsinghua University.
He is currently a Full Professor and the Director
of the Network Research Center and a Ph.D. Su-
pervisor with the Department of Computer Science
and Technology, Tsinghua University. Since 1994,
he has been in charge of the China Education and
Research Network. His research interests include
the next-generation internet, IPv6 deployment and
technologies, and internet protocol design and en-
gineering.

This article has been accepted for publication in IEEE Journal on Selected Areas in Communications. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JSAC.2025.3528818

© 2025 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on January 17,2025 at 06:13:39 UTC from IEEE Xplore.  Restrictions apply. 


