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Abstract— Given the high packet processing efficiency of pro-
grammable switches (e.g., P4 switches of Tbps), several works
are proposed to offload the decision tree (DT) to P4 switches
for in-network classification. Although the DT is suitable for
the match-action paradigm in P4 switches, the range match
rules used in the DT may not be supported across devices of
different P4 standards. Additionally, emerging models including
neural networks (NNs) and ensemble models, have shown their
superior performance in networking tasks. But their sophisticated
operations pose new challenges to the deployment of these
models in switches. In this paper, we propose Mousikav2 to
address these drawbacks successfully. First, we design a new
tree model, i.e., the binary decision tree (BDT). Unlike the DT,
our BDT consists of classification rules in the form of bits,
which is a good fit for the standard ternary match supported
by different hardware/software switches. Second, we introduce a
teacher-student knowledge distillation architecture in Mousikav2,
which enables the general transfer from other sophisticated
models to the BDT. Through this transfer, sophisticated models
are indirectly deployed in switches to avoid switch constraints.
Finally, a lightweight P4 program is developed to perform
classification tasks in switches with the BDT after knowledge
distillation. Experiments on three networking tasks and three
commodity switches show that Mousikav2 not only improves the
classification accuracy by 3.27%, but also reduces the switch
stage and memory usage by 2.00× and 28.67%, respectively.
Code is available at https://github.com/xgr19/Mousika.
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decision tree, knowledge distillation.
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I. INTRODUCTION

RECENT years have witnessed an emerging trend of
applying machine learning (ML) to many networking

classification tasks [1], [2]. For example, in [3], the authors
propose a scheme to classify flows into mice or elephants
(i.e., flow size prediction) by utilizing ML models such as
Gaussian process regression and neural networks (NNs). In [4],
the authors propose a convolutional NN to classify packets
into the application types (e.g., browsing, file transferring) that
generated them. Thus, a customized routing can be provided to
guarantee the differentiated QoS requirements. In [5], ML is
also introduced into the malware detection and the authors
present a neural framework, FFDNN, to analyze the input
traffic and detect malware attacks.

Traditionally, these ML models are implemented in x86
servers to support their complicated ML operations (e.g.,
floating-point multiplications). Especially, the computation-
intensive NNs even require specific GPU-equipped servers for
acceleration. As such, traffic has to be redirected to specialized
servers for further processing. Although these ML solutions
provide promising accuracy, they can cause unsatisfactory
throughput and capacity for large-scale data centers and cloud
networks [6].

Compared with x86 servers, the modern programmable
switches (e.g., P4 switches [7]) support up to Tbps of through-
put and enable the programmable logic, which offers the
opportunity of deploying in-network ML models. Nonethe-
less, such a high throughput is achieved by sacrificing
the programmable flexibility. Only simple instructions like
integer addition/subtraction, and bit shift are allowed in
switch actions. These actions also should be triggered by
the matched rules in predefined P4 tables, i.e., the match-
action paradigm. Besides, each switch has compact resources
(e.g., memory and the number of stages) for programmable
processing.

To tackle these switch constraints, some works [8], [9], [10],
[11], [12], [13] are proposed to deploy the simple rule-based
ML model, e.g., the decision tree (DT), in P4 switches for
high-speed in-network classification (aka in-network intelli-
gence). For instance, IIsy [8] converts the DT into multiple
feature tables and one decision table, i.e., the feature-decision
manner. pForest [11] presents the level-table manner, i.e.,
mapping each level of the DT into a P4 table. Despite the
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considerable success of these approaches, there are still two
key challenges that remain unsolved:

• The device compatibility. The DT makes classification
decisions by comparing input feature values with thresh-
olds obtained in the training. Previous solutions usually
implement this comparison by the range match in P4.
However, the range match may not be widely supported,
as it is not defined in the core library that must be
available in hardware/software programmable switches of
different P4 standards [14], [15]. Though IIsy and its
extended version [8], [9] present the conversion from the
range match to standard match types (e.g., exact/ternary),
their authors also state the consequently increased con-
sumption of precious resources in the switch.

• The model compatibility. Although the DT seems to
fit the switches’ match-action paradigm well, its learning
capability is not as powerful as other sophisticated ML
models (e.g., NNs and ensemble models in [4] and [16]).
Due to the aforementioned switch constraints, sophis-
ticated models are difficult to be deployed, resulting
in inferior classification accuracy [17]. Despite Planter
and its extended version [12], [13] making progress in
deploying less sophisticated models like the binary neural
network (BNN), the P4 implementation in Planter is
manually tuned according to each new added model,
which may not scale to diverse models.

Therefore, we propose Mousikav21 in this paper, which
makes a further step towards enhancing the performance of
in-network classification. Mousikav2 supports the indirect
deployment of sophisticated models by distilling their classifi-
cation knowledge into a new proposed rule-based classifier,
improving the accuracy of in-network classification while
avoiding switch constraints. Unlike the DT, our proposed
classifier is natively implemented by the standard ternary
match and thus is compatible with devices of different P4
standards without any resource-consuming conversion (e.g.,
range to exact/ternary in [9]). In summation, we address the
aforementioned challenges with the following key ideas:

• We redesign the DT to a new rule-based model, the binary
decision tree (BDT), whose classification rules are bits
and thus can be directly encoded by the ternary match
in the standard core.p4 library [19]. With the BDT as
the deployed model, Mousikav2 is natively supported by
most P4 devices.

• We adopt a teacher-student knowledge distillation archi-
tecture to train the BDT. That is, the classification
knowledge of diverse sophisticated teacher models (e.g.,
NNs or ensemble models) is distilled and transferred into
the BDT to avoid deployment constraints and improve
classification accuracy.

• We design a delicate P4 program to use the classification
rules of the BDT. This program only takes up two tables
and two stages of the switch, which is lightweight enough
for compact switch resources.

1This work was presented in part at the 2022 IEEE International Conference
on Computer Communications (INFOCOM) [18].

We conduct thorough experiments on three classification
scenarios (flow size prediction, traffic type classification, and
malware detection) and three commodity P4 switches to
evaluate the performance of Mousikav2. The experimental
results reveal that: 1) The BDT after knowledge distillation
usually has a better classification performance. For the task of
traffic type classification, the BDT after knowledge distillation
improves the accuracy of the DT by 3.27% (97.66% vs.
94.39%) 2) Knowledge distillation is helpful to reduce the
training time and classification rules of the BDT. E.g., the
training time and the number of classification rules are reduced
by 6.01× and 4.28×, respectively. 3) Due to the efficient
processing performance of the hardware switch, deploying
Mousikav2 in the three switches has little impact on their
packet forwarding. For the traffic speed of 100Gbps, the
traffic can still be transmitted at line rate (the packet latency
is ∼ 660 nanoseconds). 4) Compared with the existing DT
implementation, Mousikav2 only occupies a small amount of
switch resources. For the malware detection task, Mousikav2
only takes up 2 stages and 5.20% of the TCAM, which is
2.00× ↓ and 28.67% ↓ compared with IIsy [8].

II. BACKGROUND

A. Machine Learning for Networking Classification

In recent years, machine learning has been employed in
every possible field to leverage its amazing learning power,
e.g., computer vision and natural language process [20], [21],
[22], [23]. The networking field has also seen several schemes
proposed to exploit ML for networking classification tasks [1].

In [3], the authors concern with the problem of predict-
ing the size of a flow and detecting elephant flows (very
large flows). They describe the problem as a learning-based
classification task and employ machine learning models like
Gaussian process regression (GPR) and neural network (NN)
for flow size prediction. In [4], the authors focus on the prob-
lem of classifying Internet traffic by application type. They
designed an NN-based system that can classify IP packets
into application protocols (e.g., FTP and P2P) or applications
(e.g., web browsing and file transferring). The works in [16]
and [24] also focus on employing the power of ML for the
traffic classification, the employed models are recurrent NN
and one-dimensional convolutional NN, respectively. In [5],
the authors propose a feed-forward deep NN (FFDNN) and
utilize 48 statistical features of flows (e.g., the average packet
sending rate and the inter-packet arrival time) for detecting
malware attacks. In [17], the authors utilize different numbers
of the fully-connected neural layers to build two models, i.e.,
ANN and DNN. Both models show superiority in the task of
malware detection.

Now, many ML-based solutions have reached promising
accuracy on networking classification tasks [2]. Based on
them, network administrators can yield many management
and security gains, e.g., offering differentiated QoS provi-
sion by the traffic type classification and defending against
attacks by the malware detection. Nevertheless, the current
solutions of ML deployment require high-performance x86
servers to support the complicated ML operations. Not to

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on December 27,2023 at 06:38:52 UTC from IEEE Xplore.  Restrictions apply. 



XIE et al.: EMPOWERING IN-NETWORK CLASSIFICATION IN PROGRAMMABLE SWITCHES 3

Fig. 1. The general architecture of a P4 switch.

mention that computation-intensive NNs even rely on specific
GPUs for acceleration. Hence, traffic must be redirected to
specialized servers for analysis, which induces significant
processing latency and severely degrades throughput in large-
scale commercial networks [6].

B. P4 Switch and Its Constraints

Recently, P4 switches of Tbps have been deployed in
several commercial data centers [25], [26]. Besides the high
throughput, P4 switches also support the programmable logic,
which capacitates the direct deployment of ML models inside
network devices.

There exist various software and hardware switches that
follow different P4 standards [14], [15]. Fig. 1 demonstrates
the general architecture of a switch’s data plane, i.e., the
protocol independent switch architecture (PISA). As shown,
the arriving packet is first mapped into a packet header vector
(PHV) by the programmable parser. Then, the PHV is passed
to a match-action pipeline. The pipeline consists of match-
action units (MAUs) arranged in N stages (typically, N = 12).
Each stage is assigned a memory block (mem). If a header
field (e.g., the destination port) in the PHV matches (M)
a given table entry (stored in mem), further processes in
the action unit (A) associated with the matched entry are
triggered. Finally, the processed PHV is reorganized into a
packet by the programmable deparser. In summary, PISA
allows network administrators to define customized processes
(e.g., match-action tables) in P4 language and then instan-
tiate them inside MAUs. This novel architecture empowers
P4 switches with a packet processing throughput of Tbps.
However, a shortcoming of the architecture is that it has rather
limited programmable capability. Now we discuss three main
programmable constraints below.

Processing constraints. To guarantee the high-speed
processing, complex instructions such as multiplications, divi-
sions, and other floating-point operations (e.g., polynomials
or logarithms) are not supported [8], [27]. Packet processing
in MAUs is limited to very simple instructions like integer
additions and bit shifts. Besides, the number of supported
instructions in a specific action is also limited. As a result, it is
difficult to deploy most ML models that require complicated
floating-point operations in P4 switches.

Matching constraints. For P4 language, the standard
library (i.e., core.p4 [19]) defines three kinds of matching
which are widely supported by diverse devices: 1) Exact
match. The input key (e.g., headers in the PHV) has to match

exactly with the field in the rule. 2) Ternary match (wildcard).
The input key is AND with the Mask associated with each
rule, and then compared with a corresponding Value for an
exact match. 3) Longest prefix match (LPM). Compared with
the ternary match, this case guarantees that the Mask is a
series of consecutive bits 1 followed by a series of consecutive
bits 0 [28]. Other libraries (e.g., v1model.p4 [14]) may define
additional match kinds such as range match and fuzzy match.
But these additional match kinds may not be available in many
switch targets [8].

Resource constraints. Each stage is evenly equipped with
two high-speed types of memory. One is TCAM, which is
a content-addressable memory suitable for fast table lookups.
TCAM is used to store table entries with match kinds including
ternary, LPM, and range match [29]. The other is SRAM
which is used to store exact match table entries and stateful
registers. Unfortunately, the total amount of memory in the
switch is small. The amount of SRAM is in the order of
100MB, while TCAM is far less than that [30]. Furthermore,
the number of available switch stages is also small (typically
12 [8]) as passing too many stages will delay packet for-
warding. As such, many networking tasks (e.g., NAT, fault
tolerance, and load balancing) have to compete to share these
precious resources.

C. In-Network Classification

Given the discussed switch constraints, an emerging trend
is to implement the rule-based ML model, e.g., decision tree
(DT) [31], in switches for high-speed processing, i.e., in-
network classification (aka in-network intelligence) [8], [9],
[10], [11], [12], [13].

There are two main ways to map tree models into P4,
i.e., the level-table manner and the feature-decision manner.
In SwitchTree [10] and pForest [11], the authors use the level-
table manner to map each level of the DT into a match-action
table. A DT node in one level table compares a specific feature
against the threshold, assigning the node ID of the next level
table to be matched. As level tables from different DTs are
independent, they can be placed in the same switch stage to
be executed in parallel, further forming the ensemble classifier
(i.e., random forest, RF) for accuracy gains. However, the
level tables from the same DT should be executed sequentially
in different stages, causing the number of consumed switch
stages to be proportional to the depth of the DT [9].

IIsy and its extended version [8], [9] overcome this stage-
depth dependence by the feature-decision manner. That is,
each feature used in a DT is encoded to be a match-action
table, being responsible to compare all thresholds of this
feature and outputting the compared results. Finally, a decision
table is utilized to output classification results according to the
compared results. In an ideal case (where the DT is small), IIsy
consumes only two stages as feature tables can be conducted
parallelly in one stage. Nevertheless, as the DT grows larger,
these feature tables may overflow several stages [11]. Besides,
as the range match used for threshold comparisons is not
compatible well with devices from different P4 standards,
IIsy proposes to convert the feature comparison into standard
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Fig. 2. The Mousikav2 framework.

match types (exact/ternary/LPM), resulting in extra resource
consumption of compact switches [8].

Planer and its extended version [12], [13] aim to auto-
mate and modularize the in-network classification, maintaining
modules of the encoding-based (feature-decision) and the
direct-mapping (level-table) for the DT deployment. Also,
modularization makes it possible to extend the supported
ML models. As an illustration, Planter shows the way to
support models such as BNNs which mainly depend on the
bit operations, through newly added modules of XNOR and
PopCount. However, precisely designing modules for diverse
models is challenging for human resources. Additionally, due
to the inherent switch constraints, it remains difficult to support
floating-point NNs with sophisticated operations.

Hence, we propose Mousikav2, which boosts the in-network
classification/intelligence in two aspects. First, as the goal
of extending ML models (e.g., NNs and RF) is the accuracy
gain, we propose an indirect deployment of these models, i.e.,
transferring their knowledge to a simple model for a unified
deployment. Second, we design the BDT as the targeted
simple model that natively uses the standard ternary match for
resource-efficient deployment in different P4 devices, without
the costly match conversion.

III. MOUSIKAV2 OVERVIEW

Fig. 2 presents the Mousikav2 framework. It mainly con-
tains three key components: the binary decision tree (BDT),
the teacher-student knowledge distillation architecture to train
the BDT, and the P4 program to install the trained BDT.

The BDT (detailed in Section IV) has many inner and leaf
nodes. Each inner node checks one bit of the sample features
and routes the sample to the left subnode (if the bit value
is 0) or the right subnode (if the bit value is 1). When the
sample is routed to a leaf node, the predicted class label is
obtained. The knowledge distillation (detailed in Section V)
leverages sophisticated ML models to train (teach) a BDT.

Many powerful models can be employed as the teacher model,
including but not limited to different NNs (e.g., LSTM [32]
and GRU [33]) and ensemble models (e.g., RF [34]). The
teacher model is trained in advance. Then, for each sample x in
the dataset, the teacher model transfers its learned knowledge
(aka soft label) to the BDT, supervising the growth of inner and
leaf nodes. The P4 program (detailed in Section VI) mainly
consists of two match-action tables (two separate switch stages
between the programmable parser and deparser). Table1 has no
table entries and its default action is to map the features (e.g.,
ports, packet size in the PHV) of a packet into the bit string
bin_feature. Then, Table2 classifies bin_feature according
to the ternary match entries (i.e., encoded rules of the BDT).
Each entry contains three fields, i.e., Mask, Value, and Class.
As discussed in Section II-B, the ternary match is performed
by finding the matched Value after bin_feature AND Mask
and returning the corresponding Class label.

Mapping packet features into bits is partially similar to the
feature binning [35]. Feature binning maps feature values into
different buckets to introduce non-linearity for accuracy gains.
However, the range match is required to decide which bucket
a specific feature value belongs to. Also, [35] needs the extra
training of the DT to decide the range per bucket for the
subsequent model classification.

IV. BINARY DECISION TREE

In this section, we first introduce the BDT training algorithm
which is the base of our knowledge distillation. Then, we use
an example to demonstrate the training algorithm intuitively.

A. BDT Training

Based on DT [31], we design Algorithm 1 that grows a BDT
on the given networking classification dataset D. Training
samples (packets) in D have the form of (xi, yi). xi is a
bit string of length |A|, i.e., bin_feature of Section III.
yi ∈ RK denotes the one-hot representation of the class label
(K-dimensional vector,2 where the value of the corresponding
dimension of the category is 1, and the remaining are 0). The
main parts of the BDT training algorithm are:
• Lines 3 ∼ 6 indicate that if all samples in D belong to

the same category (Cls(y) ≡ C), the BDT generation
process stops and the current node N is regarded as a
leaf with class label C. Here, function Cls(.) finds the
corresponding class label in y:

Cls(y) = arg max
j
{y1, . . . , yj , . . . , yK}, (1)

where j ∈ [1, K] is the index that has the value of 1 in
the one-hot vector y.

• Lines 7∼ 10 reflect another stop processing: if the current
bit set A is empty (the bits in A are removed one by
one during the generation process, see Line 19) or all
samples have the same value (0 or 1) on each bit in A, the
current node N is also denoted as a leaf and its class label
N.cls is assigned by the returned value of CntMaxCls(.).

2Using vectors to represent class labels is convenient for the following
knowledge distillation.
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Fig. 3. The binary decision tree (BDT) and the ordinary decision tree (DT).

Algorithm 1 BDT Training Without Knowledge Distillation
Input: Training set D = {(x1, y1), (x2, y2), . . . , (xn, yn)},

Bit features A = {a1, a2, . . . , am}.
1: function BDTGENERATE(D, A)
2: Generate node N ;
3: if ∀y ∈ D,Cls(y) ≡ C then
4: N.cls← C; // Leaf node
5: return;
6: end if
7: if A = ∅ or ∀x1, x2 ∈ D,x1.A ≡ x2.A then
8: N.cls← CntMaxCls(∀y ∈ D); // Leaf node
9: return;

10: end if
11: Select the optimal bit a∗ by Gini(D,∀a ∈ A);
12: for v ∈ {0, 1} do
13: Create a branch of node N as N.brc;
14: Dv ← {(x, y) | x.a∗ = v, x ∈ D};
15: if | Dv |≤ min_samples_leaf then
16: N.brc.cls← CntMaxCls(∀y ∈ Dv); // Leaf
17: return;
18: else // Inner node
19: N.brc← BDTGENERATE(Dv, A \ {a∗});
20: end if
21: end for
22: end function
Output: The trained binary decision tree.

CntMaxCls(.) is a function to generate a class label from
all y ∈ D:

P = (p1, . . . , pj , . . . , pK)

=
1
| D |

∑
y∈D

y, (2)

CntMaxCls(∀y ∈ D) = arg max
j

P, (3)

where P is the vector maintaining the probability of each
class, and the index j of the class with the maximum
probability is returned. Note that y is one-hot [36], i.e.,∑K

yi = 1.0.

• Line 11 selects the optimal branch bit a∗ by the Gini
index criterion [31]:

a∗ = arg min
a∈A

Gini(D, a), (4)

Gini(D, a) =
∑

v∈{0,1}

| Dv |
| D |

(1− P⊤Dv
PDv

), (5)

where Dv = {(x, y) | x.a = v, x ∈ D} contains all
samples whose value of bit a is v, PDv

is calculated by
Equation 2 denoting the class probability vector of subset
Dv , and the optimal branch bit a∗ is the one that has the
minimum Gini index. The minimum Gini index reflects
the desired effect in the splitting, i.e., the samples from
the same class are likely to be assigned in the same node.

• Lines 12 ∼ 21 are the loop for tree branching. For each
value v ∈ {0, 1} of the optimal a∗, if the corresponding
subset Dv contains samples fewer than a predefined
threshold (e.g., min_samples_leaf = 5 in our exper-
iments), the tree generation stops (Lines 15 ∼ 17).
Otherwise, the tree will grow on the new subset Dv and
new bit set A = A \ {a∗} (Line 19).

B. Training Example

The left side of Fig. 3 depicts how Algorithm 1 grows a
BDT. As shown, there are samples of three classes (illustrated
as red, purple, and yellow circles, respectively) in the train-
ing dataset D, where the label y of samples in a class is
represented by a one-hot vector. Then, all training samples
are recursively split into nodes until leaf nodes are reached.
We summarize three cases (❶ ∼ ❸) during this splitting:
• In ❶, the samples in D1 are from the same class (i.e., the

Class2). In light of Lines 3 ∼ 6 in Algorithm 1, we set the
node of D1 as a leaf node, stopping the splitting of D1.

• In ❷, D2 holds samples of different classes. As there have
been several times of sample splitting (node branching)
before D2, the current bit set A may be empty or each
sample has the same bit values (i.e., A(D2) ≡ 011 . . . ).
Thus, we also set the node of D2 as a leaf node by
Lines 7 ∼ 10 in Algorithm 1 with Equation 2 and 3.
Apparently, CntMaxCls(D2) returns Class1 as Class1 has
the maximum probability.
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• In ❸, we continue to split the samples in current inner
node by Lines 11 ∼ 21 in Algorithm 1. Notably, as inner
nodes #1 and #2 have used bit0 and bit3, these two used
bits are removed in the current splitting.

After the BDT is trained, we can extract several rules of
bits. For example, the Rule1 in the left side of Fig. 3 utilizes
bit0 and bit3 to classify the new samples. As discussed, the
bits are from the selected packet features (e.g., ports, packet
size). The right side of Fig. 3 depicts a trained ordinary DT.
During the training, the DT also uses the Gini index to choose
optimal features and their thresholds for sample splitting [31].
Compared with the DT, the input of the BDT is bits, which
makes the Gini index calculation much faster in the training.
E.g., in the right side of Fig. 3, if the packet size has m
bits, the complexity of the Gini index calculation in the DT
is O(2m) as all candidate thresholds must be compared in
the ordinary DT to find the optimal (i.e., 50 in the right side
of Fig. 3). But the BDT only needs to calculate O(m) times
as only bits are considered. Also, according to Line 12 in
Algorithm 1, the BDT uses bits of 0 or 1 rather than ranges
as branch conditions to split samples. Hence, from the root to
each leaf, there is a classification rule consisting of zeros and
ones, which is a good fit for the well-supported ternary match
in different switches (see Section VI-A for encoding the BDT
into ternary match entries).

V. KNOWLEDGE DISTILLATION

In this section, we first introduce the preliminaries of
knowledge distillation, and then adapt knowledge distillation
for our BDT.

A. Preliminaries

Due to the limited computation capacity and memory of
mobile devices, deploying sophisticated ML models in these
devices encounters great challenges. To this end, the idea
of learning a lightweight student model from a sophisticated
teacher model is formally popularized as knowledge distil-
lation [37]. In [38], the authors define the class probability
vectors of samples predicted by the teacher model as the
“knowledge” (i.e., the soft label). Then, the teacher model
directly supervises the gradient descent training of the student
model on a transfer dataset through the following soft loss
function Lsoft:

Lsoft = −
∑

si log(pi), (6)

where for a training sample xi, the soft label of the teacher is
si, and the student predicted probability vector is pi. However,
superior teacher models also have a certain error rate by
using si to predict the class labels of samples. Hence, the
ground truth (aka the hard label, hi), i.e., the one-hot vector in
Section IV (representing the true class label) is also considered
in the student training:

Lhard = −
∑

hi log(pi). (7)

Then, the final gradient descent loss L is the weighted sum of
Lsoft and Lhard, that is:

L = αLsoft + βLhard, (8)

where weights α and β are in the range of (0, 1),
α + β = 1.

The great success in practice shows that the student model
can mimic the classification behaviors of the teacher model
and obtain a comparable or even superior performance [39],
[40], [41], [42]. For example, the authors in [42] present a
tree-structure neural network, i.e., the soft decision tree (SDT),
as the student model. After the knowledge distillation-based
gradient descent, SDT yields a competitive performance on
image classification. Furthermore, the interpretability of the
SDT can be partly shown by tracing the classification paths
in the tree.

B. Knowledge Distillation in BDT

The conventional knowledge distillation requires the student
model to be parametric and optimizable by the gradient
descent. However, our BDT is a rule-based classifier with
no parameters to be optimized. Fortunately, some attempts at
knowledge distillation without gradient descent seem promis-
ing. For instance, the authors in [43] propose the rectified
decision tree (ReDT). In ReDT, the soft labels of the teacher
model incorporate the impurity calculation to determine the
feature selection and node splitting. Following these efforts,
we can adapt the conventional knowledge distillation for our
rule-based BDT without gradient descent.

For a K-class classification problem, we still use the class
probabilities output of the teacher model as the soft label (i.e.,
the knowledge). The sample xi in the transfer dataset is first
fed to the trained teacher model to output the soft label si ∈
RK . Besides, each sample has a hard label hi, i.e., the one-
hot vector indicating its true class label (ground truth). Then,
we denote

ŷi = αsi + βhi, (9)

where ŷi is the weighted sum of the soft and hard labels. The
pairs of {(x1, ŷ1), . . . , {(xi, ŷi), . . . , (xn, ŷn)} are formed the
training set D in Algorithm 1 to train a BDT by knowledge
distillation. That is, all we need to do for training the BDT
by knowledge distillation is to change the algorithm input
(replacing the one-hot vector yi by the weighted label ŷi) while
leaving everything else in the algorithm intact.

Though the alteration is straightforward, the learned knowl-
edge of the teacher model deeply influences the growth of the
BDT. Formally, the class probability distribution in a dataset
is changed from Equation 2 to

P̂ = (p̂1, . . . , p̂j , . . . , p̂K) =
1
| D |

∑
ŷ∈D

ŷ, (10)

where ŷ is the weighted sum of class probabilities with soft
and hard labels in Equation 9. Accordingly, the calculation of
Equation 3 ∼ 5 is also changed. In other words, by introducing
ŷ, the knowledge from the teacher can cooperate with the
ground truth, teaching the BDT where to stop branching
(Lines 7 ∼ 10 in Algorithm 1 with changed Equation 2 and 3)
and which is the optimal branch bit (Line 11 with changed
Equation 4 and 5). Training by knowledge distillation helps
the BDT to mimic the classification of the teacher model and
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obtain a relatively high performance [42], [43]. In addition,
Mousikav2 supports a wide variety of models as the teacher,
ranging from different NNs to ensemble models, provided that
they have good performance and can output class probabilities
as the soft labels.

VI. P4 PROGRAM

In this section, we discuss the P4 program for in-network
classification. First, we introduce how to encode the BDT
rules into the ternary match table entries. Then, we install
two P4 tables in a switch, utilizing the encoded entries for
classification tasks.

A. BDT Encoding

According to the left side of Fig. 3, the classification rules
of a trained BDT consist of zeros and ones. Starting from
the first inner node (i.e., the root), a bit feature is checked
to be zero or one and the corresponding left or right branch
is selected. This branching procedure is repeated until a leaf
node is reached, which maintains the predicted class label.
In other words, we only need to check the bit value in specific
positions according to the traversed inner nodes, which is
similar to the ternary match and makes it easy to transfer
a BDT classification rule to a ternary match table entry. For
example, let x = bit0bit1 . . . bit7 denotes one input sample
which has 8 bits. A rule output by the BDT in Fig. 3 is:

If bit0 = 1 and bit3 = 1 Then class← Class2.

As bit values in positions 0 and 3 need to be checked, the
ternary Mask is 0b10010000 and the corresponding ternary
Value is 0b10010000. We just need to examine whether
x AND Mask equals the ternary Value to validate the rule
matching. If it does match (i.e., x AND Mask = Value), the
class label (Class2) will be used as a parameter in the assign-
ment action. Therefore, we fit the sequential decision process
of a BDT into the ternary match and action of switch tables.
Notably, there is no accuracy decrement after converting the
BDT into the ternary match entries (see Section VII-D).

B. Switch Tables

As shown in Fig. 2, after encoding the BDT classification
rules as ternary match table entries, we develop a P4 program
of two switch tables to perform networking classification.

As shown in Listing 1, the first table tb_concat_feature
is for bin_feature initialization. tb_concat_feature uses
default action ac_concat_feature to initialize bin_feature
that is stored in the PHV’s metadata. As the parsed packet
is also stored in the PHV (in the form of bits), a packet
header can be easily assigned to the corresponding posi-
tion of bin_feature. For instance, Line 3 in Listing 1
assigns the IP protocol field of the parsed IPv4 packet to
meta.bin_feature’s low 8 bits.

Listing 1. P4 code fragment that initializes bin_feature.
1 // assign specific field to

bin_feature
2 action ac_concat_feature() {

TABLE I
AN EXAMPLE OF MATCHED ENTRY IN tb_packet_cls

3 meta.bin_feature[7:0] = hdr.ipv4.
protocol;

4 // the assignment of other packet
headers is omitted \ldots

5 }
6 // stage~1: feature initialize
7 table tb_concat_feature{
8 actions = {
9 ac_parse_bin_feature;

10 }
11 default_action = ac_parse_bin_feature;
12 }

To speed up the operations, P4 switches allow separate
tables allocated in the same stage have simultaneity. But we
find that tables of bin_feature initialization and classifi-
cation can not be performed in parallel at the same stage,
as their operations have a dependence on bin_feature. That
is, bin_feature should be first initialized and then used as
the key for classification. To resolve such a data dependency,
we place the second table of a specific classification task at
an additional switch stage (thus a total of 2 stages in our P4
program) and introduce it as follows.

With the table entries encoded from a BDT, the classifi-
cation process is transformed into the ternary match-action
of table tb_packet_cls in Listing 2. According to Line 8
in Listing 2, if there is a match, the corresponding
action ac_packet_forward (Lines 2 ∼ 4 in Listing 2)
will be triggered. In ac_packet_forward, we map classes
to forwarding ports of the switch, and packets of dif-
ferent classes will be forwarded to different ports by
the switch. For instance, for a coming packet x, if its
bin_feature = 0x0000 0022 0210 0000 0000, it will match
(i.e., x.bin_feature AND Mask = Value) the entry shown
in Table I. Then the port = 1 of the matched entry is
passed to ac_packet_forward to label the forwarding port
(ucast_egress_port) of this packet.

Listing 2. P4 code fragment that implements classification.
1 // forward packets to different ports
2 action ac_packet_forward(PortId_t port

){
3 ig_tm_md.ucast_egress_port = port;
4 }
5 // stage~2: BDT-based classification
6 table tb_packet_cls {
7 key = {
8 meta.bin_feature: ternary;
9 }

10 actions = {
11 ac_packet_forward;
12 }
13 size = 1024;
14 }
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Actually, we only provide an example of operations for the
classified packets in ac_packet_forward, and other opera-
tions can be easily adjusted according to the specific scenario.
E.g., the network administrator can change the match entries
so that packets of different predicted classes are forwarded to
ports with predefined quality-of-service provisions.

VII. EVALUATION

In this section, we first introduce the experimental settings.
Then, the classification performance of the BDT, DT, and
knowledge distillation is evaluated. Finally, we analyze the
efficiency of Mousikav2 with different commodity switches
and traffic speeds.

A. Experimental Settings

Networking tasks and datasets. To demonstrate the per-
formance of Mousikav2, we build it to classify specific target
classes within the context of three tasks:
• We utilize the UNIV1 dataset made available in [44] for

the flow size prediction. UNIV1 dataset is collected in one
university campus data center. During the classification in
this work, we classify the packets that belong to the top
20% flows (w.r.t flow size) in UNIV1 as elephants, while
the other packets are mice.

• We utilize the ISCX dataset [45] for the task of classify-
ing traffic according to the application types (i.e., traffic
type classification). ISCX dataset contains packets of six
application types (Email, Chat, Streaming, File Transfer,
VoIP, P2P).

• We leverage the Bot-IoT dataset [46] for the malware
detection, identifying whether the packets are from legit-
imate activities or malicious attacks (e.g., DDoS and
service scanning).

In all datasets, we split their traffic into five subsets for the
5-fold cross validation. That is, experiments are run five times,
and only one particular subset is used for testing per time,
while other subsets are used for training.

Hardware and simulated traffic. Model training, knowl-
edge distillation, and tree model encoding are conducted on a
high-performance server with Intel(R) Xeon(R) Gold 6230R
CPU @ 2.10GHz and NVIDIA GPU RTX 2080 Ti. Besides,
Mousikav2 is deployed in three commodity P4 switches,
i.e., EdgeCore Wedge 100BF-65X,3 H3C S9850-32H,4 and
OpenMesh BF-48×6Z5 for traffic testing. The tested traffic of
100Gbps is generated by the traffic generator of KEYSIGHT
XGS12-SDL6 under the Internet mix (IMIX) mode. The IMIX
mode generates traffic of hybrid-length packets, which is
expected to approximate the real-world traffic [47].

Model settings. Teacher models include two ensemble
models (RF [34], GBDT [48]) and three NNs (GRU [33],

3https://www.edge-core.com/productsInfo.php?cls=1&cls2=5&cls3=181&
id=334

4https://www.h3c.com/en/Products_Technology/Enterprise_Products/
Switches/Data_Center_Switches/H3C_S9850/

5http://www.tooyum.com/products/OpenMesh_BF48× 6Z.html
6https://www.keysight.com/us/en/products/network-test/network-test-

hardware/xgs12-chassis-platform.html?rd=1

LSTM [32], MLP [5]). These teacher models are trained
by the off-the-shelf ML libraries, i.e., Scikit-learn [50] and
Pytorch [51]. As models are of multiple hyperparameters,
we also use the grid search to find their optimal settings per
dataset. For example, batch size (100 ∼ 1000) and learning
rate (0.1 ∼ 0.00001 of NNs are searched in the training to
find the best accuracy. Notably, the current ML libraries do
not support training BDT by knowledge distillation. Hence,
we implement7 the BDT and its knowledge distillation from
scratch in Python 3.6 with the acceleration of Numpy 1.19.3.8

Learning from [8], we select a set of packet header fields as
the model input, including IP protocol, time to live (TTL),
and packet size. As suggested by [16] and [52], some bias
fields (e.g., IP/MAC addresses) and meaningless fields (e.g.,
checksum) are not considered here.

α and β. To perform knowledge distillation, we first need
to decide the summation ratios of the soft label and the hard
label. Fig. 4 shows performance metrics of the distilled BDT
with different α and β. As α = 0.25, β = 0.75 has the best
performance of all three tasks, we use this setting for the
following experiments.

B. Classification Performance

Fig. 5 demonstrates the classification accuracy on tasks
of flow size prediction, traffic type classification, and mal-
ware detection. Among the three tasks, the DT is slightly
better than the BDT, because converting the features into
the form of bits actually reduces the useful information for
classification. However, after the knowledge distillation from
superior teacher models, the BDT outperforms the DT. As
an illustration, in Fig. 5b, accuracies of the DT and the
BDT are respectively 94.39% and 93.29% on the traffic
type classification. But the BDT overtakes the DT by 3.27%
(97.66% vs. 94.39%) after the knowledge distillation from
the RF.

We also consider other three classification metrics in this
paper, i.e., the F1-score in Fig. 6, the precision in Fig. 7,
and the recall in Fig. 8. Overall, we achieve a similar con-
clusion. That is, with the sophisticated ML models as the
teacher, we can train a better BDT on networking tasks.
Besides, we also find some interesting cases in these figures:
1) The BDT distilled from a sophisticated teacher can per-
form worse. For example, in Fig. 7a, the precision of the
BDT after knowledge distillation from the GBDT is lower
(0.42%↓) than the precision of the original BDT. In [53],
[54], the authors also find that students distilled from a
bigger teacher may not perform better. 2) The BDT can
outperform its teacher. In Fig. 5b, the accuracy of the distilled
BDT and its teacher RF is 97.66% and 95.77%, respectively.
Works [55], [56] also report that students can outperform
more sophisticated teachers. These cases are open prob-
lems and two reasonable hypotheses are: When trained with
distillation, the teacher’s knowledge of some classes is incom-
prehensible to the student, resulting in a poor student [53];

7We have optimized our code so that it is much faster than the previous
version presented in [18].

8https://numpy.org/
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Fig. 4. The BDT classification performance of different values on α and β (the teacher model is RF).

Fig. 5. The classification accuracy of different models on three networking tasks.

Fig. 6. The classification F1-score of different models on three networking tasks.

Fig. 7. The classification precision of different models on three networking tasks.

Fig. 8. The classification recall of different models on three networking tasks.

Hard labels can correct wrong predictions of the imperfect
teacher, which helps to train a stronger student than the
teacher [57].

C. Training Time and Classification Rules
Fig. 9 and 10 depict the training time and the number

of classification rules in the BDT. As shown, knowledge

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on December 27,2023 at 06:38:52 UTC from IEEE Xplore.  Restrictions apply. 



10 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 9. The training time of the BDT without or with knowledge distillation on three networking tasks.

Fig. 10. The number of classification rules in BDTs without or with knowledge distillation.

Fig. 11. The difference of rules and accuracies between the distilled BDT and original BDT (∆ = distilled− original).

distillation not only improves the classification performance,
but also reduces the training time and the number of classifi-
cation rules in the BDT. For instance, in Fig. 9a, the training
time of the BDT after the knowledge distillation from the
GRU is 102 seconds, which is 6.01× faster than that of
the original BDT (613 seconds). In Fig. 10b, the knowledge
distillation from the LSTM helps to reduce the number of
classification rules by 4.28× (i.e., from 6273 to 1466). One
significant reason is that knowledge distillation is useful to
transfer the learned classification experience from existing
teacher models to the BDT, helping the BDT to find the
optimal node branching in time, and thus reducing the training
time and unnecessary node branching.

To further demonstrate the effectiveness of knowledge dis-
tillation, we also show the ∆Rules and ∆Accuracy of the BDT
in Fig. 11. “∆” indicates the values with knowledge distillation
minus the values without knowledge distillation. As demon-
strated, knowledge distillation reduces the classification rules
while improving the accuracy. Take Fig. 11b (with the teacher
of GRU) as an example, ∆Rules

∆Accuracy = −4858
3.08 = −1577. That

is, when improving every percentage of accuracy, we also
reduce 1577 rules.

D. Mousikav2 in Switches

The previous experiments are performed with Python.
We now further evaluate our scheme on three commodity

P4 switches. We first consider the correctness of converting
the BDT into ternary match entries. Fig. 12 illustrates the
classification accuracies of the BDT based on Python and P4
(in the H3C switch). As depicted, on all three tasks, after
encoding the BDT into the P4 program, there is no accuracy
difference.

Then, for each evaluated networking task, we deploy
the BDT with the best accuracy on the three commodity
switches. Fig. 13 shows the switch throughput under the traffic
speed of 100Gbps (generated by the KEYSIGHT genera-
tor). As shown, after loading the P4 program and installing
encoded entries from the BDT, the switch throughput is almost
unchanged. Moreover, Fig. 14 shows the packet processing
latency of different switches. The latency results show that
after deploying the BDT for in-network classification tasks, the
latency of switches only increases slightly (5 ∼ 26 nanosec-
onds). For example, in Fig. 14a, the latency of the empty
switch (without any classification tasks) is 642 nanoseconds.
After loading the BDT for the traffic type classification, the
latency is 667 nanoseconds, increasing negligibly. That is,
the packet processing is still at the line rate after loading
the BDT.

E. Compare With In-Network Solutions

We now compare Mousikav2 with IIsy [9], Planter [13],
and pForest [11]. In our setting, IIsy and Planter respectively
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Fig. 12. The classification accuracy of different BDT versions (Python and P4) on three networking tasks.

Fig. 13. The throughput of switches on different tasks. Notably, due to the simulation features (e.g., inter-frame gap and mixed packet sizes), it is impossible
to generate traffic of exactly 100Gbps by the KEYSIGHT generator.

Fig. 14. The latency (in nanoseconds) of three commodity switches before and after deploying the BDT.

Fig. 15. The H3C resource consumption of in-network schemes on the malware detection.

use the feature-decision and direct-mapping manner to deploy
the DT. pForest uses the level-table manner to deploy the RF
(both the DT and the RF are from Section VII-B). Mousikav2
utilizes the BDT distilled from the RF.

We compare the following switch resources: 1) Memory
resources, i.e., the percentage of the used TCAM and SRAM;
2) Action resources, i.e., the percentage of the used action
data bus (ADB) and very long instruction word (VLIW);
3) The number of the used switch stages. Fig. 15 depicts
the consumption of the mentioned resources on the task

of malware detection. As noted, Mousikav2 has the lowest
resource consumption. For instance, in Fig. 15a, the TCAM
usage of IIsy and Mousikav2 is respectively 7.29% and 5.20%
(i.e., 28.67% ↓). In Fig. 15c, Mousikav2 uses only 2 stages.
While IIsy leverages 4 stages, which is 2.00× more than
Mousikav2. Among these solutions, pForest consumes the
most resources (e.g., 25.00% TCAM and 54.17% VLIW) as it
encodes several subtrees (i.e., a forest) instead of one DT/BDT
in the rest schemes. Although levels of different subtrees can
be embedded in one stage to maintain more subtrees, due
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Fig. 16. The classification accuracy of different in-network solutions (Python and P4) on three networking tasks.

Fig. 17. Size scalability of the BDT.

to the resource limitation, pForest can only encode 4 out of
10 subtrees of the used RF in our experiments.

Fig. 16 illustrates the classification accuracy of these in-
network solutions. The accuracies of IIsy and Planter are
consistent with the DT in Python. As mentioned, pForest
cannot deploy the whole RF because of the resource limitation,
thus it has a lower accuracy than the RF in Python. Generally,
Mousikav2 has a better accuracy than these solutions, e.g.,
97.66% vs. 94.39% (IIsy) vs. 94.39% (Planter) vs. 92.77%
(pForest) in Fig. 16b.

Although we are able to encode the BDT in one P4
table/stage to demonstrate superiority over other schemes, the
encoded BDT may not always consume such a small fraction
of resources. Fig. 17 depicts the relationship between the table
entries and factors like tree nodes/features/depths of the BDT.
As revealed, the number of table entries is positively correlated
with these factors. That is, if a task contains too many features
or trains a bigger BDT on node/depth, the needed table entries
may exceed the memory of one stage. This can be mitigated
by feature selection [58] or tree pruning [59], [60].

F. Compare With Traditional NNs

In Section II-A, we introduce several traditional NNs
deployed on servers for networking classification. Fig. 18 com-
pares our BDT with two traditional schemes: Deep Packet [4]
and SAM [16]. As shown, after the knowledge distillation
from traditional schemes, the BDT also has a competitive
accuracy. However, Fig. 18b illustrates that the distilled BDT
is still weaker than its teachers, e.g., 97.45% vs. 97.73% (Deep
Packet) on F1-score.

Fig. 18. The performance of the BDT and two traditional NNs on the traffic
type classification.

Therefore, to further boost the performance of the BDT, one
may run Mousikav2 in a hybrid fashion like [9]. For example,
traffic is first classified by the BDT on switches in line rate,
and only part of the traffic (with low classification confidence
or needing a fain-grained classification) is redirected to the
server for an intensive NN-based investigation. In this way,
we can reduce the latency and load of server-based works
while improving the overall classification accuracy/F1-score.

VIII. CONCLUSION AND FURTHER DISCUSSION

In this paper, we present Mousikav2 to tackle the drawbacks
of offloading the ML models to the switch. We redesign
the DT algorithm, getting the binary decision tree (BDT).
The classification rules of the BDT are of bits, which can
be encoded by the well-supported ternary match in a new
proposed resource-efficient P4 program (consuming only two
stages). Also, given the complexity of other ML models,
in Mousikav2, we adopt a teacher-student knowledge dis-
tillation architecture to transfer other models to the unified
BDT. By doing so, we can not only utilize their classification
knowledge for better performance, but also avoid their sophis-
ticated deployments in switches. Mousikav2 yields superior
performance in comprehensive experiments. On the traffic type
classification, the BDT after knowledge distillation improves
the accuracy of the DT by 3.27%. Meanwhile, compared with
IIsy [8], Mousikav2 reduces the memory (TCAM) consump-
tion by 28.67%.

Nonetheless, Mousikav2 also has limitations. First, the input
features of the BDT are simply parsed to bits, which ignore
the bit dependence within a feature. Hence, it may weaken
the feature representations when compared with features of
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integer/floating-point format. E.g., in Fig. 5, the BDT without
knowledge distillation is of slightly lower accuracy than the
DT. Second, though the current BDT is logically encoded into
one table (and thus one stage), the BDT size may increment,
e.g., requiring more features or nodes in some tasks, which
results in the table entries overflowing the memory of several
stages. One may only use the top important features [58] or
prune the tree [59], [60] to reduce the model size. Third,
knowledge distillation may not always work. Evidence in [53]
and [54] that some sophisticated models can generate students
of lower accuracy. Given the model diversity, one may have
to examine several teacher models per task so that a desired
BDT of better accuracy is generated. We will optimize these
problems in the future.
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