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Abstract— Programmable Data Plane (PDP) has been lever-
aged to offload Network Functions (NFs). Due to its high
processing capability, the PDP improves the performance of
NFs by more than one order of magnitude. However, the
coarse-grained NF orchestration on the PDP makes it hard to ful-
fill the dynamic service chain demands and unreasonable network
function deployment causes long end-to-end delays. In this paper,
we propose the Flexible Network Function (FlexNF) deployment
on the PDP. First, we design an NF Selection Framework,
leveraging the service selection label and re-entering operations
for flexible NF orchestration. Second, to support runtime NF
reconfiguration to meet the dynamic flow demands, we pro-
pose the Per-Flow On-Demand servicing mechanism, where one
Match-Action Table with multiple mixed NFs works as different
NFs for different flows. Third, to ensure the QoS of flows, on the
one hand, we design an SP-aware NF Placement Algorithm to
find a near-optimal placement solution that accommodates peak
traffic volume while minimizing the overall routing path lengths
of all the requests, on the other hand, we design a Two-Stage
Service Path Construction Algorithm to provide on-path service
while considering load balancing. We implement 15 types of
network functions on the P4 switch, based on which we construct
the comprehensive experiments. FlexNF reduces the traffic delay
by 42.6% while increasing the service chain acceptance rate by
five times compared with current solutions. Besides, when switch-
ing functions, the FlexNF improves the throughput by 2.04Gbps
and reduces the packet loss by 8.269% compared with current
solutions.

Index Terms— Service chain, network function, programmable
data plane.
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I. INTRODUCTION

NETWORK Functions (NFs), such as Load Balancers
(LBs), Firewalls, Failure Detectors, and Network

Address Translators (NATs), are widely deployed in data
centers [1], [2], mobile networks [3], and cloud envi-
ronments [4], etc. NFs have a long history of being
implemented as expensive and proprietary hardware middle-
boxes, with problems of high management complexity and
operational cost [5]. Therefore, Network Function Virtualiza-
tion (NFV) [6] has been proposed to revolutionize the way that
traditional networks are managed and operated. By decoupling
NFs from the underlying hardware and running them as
software-based virtual devices in the cloud environments, NFV
offers great flexibility [7] and cost-effectiveness for provi-
sioning network services. However, the benefits of NFV are
accompanied by performance penalties. The software-based
NFs could introduce significant performance overheads, result-
ing in prolonged packet processing delay and compromised
packet processing throughput [7].

To accelerate NFV service, significant research efforts
[8], [9], [10], [11], [12] have been dedicated to hardware-
offloading of network functions (NFs) using general hardware
platforms, which preserves the openness of NFs. With the
advent of Programmable Data Plane (PDP) [13], [14], data-
plane offloading is envisioned as an effective approach for
NFV acceleration [15]. The PDP provides high-speed pro-
cessing capability that can suffice the line rate (e.g., the
programmable Tofino switch supports a port bandwidth of
12.8Tbps [16]). Moreover, PDP can flexibly accommodate
advanced network functions and applications through cus-
tomized packet processing logics. By installing customized
NF programs on the PDP, existing works [8], [9], [17], [18],
[19], [20], achieve full line-rate processing, with no perfor-
mance loss compared to the forwarding-only PDP. However,
there are still three challenges when offloading NFs to the PDP.

First, each programmable switch only provides fixedly
deployed service of network functions installed in a pre-
determined order. This inflexibility causes a dilemma when
offloading NFs to the PDP. On the one hand, we can offload
a single NF instance to a programmable switch and enable
service chaining by routing network flows across different
switches. But such an exclusive deployment forces flows to go
through more hops, leading to the increased end-to-end delay.
On the other hand, we can deploy a sub-chain, consolidating
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multiple NFs, on a switch so that service chaining can poten-
tially be fulfilled within fewer switches, as will be detailed
in Section II. However, this approach limits the scalability of
the composable service chains on the PDP, making it infeasible
for dynamic NFV management.

Second, changing the programs installed on switches
would cause service disruption. As the demands of network
traffic are constantly changing, the network functions installed
on the switches may need to be changed frequently. However,
the programmable switches do not support hot swapping of
the deployed NFs. Changing the packet processing logic of
a switch requires stopping the device and installing a newly
compiled configuration, costing more than 10 seconds, which
significantly affects the passing traffic on the switch.

Third, enabling on-path serving is challenging. Usually,
the network uses the shortest path to forward traffic, which we
call on-path servicing. However, due to unreasonable network
function deployment, the traffic would endure an extra for-
warding delay than the shortest path due to the off-path service
chaining, resulting in poor routing performance. As such, it is
critical to carefully plan the placement of NFs and construct
the forward path of service chain demands to reduce the end-
to-end delay experienced by traffic.

In this paper, we propose FlexNF,1 a flexible and efficient
PDP-based NFV framework. We conquer the above challenges
with the following key ideas:
• We design an NF Selection Framework (NSF), lever-

aging labels to instruct flows to run or skip NFs, which
enables flexible and fine-grained NF orchestration.

• We propose a Per-Flow On-Demand (PFOD) servicing
mechanism, which deploys several different NFs on the
same Match-Action Table (MAT) of the P4 switch. For
different flows, the MAT works as different NFs. In this
way, an NF service can be enabled or disabled by
adjusting the corresponding rules in a hot-swapping way.

• To reduce the off-path service delay, we design an
SP-aware NF Placement Algorithm (SNPA) and a Two-
Stage Service Path Construction Algorithm (TSPC).
Specifically, SNPA is executed during the initial deploy-
ment stage for the optimal NF placement and TSPC
optimizes NF service performance with the shortest
response delay based on dynamic network statistics, with
load balancing requirements taken into account.

To sum up, in the offline mode, SNPA finds an NF
deployment solution that minimizes the total route lengths
of all historical requests as much as possible, with memory
constraints on all switches along the paths satisfied. Then in
the online mode, when flows enter the ingress switch, the NSF
will flexibly select or skip some NF instances and the PFOD
will dynamically switch NFs based on the demands of flows.
Finally, the TSPC will assign service paths to serve the flows
while considering both the route length and load balancing.

We implement the prototypes of 15 stateless or stateful NFs
on the P4 switch to verify the feasibility of the FlexNF imple-
mentation model. To further demonstrate the performance

1This work was presented in part at the 2021 IEEE/ACM 29th International
Symposium on Quality of Service (IWQOS) [21].

Fig. 1. The issue of service chain composition with PDP NFs.

of FlexNF, we construct comprehensive experiments based on
the implemented prototypes and the real-world traffic [22].
The experiment results show that: 1) FlexNF improves service
chain acceptance rate by five times, while increasing packet
forwarding delay by at most 1.7% introduced by the NSF,
compared with current solutions; 2) Compared with the normal
switch program switching process, under the switching interval
of the 60s, the PFOD servicing mechanism improves the
throughput by 2.04Gbps and reduces the packet loss rate by
8.269%; 3) SNPA and TSPC can reduce the traffic routing
delay by about 42.6%.

The rest of the paper is organized as follows. We first
introduce the motivation in Section II-A and design chal-
lenges in Section II-B. The overview of FlexNF is presented
in Section III. Then, we elaborate on the design details
in Section IV. In Section V, we describe the algorithms
for NF placement and orchestration. Section VI details the
implementation of FlexNF. In Section VII, the performance of
FlexNF is evaluated. Section VIII presents the related works.
Finally, we conclude the paper in Section IX.

II. BACKGROUND AND MOTIVATION

A. Issues of Service Chain Composition on the PDP

The PDP-based NF offloading is gradually taken as an
effective approach to achieve better performance (i.e., high
throughput). To serve the dynamic service chain demands
of incoming traffic, it is necessary to effectively orchestrate
the NFs on the PDP in real time to form the specific paths.
However, the NFs deployed on a single PDP switch must be
either completely skipped or triggered in the pre-determined
order for the incoming packets. Under such circumstances,
a service chain demand has to be fulfilled with the device-level
sub-chains (sub-chain for short) as the basic units, causing
three practical issues:
• Scalability issue of Service Chain Composition. In real

networks, there exists a considerable number of dynam-
ically changing service chain demands. The coarse
sub-chain deployment granularity limits the number of
service chains that a PDP can support. Fig. 1(a) shows
a network with two sub-chains (NAT-Firewall (FW)
and Big Flow Detector (BFD)-LB) installed. It can
accommodate requests of four different service chains:
NAT-FW, BFD-LB, NAT-FW-BFD-LB and BFD-LB-
NAT-FW. However, NAT-FW-LB and NAT-FW-BFD,
cannot be served, even though all the required instances
are in fact available in the network.
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Fig. 2. Motivating example: performance evaluation on different deployment
solutions. SC-n represents installing a sub-chain consisting of n NFs on each
switch. FCT denotes flow completion time. Avg.FCT indicates the average
value of FCT. Opt.FCT indicates the average FCT when flows go through the
shortest path.

• Network Function Switching Interruption. A switch
has to process different service chain demands of
dynamic traffic, which leads to frequent network func-
tion switching on the switch. Changing the service of
a programmable switch at runtime requires a device
interruption of more than 10 seconds due to configuration
adjustment, causing severe performance degradation.

• Off-path Caused Delay. As each sub-chain is fixedly
settled on a specific switch, to traverse the NFs in the
service chain order, traffic often has to endure an extra
forwarding delay than the shortest path due to the off-path
service chaining problem, resulting in poor routing per-
formance. Fig.1(b) shows a network with three sub-chains
installed, i.e., DNS Reflection Detection(DRD), NAT-FW
and BFD-LB. Suppose there are three requests from h1
to h2 with three different service chains: NAT-FW, DRD-
NAT-FW and NAT-FW-BFD-LB. To meet the service
chain demands, the network forwards all these requests
with the path “s1-s3-s2” rather than the shortest path
“s1-s2”, causing a longer forwarding delay.

B. Design Challenges

To better understand the PDP-based NF orchestration prob-
lem, we use a toy example with three programmable switches
interconnected as shown in Fig. 2(a). We implement three
types of NFs (Network Address Translation, Firewall and Load
Balancer) in the network with different sub-chain deployment
granularity. As Fig. 2(b) shows, on the one hand, deploying a
sub-chain consisting of more NFs on every switch results in a
very low acceptance ratio (No. of serviced requests

No. of requests ), due to the
limited service chain support in the network, but benefits from
smaller forwarding delays. On the other hand, deploying a
single NF on every switch causes significant forwarding delay
for traversing the required NF nodes in the off-path way,
though enjoying a high acceptance ratio.

To endow scalability and flexibility to the orchestration of
PDP-based NFs, some works [23], [24] attempt to virtualize
the PDP by leveraging match-action table entries to emulate
the control logic at runtime. However, [23] and [24] over-
consume memory resources by 7× and 3.2× than the original
Tofino switch [16], respectively.

As shown in Table I, all existing methods can only par-
tially solve the problems of service chain composition on
the PDP. That is, none of them can achieve scalable service

TABLE I
COMPARISON OF THE EXISTING SOLUTIONS

chain provision, on-path traffic serving and cost-effective
memory usage at the same time.

In order to solve the above problems, we design the FlexNF
architecture, addressing the following challenges:
• Selective Serving Mechanism on the PDP. Fixed-node

NF orchestration schemes lead to service chain inscala-
bility and extra routing delay caused by off-path service
chaining. To orchestrate the NFs on a programmable
switch just like the software NFs on the X86 server, it is
necessary to replace the consolidated programs with a
Selective Serving Mechanism (SSM) on the PDP device
to enable fine-grained NF orchestration. To this end,
we design a label-based NF Selection Framework (NSF)
to support SSM on the PDP, which supports multiple
service chain demands in one single PDP device.

• Real-time Network Functions Switching on the PDP.
Services offered by a single switch are limited by the
pre-installed programs. When the demands of the flows
passing through switches change drastically, the installed
NF needs to be adjusted in time to avoid detours and
service quality degradation. However, reconfiguration of
a P4 hardware switch incurs a delay of tens of seconds,
which causes service interruption. Therefore, we design
a Per-Flow On-Demand (PFOD) servicing mechanism to
achieve real-time network function switching.

• On-Path Traffic Serving. If the traffic service chain
demand cannot be completed along the Shortest
Path (SP), the QoS of traffic will be damaged. The
difficulty is to ensure on-path servicing for all traf-
fic as much as possible, which requires making full
use of the resources on the SP to satisfy more func-
tional demands. Therefore, we propose an SP-aware NF
Placement Algorithm (SNPA), and a Two-Stage Service
Path Construction Algorithm (TSPC) to ensure servicing
quality.

III. SYSTEM OVERVIEW

In this section, we provide an overview of FlexNF, which
includes the data plane and control plane module components.
Fig. 3 illustrates the architecture and the workflow of FlexNF
for orchestrating PDP-offloaded NFs.

A. FlexNF Data Plane

The data plane is designed for two goals: 1) orchestrating
NFs flexibly to enable arbitrary combinations and orders of
NF executions; 2) switching NFs in realtime to adapt to the
dynamic demands of flows. The data plane mainly consists of
two modules: the NF Selection Framework (§IV-A) and the
Per-Flow On-Demand Servicing Mechanism (§IV-B).
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Fig. 3. The architecture of FlexNF.

NF Selection Framework (NSF). To satisfy diverse service
chain demands, different NF instances within one single switch
or across multiple switches should be dynamically composed
together, with some instances selected and others skipped
along the forwarding paths. To this end, we design an NF
Selection Framework (NSF) with a Flow Classifier to allocate
service selection labels and a Service Selection Process to
flexibly select or skip some NF instances. Moreover, we pro-
pose a Multi-Level Re-enter Mechanism based on the pipeline
re-enter mechanism (i.e., resubmit and recirculation) [25], [26]
provided by the P4 switch ASIC to offer more possible ways
of NF orchestration, bringing higher flexibility and scalability.

Per-Flow On-Demand (PFOD) Servicing Mechanism.
To support non-disruptive NF switching to adapt to dynamic
changes in traffic demands, we propose a PFOD servicing
mechanism. In the PFOD, multiple NFs are deployed in one
Match-Action Table. Different NFs can be assigned to different
flows and they can be switched dynamically by installing flow
table rules.

B. FlexNF Control Plane

The control plane has two tasks: 1) deciding the NF instance
placement strategy, based on which NF instances are installed
on switches; and 2) finding the best service path for each flow
to fulfill the requested NFs with low overheads.

To fulfill the first task, we propose an SP-aware NF
Placement Algorithm (§V-A), which is called offline when
the topology is constructed or changed. It aims at finding an
NF deployment solution that minimizes the total route lengths
of all requests as much as possible, with memory constraints
on all switches along the paths satisfied. To this end, the
proposed algorithm analyzes historical requests and prioritizes
the deployment of popular network functions by placing them
on the nodes that cover the most shortest paths.

To fulfill the second task, we design a two-stage service path
construction strategy to quickly find a low-overhead service
path to serve each new flow. The first stage, i.e., a Static

Fig. 4. NF Selection Framework.

Path Generation Algorithm (§V-B1), is executed offline only
when the topology is constructed or changed. It takes each
flow’s historic demands as inputs and calculates a candidate
path set which contains the top-k shortest paths to fulfill the
requested NFs of the flow. Whenever a new flow request
arrives, the second stage of the strategy, i.e., the Dynamic Path
Selection Algorithm (§V-B2), works out the optimal paths
with minimum link loads from the candidate set generated by
the first stage, while considering realtime load balancing.

C. FlexNF Workflow

Assuming that a flow f with the service chain demand
“NAT→BFD” arrives at an ingress switch, FlexNF processes
it through four steps. First, as shown in Fig. 3, when the first
packet of f enters the ingress switch, a match table miss occurs
in the Flow Classifier, as the label entries of this flow are not
installed yet, then the flow is sent to the controller. Second,
after receiving the PacketIn event, the controller runs the
Dynamic Path Construction Algorithm to choose the optimal
path with the requested NFs of this flow from the candidate
path set generated by the Static Path Generation Algorithm.
Third, for each switch along the selected path, the controller
installs the label entries in the Flow Classifier, the forwarding
table and the NF table for f . Last, the subsequent packets
of f will match the installed rules on the switches along the
chosen optimal path, and be forwarded to the destination with
the service chain demand fulfilled.

IV. DATA PLANE DESIGN

The FlexNF data plane consists of an NF Selection Frame-
work and a Per-Flow On-Demand Servicing Mechanism,
which are designed to improve the scalability of the service
chain and enable non-disruptive NF switching.

A. NF Selection Framework

As shown in Fig. 4, to achieve fine-grained NF orchestration
on the PDP, we propose the NF Selection Framework (NSF)
with three components: Flow Classifier, Service Selection
Process, and Multilevel Re-enter Mechanism. Algorithm 1
describes the workflow of NSF.

When the first packet of one flow arrives at the ingress
switch, it will be sent to the control plane due to a match
table miss in the Flow Classifier. After receiving the packet,
the control plane issues the service selection label lf to the
Flow Classifier. Then the NSF performs the following process.
First, the Flow Classifier (lines 1-5 in Algorithm 1) assigns a
service selection label lf for incoming packets belonging to
flow f based on the flow key keyf (e.g., IP src, IP src/dst or
the 5-tuple, implementation depends on the practical demand),
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Algorithm 1 NF Selection Framework Logic
Input: packet pkt ∈flowf
Output: service selection label lf , iteration label l′f

1 // Flow Classifier
2 Get service selection label lf based on flow key keyf ;
3 Get re-enter times tf and the amount of network

functions k;
4 Mask m← [(1≪ k)− 1]≪ tf · k;
5 Iteration label l′f ← lf&m;
6 // Service Selection Process
7 for i← 0 to |N | do
8 Mask m← (1≪ i) ;
9 if l′f&m = 1 then

10 Apply the i-th NF ni ∈ N ;
11 end
12 end
13 // Multilevel Re-enter Mechanism
14 Used length l← (k · (tf + 1)) ;
15 Remaining label rf ← lf ≫ l ;
16 if rf = 0 then
17 Forward ;
18 end
19 else
20 if tf = 0 then
21 Resubmit ;
22 end
23 else
24 Recirculate ;
25 end
26 tf ← tf + 1;
27 end

entries of which are installed by the controller at runtime.
lf is composed of k iteration labels l′f , where k is the
number of NF instances deployed on the switch and each
l′f contains the processing information for a single pipeline
iteration. The i-th bit of the iteration label l′f in binary form
indicates whether packets of flow f should be processed
by the i-th NF in this iteration. For example, for a switch
deployed with NAT→LB→FW, an iteration label 0b101 means
that the corresponding flow needs to pass through NAT and
FW with LB being skipped. Next, the module will truncate
the service selection label lf according to the re-enter times
tf for the iteration label l′f . The re-enter times tf should
be stored in the available field of the packet header (such
as the TOS field of IP protocol and VLAN ID field) to
maintain the information across pipeline processing iterations.
Then, the iteration label l′f is truncated from the service
selection label lf after performing the AND bit operation
with the constructed mask, whose corresponding bits are
set to 1.

The Service Selection Process reduces the granularity of ser-
vice chain composition from device-level service to NF-level
service and ensures the flexibility of service chain construc-
tion. Lines 7-12 in Algorithm 1 demonstrate the control logic
of the Service Selection Process. N represents the set of

network function instances deployed on the PDP, and |N |
stands for the number of NFs. For the incoming packets,
the Service Selection Process iterates through N and decides
whether to apply each NF according to the bit-wise compari-
son result of iteration label l′f . If the i-th bit of l′f is set to 1,
the current packets will pass through the i-th NF.

The Service Selection Process brings huge runtime flexi-
bility by eliminating the tight coupling of physical nodes and
consolidated service. The extra latency incurred by the Service
Selection Process is proved to be negligible in Section VII-B
(about 1.6% of the extra forwarding delay).

Conventionally, traffic can only pass through the pipeline
once with the predetermined NF order. As a consequence,
the number of possible NF combinations is limited by the
deployed sequence of switches. In FlexNF, we design a
Multilevel Re-enter Mechanism to offer richer service function
chain demands with existing switch resources, and bring
higher flexibility and scalability. Lines 14-27 in Algorithm 1
describe the control logic of the Multilevel Re-enter Mech-
anism. First, the mechanism checks whether each flow has
completed all processing by calculating the unused part of
the service selection label lf . Based on the re-enter times tf ,
we can obtain the remaining label by right shifting the
service selection label l′f by the used length, i.e., l bits,
to determine whether the next round of processing is
needed.

For packets that have to traverse the pipeline multiple
times, we utilize two kinds of pipeline re-enter mecha-
nisms i.e., resubmitting and recirculating provided by the
programmable switch chip to balance the latency cost
and flexibility. The resubmitting mechanism sends pack-
ets from the ingress deparser unit back to the ingress
parser unit [27] whereas the recirculating mechanism sends
packets back through a dedicated loopback port. However,
these mechanisms have their own shortcomings. Resubmit-
ting only supports one iteration of re-entering due to the
hardware limitation while the recirculating incurs longer
latency than resubmitting (about 5 times by our evaluation
in Section VII-B). To this end, the Multilevel Re-enter Mech-
anism maintains re-enter times tf and chooses resubmit or
recirculation for packets accordingly. When tf = 0, the corre-
sponding packets are passing through the pipeline for the first
time and are resubmitted for a shorter delay. Meanwhile, for
packets that enter the pipeline more than once, the recirculating
is applied. Although the number of recirculating operations is
not technically limited, it should be set cautiously, considering
the bandwidth limitation of the dedicated loopback port. That
is, the controller needs to carefully weigh the number of recir-
culation on each programmable switch to avoid affecting the
throughput performance of flows. Then, for packets that need
to be processed for another round, the re-enter times record
tf should be incremented by one. In NSF, the re-enter times
record is stored in the idle field of every packet (e.g., the TOS
field of IP protocol, or the VLAN ID field), so that consistency
is maintained through multiple rounds of pipeline processing.
In addition, before forwarding, the re-enter times record will
be set to zero to avoid confusing the processing in subsequent
switches.
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TABLE II
TIME OF CHANGING THE INSTALLED NF ON P4 HARDWARE SWITCH

Fig. 5. Per-Flow On-Demand servicing mechanism.

B. Per-Flow On-Demand Servicing Mechanism

Although the NF Selection Framework (NSF) provides a
flexible combination of NFs, services offered by a single
switch are still limited by the pre-installed functions. However,
the traffic demands are dynamically changing. When the
demands of traffic passing through function switches change
drastically, the installed NF needs to be adjusted in time
to avoid detours and service quality degradation. However,
as shown in Table II, reconfiguration of P4 hardware switches
induces delays of tens of seconds, significantly damaging the
service quality. The reconfiguration process includes shutting
down the current P4 program, starting a new ready-compiled
program, configuring ports and flow table rules.

HyperVDP [24] is proposed to support online adjustment
of installed NF. It uses three pipelines to simulate each native
Match-Action Table (MAT), where each MAT in the matching
pipeline uses TCAM to match the header, standard metadata
and user-defined metadata, respectively. Although it provided
flexibility in dynamical adjustment, huge memory overhead
(more than 800bits/flow) was introduced.

In FlexNF, we propose the Per-Flow On-Demand (PFOD)
servicing mechanism that can dynamically change the NF
configuration according to the flow demands at a small cost.

The design of PFOD is shown in Fig. 5. It is con-
structed by a composite matching-action table. The matching
field in PFOD is a collection of matching fields required
by all NFs, whose length equals the maximum length of
potential NF matching fields. Supposing there are two NF
functions:NF1 with keys K1 (32 bits) and K2 (32 bits),
NF2 with keys K3 (64 bits) and K4 (64 bits). We can
merge them in one MAT with match fields M1 (64 bits) and
M2 (64 bits). To avoid conflicts in matching fields, we set
the five-tuple as Flowid to identify a flow as the basis for
allocating NFid. The NFid filed is used to indicate which
NF should be run, e.g., NFid = 0 stands for running NF1,
< K1, K2 > are read into < M1, M2 > for executing
< A1, A2 > (the blue line). Different NFs can be assigned to
different flows in PFOD, and they can be switched dynamically
by installing corresponding rules.

The PFOD provides great flexibility. As shown in Fig. 6(a),
NF1 and NF2 are deployed in two tables respectively.

Fig. 6. Comparison of original deployment and PFOD deployment.

The switch can only meet the requirements of NF1, NF2

and NF1-NF2. If the flow’s demand changes to NF2-NF1,
then the NF of the switch needs to be reconfigured. PFOD
satisfies the requirement well by switching MAT1 to NF2 and
MAT2 to NF1 without reconfiguration.

V. CONTROL PLANE DESIGN

To ensure the QoS of flows and provide on-path service
for dynamic requests, the forwarding delays on service paths
should be reduced as much as possible. The control plane
achieves this goal through the joint efforts from an offline NF
placement algorithm and a two-stage dynamic service chain
construction strategy.

A. SP-Aware NF Placement Algorithms (SNPA)

1) Problem Formulation: We model the data plane topology
as a graph G = (V,N,E, P ), where V , N and E denote the
node set, NF set and link set, respectively. Set P contains all
the shortest paths between every two nodes in V . Meanwhile,
we model the historical requests as R = (br, Sr, vs, vd),
where Sr denotes the service chain demand of request r, vs

denotes the source node, vd denotes the destination node and
br denotes the initial data rate used in Dynamic Path Selection
Algorithm (Section V-B2).

When the topology is constructed or changed, a decision
on how to place NFs on switches must be made. In FlexNF,
we aim at finding an NF placement scheme that can minimize
the service path length of all incoming flow requests while
satisfying memory constraints along the path. To this end, the
problem are formulated as follows:

min
y

∑
ri∈R

∑
pj∈Pi

|pj |, (1)

subject to∑
ri∈R

∑
pj∈Pri

[
ηv

p · cf + γv
pj
· ySj

i
v · c(Sj

i )
]
≤ ci,∀v ∈ V

(2)
|Si|∑
j=0

y
Sj

i

s(pj)
· ySj+1

i

d(pj)
= |Si| − 1, ∀ri ∈ R (3)

|Pri
| = |Si|+ 1, ∀ri ∈ R (4)∑

n

yn
vi
≤ α, ∀vi ∈ V (5)∑

v

yni
v ≥ 1, ∀ni ∈ N (6)

where ηv
p denotes whether path p passes through node v,

and γv
p denotes whether path p starts from node v. In the
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problem formulation, the decision parameter yn
v is variable,

all other parameters are given. The memory consumption c is
directly derived from historical traces.

This problem aims at minimizing the total service path
length of all requests, as can be seen from the objective
function (1), where pj denotes the j-th sub-path from NF Sj

to NF Sj+1 on the optimal forwarding path Pi for request ri

(|pj | is the length of path pj). For simplicity of notation,
we extend Si with source node vs and destination node vd.

On each node v ∈ V , forwarding a flow takes cf switch
memory and NF n takes c(ni) memory for each request. The
constraint (2) ensures that forwarding entries and NF flow
entries do not exceed switch memory capacity ci for every
switch. The decision variable yn

v denotes whether NF n is
deployed on node v. s(pj) and d(pj) denote the source and
destination of sub-path pj . Constraint (3) ensures each request
is correctly fulfilled by its allocated path. Constraint (4)
describes the size of sub-path set Pri

, which is equal to
|Si| + 1 due to |Si| + 2 stages including NF node, source
node and destination node of request ri.

There are some hardware resource limitations on P4
switches. First, each switch has only a limited number of
stages to deploy network functions (e.g., each pipeline on the
tofino switch has only 12 stages). Second, the metadata has
limited length to store the label (the length is O(NFs)) of the
NF Selection Mechanism. As such, Constraint (5) limits the
number of NFs on each node with an adjustable threshold α.
This constraint ensures that the NF deployment scheme does
not exceed the hardware limitations of switches. FlexNF
operators need to adjust α according to the specific switch
hardware resource limitations. In our experiments, after actual
deployment testing, we set α to 10. Constraint (6) ensures that
each network function is deployed at least once. It is worth
noting that the SNPA algorithm is executed in the offline mode,
during which the actual utilization overheads of links are not
known. As such, bandwidth constraints are not considered
by the SNPA algorithm. Instead, they will be considered
in the Dynamic Path Selection Algorithm (Section V-B2)
in online mode to ensure that the link utilization is not
saturated.

2) A Greedy Algorithm for the SP-Aware NF Placement
Problem: The SNPA for NF placement takes historical flows
as inputs and calculates the total service path length. However,
the distribution of traffic can change over time (i.e., the distri-
bution of incoming flows differs from the historical flows).
In order to adapt to changes in traffic distribution, we set
a time window (i.e., 10s) to periodically collect historical
flow information and execute the SNPA to update the deploy-
ment of NFs. To this end, we need to design an algorithm
to solve the NF placement problem within O(10s) time
complexity.

NF Placement Problem has been proven NP-hard [28].
Mathematical programming methods such as Integer Linear
Programming (ILP) [29] and mixed ILP (MILP) [30] are
applied to solve the problem. However, these methods suf-
fer from high computational complexity when obtaining the
optimal solutions. Moreover, since the objective function (1)
can not be expressed explicitly by the variable yn

v , we cannot

Algorithm 2 SP-aware NF Placement Algorithm
Input: Topology G = (N, V,E), Requests R
Output: NF Placement Strategy y ={

y1
1 , y1

2 , . . . , y1
|V |, . . . , y

|N |
1 , y

|N |
2 , . . . y

|N |
|V |

}
1 Step 1: Calculate NF popularity: (NFi, Popi, Reqi).
2 NFList = [(NF1, 0, ∅), . . . , (NF|N |, 0, ∅)]
3 for request r ∈ R do
4 for network function nf ∈ r.Sr do
5 NFList[nf ][1]← NFList[nf ][1] + 1
6 NFList[nf ][2]← NFList[nf ][2] ∪ {r}
7 end
8 end
9 Sort NFlist in descending order by popularity.

10 Step 2: Deploy network functions.
11 for nf ∈ NFlist do
12 P ← ∅; ∀n ∈ N, Mn ← ∅;
13 for request r ∈ nf.requests do
14 path = Dijikstra(G, r.vs, r.vd);
15 P ← P ∪ {path};
16 ∀n ∈ path, Mn ←Mn ∪ {path};
17 end
18 flag ← True;
19 while flag && (P ̸= ∅) do
20 for node n ∈ N do
21 score← |Mn ∩ P |;
22 NodeScore[n] = (n, score);
23 end
24 Sort NodeScore in descending order by score.
25 flag ← False;
26 for node n ∈ NodeScore do
27 if meetcondition(n, nf) then
28 P ← P\Mj ; ynf

j ← 1; flag ← True;
29 end
30 end
31 end
32 end

directly use the ILP/MILP solver to solve the problem.
We propose a greedy algorithm (Algorithm 2) to solve the
SP-aware NF placement problem with near-optimal solutions
but a relatively short execution time.

Our optimization goal is to minimize the route length of all
requests. To this end, we endeavor to deploy NF functions on
the shortest path as much as possible. The algorithm prioritizes
the deployment of popular network functions, preferring nodes
that cover the shortest paths.

First, lines 3-8 count the occurrences of different NFs in all
service chains as the popularity. Second, for the function nf ,
lines 13-17 calculate the shortest path set P of requests that
need to go through nf and the shortest path set Mn covered by
node n. Third, lines 25-29 preferentially select nodes covering
the most paths in P to deploy nf . The meetcondition(n, nf)
function determines whether the deployment of nf on node n
meets the constraints (2) and (5).
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Algorithm 3 Static Path Construction Algorithm
Input: Topology G = (N, V,E), Request R
Output: NF-Forwarding Graph g and Path Set P

1 Step 1: Construct Forward Graph
2 for i← 1 to |Nr|+ 2 do
3 if v ∈ Ni.nodes then
4 g.add(v);
5 for j ∈ Ni−1.nodes do
6 g[j][v]← d[j][v] ;
7 end
8 end
9 end

10 Step 2: Get Candidate Path Set
11 P ′ ← KSP(g, k ∗ 2)
12 for path p ∈ P do
13 if !p.containsLoop() then
14 P.add(p);
15 if P.size==k then
16 break ;
17 end
18 end
19 end

B. Two-Stage Service Path Construction Algorithm

When a new request arrives, it is necessary to map the
requested NFs to the underlying PDP, while satisfying all the
service requirements and maintaining low overhead. When
designing a service chain mapping algorithm, not only the
routing path length but also the dynamic condition of the
network should be taken into consideration, since both affect
the QoS of flows. Besides, in order to achieve real-time
service chain mapping, the algorithm must be time-efficient.
To achieve the above goals, we propose the Two-Stage Service
Path Construction (TSPC) Algorithm, which consists of a
Static Path Generation Algorithm and a Dynamic Path Selec-
tion Algorithm.

First, to ensure time-efficiency, the static path generation
algorithm is applied to obtain the top-k-shortest candidate
path set for each service chain demand in advance, which
saves the work of finding the optimal service path of
the dynamic algorithm. The static algorithm is only called
when the topology is first constructed or changed. Second,
to consider dynamic network conditions, the dynamic path
selection algorithm evaluates paths from the candidate path
set according to the link load ratio in realtime to ensure load
balancing.

1) Static Path Generation Algorithm: The static algorithm
takes the historic demand file and topology information
as inputs. In historic demand file, a request is defined as
<Flow key, NF sequence>. FlexNF uses source-destination
IP pairs to identify a flow, but it can be easily extended
to other flow definition forms. For all the requests
defined in historic demand file, the static path construc-
tion algorithm calculates the top-k shortest paths, as shown
in Algorithm 3.

Algorithm 4 Dynamic Path Selection Algorithm
Input: Candidate Path Set P of Request R
Output: Optimal Path p∗ of Request R

22 minimum metrics min←MAXIMUM ;
3 for path p ∈ P do
4 for edge e ∈ p do
5 if be < br or ce > cr then
6 if mp < br

be
then

7 mp ← br

be
;

8 end
9 else

10 mp ←MAXIMUM ;
11 end
12 end
13 if mp < min then
14 min← mp; p∗ ← p;
15 end
16 end
17 Return p∗

First, an NF forwarding graph based on the topology graph
and SFC request is constructed. The forwarding graph contains
n + 2 stages, where n is the length of service chain. The first
and last stages are the source and destination nodes of the
flow. The remaining nodes in each stage are the switches or
servers with the corresponding NFs installed. The edge of the
forwarding graph is assigned with the distance of the shortest
path between two nodes, which can be obtained by collecting
network topology information. Note that when the nodes of
two adjacent stages are the same, the edge weight is set to 0.

Next, we use the top-k shortest path algorithm, i.e., Yen’s
algorithm [31], to obtain the set of the top-k shortest paths.
Since the path set obtained may contain routing loops, the
algorithm is configured to find the top-2× k shortest paths to
provide redundant paths. Paths that do not contain loops can
be added to the candidate set, the algorithm stops when the
size of the candidate set reaches k.

2) Dynamic Path Selection Algorithm: When the first
packet of a new request is forwarded to the controller, dynamic
path selection algorithm is activated to select the optimal path
from the candidate sets.

As shown in Algorithm 4, the program will first read
candidate path set generated by the static algorithm. To avoid
network congestion and further improve network performance,
we evaluate the candidate paths in terms of link load usage.
Thus, for each candidate path p ∈ P , restrictions on switch
memory capacity ce of each link e and link capacity be along
the path are first checked to guarantee feasibility. To minimize
the load differences on each link, we define the evaluation
metric as the maximum link bandwidth utilization (i.e., data
rate br divided by available bandwidth be of link e) on
the path p. Then, the algorithm selects the path p∗ with the
smallest metrics after traversing all the paths of the set. The
time complexity of dynamic path selection algorithm is O(n)
in terms of the number of candidate path n, which guarantees
tolerable delay for packets.
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TABLE III
NF IMPLEMENTATION EXAMPLES

VI. P4 IMPLEMENTATION

A network function usually consists of the sophisticated
processing logic and dedicated rule set, which is represented
as control flow logic with match-action tables and flow table
entries on programmable switches. The complicated devel-
opment process of implementing a complete NF on PDP,
especially when involving stateful operations, requires not
only a comprehensive understanding of P4 language but also
professional knowledge of programmable hardware devices
(e.g., specific hardware target primitives and register data
structure). In order to simplify the implementation process of
NFs and provide a unified management interface, we employ
two types of models to represent PDP-based NF imple-
mentation, i.e., the stateless NF model and the stateful NF
model. The stateless NF model leverages match-action tables
to execute required actions on specific flows. The stateful NF
model is implemented by the “state-condition-action” pipeline,
and allows important flow states to be stored and accessed on
the data plane.

A. Stateless NF

The model of stateless NF is implemented via a series of
Match-Action Table (MAT) units to impose various processing
logic on specified flows. The available matching fields of a
MAT in a P4 switch include three types of fields: packet
header, standard metadata and user-defined metadata. Actions
are applied to modify the fields of header and metadata, thus
imposing the desired functions on packets, such as modifying
the ttl field of IP packets or dropping packets.

We use Layer-4 (L4) Load Balancer as an example to
elaborate the Stateless NF model. L4 load balancer scales out
services hosted in cloud datacenters by evenly mapping flows
destined to a service posted at a virtual IP address (VIP) to
a pool of servers with multiple direct IP addresses (DIP).
To complete this task, two sequentially placed MATs are
needed as in Table III. The first MAT allocates the DIP pool
version by matching VIP addresses. In the second one, flows
eventually obtain randomly selected DIP addresses from a DIP
pool using the hash result of the flow key (e.g., src and dst IP
address).

TABLE IV
COMPARISON BETWEEN HASH AND CONTROLLER ISSUE

B. Stateful NF

State refers to information generated when processing pre-
vious packets of a flow and can guide the processing of
subsequent packets [32]. The P4 platform provides stateful
units (SRAM) with reading and writing interfaces exposed
to P4 programs. In an NF, a series of stateful units can be
declared, with widths equal to the number of bits of the state
to be stored, and lengths equal to the maximum number of
flows that may pass through the NF.

To ensure correctness, state consistency should be com-
pletely guaranteed. That is, subsequent packets of the same
flow should access stateful units through the same index.
Generally, there are two ways to ensure state consistency.

First, we can hash the header fields of packets to get their
NF state indexes. However, if a hash collision occurs, different
flows sharing the same hash result would operate on the same
state, causing damage to correctness-sensitive NFs, such as
the stateful Firewall [33]. In addition, hash collision solutions,
including open addressing [34] and separate chaining [35], are
not hardware-friendly and difficult to implement.

The second way requires the controller to issue the state
index through Flow Classifier function as in Table III. The
controller ought to know the occupations of all the declared
register arrays on each switch. Incoming flows of a switch will
first go through the Flow Classifier and obtain the state index
for all the NFs needed on this switch. The implementation
details of Flow Classifier are elaborated in IV-A. Though a
little extra memory is required for storing the state index, the
possibility of state collision can be effectively eliminated.

We use two traces to compare collision rate and memory
usage for the two schemes. Table IV shows the result. The
first four entries of each trace use a hash function on source
and destination IPs and the fifth one obtains the state index
through flow table entries issued by the controller. According
to Table IV, the hash function method shows poor performance
under both circumstances. Only when a larger space is given to
stateful units (19.1x and 56.1x larger than the memory used
by the controller issue method) can the hash collision rate
reduce to a relatively small range (i.e., < 1%), which is still
unbearable for correctness-sensitive NFs. Meanwhile, for the
controller-issue solution, we allocate stateful units with only
10,000 register cells, which is more than enough for these two
traces. The extra memory space used for storing the state index
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is positively related to the number of the flows. Thus, we use
flow entries to issue the state index.

To better illustrate the implementation model of stateful NF,
we use the Big Flow Detector (BFD) as an example. As shown
in Table III, the BFD checks whether the recorded flow size
exceeds a specific threshold. If so, it reports the corresponding
flow to the controller. To simulate the logic of BFD in P4
switches, we use three types of tables, including state table,
condition table and action table.

State table is responsible for obtaining the stored state
of the flow. Each NF instance has its own stateful units as
registers in the programmable switch. SRAM resource for
registers is allocated with pre-declared width and length when
deployed. The state in BFD is the set of flow sizes for all
flows. After fetching the index of state in the Flow Classifier,
the packet reads and preserves state in metadata for further
operations in State Table. The state fetching is implemented
in the default action of State Table, requiring no extra entries.

Condition table directly operates on the state to obtain
the transition condition information. By conducting predefined
calculations with the state in metadata and the given param-
eters, we can obtain the transition condition result which is
used to determine the next operation. In the BFD, if the state
is larger than the THRESHOLD, the condition is set to 1,
otherwise 0. The number of entries in the condition table is
equal to the number of possible state transitions of each NF.

Action table is used to apply actions on both packet and
state based on the condition variable. State action allows
modifying and rewriting the state back to the register array,
so that it can be reused by the next packet. Packet actions
include modifying packet header and redirecting packet path,
such as dropping and sending to CPU. In the BFD example,
there are two different actions. When condition is 0 (which
indicates that the flow size is smaller than threshold), it will
increment the counter. If condition is set to 1, it represents
that a transition of flow state happens, and the packet should
be sent to CPU for notification.

C. Hardware-Applicable Modification

Although the NF implementation model conforms to the
P4 language grammar and P4 abstract forwarding model, the
code implemented based on this model cannot be directly
applied to the Tofino switch [16] due to the special design
of the hardware switch chip. Therefore, several modifications
are made for the real deployment in hardware switches.

1) Limited state accesses. Multiple accesses of the same
state in one round of pipeline processing in the hardware
switch are not permitted. However, the abstraction of the
stateful NF as a finite state machine includes the data path with
a loop of state reading → writing, unable to be implemented
in hardware. Therefore, we aggregate the actions of each
state into a table, and select the corresponding state actions
according to the condition and state information of the flow.
Fig.7 shows the state access loop through the finite state
machine of Dynamic NAT, which dynamically assigns a new
source port number and a common global IP address to a
new connection and performs the corresponding packet header
rewriting. In Dynamic NAT, the current number of ports to be

Fig. 7. Workflow of dynamic NAT.

Fig. 8. Workflow of Hardware-applicable dynamic NAT.

allocated is firstly read for each packet and is used along with
the in_port information to select corresponding actions to take.
This process leads to a state access loop, as marked by the
red alert arrow in Fig.7. Therefore, we aggregate the actions
of each state into a table, and select the corresponding state
actions according to the condition and state information of the
flow. As shown in Fig. 8, the modified version of Dynamic
NAT fits the hardware switches well while maintaining the
original function.

2) Stage allocation. When different MATs with data depen-
dencies are allocated to the same stage, the execution sequence
will be interfered. Thus, hardware switch programming needs
to assign a pipeline stage to each MAT.

3) Limited capacity of registers. The length of a register can
only be 8, 16, or 32 bits. Thus, a 48-bit MAC address can only
be stored in two registers. Similarly, in the Per Flow Policer
and SYN Flood Detection, we also adopt two registers to
store 48-bit timestamps, thereby prolonging the overflow time
of the function. When the 48-bit state encounters subtraction
calculation, the result is obtained by combing the results of
calculating the registers with higher and lower bits separately.

VII. EVALUATION

We implement FlexNF on both software (BMv2) and hard-
ware (Tofino chip) programmable data plane. In this section,
we evaluate the performance of FlexNF.

A. Numerical Analysis of FlexNF on BMv2

1) Experiment Setup: To evaluate the flexibility and scala-
bility of the NF Selection Framework in FlexNF, we build
a software experiment environment using BMv2 switches
with an ONOS controller running the SP-aware NF Place-
ment Algorithm and the Two-Stage Service Path Construc-
tion Algorithm. In the software experiment environments,
we deploy 15 types of network functions on each service
BMv2 switch, details are shown in Table V. We choose six
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TABLE V
NF IMPLEMENTATION PARADIGMS

TABLE VI
TOPOLOGIES INFORMATION

topologies from SDNlib [22] for experiment, whose informa-
tion is shown in Table VI. The α in SNPA is set to 10 based
on the actual deployment tests. We randomly construct some
real service chains based on implemented network functions,
and randomly assign them to different pairs of source and des-
tination nodes in the experimental topologies, while ensuring
the number of flows to request each service chain to be the
same. Flow completion time (FCT) and link load information
are collected during evaluation through ONOS APIs. They are
used as performance metrics to evaluate the scalability and
efficiency of our scheme.

We implement the control plane algorithms based on the
ONOS controller with about 1500 LoC in Java. The control
plane generates NF deployment policies through the SP-aware
NF Placement Algorithm. At runtime, the control plane will
intercept the PacketIn message from a specific interface, and
then construct an optimal service path for the incoming flow
based on the Two-Stage Service Path Construction Algorithm.
After that, the controller installs routing and NF entries, and
sends back the first packet that triggers the PacketIn message
to the data plane.

2) Evaluation on SP-Aware NF Placement Algorithm:
Benchmark. To verify the effectiveness of the greedy
algorithm, we set up three schemes for comparison: 1) Short-
est Path (SP), i.e., all requests are completed by the

Fig. 9. Performance of different NF placement schemes.

Fig. 10. Average route lengths of different schemes on different topologies.

shortest routes, which stands for the theoretical optimal
result; 2) Maximum Degree (MD), i.e., service nodes are
selected in descending order of node degrees; and 3) Genetic
Algorithm (GA) [36], i.e., GA is applied to solve SP-aware NF
Placement Problem 2 We randomly generate 10,000 requests
on Abilene, and then calculate the average route length of all
requests and algorithm execution time as evaluation metrics.

The route length results are shown in Fig. 9(a), we set a
time limit to control the search time of the GA algorithm.
GA(Time=10s) and GA(Time=1000s) represent the GA
algorithm running for 10s and 1000s, respectively. Greedy
(Ours) stands for Algorithm 2. As the number of service
nodes increases, the average requests route length of Greedy
is more closer to the average route length of SP than MD
and GA. When the number of service nodes is 6, Greedy can
complete the request within an average of 3.6 hops, while
the results of MD, GA(Time=10s) and GA(Time=1000s) are
3.8 hops, 4 hops and 3.7 hops, respectively. Fig. 9 shows
the execution time results, the execution time of MD and
Greedy are around 0.0175s and 3.6s, respectively. However,
GA needs to consume 1000s to achieve good performance,
which is still inferior to the performance of Greedy(ours). SP
represents the theoretical optimal result, we can find that the
result of Greedy(ours) is closer to the optimal result than other
schemes. In summary, Greedy(ours) can achieve the shortest
route length while ensuring a relatively short execution time.

To evaluate the scalability of FlexNF, we also con-
duct experiments on different topologies from SDNlib [22].
We compare the average route lengths on different topologies
when deploying six service nodes. The results are shown
in Fig. 10. Our proposed Greedy algorithm beats the GA
algorithm and the max degree algorithm on all six topologies.

3) FCT and Throughput: Benchmark. We compare NSF
against two other benchmarks with different deployment gran-
ularity for evaluation. The first benchmark deploys at NF
granularity, that is, only a single NF is deployed on each

2The objective function (1) can not be expressed explicitly by the variable
yn

v , we cannot directly use the ILP/MILP solver to solve the problem, so we
use GA for comparison.
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Fig. 11. FCTs of different deployment schemes on Abilene. NF-G stands for NF-Granularity deployment while SFC-G stands for SFC-Granularity deployment.
FlexNF uses the NF selection framework on PDP for flexbile service chaining.

Fig. 12. Link load evaluation of different deployment schemes on abilene.

programmable switch. In this solution, the service chain path is
constructed by traversing all function nodes where the required
NFs are located. To solve the potential routing loop problem,
we implement the multi-level default path routing solution that
combines SFC Table, NF Table, and Flow Table on the P4
switch, as proposed by SAFE-ME [4]. The second benchmark
deploys at SFC granularity, that is, an entire service chain
is installed on each switch. For each newly-arrived flow, the
controller calculates a loop-free routing path passing through
the service chain nodes.

We use six nodes in Abilene as the cornerstone to deploy
NFs on the switches with NF-Granularity Scheme (a single
NF in a switch), SFC-Granularity Scheme (a complete ser-
vice chain in a switch) and NSF Scheme (the NF Selection
Framework in FlexNF, NF placement strategy is generated
by SP-aware NF Placement Algorithm). To simulate different
intensities of link load, we randomly assign the 132 possible
service chain requests with different flow sizes (at a fixed rate),
and repeat the experiment for five times.

In Fig. 11(a), for the average FCT, we observe that at
100% load level, deployment with NF Selection Framework
significantly outperforms other solutions by 12.9% and 36.9%.
The performance advantage is also obvious in Fig. 11(b)
and Fig. 11(c). Although the SFC-granularity deployment
yields a slightly smaller latency gap, it has obvious scala-
bility shortcomings. That is, the number of service chains
supported with SFC-granularity deployment is restricted by
the number of functional nodes. On the contrary, the NSF
scheme theoretically supports all possible service chain
requirements.

We also evaluate these schemes by link load information
collected every 100ms. We compare the load of the heaviest
link in each scheme in Fig. 12(a) and the distribution of
the average load of all links in Fig. 12(b). Benefiting from

Fig. 13. FCTs of different deployment schemes on different topologies.

jointly considering the shortest routing paths and the load
balancing when constructing service chains, FlexNF performs
the best among the three and enjoys the lightest link loads.
NF-Granularity Scheme shows the heaviest loads due to the
longest routing paths. By placing the whole service chain on
one switch, SFC-Granularity achieves lighter link loads than
NF-Granularity due to the shorter route lengths. However, its
link load is still higher than that of FlexNF because of its poor
NF deployment flexibility.

To evaluate the scalability of FlexNF, we also con-
duct experiments on different topologies from SDNlib [22].
We compared the average flow completion time on different
topologies under a link load of 100%. The results are shown
in Fig. 13. The average flow completion time of FlexNF on
six topologies is consistently shorter than that of SFC-G and
NF-G. For example, FlexNF outperforms other solutions by
11.1% and 36.5% on Germany topology.

B. Performance of FlexNF on PDP

1) Experiment Setup: On the Tofino ASIC target, we imple-
ment the same NFs as the software experiment in
Section VII-A. Due to the limitation of ASIC on stateful
actions, we slightly modify the stateful NFs by merging read,
comparison and state modification into a single register action.

2) NF Selection Framework Evaluation: To evaluate the
overhead of the NSF in different scenarios, we conduct exper-
iments on different packet rates, different numbers of tables,
and different packet sizes with/without the NSF. As shown
in Fig. 14, under different packet rates, the delay gap (with
or without NSF) is 12ns on average, which only adds 1.6%
extra overhead compared to directly installed NFs without
NSF, while achieving similar throughput. Fig. 15(a) shows that
under 40Gbps traffic, the two schemes tend to have small jitters
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Fig. 14. Overheads of NSF with different packet rate.

Fig. 15. Overheads of NSF vs. No. of tables and packet size.

when using different numbers of tables in the pipeline, and the
maximum difference in delay is 13ns. Fig. 15(b) shows that
with a fixed sending rate and number of tables, the latency of
the two schemes increases as the packet size increases, but the
gap between them reduces to only 1 ns with 512B packet size.
In summary, we observe that the cost of the NSF is negligible.

3) Resubmit Evaluation: Fig. 16 shows the impact of the
two pipeline re-enter methods on traffic performance (e.g., for-
warding delay and throughput). Compared with recirculation,
resubmit function has a much smaller impact on the for-
warding delay (i.e., an average delay of 100ns) at different
data packet sending rates, as shown in Fig. 16(a). Moreover,
we can observe from Fig. 16(b) that, although resubmitting
traffic would cause the weighted-average forwarding delay
to increase, the maximum increment is no more than 40ns.
As for the recirculation test in Fig. 16(c), when the recirculate
time does not exceed 3, each additional iteration of recirculate
adds an additional delay of about 530ns. Otherwise, forward-
ing delay increases exponentially with hugely-compromised
performance and massive packet loss. Nevertheless, the influ-
ence of one recirculation iteration on latency is still about
100ns smaller than that of forwarding one more network hop.
As such, we expect to utilize recirculate mechanism for more
flexibility when more than one iteration is needed.

4) Network Functions Switching Evaluation: We test the
performance of the PFOD scheme for switching NFs on the
hardware P4 switch. The benchmark is the traditional program
switching on the P4 switch. The process is automatically
implemented through scripts. We switch the installed NF at
different intervals, perform this operation 20 times, and obtain
the results as shown in Fig. 17.

As shown in Fig. 17(a) and Fig. 17(b), with the interval
time of NF adjusting increasing, the throughput of the PFOD
method gradually increases to 98.684Gbps when adjusted once
in 60s, which almost reaches the normal throughput, and the
packet loss rate gradually decreases to 0.007%. However, the
program switching method results in a reduction in throughput

to 96.644Mbps and a packet loss rate of 8.276%. Moreover,
as shown in Fig. 18, the stop of the device due to program
switching causes a few seconds of zero throughput and esca-
lated packet loss rate, while the PFOD method is able to
maintain stable performance.

5) Overhead of the Deployment of FlexNF: In this section,
we test the hardware resource overheads of FlexNF deploy-
ment on the hardware P4 switch.

First, we evaluate the total hardware resource consumption
caused by different components (i.e., Labeling and Multilevel
Re-enter Mechanism) of FlexNF compared to the baseline
Switch.p4 [37]. Switch.p4 is a foundational P4 program that
incorporates a range of essential networking functionalities
suitable for a standard data center switch [38]. As shown
in Table VII, FlexNF only introduces 7.5% SRAM overhead,
8.68% VLIW Actions, 9.62% hash bits and 16.46% Exact
Xbar. FlexNF introduces little hardware resource overhead and
can be deployed lightweightly on hardware switches.

Second, we implement several network functions on hard-
ware switches to compare overheads of FlexNF with Hyper4
and HyperVDP. Table VIII shows the number of tables used
in Hyper4, HyperVDP and FlexNF. Compared with native P4
switch, FlexNF only needs to introduce two additional tables,
one for Flow Classifier (i.e., get the service label) and another
for Multilevel Re-enter Mechanism (i.e., resubmit/recirculate).
Generally, FlexNF reduces 2x to 9x of table usage comparing
with Hyper4 and reduces 1x to 2x of table usage comparing
with HyperVDP. We also compare TCAM and SRAM usage
of FlexNF with Hyper4 and HyperVDP. Fig. 19(a) shows
that HyperVDP and Hyper4 introduce an additional TCAM
overhead of 5%-15% and 2%-5%, respectively, while FlexNF
hardly introduces additional TCAM overhead. Fig. 19(b)
shows that SRAM overhead introduced by FlexNF is less than
that of HyperVDP and Hyper4. In summary, FlexNF has lower
memory overhead than other network virtualization solutions.

VIII. RELATED WORK

Existing works on hardware offloading are devoted to the
following two aspects: 1) implementing specific NFs on PDP
with complete function and high-performance service; and
2) proposing new paradigms for NFs on various data plane
platforms (including OpenFlow [39], FPGA [33] and the
combination of P4 switch and x86 server [10]), focusing
on state storage in limited memory space and the problem
of state consistency. OpenState [39] was the first to imple-
ment advanced stateful applications by extending match-action
paradigm of Open Flow [39]. However, OpenState does not
mention the rationale to support and organize multiple applica-
tions. Besides, without the extension of OpenState, OpenFlow
itself provides limited support for stateful operation and is
not able to keep states inside the data plane. FPGA-based
SmartNIC is another available option to offload VNFs [33],
[40], [41], [42]. Microsoft proposes ClickNP [41], which
deploys FPGA-based SmartNICs in their datacenters to save
CPU usage and reduce traffic transmitted over server’s PCIe
bus, thus improving NFs’ packet processing latency by more
than an order of magnitude [33]. However, implementing a
complete NF on top of a SmartNIC requires a professional
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Fig. 16. Performance evaluation on resubmit and recirculate operations.

Fig. 17. Throughput and packet loss at different program switching intervals.

Fig. 18. Throughput and packet loss with program switching interval of 60s.

understanding of the hardware, making it difficult to introduce
new features on existing devices. As a target-independent
domain-specific language, P4 offers great programmability by
allowing network engineers to customize their protocols using
a descriptive programming language. P4 maintains a good
balance between expressiveness and simplicity. Meanwhile,
P4 allows to maintain information in the data plane during
runtime based on its register data structure, and thus has the
potential to offload advanced network functions.

To solve the service chaining problem on the PDP,
P4Visor [43] merges multiple service chains in a single
switch to enhance the service chain scalability. However, PDP
still cannot accommodate the service chains that have not
been installed in advance. Hyper4 [23] and HyperVDP [24]
propose to virtualize the PDP and enable runtime recon-
figuration. However, these solutions inevitably cause switch
resource waste. ClickP4 [25] offers the potential of dynam-
ically combining features on the PDP, though it still lacks
a framework to solve the actual service chaining problem.
Some works [44] solve the service chaining problem on the
algorithmic aspect by establishing an Integer Linear Pro-
gramming model regarding different targets. Hyper [42] first
proposes a service chaining algorithm on the PDP considering

TABLE VII
HARDWARE RESOURCE CONSUMPTION OF FLEXNF COMPARED

TO THE BASELINE SWITCH.P4

TABLE VIII
TABLE USAGE FOR DIFFERENT PROGRAMS

Fig. 19. TCAM and SRAM usage of different network functions.

the QoS requirements. However, it only considered service
performance, but not the stability of network performance and
unfortunately introduced high execution time.

IX. CONCLUSION AND FUTURE WORK

In this paper, we propose FlexNF, a flexible service chain
composition framework based on the PDP. First, we design
the NF Selection Framework to support the service selection
of flows at runtime and enable fine-grained NF orchestration.
Second, we propose the Per-Flow On-Demand (PFOD) ser-
vicing mechanism to achieve NF runtime switching. In PFOD,
one MAT with multiple mixed NFs installed works as different
NFs for different flows. Third, to provide on-path service,
we propose the SP-aware NF Placement Algorithm and the
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Two-Stage Service Path Construction Algorithm to ensure the
traffic QoS. Evaluation results show that our system not only
outperforms solutions with fixed-node deployment schemes in
both traffic QoS and request acceptance ratio, but also shows
higher throughput and low packet loss rate. In future work,
we will further enhance the SP-aware NF Placement Algorithm
and the Two-Stage Service Path Construction Algorithm to
achieve differentiated path selection by considering the QoS
requirements of flows. For example, we can assign longer
paths for flows with lower QoS requirements to spare space
for more latency-sensitive flows.

REFERENCES

[1] S. Homma, S. Kumar, C. Captari, M. Tufail, and S. Majee, “Service
function chaining use cases in data centers,” Internet Engineering Task
Force, Internet-Draft, Fremont, CA, USA, Tech. Rep., 2017.

[2] C. Miao et al., “Detecting ephemeral optical events with $OpTel$,” in
Proc. 19th USENIX Symp. Netw. Syst. Design Implement. (NSDI), 2022,
pp. 339–353.

[3] J. Uttaro, M. Stiemerling, J. Napper, W. Haeffner, and D. López,
“Service function chaining use cases in mobile networks,” Internet Eng.
Task Force, Internet-Draft, Fremont, CA, USA, 2019.

[4] G. Zhao, H. Xu, J. Liu, C. Qian, J. Ge, and L. Huang, “SAFE-
ME: Scalable and flexible middlebox policy enforcement with software
defined networking,” in Proc. IEEE 27th Int. Conf. Netw. Protocols
(ICNP), Oct. 2019, pp. 1–11.

[5] B. Yi, X. Wang, K. Li, S. K. Das, and M. Huang, “A comprehensive
survey of network function virtualization,” Comput. Netw., vol. 133,
pp. 212–262, Mar. 2018.

[6] X. Pei et al., “Network functions virtualisation (NFV),” Manage. Orches-
tration, vol. 1, p. V1, 2014.

[7] C. Sun, J. Bi, Z. Zheng, H. Yu, and H. Hu, “NFP: Enabling network
function parallelism in NFV,” in Proc. Conf. ACM Special Interest Group
Data Commun., Aug. 2017, pp. 43–56.

[8] R. Miao, H. Zeng, C. Kim, J. Lee, and M. Yu, “SilkRoad: Making
stateful Layer-4 load balancing fast and cheap using switching ASICs,”
in Proc. Conf. ACM Special Interest Group Data Commun., Aug. 2017,
pp. 15–28.

[9] V. Sivaraman, S. Narayana, O. Rottenstreich, S. Muthukrishnan, and
J. Rexford, “Heavy-hitter detection entirely in the data plane,” in Proc.
Symp. SDN Res., Apr. 2017, pp. 164–176.

[10] K. Zhang, D. Zhuo, and A. Krishnamurthy, “Gallium: Automated
software middlebox offloading to programmable switches,” in Proc.
Annu. Conf. ACM Special Interest Group Data Commun. Appl., Technol.,
Archit., Protocols Comput. Commun., Jul. 2020, pp. 283–295.

[11] C. Kim, A. Sivaraman, N. Katta, A. Bas, A. Dixit, and L. J. Wobker, “In-
band network telemetry via programmable dataplanes,” in Proc. ACM
SIGCOMM, 2015, pp. 1–2.

[12] N. Katta, M. Hira, C. Kim, A. Sivaraman, and J. Rexford, “HULA:
Scalable load balancing using programmable data planes,” in Proc.
Symp. SDN Res., Mar. 2016, pp. 1–12.

[13] R. Bifulco and G. Rétvári, “A survey on the programmable data plane:
Abstractions, architectures, and open problems,” in Proc. IEEE 19th Int.
Conf. High Perform. Switching Routing (HPSR), Jun. 2018, pp. 1–7.

[14] B. Vass, E. Bérczi-Kovács, C. Raiciu, and G. Rétvári, “Compiling packet
programs to reconfigurable switches,” in Proc. 3rd P4 Workshop Eur.,
Dec. 2020, pp. 103–115.

[15] T. Dargahi, A. Caponi, M. Ambrosin, G. Bianchi, and M. Conti,
“A survey on the security of stateful SDN data planes,” IEEE Commun.
Surveys Tuts., vol. 19, no. 3, pp. 1701–1725, 3rd Quart., 2017.

[16] J. Jones. Intel Tofino2: Second-Generation P4-Programmable Ethernet
Switch ASIC That Continues to Deliver Programmability Without Com-
promise. [Online]. Available: https://www.intel.com/content/www/us/en/
products/network-io/programmable-ethernet-switch/tofino-2-series.html

[17] L. Ye et al., “PUFF: A passive and universal learning-based framework
for intra-domain failure detection,” in Proc. IEEE Int. Perform., Comput.,
Commun. Conf. (IPCCC), Oct. 2021, pp. 1–8.

[18] X. Zuo, Q. Li, J. Xiao, D. Zhao, and J. Yong, “Drift-bottle: A lightweight
and distributed approach to failure localization in general networks,”
in Proc. 18th Int. Conf. Emerg. Netw. Exp. Technol., Nov. 2022,
pp. 337–348.

[19] Q. Li, J. Xiao, D. Zhao, X. Zuo, W. Tang, and Y. Jiang, “Themis:
A passive-active hybrid framework with in-network intelligence for
lightweight failure localization,” SSRN 4604412, Oct. 2023.

[20] Z. Zhang et al., “Pontus: Finding waves in data streams,” Proc. ACM
Manage. Data, vol. 1, no. 1, pp. 1–26, May 2023.

[21] H. Zhao, Q. Li, J. Duan, Y. Jiang, and K. Liu, “FlexNF: Flexible
network function orchestration on the programmable data plane,” in
Proc. IEEE/ACM 29th Int. Symp. Quality Service (IWQOS), Jun. 2021,
pp. 1–6.

[22] S. Orlowski, M. Pióro, A. Tomaszewski, and R. Wessäly, “SNDlib 1.0–
Survivable network design library,” in Proc. INOC, 2007, pp. 1–16.

[23] D. Hancock and J. van der Merwe, “HyPer4: Using p4 to virtualize the
programmable data plane,” in Proc. 12th Int. Conf. Emerg. Netw. Exp.
Technol., Dec. 2016, pp. 35–49.

[24] C. Zhang, J. Bi, Y. Zhou, and J. Wu, “HyperVDP: High-performance
virtualization of the programmable data plane,” IEEE J. Sel. Areas
Commun., vol. 37, no. 3, pp. 556–569, Mar. 2019.

[25] Z. Yu and J. Bi, “ClickP4: Towards modular programming of P4,” in
Proc. ACM SIGCOMM (Posters Demos), 2017, pp. 100–102.

[26] D. Wu, A. Chen, T. S. E. Ng, G. Wang, and H. Wang, “Accelerated
service chaining on a single switch ASIC,” in Proc. 18th ACM Workshop
Hot Topics Netw., Nov. 2019, pp. 141–149.

[27] P. Bosshart et al., “Forwarding metamorphosis: Fast programmable
match-action processing in hardware for SDN,” in Proc. ACM SIG-
COMM Conf. SIGCOMM, Aug. 2013, pp. 1–12.

[28] Q. Zhang, Y. Xiao, F. Liu, J. C. S. Lui, J. Guo, and T. Wang, “Joint
optimization of chain placement and request scheduling for network
function virtualization,” in Proc. IEEE 37th Int. Conf. Distrib. Comput.
Syst. (ICDCS), Jun. 2017, pp. 731–741.

[29] Q. Sun, P. Lu, W. Lu, and Z. Zhu, “Forecast-assisted NFV service chain
deployment based on affiliation-aware vNF placement,” in Proc. IEEE
Global Commun. Conf. (GLOBECOM), Dec. 2016, pp. 1–6.

[30] T. Lin, Z. Zhou, M. Tornatore, and B. Mukherjee, “Demand-aware
network function placement,” J. Lightw. Technol., vol. 34, no. 11,
pp. 2590–2600, Jun. 2016.

[31] J. Y. Yen, “Finding the k shortest loopless paths in a network,” Manage.
Sci., vol. 17, no. 11, pp. 712–716, Jul. 1971.

[32] A. Gember-Jacobson et. al., “OpenNF: Enabling innovation in network
function control,” ACM SIGCOMM Comput. Commun. Rev., vol. 44,
no. 4, pp. 163–174, 2014.

[33] S. Pontarelli et al., “FlowBlaze: Stateful packet processing in hardware,”
in Proc. USENIX NSDI, 2019, pp. 1–17.

[34] H. Gao, J. F. Groote, and W. H. Hesselink, “Lock-free dynamic hash
tables with open addressing,” Distrib. Comput., vol. 18, no. 1, pp. 21–42,
Jul. 2005.

[35] M. V. Ramakrishna, E. Fu, and E. Bahcekapili, “Efficient hardware hash-
ing functions for high performance computers,” IEEE Trans. Comput.,
vol. 46, no. 12, pp. 1378–1381, Dec. 1997.

[36] D. Whitley, “A genetic algorithm tutorial,” Statist. Comput., vol. 4, no. 2,
pp. 65–85, Jun. 1994.

[37] P. L. Consortium. Baseline Switch.p4. Accessed: Jan. 15, 2023. [Online].
Available: https://github.com/p4lang/switch/blob//master/p4src/switch.p4

[38] P. G. Kannan, N. Budhdev, R. Joshi, and M. C. Chan, “Debugging
transient faults in data centers using synchronized network-wide packet
histories,” in Proc. 18th USENIX Symp. Netw. Syst. Design Implement.
(NSDI), 2021, pp. 253–268.

[39] G. Bianchi, M. Bonola, A. Capone, and C. Cascone, “OpenState:
Programming platform-independent stateful openflow applications inside
the switch,” ACM SIGCOMM Comput. Commun. Rev., vol. 44, no. 2,
pp. 44–51, Apr. 2014.

[40] C. Sun et al., “SDPA: Toward a stateful data plane in software-defined
networking,” IEEE/ACM Trans. Netw., vol. 25, no. 6, pp. 3294–3308,
Dec. 2017.

[41] B. Li et al., “ClickNP: Highly flexible and high performance network
processing with reconfigurable hardware,” in Proc. ACM SIGCOMM
Conf., Aug. 2016, pp. 1–14.

[42] C. Sun, J. Bi, Z. Zheng, and H. Hu, “HYPER: A hybrid high-
performance framework for network function virtualization,” IEEE J.
Sel. Areas Commun., vol. 35, no. 11, pp. 2490–2500, Nov. 2017.

[43] P. Zheng, T. Benson, and C. Hu, “P4 Visor: Lightweight virtualization
and composition primitives for building and testing modular programs,”
in Proc. 14th Int. Conf. Emerg. Netw. Exp. Technol., Dec. 2018,
pp. 98–111.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on December 27,2023 at 06:30:17 UTC from IEEE Xplore.  Restrictions apply. 



16 IEEE/ACM TRANSACTIONS ON NETWORKING

[44] G. Lee, M. Kim, S. Choo, S. Pack, and Y. Kim, “Optimal flow
distribution in service function chaining,” in Proc. 10th Int. Conf. Future
Internet, Jun. 2015, pp. 17–20.

Jingyu Xiao received the B.S. degree from
Wuhan University, Wuhan, China, in 2021. He is
currently pursuing the M.S. degree with the
Tsinghua Shenzhen International Graduate School.
His research interests include network failure local-
ization, programmable data planes, and AI for
networks.

Xudong Zuo (Member, IEEE) received the B.S.
degree in mathematics from Nanjing University in
2018. He is currently pursuing the M.S. degree
with the Tsinghua Shenzhen International Graduate
School. His research interests include programmable
switches and failure detection and localization in
networks.

Qing Li (Senior Member, IEEE) received the
B.S. degree in computer science and technol-
ogy from the Dalian University of Technology,
Dalian, China, in 2008, and the Ph.D. degree in
computer science and technology from Tsinghua
University, Beijing, China, in 2013. He is cur-
rently an Associate Researcher with the Peng Cheng
Laboratory, China. His research interests include
reliable and scalable routing of the internet, software
defined networks, network function virtualization,
in-network caching/computing, and intelligent sel-
frunning networks.

Dan Zhao received the bachelor’s degree in
telecommunications from the Beijing University of
Posts and Telecommunications in 2011 and the
Ph.D. degree in electronic engineering from the
Queen Mary University of London in 2015. She was
a Post-Doctoral Researcher with the School of Elec-
tronic Engineering, Dublin City University, and the
School of Computing, National College of Ireland.
She is currently an Assistant Researcher with the
Peng Cheng Laboratory, Shenzhen, China.

Hanyu Zhao received the B.E. degree from the
Huazhong University of Science and Technology
and the master’s degree from Tsinghua University in
2021. Her research interests include programmable
data planes and network function virtualization.

Yong Jiang (Member, IEEE) received the B.S. and
Ph.D. degrees in computer science and technol-
ogy from Tsinghua University, Beijing, China, in
1998 and 2002, respectively. He is currently a Full
Professor with the Tsinghua Shenzhen International
Graduate School. His research interests include
the future network architecture, the internet QoS,
software defined networks, and network function
virtualization.

Jiyong Sun received the bachelor’s degree in
computer science and technology from the Hunan
University of Arts and Science in 2005. He is cur-
rently with China Mobile Communications Group
Guangdong Company Ltd. His research interests
include 5G network architecture, car networking,
and industrial and internet solutions.

Bin Chen received the bachelor’s degree from the
South China University of Technology in 2002 and
the master’s degree in 2005. He is currently with
China Mobile Communications Group Guangdong
Company Ltd. His research interests include intel-
ligent self running networks, big data analysis
and mining, and network quality analysis and
optimization.

Yong Liang received the bachelor’s degree in micro-
electronics technology and the master’s degree in
electronics and information engineering from the
South China University of Technology in 2002 and
2006, respectively. He is currently the Project
Manager of China Mobile Communications Group
Guangdong Company Ltd. His research interests
include planning for IT support systems, data cen-
ters, and computing force networks.

Jie Li (Member, IEEE) received the bachelor’s
degree in computer science and technology from the
Huazhong University of Science and Technology in
2002 and the master’s degree in engineering project
management from Sun Yat-sen University in 2010.
He is currently an Engineer with China Mobile Com-
munications Group Guangdong Company Ltd. His
research interests include planning for IT support
systems, data centers, network security, and data
security.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on December 27,2023 at 06:30:17 UTC from IEEE Xplore.  Restrictions apply. 


