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Abstract— Most congestion control algorithms (CCAs) are
designed for specific network environments. As such, there is
no known algorithm that achieves uniformly good performance
in all scenarios for all flows. Rather than devising a one-size-fits-
all algorithm (which is a likely impossible task), we propose a
system to dynamically switch between the most suitable CCAs
for specific flows in specific environments. This raises a number of
challenges, which we address through the design and implemen-
tation of Antelope, a system that can dynamically reconfigure
the stack to use the most suitable CCA for individual flows.
We build a machine learning model to learn which algorithm
works best for individual conditions and implement kernel-level
support for dynamically switching between CCAs. The frame-
work also takes application requirements of performance into
consideration to fine-tune the selection based on application-
layer needs. Moreover, to reduce the overhead introduced by
machine learning on individual front-end servers, we (optionally)
implement the CCA selection process in the cloud, which allows
the share of models and the selection among front-end servers.
We have implemented Antelope in Linux, and evaluated it in both
emulated and production networks. The results demonstrate the
effectiveness of Antelope via dynamic adjusting the CCAs for
individual flows. Specifically, Antelope achieves an average 16%
improvement in throughput compared with BBR, and an average
19% improvement in throughput and 10% reduction in delay
compared with CUBIC.

Index Terms— Congestion control, eBPF, machine learning.

I. INTRODUCTION

S INCE the birth of TCP, many congestion control algo-
rithms (CCAs) have been proposed [1], [2], [3], [4],
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[5], [6]. However, none of these individual algorithms can
achieve high network performance across all environments
and user requirements. Two reasons account for this. First,
each algorithm is designed for a particular environment. For
example, Sprout [7], C2TCP [8], [9] and Verus [10] are
designed for cellular networks; DCTCP [11], pFabric [12] and
Swift [13] are designed for datacenter networks; TACK [14],
HACK [15] and Westwood [16] are designed for wireless
local area networks (WLANs). Second, network environments
and application requirements have evolved over decades. For
example, when CUBIC [2] (the default Linux TCP mech-
anism) was proposed, improving bandwidth utilization was
the most important goal. However, for modern cloud gaming
or live streaming applications, latency is much more critical.
Our goal is therefore to devise a congestion control selection
framework that can achieve good performance across all
environments and requirements, with sufficient flexibility to
evolve over time.

In pursuit of this goal, machine learning based CCAs have
been proposed. These strive to autonomously learn the optimal
CC policy for any given scenario. For example, RemyCC [17]
uses the network parameters, user behavior, flow model and
target function as an input, then derives an appropriate sending
rate as an output. Similarly, PCC-Vivace [18] uses online
learning, while DeepCC [19] and Orca [20] use deep rein-
forcement learning (DRL) to adjust their sending rates based
on network feedback. Further, AUTO [21] and MOCC [22] use
multi-objective reinforcement learning to design CC mecha-
nisms to satisfy different data transfer requirements. However,
deploying such machine learning based CC mechanisms in a
production network has proven complicated, as it is necessary
to continually learn for each environment. Thus, applying such
models in unseen networks decreases their performance [23].
Our goal is to devise a CC framework (based on the CCAs
available in Linux kernel) that can achieve good performance
across all networks and application requirements, while avoid-
ing the complicated deployment issues introduced by other
machine learning mechanisms.

To achieve this target, we introduce a framework called
Antelope. Antelope adjusts the congestion control algorithm
for individual flows according to network and flow state
observed. It collects TCP flow information from the kernel
data-path and delivers the information to user space, where
we can exploit pre-existing machine learning libraries. Using
supervised classification, Antelope then predicts which CCA
could achieve the best performance for that particular flow.
The prediction also takes application-layer needs (e.g. delay
sensitive or throughput sensitive) into consideration. Ante-
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lope then continues to monitor the flow and changes the
CCA dynamically if the network environment or flow state
changes. To coordinate this, Antelope uses eBPF (a new
kernel function which supports more control in the kernel
from user space) [24], [25] to deliver information between
the user space and kernel. We have implemented Antelope
in Linux, and also propose remote cloud-based learning as
an alternative implementation to reduce the overhead due to
model training and prediction on individual front-end servers
where the applications run. Through extensive experiments,
we demonstrate that Antelope nearly always chooses the most
suitable mechanism for each flow. Although most of time
Antelope chooses the CCAs which are specifically designed
for that network, we find cases where network fluctuations
lead it to choose other (unexpected) CCAs. We show that these
choices, indeed, result in better performance and confirm that
Antelope selects suitable CCAs adaptively.

Our key contributions are:
• We design and implement Antelope, an adaptive CC

framework which dynamically reconfigures between the
most suitable CCA on a per-flow basis. Antelope only
needs changes at the TCP sender without changing the
TCP socket. As such, Antelope can easily be deployed in
a production environment and the source code is available
for the community.1

• As part of Antelope, we build and train a supervised
classification algorithm (in user space) that can select
suitable CCAs for flows that have similar patterns with
the training data, but also on the flows that have not
appeared before. We show that eBPF, as part of Antelope,
is an effective choice to manage CCAs in the kernel,
even after a TCP flow has been established. The selection
can also be implemented in a centralized cloud server.
By doing so, the models and the selection can be shared
among front-end servers that serve individual flows, and
thus the extra overhead introduced by the machine learn-
ing training and processing is amortised.

• Extensive experiments in a wide area network (WAN),
data center network (DCN) and cellular network show
that Antelope achieves an average 16% improvement in
throughput compared with BBR; compared with CUBIC,
Antelope improves the throughput by 19% on average,
and reduces delay by 10%. Further, Antelope shows
better performance than the state-of-the-art ML-based
mechanisms (Orca and PCC-Vivace). The experiments
also proves the benefits of the shared remote cloud-based
learning in reducing overhead on front-end servers.

While the basic idea of Antelope has been introduced
in [26], this extended version adds two new enhancements to
Antelope: (i) the incorporation of applications’ performance
preferences and the remote cloud-based learning; and (ii) sev-
eral sets of new experiments.

The rest of the paper is structured as follows. Section II
explains our motivation and challenges in detail. Section III
offers an overview of the system. Section IV presents
details of the system and describes the classification algo-
rithm. Section V outlines the implementation of the system.
We explain the training and our extensive experiments in
Section VI. Related work is covered in Section VII and
Section VIII concludes the paper.

1https://github.com/antelopeproject/antelope

Fig. 1. Performance of different CCAs in three different networks.

II. MOTIVATION

A. Why Switch CCAs?

Network environments impact TCP flows. Servers that per-
form data transfer services (e.g. web servers) will usually
deal with TCP flows from diverse network environments. This
may be due to a diversity of clients or because a server has
multiple responsibilities. For example, a front-end server may
receive client requests (e.g. from a 4G network), yet retrieve
content from a back-end server situated in the same data center
(e.g. via Ethernet). Whereas the Ethernet path will support
high bandwidth and low delay delivery, the 4G path will
likely suffer from much higher levels of delay and bandwidth
fluctuations. Using a single network stack with a shared CCA
therefore forces administrators to select which environment to
optimize for.

To highlight this, Figure 1 shows a toy example of the TCP
throughput for different CCAs over datacenter, cellular and
wide area (wired) networks. This is done using the Mahimahi
emulator [27], parameterized as follows. The cellular network
is configured using the public trace data from [20]; the WAN
is setup with an RTT, packet loss and bandwidth of 100ms, 2%
and 2MB/s, respectively; the DCN is setup with 1ms, 0.1% and
1GB/s, respectively. We see that for the DCN network, both the
short and long TCP flows have the highest throughput when
using BBR. For the cellular network, when using C2TCP, the
long flows’ throughput is the best; in contrast, for short flows,
Westwood is the best. For long flows over the WAN, using
CUBIC is the best, but for short flows BBR has the highest
throughput. Despite this, most front-end servers use CUBIC
or BBR to serve all TCP flows [3]. In other words, there is
no one-size-fits-all algorithm.
Network environments are dynamic. Complicating matters
further, network environments may change on the fly. For
example, in the public cloud, it is common for flows to change
paths at ten-second intervals or even faster [28]. Alternatively,
when more cellular users pair with a base station, the buffer
provided to one user becomes smaller. This will impact
performance, e.g. BBR obtains higher throughput with small
buffers [3]. Alternatively, ISPs may adjust their network paths
(e.g. via MPLS or SDN), changing existing flows’ RTTs and
buffer sizes. Under such conditions, switching the TCP flows’
CC may improve performance.
Machine learning CC mechanisms are limited. Rather than
adjusting the congestion window or pacing rate using ML,
we build a model to select the CCAs on a per-flow basis.
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We do this for two reasons. First, as pointed out by both
Orca [20] and Rein [29], learning-based approaches (e.g.
Indigo [30], Aurora [23]) suffer from performance degrada-
tion and slow convergence when used in unseen conditions.
In contrast, hand-written classic CCAs do not have these two
issues. Second, classic CCAs that have been widely used in
practice, often achieve very good performance in the network
environments for which they are designed (e.g. Westwood [16]
for wireless networks).

B. Challenges

Rather than devising a one-size-fits-all CCA, we design
and implement Antelope, a framework that can dynamically
switch between the most suitable CCAs for specific flows in
specific environments. This raises four unique challenges.
Selection of CCA. Antelope must design an appropriate
reward function to select the optimal CCA for a given scenario
and for a given application. However, the TCP parameters
alone (e.g. RTT, CWND, in_flight and lost packets) are inher-
ently limited in their ability to predict throughput, fairness,
delay etc. Solely relying on these parameters to decide the
optimal CCA is therefore not wise. Worse still, applica-
tions may have different performance needs. For instance,
online chat and cloud gaming are more delay sensitive,
while traditional VoD services are more throughput sensitive.
Furthermore, manually selecting CCAs, even with machine
learning support, is difficult for network operators and domain
specialists [31]. This is exacerbated by dynamic network
conditions, which may invalidate historical data used to make
such decisions.
Short flows. If a machine learning approach is taken, as the
duration of many flows is short, they may finish before it is
possible to learn which CCA would have been most suitable.
Antelope must be able to rapidly select the most suitable CCA.
Kernel vs. user space. The kernel lacks machine learning
libraries. Thus, we argue it is necessary for Antelope to
implement any machine learning technology in user space, and
enable flexible interaction between user space and the kernel.
Limiting the overhead and delay for such communications is
challenging.
Computation overhead. The computational resources are lim-
ited for front-end servers which run TCP flows for applica-
tions. Machine learning usually introduces heavy computation
overhead. It thus would be better to mitigate the overhead
introduced by the model training and model inference for the
CCA selection in such application servers.

III. ANTELOPE OVERVIEW

Overview. The duration of a TCP flow can be divided
into three phases: connection setup, data transmission and
connection closure. Different actions will be performed in
these three phases by Antelope. After the connection setup, the
Information Collection component (in the kernel) will collect
TCP flow information and deliver it to the Mechanism Match
component (in user space). Then during the data transmission
phase, the Mechanism Match component (periodically) selects
the most suitable CCA according to the flow’s characteristic.
The most suitable CCA will then be passed to the Mechanism
Switch component (in the kernel) which will switch to that
CCA in the network stack. When a connection closes, both
the Mechanism Match and Mechanism Switch components
will delete this flow’s records. The overall architecture is
shown in Figure 2.

Fig. 2. High-level components of Antelope.

Information Collection. The Information Collection compo-
nent consists of two sub-modules: the Data Collection module
and the Data Process module. The Data Collection module
runs in the kernel. It collects all TCP flow information and
then delivers it via eBPF to the Data Process module, which
is in user space. The Data Process module aggregates and
formats the data before passing it to the Mechanism Match
component. In Section V we will show how we collect the
information.
Mechanism Match. The Mechanism Match component con-
sists of two sub-modules: Online Prediction and Offline Train-
ing modules, both of which are implemented in user space.
When TCP information is delivered to the Mechanism Match
component, it will dynamically select the most appropriate
CCA to use. This will then be recorded to the bpf_map struc-
ture and made accessible in the kernel. The Online Prediction
module relies on several trained models for selecting different
mechanisms, and will return the most suitable one according to
the scores generated by each model. To inform this process,
the Offline Training module will train the matching models
using a reward function. Specifically, we build decision-tree
models using XGBoost. The match component also considers
the performance preferences of different applications. Some
applications (e.g. online chat) are delay sensitive, while others
(e.g. file transferring) are throughput sensitive. The Mechanism
Match component exposes an API to the application to get
the applications’ performance preferences. We then predict
the suitable CCAs by considering the flow and network
states as well as the application requirements in the Online
Predication module. Specifically, the reward function reflects
the application’s requirements by assigning different weights
to the throughput and delay. The details of this component are
shown in Section IV. Note that this component can also be
implemented in the cloud, where multiple front-end servers
can share one component to reduce the computation overhead
on individual servers.
Mechanism Switch. The Mechanism Match component
records the flow identifier (by IP and port) and the correspond-
ing CCA for the flow under consideration. Using eBPF, these
information is delivered to the kernel. Then the Mechanism
Switch component (in the kernel) will switch to the selected
CCA. This process is hooked into three Linux kernel functions:
tcp_setup, tcp_sendmsg and tcp_close. In the tcp_setup
and tcp_sendmsg functions, the hook monitors the bpf_map
and will switch the CCAs if instructed. In tcp_close, the hook
function sends flow closing signals to the Mechanism Match
and Mechanism Switch components.
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Fig. 3. Online Prediction module overview.

IV. PREDICTION AND TRAINING

A. Prediction Module

Overview. The Online Prediction module is the heart of
matching process. Its goal is to predict the optimal CCA based
on the TCP flow information. Figure 3 shows the overview
of the Online Prediction module. It consists of three main
modules: the Statistics Module, Reward Module and Selection
Module.

As an input, Antelope takes a set of N contiguous ACK
packets (in the order that the ACK packets arrive). We refer
to this set of packets as a data unit. The CCA selection is
then performed on the granularity of each data unit. Once
N packets are recorded, the information is passed to the
Selection Module and Reward Module. The Selection Module
is composed of multiple prediction models for different CCAs.
By comparing the reward predictions made by each model, the
best CCA is selected. When the next data unit is generated,
the Reward Module analyzes its statistics to evaluate the effect
of the last switching CCA.

The models are trained using a collection of tuples (si, ri)
for candidate CCAs. These are used for online training, where
si is the statistical information and ri is the reward value for
the i-th CCA. The output of the Statistics Module and the
Reward Module are used go generate the tuples for online
training. The output of the CC Selection Module is also
directed towards Training Data to inform the training process
which CCA is selected.
Statistics Module. The Statistics Module is responsible for
gathering flow information. It does this by reading flows’ infor-
mation from the Information Collection component. On receiv-
ing an ACK, the kernel updates the flow’s information, e.g.
RTT , CWND, sending rate, the number of lost packets.
Let dt denote the t-th data unit in a stream, and st refer to
the statistics of dt. For every data unit (every 20 packets by
default, i.e. N = 20), we calculate the statistics based on the
flow information collected for each ACK packet. We set the
data unit size as a tradeoff between computational overhead
and effectiveness. Note, calculating statistics on a per data
unit basis (as opposed to statistics per ACK) reduces the
influence of the network noise in machine learning based
decision making [32]. A summary of the statistics are shown
in Table I.

The Statistics Module continuously calculates the statistics
for each data unit and stores them in memory. When the
Selection Module receives the statistics of dt, it predicts the

TABLE I

STATISTICS GENERATED BY THE STATISTICS MODULE

CCA that dt+1 needs to use. The reward calculated by the
Reward Module is then used to provide feedback on the effect
of dt’s prediction. In this paper, we define rt as the reward
calculated using the statistics of dt. So, the final state (i.e. the
training data for the prediction model) at step t becomes the
vector traint = (st, rt+1).
Reward Module. This module is responsible for calculating
the effectiveness of a given CCA, and returning a predicted
reward. As previously mentioned, this is stored in the Statistics
Module and later used by the Selection Module to choose the
CCA for the next period.

In order to quantify the performance of each CCA,
we define the normalized reward function as Eq 1:

R̂ = R/Rmax

=
(

throughput� − η ∗ loss

max{θ ∗ delay�, 1}
)

/

(
pacing_rate_max

delaymin

)
(1)

Giessler [33] showed that the effectiveness of a CCA can
be measured by a metric called Power, defined as Power

=
throughput

delay
. It has been shown that when the power

reaches the maximum value, not only the network but also the
individual flows are in their best state. Our reward function (as
shown in Eq 1) is therefore based on the definition of Power
(similar to Orca [20]). We also incorporate loss as a parameter
to adjust the reward function, in order to minimize the packet
loss. When computing the reward function, we set the unit of
throughput as Kbps, the delay as ms, and the loss as number
of lost packets (in one data block interval). η is a parameter
that determines the weight of packet loss to reward function.
In our current implementation, we empirically set it as 1.

Although Power captures the ultimate goal of the congestion
control algorithm (maximizing throughput while minimizing
the delay), in practice it is hard to obtain the maximum
throughput and the minimum delay at the same time. Further-
more, the sensitivity of streams of different sizes to throughput
and delay varies greatly. For example, large flows are usually
throughput sensitive, but small flows are more concerned about
delay. To address this, we add the coefficient δ(≥1) into Eq 2
(which defines delay� used in Eq. 1):

delay� =
{

delaymin (delaymin ≤ delay ≤ δ × delaymin)
delay o.w.

(2)

After the TCP connection setup completes, δ will be ini-
tialized to 2. As packets are received by the Information
Collection component, δ will increase exponentially with the
number of data units. For example, δ is 2 for the first data
unit, 4 after the second data unit etc. This means that the
reward function will change from delay sensitive to throughput
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sensitive when more packets are sent in the flow.

throughput� = throughput ∗ ζ + MAX_RATE ∗ (1− ζ)
(3)

Finally, throughput� is defined as in Eq. 3, where
throughput is the measured average throughput, MAX_
RATE is the largest value for pacing_rate_max (defined in
kernel as 223− 1), the parameters ζ and θ are used to capture
the application preferences on throughput and delay (ζ ∈
{0, 1} and θ ∈ {0, 1}). Specifically, we define three modes of
applications’ performance preferences: delay sensitive mode,
throughput sensitive mode, and default mode. In the default
mode, both ζ and θ are set to 1, which means that the CCA
with both good throughput and low delay should have a higher
reward value (and therefore should be chosen). For the delay
sensitive mode, ζ and θ are set to 0 and 1 respectively; then
the CCAs with lowest delay will be chosen. On the other hand,
for the throughput sensitive mode, ζ and θ are set to 1 and 0
respectively; then Antelope will choose the CCAs with the best
throughput. Via these two parameters, Antelope considers the
application’s preferences (throughput or delay sensitive) when
choosing the most suitable CCAs.
Selection Module. This module is responsible for retrieving
the reward predictions across the set of available CCAs (for
a given flow) and then selecting the optimal one. However,
short TCP flows may finish before it is possible for the
Reward Module to calculate the prediction. Thus, we use
two types of predictions: (1) A stream-level prediction which
predicts the most suitable CCA for this flow by analyzing
realtime information (suitable for long flows); and (2) An IP-
level prediction which uses historical information about prior
stream from that IP address or prefix (suitable for short flows).
We describe these below.

Algorithm 1 Stream-Level Prediction Algorithm
1: function STREAMPREDICT(statistics)
2: maxReward← 0
3: predict_cc← NULL
4: // cc_model_map stores prediction models of each CC
5: for cc in cc_model_map.keys do
6: predict_model ← cc_model_map[cc]
7: reward← predict_model.predict(statistics)
8: if reward > maxReward then
9: maxReward← reward

10: predict_cc← cc
11: end if
12: end for
13: return predict_cc
14: end function

Stream-level prediction. The stream-level prediction’s
pseudocode is shown in Algorithm 1. In Antelope, we train
a model for each algorithm independently so that we can
easily extend the system to new CCAs. At each step t, the
Selection Module observes the statistics (st), and then selects
the CCA with the highest predicted reward. The calculation
of predictions is described in Section IV-B, where we rely on
XGBoost decision trees. Figure 4 shows the architecture of
the decision tree. The number of layers in the decision tree
depends on the complexity of the training data. Put simply,

Fig. 4. Architecture of the decision tree for prediction.

when, for example, we want to predict BBR’s reward for one
stream, we input the flow information to the BBR prediction
model. For each tree, we get the predicted reward, and then
we add up all the rewards to get the final result. The reward
can be obtained both after a CCA is deployed and prior using
offline training.

The computational complexity of XGBoost is O(Kd||x||o+
||x||ologn), where d is the maximum depth of the tree, K
is total number of trees, and n is training data size. Note,
the values of d and K can be set in the training process.
||x||o is the number of non-missing entries in the training
data [34]. As shown in Table I, we have 7 features for
each training data point. Suppose we have n training data,
||x||o is capped at 7 ∗ n. So the computational complexity is
O(K ∗d∗7∗n+7∗n∗logn). We set the value for d and K as
6 and 40 respectively as experimental results show that these
values can avoid overfitting. We can see that the computational
complexity grows with number of training data (n) in multiples
of logn.
IP-level prediction. In IP-level prediction, Antelope selects
the CCA based on the historical results of the streams belong-
ing to the same IP or a/24 segment. This allows Antelope to
select an appropriate CCA before a flow has been initiated.
Algorithm 2 presents the IP-level prediction pseudocode. For
each IP range, Antelope records the number of times that each
CCA has been chosen in the flows to that IP space. In order to
adapt to changes in the network, each time a new stream level
prediction is obtained, the IP prediction result will be merged
with the current prediction results. Note, the historical data is
weighted by an coefficient α (0 < α < 1) which is inversely
proportional to the age of the data (the older the data is, the
lower the weight is). Finally, the CCA that has been chosen
most frequently with the highest reward is selected.

Algorithm 2 IP-Level Prediction Algorithm
1: function IP PREDICT(ip, cc_mechanism)
2: cc_count_map← ip_CCs_map[ip]
3: //Reduce the weight of all historical data.
4: for cc in cc_count_map.keys do
5: cc_count_map[cc]← cc_count_map[cc] ∗ α
6: end for
7: cc_count_map[cc_mechanism]+ = 1
8: //Choose the cc mechanism with the largest count.
9: cc_predict← getMaxCountCC(cc_count_map)

10: //Update the IP and cc mechanism in bpf_map.
11: updateBpfMap(ip, cc_predict))
12: end function

B. Training Module

The above relies on a trained model that can predict the
reward for a given flow using each CCA available. For training
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the XGBoost model, we perform both offline and online train-
ing. XGBoost is a supervised learning algorithm. The training
inputs are data pairs, such as (x̂0, y0), (x̂1, y1) . . . (x̂n, yn),
where x̂ is the features vector and y is the label. Using this
past input, XGBoost tries to predict the correct label for unseen
inputs.

XGBoost integrates weak tree models to achieve strong tree
models by iterative training. The computation of each decision
tree model is independent. Such parallel computation makes
XGBoost’s learning process fast [34]. The TCP flows may be
quick to finish and Antelope needs to predict CC mechanisms
timely; this is why we choose XGBoost for selection. Algo-
rithm 3 presents the pseudocode for the Training Module. Note
that both offline and online training follow the same process.

Algorithm 3 Training Algorithm
1: function CREATETRAINDATA(statistics_t, cc, train_data)
2: //train_data[cc] is the training data for a specific CC.
3: cc_train_data← train_data[cc]
4: reward_t← cal_reward(statistics_t)
5:

6: pre_data.append(reward_t)
7: cc_count← cc_train_data.size()
8: cc_train_data[cc_count]← pre_data
9: pre_data← statistics_t

10: //Write training data into files.
11: if cc_count > MAX_COUNT then
12: write_train_data(cc_train_data, cc_files[cc])
13: delete(cc_train_data)
14: end if
15: end function
16: function TRAINMODEL(cc_files)
17: for cc_file in cc_files do
18: cc_model ← XGBOOST (cc_file)
19: //Model persistence.
20: model_dump(cc_model)
21: end for
22: end function

Offline training. We initiate training in an offline fashion,
where we trigger clients to connect to the server, which then
randomly selects different CCAs to use. This can be done
in an emulated environment, as we show in Section VI. The
servers collect statistical information (s) and the corresponding
ground-truth reward (r). The reward result (rt+1) represents
the reward of the mechanism for the t + 1 data unit. This
provides the training instance for data unit t in a tuple
(st, rt+1). We then use this to train a XGBoost model to
predict the correct reward based on the observed statistical
information in the previous data unit.
Online training. The previous step creates a pre-trained model
for each CCA. We then continue the training in an online
fashion by continually computing the real reward to measure
the accuracy of the predictions in-the-wild. The reward result
and the TCP stats (st, rt+1) for the chosen CCA are appended
to the training data and are used for periodic re-training. The
above training is per-CC not per client-server pair. That said,
the trained models are independent to clients and servers and
can be reused by other servers.

Fig. 5. Overview of the Antelope implementation.

V. IMPLEMENTATION

We have implemented Antelope in both user space and the
Linux kernel (CentOS 8 with kernel version 4.18). We collect
TCP flow information from the kernel and then share it
with user space (via eBPF), where Antelope uses it to select
the most suitable CCA. The suitable CCA for this flow is
then delivered back to the kernel using bpf_map. Antelope
then switches the CCA in the kernel. An overview of the
implementation is shown in Figure 5.

A. Collecting Flow Information

We use the BPF Compiler Collection (BCC) probe function
to get the TCP flow information [35]. We extract the informa-
tion from struct sock in the kernel. BCC sets different hook
functions in the Linux network stack, which means we can get
information from different hook points. In our system, we set
a hook in the tcp_ack function.

The basic unit we collect is the TCP flow and we distinguish
different flows by the saddr, daddr, lport and dport. In every
flow, we collect srtt, mdev, min_rtt, packets_out, lost,
total_retrans, pacing_rate and TCP state, which are all
recorded in the struct sock for this flow. For every ACK that
arrives, the hook will be triggered and the information will be
delivered to user space via eBPF.

B. Exchanging Information by ebpf_map
To pass flow information from the kernel to user space,

we use the ebpf_hash. To pass the suitable CCA from user
space to the CC Switch module in the kernel, we use the bpf_
map. The suitable congestion mechanism set via ebpf_map
is formatted as a key-value pair: IP+port → CCA. As at the
beginning of a flow, there is not enough information to predict
the best algorithm, we select the default algorithm or the one
based on the historical information associated with that IP.

On receiving an ACK packet, the eBPF’s user space pro-
gram will get flow information from kernel via ebpf_hash.
Then the information will be stored in a hashmap (using
IP+port as the key). Periodically (default 20s), the data in
the hashmap will be dumped to disk first and then emptied.
We evaluate the memory usage due to the using of eBPF in
Section VI-I.

C. Switching TCP in the Kernel

We use eBPF to switch TCP mechanisms in the kernel.
To run Antelope, the compiled eBPF program is loaded
into the kernel first. In the eBPF program we use the
bpf_getsockopt and bpf_setsockopt in the tcp_ebpf library
to switch to the corresponding algorithm [25]. We set three
hook points in the kernel to trigger the switching process:
tcp_init_transfer, tcp_sendmsg, tcp_close_state. For the
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tcp_init_transfer hook, the eBPF program will set the new
algorithm based on the flow’s IP or the default one as we
explained in Section V-B.

For the tcp_sendmsg hook, we set the new congestion
control algorithm according to the prediction. At the end of
the flow, the hook point in tcp_close_state will delete the
key-value item for this flow. Since we use an eBPF program,
when we run Antelope and add a new ability to the kernel,
it is unnecessary to rebuild the kernel or to reboot the system.

In the Online Prediction module, once N ACK packets
(i.e. a data unit) are received, the prediction process is
triggered (by default, N = 20). If the prediction process
finds another suitable algorithm for this flow, it updates the
ebpf_map, adding the IP+flow ID → congestion algorithm
item in the map. If the new algorithm is the same as the old
one, the item will be set as empty. At the tcp_sendmsg
hook point, the eBPF program will check the map. If it
gets the name of a new congestion algorithm in the map,
the eBFP program will set this flow’s congestion control
algorithm to the new one. To avoid switching the algorithm
too frequently, we only switch upon seeing M (default 2)
consecutive recommended changes.

Antelope can switch between CCAs that are implemented in
mainstream Linux kernel, currently including BBR, CUBIC,
C2TCP, Vegas, Illinois and Westwood. Antelope chooses these
algorithms as they are wildly used and implemented in the
release version of kernel. It is worth noting that Antelope
can be applied for the dynamic selection of other CCAs
implemented in kernel. Regardless of whether competing
TCP flows use Antelope, individual flows may use different
CCAs. Thus, Antelope inherits the TCP-friendliness of the
chosen CCAs. For example, if Antelope chooses BBR, then
it will take a larger share of the bottleneck bandwidth than
CUBIC in shallow-buffered network.

D. Parameters Continuity

When dynamically switching between CCAs, it is important
to ensure continuity in the flow parameters. For example, the
new CCA should be initiated with the CWND of the previous
CCA. Two kinds of parameters are related to this continuity:
(i) Common parameters such as sending rate (CWND or pac-
ing rate); and (ii) Measurement parameters such as RTT and
packet loss rate. In the Linux kernel, the above parameters
are recorded in the struct sock, which is maintained by all of
the CCAs. For the sending rate, when switching to a new CCA,
we use the same value as before. For measurement parameters,
we also inherit the same values. This is because different
CCAs use the same module to calculate these parameters
and it will therefore not affect the measurement parameters’
accuracy. We will validate the continuity of parameters in
Section VI-C.

Except for these common parameters, different CCAs may
have their own specific parameters. These parameters are
completely different. For example, BBR has pacing_gain,
cwnd_gain and full_bw_cnt; CUBIC has round_start,
epoch_start and sample_cnt; Westwood has bw_ns_est;
Vegas has do_vegas_now. C2TCP is based on CUBIC, so its
specific parameters are the same with CUBIC. This means
that a newly initiated CCA may also have to bootstrap new
parameters. To address this, as all of these parameters have
default values, we simply use their default values when
switching to a different CCA. Note, this is similar to what
Rein [29] does.

Fig. 6. The architecture of the cloud-based learning implementation.

E. Application Requirements

Antelope uses an API to receive application requirements,
i.e. the App. requirement API in Figure 2. The API has two
variables: key and type. We set application’s port number
as key to distinguish which application it is. type is set
as 1, 2 or 3 which means default (consider both throughput
and delay), delay or throughput sensitive mode respectively.
The API can be used after developers create TCP socket.
This information is passed to Antelope’s Mechanism Match
component and then used to set the weight of the throughput
and delay in Eq. 1 for different flows. Through this, Antelope
will show preference towards either delay or throughput
when selecting the corresponding CCAs. Note that for each
CCA, we train 3 models that correspond to the 3 application
preference modes. The type parameter indicates which model
should be used for CCA selection. If the application does not
set the API, by default, Antelope will consider both the delay
and throughput and choose the CCA that is balance between
delay and throughput.

F. Remote Cloud-Based Learning

To reduce the computation overhead introduced by the
Online Prediction and Offline Training modules on individual
end servers, our framework can host certain components
in the cloud, as an alternative option to perform training
locally. Figure 6 presents the architecture of the cloud-based
implementation. This implementation divides Antelope into
two parts: the end server and the learning cloud. The Informa-
tion Collection and Mechanism Switch components are both
operated on the end server, whereas the Mechanism Match
component is placed in the learning cloud. TCP information is
passed to the learning cloud using HTTPS from the end server.
The most suitable CCA is then computed using the Online
Prediction and Offline Training modules and sent back from
the learning cloud to the end server via HTTPS. To reduce the
connection overhead introduced by HTTPS, we use long-live
HTTP sessions between the learning cloud and the end server.

Note, this implementation has two main benefits. First,
it reduces the computational overhead introduced by the
Online Prediction and Offline Training modules in end server.
Second, by centralizing the process, more TCP information
can be accumulated to improve the effectiveness of the training
results. However, the main downside is that this creates a
communication overhead between the learning cloud and the
end server. In Section VI-I we will evaluate both of the benefit
and cost of the learning cloud.
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VI. TRAINING AND EXPERIMENTATION

In this section we describe the training process of Antelope
and then show the effectiveness of Antelope. Training and
evaluation are based on both an emulated environment and
production networks.

A. Testbeds

For both training and evaluation, we rely on a network
emulator and a real world deployment. We first describe their
setups here and delineate the specifics later when presenting
the results.
Emulated testbed. We use Mahimahi, a network emulation
tool which can evaluate different network environments either
(1) by configuring the delay, bandwidth and queue parameters;
or (2) by replaying packet behaviour from a real network [27].

We setup two client processes connected to two servers,
and direct all of their flows via Mahimahi. One client sends
requests to one server and then the server sends files back.
To produce background traffic, the other client sends requests
to the other server. All of the requests use TCP and go through
the same Mahimahi network. The file sizes are randomly
chosen (see later). We change the size of request to emulate
different background traffic effects.
Real network testbed. To test Antelope in a more realistic
context, we also run it in a production network. We install
Antelope on a public cloud (at several locations). We place
server instances in Asia, North America, Europe and the
Middle East. Each instance runs the same file server software
used in the emulated testbed. We then issue requests from our
campus in Shenzhen, China.

B. Training

To evaluate Antelope, we must first train its prediction
model. The training data obtained through the emulated envi-
ronment helps us construct the initial prediction model, and
then the feedback from the real-world experiments supports
the optimization of the model.
Emulated Training. We test more than 30 network envi-
ronments using Mahimahi (their characteristics are shown in
Table II).2 We emulate a WAN with low bandwidth and a
large RTT; and a DCN using high bandwidth and a small
RTT. We also use 6 cellular LTE traces provided in Mahimahi
to test cellular network environments.

We use BDP (Bandwidth*RTT) to describe the size of the
queue buffer. In our emulated network environment, we set the
5*BDP in WAN and 0.1*BDP in DCN, following the setting
in [12]. In the cellular network we do not set its BDP as it is
emulated by the traces [27].

We generate request flows of different sizes (flow size
between 1KB and 50MB). The training procedures for each
parameter combination are repeated 3 times. We run all CCAs
in each setup and collect the training data for each CCA.
Specifically, for every network environment, we set the sender
to a fixed CCA then randomly switch to other algorithms
to observe their performance. We then use this data to train
Antelope’s initial XGBoost model. It should be noted that the
environment we use to train is different from the environment
for the performance evaluation (in Section VI-C).
Real World Training. After the initial training performed
within the emulated environment, we further train Antelope

2All of our environment’s setting values are those that have been tested by
iperf or ping.

TABLE II

RANGE OF EVALUATED ENV. DURING THE TRAINING

Fig. 7. Performance of Antelope vs. other CCAs.

in our real network testbed. We envisage this to be the de
facto approach: each server will start with a generic pre-trained
model, and then iteratively improve it in an online fashion.

We train using both inter- and intra-continental scenarios
by locating clients and servers in two continents and in the
same continent, respectively. Clients (located in our campus)
use a wired network to access these servers by default. RTT
and bandwidth for intra-continental setups are approximately
30ms, 2.4Mb/s; and for inter-continental cases, are approxi-
mately 200ms, 2.4Mb/s respectively. In order to measure the
effectiveness of the CCAs in different time periods, every
6 hours, clients send requests to servers (at 09:00, 15:00 and
21:00). We first randomly pick any CCAs and then select the
algorithm using Antelope. For each request, the server sends
back different randomly sized files (1KB-50MB) just as with
the emulated testbed. Each request and the corresponding reply
form a new TCP flow. Each experiment lasts for half an hour.
In total, we run experimentation over one week and train over
50K TCP flows (7K each day). For the rest of this section,
we use the combination of emulated and real world training
data for evaluation.

C. Performance Evaluation

We first show how Antelope switches between CCAs
(including BBR, CUBIC, C2TCP, Vegas, Illinois and West-
wood) and how the TCP parameters change. We then describe
the performance of Antelope in both evaluation and production
environments.

1) Validating Switching Mechanism: We first validate that
when network condition changes (e.g. novel congestion is
encountered), Antelope can switch CCAs in the kernel without
causing issues. To test this, in the emulated network envi-
ronment, we initiate a flow from the client to the server.
We then, after a period of time, add background traffic between
the second client and server to trigger congestion (using
CUBIC). We monitor which CCAms are selected and validate
Antelope’s capacity to dynamically switch without degrading
performance. As a baseline, we compare against vanilla BBR.

In Figure 7, the top plot shows the rate of background
traffic, the middle plot shows the throughput of Antelope vs.
BBR, and the bottom plot shows the CCAs that Antelope
switches between. Unsurprisingly, we see that the throughput
of both Antelope and BBR decreases as the background traffic
grows. However, the throughput of BBR decreases much more
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TABLE III

SUMMARY OF WHICH CCAs ANTELOPE SELECTS ACROSS DIFFERENT ENVIRONMENTS AND FLOW TYPES.
THE PERCENTAGE INDICATES THE PERCENTAGE OF THE STREAM THAT EACH CCA IS USED

Fig. 8. The continuity of parameter values in the sock struct structure when
Antelope switches between different CCAs.

than Antelope. This occurs because Antelope dynamically
switches between algorithms to reflect the new operating
conditions. This is demonstrated in the bottom plot of Figure 7,
which depicts the CCAs selected by Antelope during the
experiment. At the beginning, Antleope selects BBR; when the
background traffic arrives, it switches between CUBIC, Illinois
and C2TCP. After this exploratory phase (appox. 5 seconds),
Antelope switches to C2TCP stably. This occurs because
C2TCP learns (correctly) that when competing with CUBIC,
C2TCP achieves the best performance.

We next wish to validate that Antelope can perform these
switches without undermining the pre-existing TCP parameters
used by the previous CCA. Figure 8 presents the change
of srtt, CWND and pacing rate when Antelope switches
between different CCAs in one experiment. We can see that
the 3 parameters change smoothly when Antelope switches
between CCAs.

2) Performance Evaluation in Emulated Networks: We next
compare the performance of Antelope in an emulated net-
work (using Mahimahi) against BBR, CUBIC, C2TCP, Vegas,
Illinois and Westwood, as well as two ML-based CCAs that
provide kernel implementations: PCC-Vivace and Orca. PCC-
Viavce uses online learning to adjust the sending rate; for Orca,
we use the trained model that is provided by Orca’s authors.
Finally, we also compare against another CC switching mech-
anism, Rein [29], which uses a rule-based algorithm to select
the CCA. As Rein’s source code is not open, we implement
Rein according to the algorithm it provides in the paper: using
CUBIC by default, switching to BBR in a small buffer network
and switching to Westwood for WiFi connections.

The emulated network is similar to the setup described ear-
lier. However, to differ from the training environment, we use
different traces and parameters in Mahimahi (as described
below). All the throughput and delay results are the averages
taken from 30 runs.

WAN. To evaluate a WAN environment, we set the link’s
delay and bandwidth to 100ms and 120Mb/s in MahiMahi.
The queue length is 5*BDP and the queue is tail drop first.
We introduce background traffic via requests to another server,
which is also connected via MahiMahi. As we introduce
background traffic, the resulting packets loss rate is between
1% to 2%. We run three groups of experiments, consisting of
long, short and mixed flow sizes. For long flows, the size of
the requested files is randomly selected from between 3MB
and 50MB. For short flows, the size is randomly selected
from between 1KB and 3MB. To generate a mixture of flows,
we also run experiments where we randomly select sizes
between 1KB and 50MB.

Figure 9 compares the performance of different CCAs in
this environment. The x-axis is the delay and the y-axis is
throughput. For delay, the marker is the average value and the
end of the line is the 95-th percentile value. For throughput,
the value of the line is the average value. The mechanism
which is on the top left corner is the best. The figures show
that, in a WAN environment, Antelope achieves the highest
or second highest throughput compared with other CCAs
when requesting long, short and mixed-size files. The average
delay of Antelope is in the middle compared with other
CCAs. We find that for most of the time, Antelope chooses
CUBIC or C2TCP, not BBR (see Table III for more details).
Antelope achieves an average of 30% more throughput than
BBR in total. Rein’s performance is close to CUBIC as WAN
has a large buffer (Rein switches to CUBIC in large buffer
environments). PCC-Vivace performs poor when transferring
short files, possibly because it has not converged to its optimal
before the end of the transfer. Orca’s performance also varies
greatly. Recall that Antelope is also much more lightweight
than Orca or PCC-Vivace, as it is built on the CCAs available
in main-stream Linux kernels.
DCN. We evaluate the DCN environment in a similar fashion
to WANs using MahiMahi. We set the bandwidth as 8Gb/s.
The length of the router queue is 0.1*BDP with tail drop
first. The packet loss rate introduced by the background
traffic is about 0.1%-0.2%. We set the flow size following
DCTCP [11], which shows that while the flow size ranges
from 2KB to 50MB, most of the flows are small (as web
search dominates). As such, we set the background traffic
size in DCN as follows: 50% flows are less than 100KB,
40% flows are between 100KB to 1MB and 10% flows are
between 1MB to 50MB. The size of requested files is the
same as in the WAN experiment.

Figure 10 shows the performance of different CCAs in the
DCN environment. The meaning of the x-axis and y-axis are
the same as Figure 9. From the figure, we see that C2TCP and
CUBIC have very high delay and low throughput in the DCN
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Fig. 9. Comparison of throughput and delay for different CCAs in an emulated WAN environment. For delay, the marker is the average value and the end
of the line is the 95-th percentile value.

Fig. 10. Comparison of throughput and delay for different CCAs in an emulated data center environment. For delay, the marker is the average value and
the end of the line is the 95-th percentile value.

Fig. 11. Comparison of throughput and delay for different CCAs in an emulated cellular network environment. For delay, the marker is the average value
and the end of the line is the 95-th percentile value.

environment. Antelope and BBR achieve the best performance.
BBR has good performance for small BDP networks [3],
which is why BBR’s performance in a WAN (which has
a large BDP) is not as good. In the DCN environment,
Antelope chooses BBR for most of the time (see Table III for
more details), so its performance is close to the best. Rein’s
performance is very close to CUBIC in DCN. This is because
in a DCN, the flows are too short to perform switching.
Antelope overcomes this by using IP-level prediction, which
performs the selection based on historical observations. Note
that, as Orca and PCC-Vivace are not targeted for DCNs,
we do not compare them for fairness.
Cellular network. We use the traces provided by MahiMahi
to emulate cellular networks. The traces are collected from
T-Mobile, AT&T and Verizon’s LTE network in walking,
driving and stationary conditions [27]. Importantly, this differs
from those traces used in the training (see Section VI-B).

Figure 11 compares the performance of different CCAs
in this setup, where we can see that C2TCP achieves the
highest throughput as it is specifically designed for cellular
networks. Although BBR has very short delay, its throughput
is low. As Antelope chooses the most suitable CCA (see
Table III for more details), its performance is one of the
highest. As Rein does not have a switching rule specifically

for cellular networks, its performance is not stable (sometimes
close to CUBIC, sometimes close to BBR). PCC-Vivace also
performs poorly, possibly because of its poor adaptability in
highly dynamic networks [20]; Orca again is not stable in
terms of performance.
Summary. In each environment, we see that different algo-
rithms achieve the optimal performance. For example, C2TCP
achieves high performance in WAN and cellular networks but
perform poorly in DCNs; BBR’s throughput is very high in
DCNs, but very low in cellular networks. As Antelope selects
the most suitable algorithm, its performance is consistently
one of the best in all the environments. This is particularly
helpful for servers, which need to handle flows from WANs,
DCNs and cellular networks at the same time (which is
common for servers in the cloud [36]). However sometimes
Antelope may make wrong actions brought by the limitations
of machine learning algorithm. That is why when Antelope is
first applied in a new network environment, it needs online
training to improve its learning effectiveness. Overall, in the
three network environments, Antelope achieves an average
of 16% improvement in throughput and 3.5% reduction in
delay (for short flows) compared with BBR. Compared with
CUBIC, Antelope achieves an average 19% improvement in
throughput, and a 10% reduction in delay. Rein, another CC
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switching mechanism, does not adjust to variable network
conditions and performs poorer than Antelope. The ML-based
mechanisms (PCC-Vivace and Orca), while being more heavy-
weight, require a longer time to converge, and thus are less
stable in terms of performance.

3) Performance In-the-Wild: To evaluate Antelope’s effec-
tiveness in production networks, we use our testbed on the
public cloud (see Section VI-B). We setup servers in 5 cities
located in 4 continents (Beijing, New York, London, Sydney
and Dubai). Every 6 hours, we send requests from our campus
(Shenzhen in China) to each of those servers. The clients con-
nect to the Internet either from wired networks or via LTE. For
the wired networks, the RTT between Shenzhen and Beijing,
New York, London, Sydney and Dubai ranges from 70ms to
180ms. For LTE networks, the RTT between them are close to
the wired networks but fluctuate more (affected by the cellular
network). All of the servers’ bandwidth is 4Mb/s (depending
on the server’s package configuration we purchased in the
public cloud). The sizes of the requested files are randomly
selected between 3MB to 50MB, as discussed in Section VI-B.
For each configuration, we repeat the experiment 30 times and
average the results. Specifically, the sizes of the requested files
are 3MB, 5MB, 10MB, 15MB, 20MB, 25MB, 30MB, 40MB,
50MB. Each request uniformly chooses a file at random for
transferring. For each CCA, we send 30 requests (one by one)
to one server in each run. As we have 5 servers, we send
150 requests for each CCA in each run. As we take 3 runs
per day and our experiment lasts one week, totally we send
3,150 request for each CCA.
Wired network. Figure 12a presents the results when clients
use wired networks, where the x-axis shows the delay and
the y-axis shows the throughput. The marker in the mid-
dle of each ellipse shows the mean average value of delay
and throughput. The ellipses show the standard deviations
from the average results. Antelope, BBR and Orca achieve
the highest throughput. However, whereas the throughput’s
standard deviation is lower for BBR, its delay range is much
higher compared to Antelope. We find, for over 85% of the
time, Antelope chooses BBR in this setup (see Table III for
more details). This is unsurprising as it has been proven
that BBR achieves the best performance in inter-continental
environments [3]. Antelope also utilizes C2TCP for 10%
of the time and CUBIC for 5%, resulting in the differing
performance compared to BBR. As Rein’s fixed threshold
for distinguishing large or small buffers cannot adapt to the
production network, it switches between CUBIC and BBR
irregularly. This means its final performance is between BBR
and CUBIC.
LTE network. Figure 12b reports results in the LTE network.
Antelope and BBR achieve the highest throughput, but it
has worse delay. Most of time Antelope chooses BBR (see
Table III for more details). However when the delay becomes
large, other CCAs (e.g. C2TCP) are chosen. As we observed
in the emulated networks, the two ML-based approaches
(Orca and PCC-Vivace) fail to achieve as high throughput as
Antelope.

D. Dissecting CC Selection

In this subsection, we analyze which CCAs Antelope selects
for each of the environments under study. Table III shows the
CCAs that Antelope selects in each environment for different
kind of flows. The percentage reflects how long the specific

Fig. 12. The results of different CCAs in the inter-continental production
environment.

CCA is used across the whole life of the flow and it is the
average across all flows.

In the emulation environment, shown in Table III, we divide
the flows into long, short and mixed type. We see that, for
the WAN, Antelope switches between CUBIC and BBR. For
long flows in WAN, CUBIC is chosen while for long flows
Antelope chooses BBR most of time. This is probably because
WANs are large buffer networks and for long flows, CUBIC
can occupy the bandwidth and buffer. But for short flows, they
usually finish before they can occupy the buffer.

In the emulated DCN, flows largely use BBR. This is likely
because in a DCN, the switch’s buffer is limited and the
small buffer limits the performance of CUBIC (as it is a
packet loss based CCA). For the emulated cellular network,
most of the time Antelope chooses C2TCP. This is because
the cellular network’s situation changes rapidly. Among all
of these CCAs, C2TCP is most suitable for such fluctuat-
ing networks. Sometimes Antelope also chooses Westwood
(18-23%). This is because Westwood is designed for wireless
environment (such as WiFi), which have similar characteristics
to cellular networks.

We also inspect the CCAs used in our in-the-wild experi-
ments. We find that Antelope chooses BBR most of time for
the wired setup. This is the same result as the long flows in
the emulated WAN. For the real cellular network, Antelope
chooses C2TCP. Again, this confirms the correctness of our
emulated cellular network, which also selects C2TCP.

In summary, we find that Antelope chooses CCAs that are
specifically designed for that environment. However, some-
times it selects other (unexpected) CCAs. We conjecture that
network fluctuations account for it. Specifically, as Antelope
observes network behavior fluctuations, the corresponding
CCAs do not fit the network environment at that time. Thus,
Antelope changes the CCAs according to the online feedback
of the flows and environment.

E. Addressing Application Requirements

We next inspect how effectively Antelope can adapt to
different applications requirements (i.e. related to delay vs.
throughput). As we explain in Section IV, ζ and θ can be set
as 0 and 1 respectively for delay sensitive requirement, while
for throughput sensitive requirement they can be set as 1 and 0
respectively. Figure 13 shows the throughput when Antelope
is at (i) default; (ii) delay first; or (iii) throughput first mode.
Similarly, Figure 14 shows the delay. We present results across
different emulated environments. The default mode means
that Antelope considers both delay and throughput, whereas
the other two show preferences towards delay or throughput.
Across all networks, from Figure 13 we see that Antelope in
the throughput sensitive mode has a higher throughput than

Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on December 27,2023 at 06:41:03 UTC from IEEE Xplore.  Restrictions apply. 



ZHOU et al.: MACHINE LEARNING-BASED FRAMEWORK FOR DYNAMIC SELECTION OF CCAs 1577

Fig. 13. Comparison of the throughput when Antelope’s requirements are set to default, delay sensitive and throughput sensitive.

Fig. 14. Comparison of the delay when Antelope’s requirements are set to default, delay sensitive or throughput sensitive.

Fig. 15. The fairness and friendliness of Antelope in different networks.

the default and delay sensitive mode (both for long and short
flows). In contrast, Figure 14 shows that when Antelope is in
delay first mode, its delay is smaller (for both long and short
flows), compared to the default and throughput first mode.
The results confirm that Antelope can adjust its performance
according to the application’s delay or throughput preferences.
Besides, the DCN throughput and delay are much more
consistent among different modes compared to cellular/WANs,
because in DCN the CC algorithm with best throughput and
lowest delay are the same as Figure 10 shows.

F. Fairness and Friendliness

In this subsection, we discuss the fairness and friendli-
ness for Antelope. We evaluate the fairness between flows
by Jain’s fairness index [37], [38], which is calculated
as: ((

∑n
i=1 thri)2)/(n ∗ (

∑n
i=1(thri)2)), where thri is the

throughput for the i − th flow. The fairness index ranges
from 0 to 1 and a value close to 1 indicates that the flows
fairly share the bandwidth.

First, we evaluate fairness when all flows are Antelope.
Figure 15a shows how Antelope flows compete with other
Antelope flows, where the left y-axis is the throughput while
the right y-axis is the Jain’s index. In the WAN environment
(see Section VI-C), we setup five long flows. Every 5 seconds,
a new flow is added and at 25s all of the five flows compete
for the bottleneck. Starting at 100s, every 5s one of the flows
finishes until 125 all flows are done. We can see that the
bandwidth can be shared evenly across the flows, which is

also evidenced by the average Jain’s index around 0.95. This
is because all of the Antelope flows pick the most effective
CCAs to compete with each other. We find that all of the flows
switch between CUBIC and BBR (the same selection in WAN
for long flows, shown in Table III).

For friendliness, we first compare Antelope with CUBIC
in a WAN environment. This is because Antelope usually
selects CUBIC in the WAN environment (see Table III).
We setup one Antelope and one CUBIC flow at 0s; we
then setup a second Antelope and second CUBIC flows
at 20s, and a third Antelope and CUBIC flow at 40s. Starting
at 80s, every 20s, one Antelope and one CUBIC flows
completes. The throughput of the six competing flows is
shown in Figure 15b. We see that Antelope fairly shares the
bandwidth with CUBIC when new flows enter and leave the
network. The Jain’s fairness index is close to 1, implying
Antelope flows shares the bandwidth with CUBIC flows
friendly. We further compare Antelope with BBR in a DCN
environment. The results are presented in Figure 15c. Again,
we see that Antelope shares the bandwidth fairly.
Discussion. Antelope chooses the CC algorithm that has the
highest reward value, and that may help to maintain the
friendliness in some situation. For instance, in large buffer
networks, flows with CUBIC will occupy all of the bandwidth,
while flows with BBR will have low performance in such
situations. However, Antelope can choose CUBIC for such
flows and compete with CUBIC to achieve better performance
and friendliness.
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Fig. 16. Comparison of the throughput and delay when we vary η and δ across different environments.

TABLE IV

SUMMARY OF RESOURCE CONSUMPTION FOR ANTELOPE. WE PRESENT STATISTICS ON
CPU LOAD AND EXECUTION TIME, ACROSS DIFFERENT TRAFFIC LOADS

G. Validating Parameter Choice

Recall, η defines the influence of packet loss and δ deter-
mines the influence of delay for reward function in selecting
CCAs. We next inspect the best settings for η (default 1) and
δ (default 2). Figure 16 presents the performance (throughput,
delay) across the emulated DCN, WAN and cellular networks.
For each environment, we experiment with different values of
η and δ. From the figure we can see that, when we set η to 1,
the flow’s performance is superior compared to the values of
0.5 and 1.5. If we set η to 0.5, the performance in the cellular
network is worst. This is because the cellular network has high
packet loss, and the value of 0.5 makes the reward function
less sensitive to loss.

When δ is set to 1, Antelope achieves small delay but also
lower throughput. On the other hand, when δ is set to 3,
the flows’ throughput varies substantially. For example, in the
cellular environment, the throughput is larger, whereas for the
DCN and WAN, the throughput is small. This is because δ will
be 6 for the second data unit in this case, which will make the
flows’ performance more variable. Hence, we set δ’s initial
value as 2 to reduce the fluctuations.

H. Overhead

This section evaluates the extra overhead of Antelope when
we deploy all the three components (i.e. Information Collec-
tion, Mechanism Match and Mechanism Switch, see Figure 2)
on individual front-end servers. The overhead for Antelope
includes three parts: (1) the learning overhead in user space;
(2) the information exchange via eBPF; and (3) the CCA
switching in the kernel.

To evaluate the overhead, we setup a testbed using 4 servers
with two Intel(R) Xeon(R) Silver 4208 CPUs, 16 CPU cores,
128GB memory and 100Gb/s NIC. The servers connect to a
switch with 32 100Gb/s ports. Three servers act as clients to
generate TCP requests to the fourth server which acts as a
TCP sender. We change the traffic volume using the clients’
requests and then calculate the overhead at the sender.

We calculate the overhead of each constituent of overhead
by keeping other two unchanged. For example, when we
calculate the overhead of switching CCAs, we first record

the overhead of running the whole process. We then repeat
the same process but without the switching. We define the
computation overhead as the difference of CPU utilisation
(%) between these two measurements. The time overhead
is simply calculated by recording the time spent in each
function. Table IV presents the results taken as an average
across 10 runs. It is worth noting the CPU overhead is the
computation overhead introduced by all TCP traffic, while the
time consumed (T ) is computed on per flow basis.

We see that the overhead introduced by the mechanism
switching (using eBPF in the kernel) is only 0.1%-0.2%, taking
0.001ms even when the traffic rate is 55Gb/s. The interaction
between kernel and user space for TCP stats and control
messages also incurs negligible overhead (the last two rows)
thanks to eBPF. This confirms previous findings that eBPF is
suitable for handling TCP-related operations in the kernel [25].

Unsurprisingly, the learning process incurs the largest com-
putational overhead: about 2-4.8% of CPU usage, where the
prediction time is about 140ms. Note that some flows may be
shorter than the time taken for learning. This is the primary
reason for why we set a default CCA at the beginning of
a flow and apply new CCAs to flows after some time (see
Section III). That said, we note that the CPU overhead is
potentially a little heavy for those servers which have a large
number of concurrent clients. Moving our prediction module
to the cloud could reduce the overhead, which we evaluate in
the following section.

I. Overhead Savings via Cloud Learning

Recall, we introduce the concept of cloud-based learning to
reduce the overhead introduced by Antelope on end servers.
We next evaluate these savings.
Setup. In our testbed, we set one learning cloud server and
10 end servers. Note, the end servers are those that are using
Antelope to send traffic to their clients. 5 end servers are in the
same DCN cloud with the learning cloud server (all loacted
in Shenzhen, China). The other 5 end servers are in different
DCN cloud (loacted in Beijing, China) and they connect to the
learning cloud server over a WAN. The clients which send file
requests to end servers are in the same DCN with end servers.
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TABLE V

BENEFIT AND COST OF CLOUD-BASED LEARNING

Table V shows the CPU and time overhead of the whole
system. The results are divided into same cloud and different
cloud setups. We collect the CPU overhead of both the
learning cloud server and the end servers. The time is divided
into three parts: (i) total; (ii) learning time; (iii) communication
time. The total is the time interval which begins when the end
server sends the request to the learning cloud server and ends
when it receives the corresponding CC algorithms’ names.
The learning time is the time that the learning cloud uses to
compute the most suitable CC algorithm. The communication
time is the time taken to send the (HTTP) requests between
the learning cloud and the end server. We change the TCP
traffic volumes of the end servers by changing the bandwidth
setting by Mahimahi and the clients’ file requests (then record
the corresponding overhead). For example 40Mbps means that
all of the clients’ file requests return an average of 40Mbps
TCP traffic at each end server. The results are taken as an
average across 10 runs.

We further evaluate the memory usage due to the use of
eBPF at end servers in Table V. We see that the memory
usage increases as the traffic increases. However, it does not
multiply with the traffic. This is because we deletes the data
recorded by eBPF periodically to reduce memory usage (see
Section V-B). Overall, the memory consumption is reasonable
in practice.
Benefits. From Table V we see that as the training is moved
to the learning cloud, the CPU overhead (introduced by
Antelope) at the end server is reduced. Compared to the
overhead of performing training locally (see Table V), we find
that the load at the end server is to between 0.5% to 1.7%.
This is consistent for end servers co-located with the learning
server as well as in different clouds.

This is because the end servers offloads the CPU overhead to
the learning cloud server. This leaves greater CPU resources
for application logic locally. As the number of end servers
increase, the relative benefits also increase as the cost can
be amortized. Furthermore, we can dynamically adjust the
learning cloud resources according to the number of end
servers. We conjecture if we use GPU to accelerate the
computation process in learning cloud, we could reduce the
learning time further.
Costs. To implement cloud-based learning, it is necessary for
end servers to communicate with the remote learning cloud
servers. The communication latency between the learning
cloud and the end servers is an extra cost. Table V presents
this latency, confirming that it is very small. Even when
we increase the TCP traffic rate, the communication latency
remains low at just 1∼2ms. For long flows, the latency for
switching CC algorithm is almost negligible. For short TCP
flows, as we have the default CC algorithm to use, such

influence is also acceptable. That said, for end servers residing
in different clouds to the learning server, we see much higher
latency, exceeding 100ms. Such latency may not be acceptable,
especially for the short TCP flows. Therefore, we recommend
to co-locate the end servers and cloud learning server as close
as possible (e.g. in the same DCN).

VII. RELATED WORK

TCP varieties. We are not the first to observe that CCAs
can be optimized for different environments. For instance,
Sprout [7], C2TCP [8], ExLL [39] and PBE-CC [40]
are specifically designed for cellular networks. Similarly,
DCTCP [11], pFabric [12], Timely [41] and Swift [13] are
designed for datacenter networks by using Explicit Congestion
Notification [42]. BFC [43] achieves near optimal throughput
and tail latency behavior in datacenter by hop-by-hop control.
TCPLS offers more control to the application by provid-
ing multiplexing, connection migration service in TCP [44].
Orca [20], Libra [45], TCP-Drinc [46] and [23] adjust CCAs’
parameters (e.g. congestion window size) using deep reinforce-
ment learning. In our work, we do not attempt to devise new
CCAs or adjust their parameters but, rather, we dynamically
select the best algorithm for observed network conditions on
demand. DCTCP [11], pFabric [12] and ACC [47] use ECN to
infer the network status (such as buffer and channel capacities)
and then adjust the congestion. Such mechanisms need the
support of routers. Our mechanism only requires end host
support and is therefore easier to deploy.
Selection of optimal CCAs. Most related to Antelope is
Rein [29], which also tries to select the most suitable CCAs
for different networks. Rein relies on rule-based selection.
It first classifies the network environment (e.g. WiFi or
wired) and uses the CCA that is manually designated to
this environment. In contrast, Antelope predicts CCAs more
accurately via machine learning. Furthermore, Rein uses
pipe to exchange information between user space and kernel
while Antelope relies on eBPF. This makes it easier to
extend Antelope with new CCAs and learning mechanisms.
TCP-RL [48] is another work that selects suitable CCAs
using reinforcement learning. However, TCP-RL implements
the selection entirely in user space based on Pantheon [30],
which means individual applications need to implement
support. To improve CDN performance, Configanator [49]
provides programmatic control for web server’s configuration
parameters (such as CCAs, initRTO, timestamps, version of
HTTP and HTTP max frame size). Antelope only targets
CCAs, wheres Configanator targets the whole web server.
Antelope can be extended to any application (not just a web
server) via its kernel-level integration.
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TCP implementation in the kernel. Others have focused on
streamlining updated TCP implementations in kernel space.
This has partly been achieved via eBPF. For example, it is
possible to read TCP flow information from the kernel using
BCC [35], and tcp_ebpf [25] has implemented TCP socket
operations (e.g. setting TCP socket parameters) using eBPF.
Such eBPF based operations can let users control TCP imple-
mentations from user space. CCP [50] designs an architecture
which divides the control of TCP from the datapath. We do
not make contributions to this space but, rather, rely on eBPF
to implement Antelope in a flexible and extensible fashion.

VIII. CONCLUSION

In this paper we have designed, implemented and evaluated
Antelope, a system for learning suitable CCAs on a per-
flow basis. Antelope predicts the most suitable CCAs using
machine learning with the network environment, flow states as
well as application requirements as input. We have shown that
Antelope can successfully apply the optimal or near-optimal
CCAs across a diverse range of network types. Through this,
we can improve performance without the need for administra-
tors to manually configure their stacks. We have also shown
that the extra overhead on individual front-end servers can be
greatly saved by implementing the machine learning part in
the cloud and sharing it among front-end servers. Antelope
paves the way for dynamic selection of CCAs.
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