
This paper is included in the Proceedings of the
32nd USENIX Security Symposium.

August 9–11, 2023 • Anaheim, CA, USA
978-1-939133-37-3

Open access to the Proceedings of the
32nd USENIX Security Symposium

is sponsored by USENIX.

HorusEye: A Realtime IoT Malicious Traffic Detection
Framework using Programmable Switches

Yutao Dong, Tsinghua Shenzhen International Graduate School, Shenzhen, China;
Peng Cheng Laboratory, Shenzhen, China; Qing Li, Peng Cheng Laboratory, Shenzhen,
China; Kaidong Wu and Ruoyu Li, Tsinghua Shenzhen International Graduate School,
Shenzhen, China; Peng Cheng Laboratory, Shenzhen, China; Dan Zhao, Peng Cheng
Laboratory, Shenzhen, China; Gareth Tyson, Hong Kong University of Science and
Technology (GZ), Guangzhou, China; Junkun Peng, Yong Jiang, and Shutao Xia,
Tsinghua Shenzhen International Graduate School, Shenzhen, China; Peng Cheng

Laboratory, Shenzhen, China; Mingwei Xu, Tsinghua University, Beijing, China
https://www.usenix.org/conference/usenixsecurity23/presentation/dong-yutao

HorusEye: A Realtime IoT Malicious Traffic Detection Framework using
Programmable Switches

Yutao Dong1,2, Qing Li ∗2*, Kaidong Wu1,2, Ruoyu Li1,2, Dan Zhao2, Gareth Tyson3, Junkun Peng1,2, Yong
Jiang1,2, Shutao Xia1,2 and Mingwei Xu4

1Tsinghua Shenzhen International Graduate School, Shenzhen, China
2Peng Cheng Laboratory, Shenzhen, China

3Hong Kong University of Science and Technology (GZ), Guangzhou, China
4Tsinghua University, Beijing, China

Abstract

The ever-growing volume of IoT traffic brings challenges to
IoT anomaly detection systems. Existing anomaly detection
systems perform all traffic detection on the control plane,
which struggles to scale to the growing rates of traffic. In this
paper, we propose HorusEye, a high throughput and accurate
two-stage anomaly detection framework. In the first stage,
preliminary burst-level anomaly detection is implemented on
the data plane to exploit its high-throughput capability (e.g.,
100Gbps). We design an algorithm that converts a trained
iForest model into white list matching rules, and implement
the first unsupervised model that can detect unseen attacks
on the data plane. The suspicious traffic is then reported to
the control plane for further investigation. To reduce the false-
positive rate, the control plane carries out the second stage,
where more thorough anomaly detection is performed over
the reported suspicious traffic using flow-level features and a
deep detection model. We implement a prototype of HorusEye
and evaluate its performance through a comprehensive set of
experiments. The experimental results illustrate that the data
plane can detect 99% of the anomalies and offload 76% of
the traffic from the control plane. Compared with the state-of-
the-art schemes, our framework has superior throughput and
detection performance.

1 Introduction

The number of Internet of Things (IoT) connections is increas-
ing dramatically and is expected to reach 24.6 billion by 2025
(more than doubled the number in 2019 [16]). However, many
IoT devices are unable to deploy complex security mecha-
nisms due to their limited hardware. Thus, they have become
a major target for attackers [1]. For example, most IoT devices
(e.g., cameras, lights sensor) are exposed outdoors, making it
easy for hackers to attack through physical connections. Due
to a large number of deployed devices (e.g. cameras, sensors),

∗Corresponding author: Qing Li (liq@pcl.ac.cn)

achieving low-cost and real-time anomaly detection on such
a massive scale is challenging.

Traditionally, rule-based systems are utilized for anomaly
detection with high throughput requirements [12]. Since flow-
level rules are high cost to be deployed, network operators
commonly use packet-level rule-based detection systems (e.g.,
a port-based and signature-based firewall [28, 30]), supple-
mented by offline sampling analysis [33]. However, such
detection systems fail to detect unseen attacks and can be
easily bypassed [12, 26].

One promising avenue of investigation is the use of un-
supervised learning. A number of works perform anomaly
detection using this, such as [26, 37], which explicitly claim
the ability of discerning unseen attacks. For instance, in [26],
the authors deploy an ensemble of autoencoders to distin-
guish between normal and abnormal traffic patterns. However,
these methods are designed to deploy detection on the control
plane, which cannot operate at a sufficient throughput to re-
flect practical IoT scenarios [29]. Moreover, abnormal traffic
usually constitutes a very small portion of the entire traffic.
Uploading all traffic to the control plane for detection causes
excessive communication overhead and is highly inefficient.

The emergence of programmable switches brings about a
new perspective on anomaly detection. Compared with the
control plane, programmable switches (e.g., P4 switches [7])
can achieve higher throughput (20x), lower latency (20x),
and faster packet forwarding rate (75x) at the same cost [29].
Thus, various tasks have been offloaded to the switch data
plane for line-speed processing, e.g., in-network intelligence
[20, 22, 39, 42, 43, 45, 47]. The key limitation is that pro-
grammable switches only allow simple instructions (e.g., in-
teger additions and bit shifts) to guarantee high-speed pro-
cessing. Hence, existing works focus on decision tree (DT)
[42, 43] or threshold-based methods [22, 45], which can eas-
ily transform into switch rules. However, DT is a supervised
method that requires a large-scale anomaly dataset. Unfortu-
nately, high-quality network intrusion anomaly datasets are
difficult to obtain [3], not to mention the need to deal with the
drift of anomalous samples. In contrast, unsupervised meth-

USENIX Association 32nd USENIX Security Symposium 571

ods only need to maintain normal datasets, which are easy to
obtain in real-world scenarios.

In this paper, we propose a two-stage IoT anomaly de-
tection framework, named HorusEye,1 with high-throughput
processing and powerful detection capabilities. In the first
stage, we design an unsupervised model on the data plane,
called Gulliver Tunnel,2 which filters out a small amount of
suspicious traffic at line speed. In the second stage, we pro-
pose a novel unsupervised deep learning model, named Mag-
nifier, which is deployed on the control plane. This further
investigates the traffic flagged as suspicious (in the first) and
produces more accurate detection results. To design Horus-
Eye, we must overcome three key challenges: (i) It is difficult
to deploy an unsupervised model with both high anomaly re-
call and offloading capabilities on a programmable switch that
only supports simple instructions and has limited resources;
(ii) it is challenging to extract and maintain the required flow
features on the limited switch memory (e.g., 120 Mb SRAM);
(iii) it is challenging to achieve a low false-positive rate using
a high throughput deep model, since the control plane is a
major throughput bottleneck.

To solve these challenges, first, we propose a novel algo-
rithm to convert an isolation forest (iForest) [21] with many
isolation trees (iTrees) into a small set of white list rules,
which can be easily deployed on the programmable switches.
Notably, this is the first solution to deploy a powerful yet
lightweight unsupervised model on a switch. Then, we design
an IoT flow feature extraction scheme that can be deployed on
programmable switches. The bi-hash and double hash table
methods are proposed to match bidirectional flow with only
O(1) computational complexity, based on which burst-based
features can be obtained to distinguish abnormal behavior.
Finally, we design an asymmetric lightweight autoencoder
and implement a model quantization on the control plane,
thereby achieving a throughput of millions of packets per sec-
ond without significantly degrading detection performance.

We implement the prototype of HorusEye.3 and conduct
comprehensive experiments on a real IoT testbed. The re-
sults show that HorusEye can achieve single-port 100Gbps
detection on the switch. It also exhibits excellent anomaly
detection accuracy, achieving a recall rate as high as 99%.
Moreover, HorusEye can offload 76% of the normal traffic
away from the control plane. Compared with the state-of-the-
art schemes, Kitsune [26] and Mousika [42], HorusEye has
superior throughput and detection performance.

2 Threat Model

This paper mainly concerns the cyber threats initiated by com-
promised IoT devices. Due to the prevalent vulnerability of

1The Eye of Horus is believed to have a protective magical power that
can turn away harm or evil influences.

2Gulliver Tunnel is believed to transform objects from large to small.
3https://github.com/vicTorKd/HorusEye.

Figure 1: Overview of HorusEye.

IoT systems, attackers can get unauthorized access and trans-
form the devices into part of a botnet. A compromised device
can be controlled by the botmaster to launch a DDoS attack,
leak sensitive data, scan and infect more devices and conduct
other malicious activities. Additionally, certain assumptions
are necessarily made. (i) A newly produced IoT device is
initially benign and trusty, and no malware or backdoor is
pre-installed. (ii) All active attacks from IoT bots leave traces
in and above the IP layer traffic. Accordingly, attacks like
eavesdropping attacks [27] or MAC spoofing are not consid-
ered.

3 Overview of HorusEye

HorusEye is a novel two-stage IoT anomaly detection frame-
work consisting of Gulliver Tunnel and Magnifier, deployed
on the data plane (i.e., the programmable switches) and the
control plane (e.g., x86 server), respectively, as shown in Fig-
ure 1. By taking advantage of the high throughput of the
data plane, Gulliver Tunnel conducts preliminary anomaly
detection over the high-speed incoming traffic and reports any
suspicious traffic to the control plane. Gulliver Tunnel mainly
aims at filtering as much normal traffic as possible to allevi-
ate the burden of the control plane. The control plane then
further investigates the traffic reported using a more powerful
anomaly detection model, i.e., Magnifier.
Gulliver Tunnel detection. Gulliver Tunnel first extracts
burst-level features from the incoming traffic using the burst
feature extractor (§ 4.2). It detects anomalies based on the
iForest model. However, since the iForest consists of a large
number of iTrees, it is impractical to deploy the trained iFor-

572 32nd USENIX Security Symposium USENIX Association

X1 X2

(54,63] (85,86]
(53,65] (86,87]
(115,122] (145,146]
(113,125] (146,147]

···
Score>0

iForest rules

Rule generation

iForest model

White list

Figure 2: Transformation of a trained iForest with two features
into white list rules on the programmable switch.

est directly on the programmable switch due to the limited
resources. Therefore, Gulliver Tunnel transforms the trained
iForest model into white list rules using a novel rule genera-
tion algorithm (§ 4.1). The generated rules on the switch pro-
duce almost the same detection results as the original model,
while requiring only integer match operations, as supported
by the data plane. After the data plane anomaly detection,
Gulliver Tunnel sends the suspicious flow ID to the control
plane for a more precise investigation.
Magnifier detection. Upon receiving the suspicious flow
ID from the data plane, Magnifier (on the control plane) first
matches the flow ID with those in its suspicious flow table. If
the flow’s suspicious anomaly frequency exceeds a threshold,
Magnifier further analyzes the flow pattern from the historical
mirrored traffic using a lightweight deep-learning model. Fi-
nally, Magnifier adds the confirmed malicious flow ID to the
blacklist on the data plane to block or limit the speed of this
flow in the future. In addition, we update the unsupervised
deep model and the iForest model on the control plane when
new flow information is obtained.

In summary, HorusEye integrates the respective advantages
of the two modules to achieve high throughput and precision
anomaly detection. We next describe Gulliver Tunnel (§4)
and Magnifier (§5) modules in detail.

4 Gulliver Tunnel

In Gulliver Tunnel, we propose an efficient algorithm to gen-
erate a series of rules from the iForest model. We design
a feature extraction algorithm considering the limitations of
switch resources. We also analyze the complexity of the whole
module and implement the prototype in P4.

4.1 IForest Rule Generation
We propose a novel rule generation algorithm, which converts
a trained iForest with any number of iTrees into white list
rules, as illustrated in Figure 2. These can then be installed
on the data plane. Such rules are interpretable and can be
combined with expert knowledge.

An iForest is formed by ensembling t iTrees, as shown in
Algorithm 2 (in Appendix), where each iTree is generated by

Aggregate
𝑥!

𝑦!

𝑌

𝑋
𝑦"𝑥"

𝑥! 𝑥#

𝑦#

𝑦!

𝑌

𝑋
𝑦"
𝑥" 𝑥%!

y%#

𝑌

𝑋
𝑦"
𝑥"

y%!

𝑥%#

Floor 𝑦#

𝑦!

𝑥! 𝑥#

𝑥#

𝑦#
𝑌

𝑋
𝑦" 𝑥"

(a) Hypercubes of 𝑖𝑇𝑟𝑒𝑒!

(c) Hypercubes of iForest (d) Integer hypercubes

(b) Hypercubes of 𝑖𝑇𝑟𝑒𝑒#

Figure 3: An example of the rule generation algorithm (with
2 features). Each iTree divides the hyper-dimension feature
space into hypercubes. The algorithm aggregates all iTrees’
divisions to form the iForest’s hypercubes.

Algorithm 3 (in Appendix) using ψ sub-samples randomly se-
lected from the samples. The iTree randomly selects a feature
to branch the tree using a random threshold within the valid
range of this feature. This step generates a hyperplane that
divides the current feature space into two sub-spaces. Then,
the same branching process is repeated recursively until a
child has a single sample, or reaches the maximum depth. To
test a data point, its anomaly score is calculated based on its
average path length when traversing all iTrees. Intuitively,
anomalies usually stop at sub-spaces reached within fewer
branching steps (i.e., having smaller anomaly scores). Com-
pared with the supervised method Random Forest, iForest is
more dependent on the path of the branch. That is why the
existing forest rule generation method [4,11,25,40] using the
public shortest path is not suitable for iForest.

We observe that each iTree essentially conducts a round of
hyper-dimension feature space dividing. That is, each iTree
divides the hyper-dimension feature space into hypercubes
(called iTree hypercubes) through binary tree branching, as
illustrated in Figures 3(a) and 3(b). To deploy the iForest
rules on the data plane, we aggregate the space divisions, i.e.,
branches, of all iTrees in the iForest and obtain finer hyper-
cubes in the hyper-dimension feature space (called iForest
hypercubes), as illustrated in Figure 3(c). Specifically, the
following label consistency property of each hypercube after
aggregation is observed.

Property. (Label Consistency) All samples inside an iForest
hypercube have the same anomaly score.

Proof. For each iTree, the labels in an iTree hypercube are
consistent. Following the aggregated division, all points inside
an iForest hypercube must belong to the same iTree hypercube
obtained by the original dividing of each iTree, i.e., they have
the same path length. As such, their average path lengths,
scores and classification labels are the same as well.

The branching thresholds in the iForest are real values. As
such, the hypercubes are characterized by non-integer bound-

USENIX Association 32nd USENIX Security Symposium 573

aries. However, the data plane does not support floating-point
arithmetic. Fortunately, most packet-related features are in-
herently integers (e.g., header features and burst size). Thus,
for these integer features, we can further “shift” these hyper-
cubes slightly for integer boundaries by rounding down the
branches of each feature to their nearest integers, as illustrated
by Figure 3(d), as follows:

b̆i← ⌊bi⌋,bi ∈ b, (1)

where b is the set of branching thresholds of the iForest.

Theorem 1. The shifting in Equation (1) does not change
which hypercube an integer data point falls into, i.e., for any
integer value α, α ∈ (bi−1,bi]⇒ α ∈ (b̆i−1, b̆i].

Proof. If bi is an integer, (bi−1,bi]⊆ (b̆i−1, b̆i]. Therefore, in
this case, α ∈ (bi−1,bi]⇒ α ∈ (b̆i−1, b̆i].

If bi is not an integer, suppose α does not satisfy the in-
ference, i.e., α ∈ (bi−1,bi] but α /∈ (b̆i−1, b̆i]. In this case,
α ∈ (b̆i,bi]. However, since b̆i is the nearest integer that
is smaller than bi, there is no integer in the interval of
(b̆i,bi]. This contradicts the existence of such α. Therefore,
α ∈ (bi−1,bi]⇒ α ∈ (b̆i−1, b̆i].

After obtaining the hypercubes with integer boundaries, we
need to decide the label of samples in each hypercube. Ac-
cording to the label consistency property, a hypercube’s label
can be obtained using any data point in it. Without loss of
generality, for each hypercube, we choose the vertex that has
the largest value, i.e., the right bound, in each feature dimen-
sion. We then use the vertex’s label predicted by the iForest
model as the label of the hypercube. Finally, the hypercubes
marked with “normal” labels will be turned into white list
rules on the data plane (Figure 1).

Algorithm 1 ruleGenereation(iTrees)
Require: a set of t iTrees
Ensure: rules

1: initial f eature_branch ={ ′ f eature_name′ : [branch_set] }
2: f eature_branch← getFeature_Branch(iTrees)
3: for f in f eature_branch.keys() do
4: branch_set← Set(f loor(f eature_branch[f]))
5: vertex← vertex⊗branch_set
6: end for
7: sort(vertex)
8: hypercubes.label← iTrees.predict(vertex)
9: #Merge the spatial domains of consecutive and identical labels.

10: rules← range_generation(hypercubes)
11: return rules

The above process of generating data plane rules from iFor-
est is summarized in Algorithm 1. First, we record all branch
values of iForest (lines 1-2), which are the boundaries of the
hypercubes. Then, we shift them down to obtain the integer

boundaries according to Equation (1), use the set function to
avoid duplicate boundaries (line 4), and generate each vertex
by the Cartesian product (line 5). Furthermore, we employ
a greedy algorithm to generate regular intervals by sorting
the vertexes from small to large, and consider the domain
between two adjacent vertexes as a hypercube (line 7). Then,
we predict the labels of these hypercubes using the trained
iForest (line 8). After that, the hypercube of the same label is
merged. Finally, the range rules are generated (line 10). No-
tably, we add the maximum value INF as the boundary branch
for each feature to avoid the problem that multi-dimensional
feature sorting makes the later branch’s value smaller than
the previous value.

Compared with the enumeration methods of [43], we pro-
pose executable-level enumerations by taking advantage of
the consistent labels within the hypercubes in the iForest.

4.2 Burst Feature Extractor

To apply the rules, it is first necessary to extract bursts of
packets from the traffic. A burst is defined as a long se-
quence of continuously sent packets in a flow, where the
inter-arrival time does not exceed a certain threshold τ. Al-
though [2, 23, 34, 46] use bursts to infer the event activity
categories of IoT devices, such solutions require excessive
resources to maintain the long sequence of packets, e.g., long
HTTP flows will cause persistent storage in memory. This is
not practical for Tbps switches. To address this, we propose
burst segmentation to reduce long-term resource occupation
by keepalive traffic, bi-hash to achieve bi-directional flow
matching, and double hash table to solve the hash conflict
problem. It will be described in the following subsections.

4.2.1 Burst segmentation

We set a packet number segmentation threshold to achieve
low resource usage and high real-time anomaly detection.
Meanwhile, we use the packet number and sizes of segmented
bidirectional bursts as features.

4.2.2 Bi-hash.

To get bidirectional burst features, it is necessary to first match
the bidirectional flows. Conventionally, the matching of bidi-
rectional flows is to calculate the ID through a five-tuple
hash function hash(dstIP, srcIP, dstPort, srcPort, protocol),
and then use a dictionary to maintain the ID of the reverse
flow, which is highly complex. To reduce the computation
burden on the switches, we design a linear complexity bi-
hash algorithm. Specifically, we divide the original five-tuple
hash function into an XOR of bi-hash: hash(dstIP, dstPort,
protocol) ⊕ hash(srcIP, srcPort, protocol). This is through
the commutative law of XOR to achieve bidirectional flow
mapping to the same address. Then, we do bidirectional flow

574 32nd USENIX Security Symposium USENIX Association

matching on the data plane by deploying the two hashes and
one binary XOR operation. In Appendix B, we discuss the
operator selection of bi-hash and find that choosing XOR for
bi-hash has a lower collision rate than the addition operator,
and bi-hash is close to the original five-tuple’s hash collision
rate.

4.2.3 Double hash table

To mitigate hash conflicts, we implement the double hash ta-
ble algorithm. We divide one hash table into two hash tables.
If the value conflicts in the first hash table, the algorithm exe-
cutes the hash function on the first hash value and allocates
it to the second hash table. We investigate the impact of dif-
ferent resource allocations on the conflict rate in Appendix B.
Surprisingly, the equally divided double hash table is approx-
imately optimal. Moreover, it only requires segmenting the
length of the hash values but not extra operations (e.g., mod).
Compared with using one hash table of the same bit width,
the double hash table reduces hash collision by ten times.

To implement a double hash table, the switch needs to judge
whether the first hash table conflicts. We calculate an addi-
tional bi-hash value named hash-check through different hash
algorithms, and store it in the mapping address correspond-
ing to bi-hash. When the original bi-hash hits, we determine
whether the flow belongs to a collision flow or a hit flow by
checking the hash-check value, so as to determine whether
to allocate the second hash bucket. We find that when the
number of streams is 32,000 and the total bit width is 18, the
collision rate is as low as 0.6%, which saves resources more
than using stored five-tuple for judgment.

4.3 Model Computational Complexity

The complexity of each phase of Gulliver Tunnel is as follows.
Detection phase. In this phase, the iForest model has been
converted into rules and deployed on the switch. As the pro-
grammable switch hardware implements the match action
function of the pipeline, model detection can achieve linear
processing speed without adding extra overhead.
Burst-level feature extraction phase. In this phase, only the
bi-hash and XOR operations are used, so the complexity of
flow feature extraction in the switch is O(1).
Training phase. In the training phase, it has been proved
in [21] that the computational complexity of an iForest is
O(tψlogψ), where t is the number of iTree, and ψ is the size
of sub-samples.
Rule generation. During the conversion from an iForest
model to rules, the computational complexity is related to
the number of branches of each feature. In the worst case,
the maximum number of branches of a single tree is 2l+1−2
when the tree is a binary complete tree. Meanwhile, the height
limit of a single tree is l = ⌈log2ψ⌉ (line 2 of algorithm 2).

Figure 4: The implementation on the data plane.

That is, the upper bound of the total number of branches in
an iForest is 2t ∗ (ψ−1).

Since we use the Cartesian product to record hypercubes,
the complexity is the product of different features’ branch
numbers. We only use packet numbers and flow sizes of
segmented bursts as burst-level features. With a segmenta-
tion threshold of 15, the packet number feature has only 15
branches at most. Thus, the worst complexity of the rule gen-
eration process in our scheme is 30t ∗(ψ−1), which is O(tψ).

To summarize, in our scheme the complexity of the model
generation process does not exceed O(tψlogψ), indicating
the model can be placed on less powerful devices.

4.4 Hardware Implementation
We implement Gulliver Tunnel on programmable switches
using the P4 programming language. As shown in Figure
4, the switch consists of the ingress phase and the egress
phase. In the ingress phase, we implement flow identification,
burst feature extraction, storage, as well as anomaly detection
using the iForest white list rules. Due to the limitations of
the Tofino chip, a register in the switch pipeline can be either
read or written. Hence, the read and update operation of the
double hash table is realized by resubmitting. In the egress
phase, packet mirroring and forwarding are performed. The
implementation details are as follows.
Step 1: Parsing. When a packet passes through the pipeline
for the first time, the switch conducts flow identification. The
switch first uses the bi-hash algorithm to calculate the index
of the five-tuple and calculates the location of the data stor-
age according to the double hash table algorithm. Then, the
switch reads the burst features according to the double bucket

USENIX Association 32nd USENIX Security Symposium 575

position. According to the read feature, the switch decides
whether to perform anomaly detection or update burst feature
information. At the end of this pipeline, the switch adds the
decision into the additional metadata in the form of flags and
resubmits the packet to the pipeline, instead of sending all the
burst features (e.g., timestamp).
Step 2: Detection and update. The second time the packet
passes through the pipeline, the switch performs anomaly
detection or feature update. According to the flags in the
metadata, if the switch notices the burst interval times out, or
the number of packets exceeds the segmentation threshold,
it will perform abnormal flow identification using the iFor-
est white list rules. We compress flag judgment and anomaly
detection into the same rule matching table for parallel pro-
cessing. After the anomaly detection is performed, the con-
tents of the corresponding registers are released. Otherwise,
the burst feature content in the double hash table is updated.
Next, the switch mirrors the packet to achieve asynchronous
processing.
Step 3: Post-processing. Last, the egress handles the mir-
rored packet while forwarding the original packet as usual.
For the mirrored packet, if the flow is normal, we drop the
payload and upload the header to the server for storage. Other-
wise, we encapsulate the last mirrored packet header, add the
abnormal burst information (burst size, number of packets)
to the new packet header, and send the packet to the control
plane. Then, the control plane extracts any stored historical
packets using the five-tuple of the abnormal mirrored packet
(reported by the switch), before performing further detection.

5 Magnifier

To further reduce false positives, we propose a lightweight au-
toencoder, called Magnifier (Figure 5), which inspects suspi-
cious traffic reported by Gulliver Tunnel. This operates in the
centralized control plane. We design a series of lightweight
components to reduce the false-positive rate, while achiev-
ing high throughput. First, we design an asymmetric autoen-
coder to reduce the number of parameters while ensuring the
performance of the model. Second, we use separable con-
volution [15] rather than a basic convolutional layer, which
further reduces the computational complexity. Third, we use
dilation convolution [44] to replace the original convolution
operation to achieve a larger receptive field without increas-
ing layers and parameters. Finally, we compress the model
through model quantization to improve the model throughput.

5.1 Asymmetric Autoencoder
We design an asymmetric autoencoder (AAE) inspired by [14].
The encoder requires deeper layers for better representation
extraction, while the decoder can reconstruct features with-
out overly complex operations. Compared with the symmet-
ric autoencoders used by many existing methods [26], this

Inputs:5@21 Feature maps:20@21 20@21 40@21

Conv1D
(kernel=3,
group=1,
dilation=1)

Conv1D
(3,20,2)

Conv1D
(1,1,1)

40@21

Maxpool
(kernel=3,
stride=3)

Conv1D
(3,1,1)

80@21

Flatten,
Linear,
Reshape

5@21

Input Encoder Decoder

R
M
SE

Score

....

....

....

........

Conv1D
(3,40,3)

Conv1D
(1,1,1)

80@7 80@7

....

Figure 5: Magnifier model, an asymmetric lightweight autoen-
coder with separable and dilated convolutions.

asymmetric structure significantly (i) reduces the number of
parameters; (ii) increases the training speed and throughput;
and (iii) maintains similar performance.

The AAE contains two parts: the encoder and the decoder.
Given the input features X = {xi, . . . ,xm}, the encoder extracts
X through a multi-layer 1-dimensional convolution layer to
generate a hidden representation H. Then H is reconstructed
back to X ′ = {x′i, . . . ,x′m} by a linear layer decoder. Using
benign traffic as training data, the AAE is trained to mini-
mize the reconstruction errors, i.e., the Root Mean Squared

Error Loss, RMSE =
√

1
m ∑

m
i=1 (xi− x′i)

2, between the recon-
structed features X ′ and the input features X .

Through this, the AAE learns normal traffic patterns and is
able to reconstruct normal traffic features without a large de-
viation from the original features. When conducting anomaly
detection on traffic, the model identifies malicious traffic if
the reconstruction error exceeds a threshold. This is because
the autoencoder does not learn the pattern of malicious traffic,
and is unable to reconstruct the features of malicious traffic,
resulting in an excessively large RMSE.

To further reduce the number of parameters in the encoder
layer and effectively utilize the information processing capa-
bilities of the convolutional layer for different channels, we
reshape the features obtained from the Kitsune [26] feature
extraction into different channels according to different time
windows. The features contain five time windows (100 ms,
500 ms, 1.5 sec, 10 sec, and 1 min), and each time window
contains 20 features of the same type, such as the standard
deviation of the packet size and packet jitter. In addition, we
add the normalized source and destination port features to the
first two channels, pad 0 for the remaining three channels, and
finally obtain the input matrix of 5@21.

5.2 Separable Convolution

Inspired by MobileNets [15], a two-dimensional (2D) convo-
lutional layer can be replaced by two 2D convolutional layers,
i.e., a separable convolution, which consists of a depthwise
convolutional layer and a pointwise convolutional layer. We
use the separable convolution under 1D convolution that re-

576 32nd USENIX Security Symposium USENIX Association

placing one 1D convolutional layer with two 1D convolutional
layers can also reduce computational complexity without sac-
rificing accuracy.

5.3 Dilated Convolutions

We enlarge the receptive field of Magnifier by utilizing dilated
convolutions [6, 44], which skip some convolutional opera-
tions of the input at a certain dilation rate. Intuitively, instead
of taking a fine-grain view of a small input region, dilated con-
volutions allow the network to take a coarse but wider view
of the input. This allows our model to achieve a receptive
field as large as a deep model with fewer layers, and obtain
more information from features. Since the filter size used in
dilated convolutions is the same as in regular convolutions,
the number of parameters and training costs do not increase.

5.4 Model quantization
We optimize Magnifier with model quantization. We convert
the model parameters from floating-point representation to
lower-precision representation, e.g., 8-bit integers, to facilitate
higher throughput, lower latency and less memory consump-
tion. Magnifier adopts a symmetric variant of scale quantiza-
tion [41] to transform the model parameters. To yields a b-bit
integer value with a chosen representable range of [−α,α],
the scale factor is given as s = 2b−1−1

α
. The scale quantization

of a real value χ is obtained by:

χq =

−2b−1 +1 χs <−2b−1 +1,
χs −2b−1 +1≤ χs ≤ 2b−1−1
2b−1−1 χs > 2b−1−1,

, (2)

where χs = round(s∗χ).
To minimize precision loss, an appropriate α for the model

parameters should be selected to achieve model calibration.
For weights, Magnifier chooses max calibration [35], which
uses the maximum absolute value seen during calibration as
α. It maintains precision because the distribution of weights
is relatively concentrated. For activation, the use of max cal-
ibration could significantly reduce the precision due to the
presence of extreme outliers caused by model inputs. There-
fore, Magnifier chooses entropy calibration, which utilizes
relative entropy as a criterion to select the α that minimizes
the information loss from quantization.

6 Experimental Evaluation

6.1 Implementation

We prototype HorusEye using P4 (version P16) and Python
(version 3.8.0) with more than 2000 lines of code (LOC).
Gulliver Tunnel. We use Python to implement iForest train-
ing and rule generation. We use P4 programming language to

deploy Gulliver Tunnel on a H3C S9830-32H-H data center
switch with an Intel Tofino switch ASIC.
Magnifier. We use PyTorch to implement Magnifier and use
TensorRT to implement quantization operations. We deploy
Magnifier on a GeForce RTX 2080 SUPER.
Hyperparameter settings. We set the burst interval threshold
τ to 1 second [46] and the segmentation length threshold
to 15 based on the probability density function of the burst
sequence length (In Appendix C). The dilation rates in our
convolutional layers are {1,2,1,3,1,1}, as recommended by
[38], which avoids the grid effect problem. The settings of
other parameters (e.g., t, ψ) are discussed later in §6.3.
Protocol-specific training. Since different protocols are or-
thogonal when matching, we deploy rule sets for different
protocols (e.g., TCP, UDP) within one table. We train an
iForest model for each protocol flow and convert it to rules.
Auxiliary rules for Gulliver Tunnel. To further improve
the detection capability, in addition to burst-level features,
we add the IoT destination port feature P as an auxiliary
feature. Since P is a non-distance vector feature, we train
a new iForest, namely port-level iForest, with P as an inde-
pendent feature, and convert it to rules as a supplementary
whitelist. We integrate auxiliary rules with burst-level rules to
detect suspicious traffic (w/ P). As will be shown in 6.3.1, the
auxiliary port rules can help with the detection, though the
auxiliary port rules alone can be easily bypassed by attacks.
The main detection capability is owed to Gulliver Tunnel with
burst-level features.

6.2 Dataset and Feature Processing

6.2.1 Dataset

In the experiments, we use data generated in our real IoT
testbed, as well as public datasets, with a total of 26 types of
IoT devices and 10 types of attacks. Details of datasets can
be found in Table 9 in Appendix D.
Normal dataset - Ours. To demonstrate a realistic functional
IoT network, we set up a real-world testbed with 8 types of
popular cameras, 7 types of sensors and one smart gateway, as
IP cameras and sensors are among the IoT devices producing
dominant traffic in IoT private networks. We generate device
traffic by two means: (i) placing devices in a laboratory to
detect the movements of people or objects; and (ii) config-
uring a laptop with Android Debug Bridge (ADB) and an
emulator installed with control apps and running a Python
script to request devices for streaming. This testbed runs for a
month, generating 13.9 GB of PCAP data. To protect pedes-
trian privacy, we anonymize the data and discard the payload.
We use the first 4 days of IoT normal traffic as the training set
and the following 2 days as the test set.
Normal dataset - [32]. We also use five types of cameras and
five types of sensors in a public dataset [32] to demonstrate
the generality of our scheme. We randomly select five days

USENIX Association 32nd USENIX Security Symposium 577

of data as the training set and the day after each of them as
the test set. The training and test sets do not overlap.
Attack dataset. Since our scheme is unsupervised, we mix
the attack datasets with the normal test set for testing. We use
public attack datasets [5, 10, 18, 26]. In addition, to prevent
data artifacts that may be caused by network mixing, we infect
one of the IoT devices, and reproduce Mirai, OS scan, service
scan, TCP DDoS, UDP DDoS attacks for testing. The total
attack datasets mainly include four abnormal categories: (1)
botnet infection, including Aidra, Bashlite [5] and Mirai; (2)
data exfiltration, including keylogging and data theft [18];
(3) scanning attacks, including service scan and OS scan; (4)
distributed denial of service attack (DDoS), including HTTP
DDoS, TCP DDoS, and UDP DDoS.

6.2.2 Dataset processing

We divide the normal training set into validation set and train-
ing set with a ratio of 2:8 and only use one attack dataset
(HTTP DDoS) as the validation set for hyperparameter selec-
tion. As suggested by [3], the frequency of Mirai attacks in
the Kitsune dataset is too high to reflect real botnet infection.
Therefore, we randomly down-sampled Kitsune’s Mirai to a
size similar to our Mirai dataset, i.e., 40,000 packets.

6.3 Gulliver Tunnel Hyperparameter Analysis

Gulliver Tunnel has four main hyperparameters: the number
of trees (t), the sub-sampling size (ψ), the contamination, and
the abnormal frequency. Under the validation set, we explore
the effects of them on model performance (Figure 6). Here
we only consider true-negative rate (TNR) and true-positive
rate (TPR), because filtering out normal traffic and detecting
anomalies are the most important targets for Gulliver Tunnel.
We also discuss the impact on TPR and TNR of Gulliver
Tunnel with or without destination port (P) rules. Among
them, the basic model only uses burst-level iForest (w/o P),
which is used to describe the proportion of attackers who
bypass port defenses and are still detected by Gulliver Tunnel.

6.3.1 Number of trees

In Figure 6(a), we illustrate that the basic model (w/o P) has
poor anomaly recall when the sub-sampling size is 200 and
the number of trees is less than 80. This shows that it is easier
for attacks to bypass iForest when there are fewer trees. The
reason is that a larger forest reduces the uncertainty intro-
duced by iTree random generation, and learns more about the
behavioral patterns of normal data. This result demonstrates
that iForest does not work well when the number of trees is
small. It also proves that the previous method [47] of deploy-
ing iForest on the switch by direct coding cannot achieve good
performance (because the number of trees cannot exceed 12).

10 20 30 40 80 150 200
iTrees

0
25
50
75

100

TP
R

(%
)

0
25
50
75
100

TN
R

(%
)

TPR (w/o P)
TPR (w/ P)

TNR (w/o P)
TNR (w/ P)

(a) Number of trees (with ψ=200)

100 200 300 400 500 3000 5000
#subsample

0
25
50
75

100

TP
R

(%
)

0
25
50
75
100

TN
R

(%
)

TPR (w/o P)
TPR (w/ P)

TNR (w/o P)
TNR (w/ P)

(b) Sub-sampling size (with t=200)

0.05 0.15 0.25 0.35 0.45
contamination

0
25
50
75

100

TP
R

(%
)

0
25
50
75
100

TN
R

(%
)

TPR (w/o P)
TPR (w/ P, 0.05)
TPR (w/ P, 0.25)

TNR (w/o P)
TNR (w/ P, 0.05)
TNR (w/ P, 0.25)

(c) Contamination setting (with
t=200, ψ =5000)

0.05 0.25 0.45 0.65 0.85
Frequency threshold

0
25
50
75

100

TP
R

(%
)

0
25
50
75
100

TN
R

(%
)

TPR (w/o P)
TPR (w/ P)

TNR (w/o P)
TNR (w/ P)

(d) Abnormal frequency setting
(with t=200, ψ=5000, contamination-
P=0.05, contamination-Burst=0.15).

Figure 6: Hyperparameter analysis for Gulliver Tunnel

6.3.2 Sub-sampling size

In Figure 6(b), the performance of both models increases as
the sub-sampling size increases until the sub-sampling size
reaches 3000, after which the performance gain is minimal.
Therefore, we recommend not using a high sub-sampling size
(>3000) when the server has insufficient computing power.
Since our server has enough computation, we choose the sub-
sampling size of 5000 to reach better performance.

6.3.3 Contamination

The contamination parameter controls the percentage of
points in the dataset to be anomalous and affects the final
label. As shown in Figure 6(c), we can indirectly limit the
rule bounds and control the traffic offload by setting the con-
tamination value. There is a trade-off between anomaly recalls
and flow offloading rate by controlling contamination. As the
contamination increases, more anomalies are recalled, but
there is less normal traffic offloading.

To explore the effect of contamination on Gulliver tunnel
performance, we set up three models, namely the basic model
(w/o P) and the basic model supplemented with the port-based
iForest model (w/ P), where the port-based iForest uses the
contamination value as 0.05 or 0.25. Experimental results
show that the basic model (w/o P) with 0.15 contamination
has both large anomaly recall and normal recall. Yet the per-
formance is poor at 0.05. This is because the range of rules
generated by iForest is more extensive than expected when the
training set is a clean normal dataset with multiple behavioral
events. Thus, it is necessary to set the higher contamination
value (e.g., contamination=0.15) for burst-level features, and
we get tighter rule bounds.

Comparing the port ensemble models with contamination
values of 0.05 and 0.25, we find that the larger contamina-
tion value does not increase the anomaly recall, but greatly

578 32nd USENIX Security Symposium USENIX Association

reduces the normal recall. This is because the port-level rules
are relatively weak, and many anomalies use the same ports
as normal traffic, so generating tighter whitelist rules does
not increase the anomaly recall, but only filters out normal
traffic. Therefore, we choose a port contamination value of
0.05 to ban redundant ports that are barely used. The net-
work administrator can modify the port whitelist according to
the actual situation, instead of automatically generating port
rules. Nonetheless, all the rules in this paper are automatically
generated to avoid human interference.

6.3.4 Abnormal frequency threshold

To further reduce the burden on the control plane, we calculate
the flow’s abnormal frequency and set a threshold to further
decide whether a flow is abnormal. The abnormal frequency
F(ID = i) of flow i is calculated as

F(ID = i) =
∑

Ni
n=1 I(yn = anomaly)

Ni
, (3)

where Ni represents the burst number of flow i and I is the
indicator function.

In Figure 6(d), we vary the abnormal frequency threshold
to study the impact on recall. No matter how large the thresh-
old is set, the recall of anomalies is very high, which indicates
that most of the anomalies have an extremely large warning
frequency. When the frequency threshold is set to 0.95, Gul-
liver Tunnel without P can detect 98.6% of malicious traffic
and offload 96.0% of normal traffic. Accordingly, we can set
a higher abnormal frequency threshold to improve the ability
of Gulliver Tunnel to offload normal traffic.

6.4 Performance of Rule Generation
Converting iForest models to white list rules is the main chal-
lenge of HorusEye. In order to facilitate the calculation of
the label consistency between the original iForest and the
newly generated rules, we do not set the abnormal frequency
in this experiment. We show the fidelity of our rule generation
algorithm by examining the label consistency under various
parameter combinations. Furthermore, we demonstrate the
low resource occupancy and low computational complexity
of our algorithm by recording the number of generated rules
(#R) and the number of enumerations (#Enum). In addition,
we show the number of burst and port rules for UDP and TCP,
respectively, where burst rules, range-type rules and port rules
are exact-type rules. In particular, the label consistency rate
(C) is calculated as

Consistency(C) =
∑

N
i=1 I(iForest(xi) = R(xi))

N
, (4)

where iForest(x) means the prediction of iForest and R(x)
means the prediction of rules.

Table 1: Performance of rule generation algorithm

ψ t #RTCP
burst #RUDP

burst #RTCP
port #RUDP

port C(%) #Enum

400

10 11 21 46803 39249 99.46 144947
50 7 28 26202 34958 99.58 191687

100 15 17 24866 36264 99.63 237137
200 19 18 29063 31440 99.62 309197

1000
200

13 37 15549 9132 99.68 402977
2000 10 47 9120 1253 99.63 489392
5000 29 48 3460 125 99.66 612932

Table 2: Interpretability analysis of TCP rules

Packets Burst size Expert’s Understanding

(1,2] (154,239] Keepalive
(2,3] (577,630] State exchange
(4,5] (432,460] Command issue
(0,15] (4533,4541] Data stream

Table 1 summarizes the results for the above metrics. Re-
gardless of the increase of iForest tree number, our rule gen-
eration converts the iForest model to rules with nearly 100%
label consistency. Furthermore, as the tree and subsampling
size increase, the number of burst-type whitelist rules does not
change much. This is because the burst-level rule is a range
rule and will automatically reduce the number through rule
merging. In addition, we find that by increasing the tree and
subsampling size, we can significantly reduce the number of
port-level rules, which can obtain more exact whitelist rules.

We also find an interesting phenomenon. Compared with
UDP, TCP needs to use more destination ports, but its burst-
type behavior is less. This shows that when IoT devices use
TCP connections, the traffic features are relatively stable, and
most IoT-based network services are relatively fixed. There
are many destination port rules, indicating that IoT will often
use dynamic ports. In our experiments, there are only 3585
port exact rules and 77 Burst range rules in the whitelist. We
put the exact filtering of port rules in the blacklist in Figure
4, without adding additional tables. For burst-level range fea-
tures, we compress the matching of multi-dimensional burst
features into one rule by encoding and concatenating. Com-
pared with previous work [47], which encodes the iTrees on
the data plane by encoding each path of iTrees, our algorithm
can be deployed on the data plane with low resource consump-
tion (i.e., adding one table). Furthermore, the trend in the
number of enumerations corroborates that the computational
complexity of our rule generation algorithm is O(tlogψ).

6.5 Interpretability Analysis
A benefit of converting the iForest model into rules is that it is
easier to interpret and debug. To demonstrate the interpretabil-

USENIX Association 32nd USENIX Security Symposium 579

ity of the generated rules, we take the burst-level rule for TCP
traffic as an example (containing 29 rules). Through analysis,
an expert could easily divide the traffic into four categories: (i)
keepalive, which is sent periodically by a camera to maintain
the connection with the server; (ii) state exchange, which
is sent periodically by an IoT device to inform the server
whether its status is active or idle; (iii) command issue, such
as switching on and off, which is sent by the server to the cam-
era; and (iv) data stream, i.e., the surveillance video sent by
the camera to the server with adaptive bit rate. Table 2 shows
a simple example to highlight that our scheme can mine the
traffic behaviors, and assist experts in further debugging.

6.6 Hardware Performance

We install Gulliver Tunnel on the hardware switch and eval-
uate its efficiency using three metrics: (i) the resource oc-
cupancy, i.e., the occupancy rate of SRAM and TCAM on
the switch; (ii) throughput, i.e, the receive packet throughput
and transmit packet throughput of the switch after loading the
program; (iii) latency, i.e., the time taken for the switch to
process each packet.

The resource usage on the switch is shown in Table 3. When
a packet first passes through the pipeline, stage 0 is used to
deploy the blacklist, where port and protocol are filtered at the
same time; stages 1 and 2 calculate the hash key value of the
flow, and two hash functions are required to calculate bi-hash
and hash-check respectively; stage 3 and 4 obtain the feature
values in the first and second hash tables; stages 5-8 are used
to judge whether the burst stream is over, each occupying a
table. Meanwhile, two tables in stage 6 are used to set up
the resubmit operation. When a packet passes through the
pipeline for the second time, stage 3-5 is used for feature
update operations; stage 6 matches the encoding results of
burst-level features using the whitelist rules, which are stored
in one table. It is worth noting that, the whitelist can be easily
extended by adding new whitelist items, which are stored in
the TCAM, without interrupting the functioning of the switch.

Thanks to the burst feature extraction scheme (burst seg-
mentation, bi-hash and double hash table), even though storing
and maintaining burst-level features (in stages 3-5) consumes
the most table and register resources in the pipeline, the whole
Gulliver Tunnel deployment still only requires very little re-
sources, i.e., 2.78% of TCAM and 9.90% of SRAM.

We use the SPIRENT N11U traffic generator for high-
speed traffic simulation. Since the data packet size is not
fixed in real network environments, we test various combi-
nations of different packet sizes, called Internet Mix (IMIX),
to evaluate the forwarding capability of the switch. We use
the pre-configured IMIX parameters of the traffic generator
manufacturer for the real environment simulation.

Table 4 shows the switch packet throughput under 100Gbps.
After loading Gulliver Tunnel P4 program, we send a large
number of packets for testing. We find that there is no packet

Table 3: Resource occupancy

Stage Table SRAM(kbit) TCAM(kbit)

0 8 512 0
1 4 0 0
2 4 128 11
3 15 3456 0
4 18 4480 0
5 11 2944 0
6 4 384 44
7 1 128 22
8 1 128 11
9 0 0 0

10 0 0 0
11 0 0 0

Total 66 12160 (9.90%) 88 (2.78%)

Table 4: Single port forwarding performance at 100 Gbps

Packet size Latency #Transmit #Loss

256 1027 (ns) 40760869565 0
512 1033 (ns) 21146616541 0

1024 1052 (ns) 10775862068 0
1500 1074 (ns) 7401315789 0
IMIX 1142 (ns) 24832244393 0

loss caused by the overhead of our framework. Moreover, the
average processing delay per packet is as small as 1065.6 (ns).

6.7 Detection Performance
We evaluate the true-positive rates (TPRs) of different
schemes under low FPR≤5e-5 and FPR≤5e-4 by setting
RMSE abnormality thresholds. We measure the detection
ability of different schemes by PRAUC, which reflects the per-
formance of the model on imbalanced data sets. Besides, we
randomly down-sample the normal data set in the test set with
a ratio of 10% to alleviate the data imbalance problem.

To reflect HorusEye’s detection performance, we com-
pare it with the state-of-the-art (SOTA) unsupervised learning
anomaly detection model Kitsune [26]. Table 5 summarizes
the detection performance trained on our real-world testbed
IoT dataset, which contains multi-behavior interactions. Due
to limited space, the detection performance trained on the pub-
lic device set is presented in Table 10 in Appendix E. Both
tables can draw the same conclusions as follow.

First, HorusEye notably outperforms the Kitsune model
in most attacks, especially in low false positive scenarios.
Under the FPR of 5e-5, the TPRs of HorusEye are 37.6%
and 20.9% higher than those of Kitsune on the public attack
dataset and our attack dataset, respectively. Meanwhile, with
reduced frequency Mirai attacks, Kitsune could only achieve

580 32nd USENIX Security Symposium USENIX Association

Table 5: Detection performance of models trained on our dataset. The best performance is highlighted in bold. The percentages
next to the colored arrows are the relative increments/decrements of HorueEye’s TPRs compared with Kitsune. ≤5e-5 indicates
FPR≤5e-5 and ≤ 5e-4 indicates FPR≤5e-4.

Dataset Attack
Kitsune Magnifier HorusEye

TPR PRAUC
TPR PRAUC

TPR PRAUC≤5e-5 ≤5e-4 ≤5e-5 ≤5e-4 ≤5e-5 ≤5e-4

[5]
[18]
[26]

Aidra 0.228 0.406 0.716 0.370 0.451 0.631 0.383 ↑ 68.1% 0.469 ↑ 15.3% 0.657 ↓ 8.33%
Bashlite 0.605 0.677 0.818 0.698 0.730 0.806 0.713 ↑ 17.7% 0.735 ↑ 8.58% 0.817 ↓ 0.09%

Mirai 0.105 0.183 0.949 0.962 0.966 0.976 0.964 ↑ 815% 0.966 ↑ 428% 0.980 ↑ 3.23%
Keylogging 0.527 0.527 0.602 0.527 0.528 0.779 0.527 - 0.528 ↑ 0.03% 0.806 ↑ 33.9%
Data theft 0.508 0.508 0.587 0.508 0.508 0.785 0.508 - 0.510 ↑ 0.04% 0.810 ↑ 38.1%

Service scan 0.217 0.274 0.833 0.318 0.358 0.915 0.334 ↑ 53.6% 0.363 ↑ 32.5% 0.934 ↑ 12.1%
OS scan 0.367 0.504 0.939 0.461 0.561 0.933 0.498 ↑ 35.9% 0.577 ↑ 14.5% 0.946 ↑ 0.77%

HTTP DDoS 0.055 0.211 0.779 0.235 0.382 0.927 0.285↑ 421% 0.408 ↑ 93.8% 0.942 ↑ 21.0%
TCP DDoS 0.903 0.936 0.969 0.959 0.971 0.989 0.903 - 0.912 ↓ 2.65% 0.929 ↓ 4.13%
UDP DDoS 0.904 0.936 0.968 0.959 0.972 0.989 0.965 ↑ 6.70% 0.973 ↑ 4.02% 0.990 ↑ 2.31%

macro 0.442 0.516 0.816 0.600 0.643 0.873 0.608 ↑ 37.6% 0.644 ↑ 24.8% 0.881 ↑ 7.97%

Ours

Mirai 0.000 0.012 0.636 0.196 0.412 0.842 0.303 ↑ ∞ 0.424 ↑ 340% 0.868 ↑ 36.4%
Service scan 0.918 0.956 0.998 0.989 0.995 0.999 0.991 ↑ 8.06% 0.996 ↑ 4.05% 1.000 ↑ 0.14%

OS scan 0.617 0.810 0.994 0.943 0.983 0.999 0.968 ↑ 56.9% 0.985 ↑ 21.7% 0.999 ↑ 0.54%
TCP DDoS 0.994 0.996 1.000 0.997 0.998 1.000 0.997 ↑ 0.39% 0.998 ↑ 0.25% 1.000 -
UDP DDoS 0.995 0.997 1.000 0.997 0.998 1.000 0.998 ↑ 0.27% 0.998 ↑ 0.15% 1.000 -

macro 0.705 0.754 0.925 0.825 0.877 0.968 0.852 ↑ 20.9% 0.880 ↑ 16.7% 0.973 ↑ 5.19%

TPR of 0.105 and 0 on the two datasets under the condition of
FPR of 5e-5, respectively. This illustrates that it is difficult to
detect low-frequency Mirai attacks under a low false-positive
rate. Nevertheless, HorusEye can still reach TPRs of 0.964
and 0.303 on the two datasets, respectively. This is owing
to the better representation extraction of HorusEye’s deeper
encoder layers, and the large receptive field brought by the
dilated convolution in Magnifier.

Second, HorusEye and Magnifier achieve comparable de-
tection performance, while HorusEye is even slightly better at
detecting most anomalies than Magnifier. This indicates that
the preliminary screening conducted by Gulliver Tunnel on
the data plane does not hurt the performance of Magnifier in
most cases, since Gulliver Tunnel has a high TPR. This also
shows that the low false-positive capability mainly comes
from Magnifier, while the burst features exploited by Gulliver
Tunnel also help the detection of attacks.

Last, we find that all schemes have lower PRAUC against
botnet infection and data exfiltration than the other two types
of attacks. This is because botnet infection and data exfil-
tration use SSH transmissions, which resemble patterns of
normal traffic, whereas frequency attacks such as DDoS or
scan differ from normal traffic more obviously. Fortunately,
HorusEye can still recall more than 50% of these attacks even
at FPR≤5e-5, thereby effectively blocking attacks by restrict-
ing hackers from reaching a complete attack chain. Further-
more, we find that all schemes can recall more than 90% of

Table 6: Comparison of PRAUC on unknown bot attacks
between supervised and unsupervised schemes

Proposal Label Data plane Flow-level PRAUC

Mousika Yes Yes No 0.646
Kitsune No No Yes 0.723

HorusEye No Yes Yes 0.781

TCP DDoS and UDP DDoS attacks under low false-positive
conditions. This is because these two kinds of anomalies are
attacked through high frequency, which can be easily detected.
However, all schemes struggle to recall HTTP DDoS attacks
at FPR≤5e-5. This is because HTTP DDoS constructs real
HTTP requests, which appear just like the normal HTTP traf-
fic from some of the cameras. HTTP DDoS detection requires
the server side to make more detailed judgments based on the
request content and frequency.

To highlight the advantage of unsupervised methods,
we further compare HorusEye with the supervised method
Mousika [42], a SOTA solution for deploying decision tree
on the data plane, which uses packet header features. We train
and test this model using the same normal data and three cate-
gories of botnet infection (i.e., ours Mirai, Aidra and Bashlite).
For supervised learning, we use two of the attacks for train-
ing and the other one as the unknown attack for testing. For
unsupervised learning, these attacks are only used for testing,

USENIX Association 32nd USENIX Security Symposium 581

UDPDoS 1/100
TCPDoS 1/100

UDPDoS 1:2
UDPDoS 1:4

TCPDoS 1:2
TCPDoS 1:4

Mirai 1%
Mirai 2%

Mirai 10%
0

50

100

TP
R

(%
)

Low rate Evasion Poison

Figure 7: Robustness of Gulliver Tunnel against different
adversarial attacks.

i.e., they are not in the training set and validation set. The
macro PRAUC results are summarized in Table 6. We find
that Mousika is significantly weaker than the unsupervised
schemes Kitsune and HorusEye in detecting new attacks. It
also shows that the existing scheme of deploying a decision
tree on the data plane is not suitable for IoT intrusion detec-
tion tasks, where new abnormalities frequently appear.

6.8 Robustness of Detection

Since the data plane module is a weak part of the two-stage
detection, we examine the robustness of Gulliver Tunnel. We
assume that attackers know the existence of malicious traffic
detection. Attackers can construct adversarial attacks: (i) low
rate DDoS attacks, we respectively reduce the rates of TCP
DDoS and UDP DDoS by 100 times (900 packets/second) as
low rate DDoS attacks; (ii) evasion attacks, we inject benign
TLS traffic and QUIC traffic, which are obtained from the
camera training set, into the TCP DDoS and UDP DDoS and
disguise them as benign traffic for evasion. TLS and QUIC
are chosen since they are the two main protocols commonly
used by cameras. We consider two different ratios, 1:2 and
1:4, of malicious traffic to the benign traffic; (iii) poison
attacks, we mix our Mirai attack dataset into the training set
by up-sampling to achieve 1%, 2% and 10% pollution ratios.

The experimental results are summarized in Figure 7. We
first observe that Gulliver Tunnel is resilient to low-rate at-
tack and still retains a TPR of 100%. This is because 900
(packets/second) and 90000 (packets/second) in DDoS make
no difference in segmented burst features on the data plane.
In terms of evasion attacks, Gulliver Tunnel can resist most
of the one-way flow evasion attacks because it adopts the
features of the bidirectional flow.

Regarding poison attacks, without changing the hyperpa-
rameters, Gulliver Tunnel can retain a TPR of 99% when the
pollution ratio is 1%. This is because iForest adopts the sub-
sampling and contamination hyperparameters to let the model
learn the main patterns of normal traffic, which provides some
natural resilience against mild pollution. As such, Gulliver
Tunnel is resistant to chronic data poisoning, where the pro-
portion of pollution caused by chronic data poisoning is often
very low since the normal data is constantly updated and accu-

K G+K M
(fp32)

M
(int8)

G+M
(int8)

104

106

Ra
te

 (p
ps

)

1575
6514

1131094
2915116

12056569

(a) Thoughput of models

K G+K M
(fp32)

M
(int8)

G+M
(int8)

0.0

0.4

0.8

TP
R

(F
PR

<=
5e

-5
)

0.530 0.536

0.675 0.636 0.637

(b) Macro TPR at FPR≤5e-5

Figure 8: Throughput and detection capability. K and M repre-
sent Kitsune and Magnifier, respectively. G indicates Gulliver
Tunnel.

mulated. However, more than 2% data pollution causes a drop
in Gulliver Tunnel’s TPR. Nevertheless, security engineers
can detect such pollution attacks using old models, since over
2% pollution ratio of normal traffic will lead to significant
changes in data distribution.

Overall, Gulliver Tunnel is fairly robust to three common
black-box attacks. However, it may not defend against white-
box attacks from sophisticated hackers, because it deploys
explainable whitelist rules. In future work, we will improve
the robustness against white-box attacks.

6.9 Throughput and Detection Capability
As shown in Table 4, Gulliver Tunnel can nearly reach line
speed, i.e., 100Gbps on a single port. The throughput bottle-
neck is the model processing capability on the control plane.
Luckily, Gulliver Tunnel is able to confine the processing of
most normal traffic to the data plane. On the test set of our
dataset, we find that Gulliver Tunnel offloads 76% of nor-
mal traffic, i.e., the throughput gains are 4.13x. We present
the throughput and detection capability of HorusEye on our
dataset in Figure 8.

Note that Gulliver Tunnel also works with other control
plane solutions, e.g., Kitsune. Thus, Figure 8(a) compares the
packet throughput of Kitsune and Magnifier (with/without
Gulliver Tunnel). Kitsune only provides a Python version
of the implementation, and its feature map module cannot
be quantified. Therefore, we reproduce the Python version
of Kitsune and compare the throughput with our model un-
der the same precision fp32. Although Kitsune claims that
its C++ version has 100 times the throughput of the Python
version (1575*100 packets/sec), Magnifier (fp32) still has sig-
nificantly better packet throughput (1131094 packets/sec).
The outstanding throughput of Magnifier comes from its
lightweight designs (e.g., AAE, separate convolution, and
dilation convolution). Furthermore, HorusEye, i.e., Magnifier
(int8) + Gulliver Tunnel, achieves a throughput of 12 million
packets/sec, which is a remarkable 7654x higher than Kitsune.

In Figure 8(b), we present the performance of HorusEye in
terms of macro TPR at FPR≤5e-5. We find that quantizing
Magnifier from 32-bit float (fp32) to 8-bit int (int8) brings
about a 2.5x throughput gain while the TPR only slightly

582 32nd USENIX Security Symposium USENIX Association

drops from 0.675 to 0.636. This is because quantization only
affects the abnormal judgment near the decision boundary,
while most abnormal samples with low FPR are far away
from the decision boundary. As such, the degree of influence
is relatively small. Moreover, we can see that the adoption of
Gulliver Tunnel does not affect the Magnifier and Kitsune’s
anomaly detection.

In conclusion, HorusEye has excellent throughput and
anomaly detection capabilities.

7 RELATED WORK

7.1 IoT Anomaly Detection
In an IoT private network (e.g, smart city), the devices (e.g.,
cameras) are numerous, with limited computational resources
and protection. They are often deployed over several years and
perform frequent traffic exchanges (via public IP addresses).
As such, they are particularly vulnerable to attacks, e.g. Mirai
[1, 17]. Worse, these attacks can also be disguised under TLS
encryption, which renders traditional deep packet inspection
no longer applicable [1, 12] in the network.

Some works distinguish normal and abnormal traffic using
traffic patterns [8,12,24,26,33,36,46]. However, [24,26] use
complex deep models, which cannot achieve real-time high-
throughput detection. [8,36,46] are deployed under home gate-
ways to learn behavioral interactions between a fixed number
and type of devices. However, the computational complexity
grows exponentially with the number of devices, due to the
increased interactions between devices. Therefore, they can-
not be deployed in smart cities. In [12], an anomaly detection
algorithm is implemented by Fourier transform and clustering,
and deployed on the control plane of the CPU architecture,
whose control plane cannot keep up with the growth of the
traffic in the network [29]. Overall, these anomaly detection
solutions cannot scale to multi-Tbps because they perform
detection in the control plane. Moreover, [12, 26] are orthogo-
nal to our approach and can benefit from Gulliver Tunnel by
pre-filtering suspicious traffic in the data plane.

7.2 Programmable Switches
In the network, most data processing is placed in the control
plane. This limits the throughput of the traffic. The advent
of programmable switches has made it possible to process
traffic in the data plane. Hence, various tasks have been im-
plemented in the data plane, such as DDoS detection [22, 45],
flow size prediction [39, 42], and others [19, 20, 29]. Among
them, [45] is the first to detect DDoS attacks in the data plane.
Furthermore, [22] uses the sketch method to further measure
the occurrence of DDoS attacks on the data surface. Never-
theless, they measure whether the amount of traffic sent by
the source IP address exceeds a certain threshold. Thus, it
is not applicable to the detection of attacks that have a large

number and a wide dispersion of IoT devices. Therefore, it is
necessary to implement complex rule matching on the switch.

A key contribution of our work is mapping complex iForest
models into rules. [39, 42] both propose methods to convert a
decision tree into rules and deploy them to P4. This method
uses machine learning to mine more complex rules from data.
Unfortunately, the decision tree belongs to supervised learn-
ing. It is difficult to maintain a high-quality intrusion dataset
and detect unknown attacks. [39] proposes an exhaustive ap-
proach to transform SVM [9] or K-means [13] models into
rules and deploy them in programmable switches. Neverthe-
less, SVM and K-means require brute force to traverse all fea-
ture domains and incur an impractical overhead. Finally, [47]
stores M features by allocating them into M stages, and uses
N trees as N encoding stages, thus occupying M+N stages
in total. However, the number of stages of a programmable
switch is generally around 12, with some of them reserved
for basic forwarding functions. Therefore, only a very limited
number of ensemble model trees can be deployed.

7.3 IoT Behavior Analysis

Since most modern traffic is encrypted, it is impossible to
detect the anomalies through the payloads. Kitsune [26] use
statistical features to measure the behavior of the network,
such as the mean or variance of the packet size, or the corre-
lation coefficient. However, these statistical features cannot
be tracked in the programmable switches since floating-point
arithmetic is not supported [31]. [2, 23, 34, 46] find that even
with encryption, the behavior of IoT devices can be identified
using the sequence of packet sizes or relatively fixed behavior
patterns. Our feature extraction scheme is the first that con-
siders computational constraints and resource consumption,
where we propose burst segmentation, bi-hash, and double
hash tables.

8 Conclusion

In this paper, we propose HorusEye, an unsupervised Internet
of Things (IoT) anomaly detection framework. It offloads
abnormal traffic detection into the data plane, thereby freeing
resources in the control plane to recheck results for higher
accuracy. In the data plane, we propose a rule generation al-
gorithm for iForest and a new flow feature extraction scheme,
which implement the first unsupervised model that can reflect
the limited resources of switches. We prove that the compu-
tational complexity of HorusEye in the data plane satisfies
real-time performance constraints in all phases, from training
to execution. On the control plane, we adopt a lightweight
unsupervised model and a high-speed inference scheme. Ex-
tensive experiments show that HorusEye can offload a high
proportion of traffic from the control plane, and detect diverse
attacks even in very high throughput networks.

USENIX Association 32nd USENIX Security Symposium 583

Acknowledgments

This work is supported in part by the National Key R&D
Program of China under grant No.2022YFB3105000, the
National Natural Science Foundation of China under grant
No.61972189, the Shenzhen Key Lab of Software Defined
Networking under grant No.ZDSYS20140509172959989,
and Research Center for Computer Network (Shenzhen) Min-
istry of Education.

References

[1] Omar Alrawi, Chaz Lever, Manos Antonakakis, and
Fabian Monrose. Sok: Security evaluation of home-
based iot deployments. In Proceedings of the 2019
IEEE Symposium on Security and Privacy (SP), pages
1362–1380. IEEE, 2019.

[2] Noah Apthorpe, Dillon Reisman, and Nick Feamster.
A smart home is no castle: Privacy vulnerabilities of
encrypted iot traffic. arXiv preprint arXiv:1705.06805,
2017.

[3] Daniel Arp, Erwin Quiring, Feargus Pendlebury, Alexan-
der Warnecke, Fabio Pierazzi, Christian Wressnegger,
Lorenzo Cavallaro, and Konrad Rieck. Dos and don’ts
of machine learning in computer security. In Proceed-
ings of the 2022 USENIX Security Symposium, pages
3971–3988. USENIX Association, 2022.

[4] Clément Bénard, Gérard Biau, Sébastien Da Veiga, and
Erwan Scornet. Interpretable random forests via rule
extraction. In International Conference on Artificial In-
telligence and Statistics, pages 937–945. PMLR, 2021.

[5] Vitor Hugo Bezerra, Victor G Turrisi da Costa, Ri-
cardo Augusto Martins, Sylvio Barbon Junior, Ro-
drigo Sanches Miani, and Bruno Bogaz Zarpelao. Pro-
viding iot host-based datasets for intrusion detection
research. In Anais do XVIII Simpósio Brasileiro de Se-
gurança da Informaçao e de Sistemas Computacionais,
pages 15–28. SBC, 2018.

[6] Sanjit Bhat, David Lu, Albert Hyukjae Kwon, and Srini-
vas Devadas. Var-cnn: A data-efficient website finger-
printing attack based on deep learning. Proc. Priv. En-
hancing Technol., 2019(4):292–310, 2019.

[7] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick
McKeown, Jennifer Rexford, Cole Schlesinger, Dan
Talayco, Amin Vahdat, George Varghese, et al. P4:
Programming protocol-independent packet processors.
ACM SIGCOMM Computer Communication Review,
44(3):87–95, 2014.

[8] Z Berkay Celik, Gang Tan, and Patrick D McDaniel.
Iotguard: Dynamic enforcement of security and safety
policy in commodity iot. In Proceedings of the 2019
Network and Distributed System Security Symposium
(NDSS). The Internet Society, 2019.

[9] Corinna Cortes and Vladimir Vapnik. Support-vector
networks. Machine learning, 20(3):273–297, 1995.

[10] F Ding. Iot malware. https://github.com/ifding/
iot-malware, 2017.

[11] Menachem Domb, Elisheva Bonchek-Dokow, and Guy
Leshem. Lightweight adaptive random-forest for iot
rule generation and execution. Journal of Information
Security and Applications, 34:218–224, 2017.

[12] Chuanpu Fu, Qi Li, Meng Shen, and Ke Xu. Realtime
robust malicious traffic detection via frequency domain
analysis. In Proceedings of the 2021 ACM SIGSAC
Conference on Computer and Communications Security
(CCS). ACM, 2021.

[13] John A Hartigan and Manchek A Wong. Algorithm
as 136: A k-means clustering algorithm. Journal of
the royal statistical society. series c (applied statistics),
28(1):100–108, 1979.

[14] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li,
Piotr Dollár, and Ross Girshick. Masked autoen-
coders are scalable vision learners. arXiv preprint
arXiv:2111.06377, 2021.

[15] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry
Kalenichenko, Weijun Wang, Tobias Weyand, Marco
Andreetto, and Hartwig Adam. Mobilenets: Efficient
convolutional neural networks for mobile vision appli-
cations. CoRR, abs/1704.04861, 2017.

[16] GSMA Intelligence. The mobile economy 2020. https:
//www.gsmaintelligence.com, 2020.

[17] Constantinos Kolias, Georgios Kambourakis, Angelos
Stavrou, and Jeffrey Voas. Ddos in the iot: Mirai and
other botnets. Computer, 50(7):80–84, 2017.

[18] Nickolaos Koroniotis, Nour Moustafa, Elena Sitnikova,
and Benjamin Turnbull. Towards the development of re-
alistic botnet dataset in the internet of things for network
forensic analytics: Bot-iot dataset. Future Generation
Computer Systems, 100:779–796, 2019.

[19] ChonLam Lao, Yanfang Le, Kshiteej Mahajan, Yixi
Chen, Wenfei Wu, Aditya Akella, and Michael M Swift.
Atp: In-network aggregation for multi-tenant learning.
In Proceedings of the 2021 USENIX Symposium on Net-
work System Design and Implementation (NDSI), pages
741–761. USENIX Association, 2021.

584 32nd USENIX Security Symposium USENIX Association

https://github.com/ifding/iot-malware
https://github.com/ifding/iot-malware
https://www.gsmaintelligence.com
https://www.gsmaintelligence.com

[20] Yiran Lei, Yu Zhou, Yunsenxiao Lin, Mingwei Xu, and
Yangyang Wang. Dove: Diagnosis-driven slo violation
detection. In Proceedings of the 2021 IEEE 29th In-
ternational Conference on Network Protocols (ICNP),
pages 1–11. IEEE, 2021.

[21] Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. Iso-
lation forest. In Proceedings of the 2008 IEEE Inter-
national Conference on Data Mining, pages 413–422.
IEEE, 2008.

[22] Zaoxing Liu, Hun Namkung, Georgios Nikolaidis,
Jeongkeun Lee, Changhoon Kim, Xin Jin, Vladimir
Braverman, Minlan Yu, and Vyas Sekar. Jaqen: A high-
performance switch-native approach for detecting and
mitigating volumetric ddos attacks with programmable
switches. In Proceedings of the 30th USENIX Security
Symposium. USENIX Association, 2021.

[23] Xiaobo Ma, Jian Qu, Jianfeng Li, John CS Lui, Zhen-
hua Li, and Xiaohong Guan. Pinpointing hidden iot
devices via spatial-temporal traffic fingerprinting. In
Proceedings of the 2020 IEEE INFOCOM Conference
on Computer Communications, pages 894–903. IEEE,
2020.

[24] Gonzalo Marín, Pedro Casas, and Germán Capdehourat.
Deep in the dark-deep learning-based malware traffic
detection without expert knowledge. In Proceedings of
the 2019 IEEE Security and Privacy Workshops (SPW),
pages 36–42. IEEE, 2019.

[25] Morteza Mashayekhi and Robin Gras. Rule extraction
from random forest: the rf+ hc methods. In Canadian
Conference on Artificial Intelligence, pages 223–237.
Springer, 2015.

[26] Yisroel Mirsky, Tomer Doitshman, Yuval Elovici, and
Asaf Shabtai. Kitsune: An ensemble of autoencoders
for online network intrusion detection. In Proceedings
of the 25th Annual Network and Distributed System Se-
curity Symposium (NDSS). The Internet Society, 2018.

[27] Gabi Nakibly, Alex Kirshon, Dima Gonikman, and Dan
Boneh. Persistent ospf attacks. In Proceedings of the
2012 Network and Distributed System Security Sympo-
sium (NDSS). The Internet Society, 2012.

[28] James Newsome, Brad Karp, and Dawn Song. Poly-
graph: Automatically generating signatures for polymor-
phic worms. In 2005 IEEE Symposium on Security and
Privacy (S&P’05), pages 226–241. IEEE, 2005.

[29] Tian Pan, Nianbing Yu, Chenhao Jia, Jianwen Pi, Liang
Xu, Yisong Qiao, Zhiguo Li, Kun Liu, Jie Lu, Jianyuan
Lu, et al. Sailfish: accelerating cloud-scale multi-tenant
multi-service gateways with programmable switches. In

Proceedings of the 2021 ACM SIGCOMM 2021 Confer-
ence, pages 194–206, 2021.

[30] M Zubair Rafique and Juan Caballero. Firma: Malware
clustering and network signature generation with mixed
network behaviors. In International Workshop on Re-
cent Advances in Intrusion Detection, pages 144–163.
Springer, 2013.

[31] Dominik Scholz, Henning Stubbe, Sebastian Gallen-
müller, and Georg Carle. Key properties of pro-
grammable data plane targets. In Proceedings of the
2020 32nd International Teletraffic Congress (ITC 32),
pages 114–122. IEEE, 2020.

[32] Arunan Sivanathan, Hassan Habibi Gharakheili, Franco
Loi, Adam Radford, Chamith Wijenayake, Arun Vish-
wanath, and Vijay Sivaraman. Classifying iot devices in
smart environments using network traffic characteristics.
IEEE Transactions on Mobile Computing, 18(8):1745–
1759, 2018.

[33] Ruming Tang, Zheng Yang, Zeyan Li, Weibin Meng,
Haixin Wang, Qi Li, Yongqian Sun, Dan Pei, Tao Wei,
Yanfei Xu, et al. Zerowall: Detecting zero-day web
attacks through encoder-decoder recurrent neural net-
works. In Proceedings of the 2020 IEEE INFOCOM
Conference on Computer Communications, pages 2479–
2488. IEEE, 2020.

[34] Rahmadi Trimananda, Janus Varmarken, Athina
Markopoulou, and Brian Demsky. Packet-level
signatures for smart home devices. In Proceedings
of the 2020 Network and Distributed System Security
Symposium (NDSS). The Internet Society, 2020.

[35] Vincent Vanhoucke, Andrew Senior, and Mark Z Mao.
Improving the speed of neural networks on cpus. In
Deep Learning and Unsupervised Feature Learning
Workshop, NIPS, 2011.

[36] Juan Wang, Shirong Hao, Ru Wen, Boxian Zhang,
Liqiang Zhang, Hongxin Hu, and Rongxing Lu. Iot-
praetor: Undesired behaviors detection for iot devices.
IEEE Internet of Things Journal, 8(2):927–940, 2020.

[37] Mowei Wang, Yong Cui, Xin Wang, Shihan Xiao, and
Junchen Jiang. Machine learning for networking:
Workflow, advances and opportunities. IEEE Network,
32(2):92–99, 2017.

[38] Panqu Wang, Pengfei Chen, Ye Yuan, Ding Liu, Zehua
Huang, Xiaodi Hou, and Garrison Cottrell. Understand-
ing convolution for semantic segmentation. In 2018
IEEE winter conference on applications of computer vi-
sion (WACV), pages 1451–1460, Lake Tahoe, NV, USA,
2018. IEEE Computer Society.

USENIX Association 32nd USENIX Security Symposium 585

[39] Shuhe Wang, Chen Sun, Zili Meng, Minhu Wang, Jiamin
Cao, Mingwei Xu, Jun Bi, Qun Huang, Masoud Moshref,
Tong Yang, et al. Martini: bridging the gap between
network measurement and control using switching asics.
In Proceedings of the 2020 IEEE 28th International
Conference on Network Protocols (ICNP), pages 1–12.
IEEE, 2020.

[40] Sutong Wang, Yuyan Wang, Dujuan Wang, Yunqiang
Yin, Yanzhang Wang, and Yaochu Jin. An improved
random forest-based rule extraction method for breast
cancer diagnosis. Applied Soft Computing, 86:105941,
2020.

[41] Hao Wu, Patrick Judd, Xiaojie Zhang, Mikhail Isaev,
and Paulius Micikevicius. Integer quantization for deep
learning inference: Principles and empirical evaluation.
arXiv preprint arXiv:2004.09602, 2020.

[42] Guorui Xie, Qing Li, Yutao Dong, Guanglin Duan, Yong
Jiang, and Jingpu Duan. Mousika: Enable general
in-network intelligence in programmable switches by
knowledge distillation. In Proceedings of the 2022 IEEE
INFOCOM Conference on Computer Communications,
2022.

[43] Zhaoqi Xiong and Noa Zilberman. Do switches dream
of machine learning? toward in-network classification.
In Proceedings of the 18th ACM workshop on hot topics
in networks (HotNets), pages 25–33. ACM, 2019.

[44] Fisher Yu and Vladlen Koltun. Multi-scale context ag-
gregation by dilated convolutions. In Proceedings of the
2016 International Conference on Learning Representa-
tions (ICLR), 2016.

[45] Menghao Zhang, Guanyu Li, Shicheng Wang, Chang
Liu, Ang Chen, Hongxin Hu, Guofei Gu, Qianqian Li,
Mingwei Xu, and Jianping Wu. Poseidon: Mitigating
volumetric ddos attacks with programmable switches.
In Proceedings of the 2020 Network and Distributed Sys-
tem Security Symposium (NDSS). The Internet Society,
2020.

[46] Wei Zhang, Yan Meng, Yugeng Liu, Xiaokuan Zhang,
Yinqian Zhang, and Haojin Zhu. Homonit: Monitoring
smart home apps from encrypted traffic. In Proceedings
of the 2018 ACM SIGSAC Conference on Computer
and Communications Security (CCS), pages 1074–1088.
ACM, 2018.

[47] Changgang Zheng and Noa Zilberman. Planter: seed-
ing trees within switches. In Proceedings of the SIG-
COMM’21 Poster and Demo Sessions, pages 12–14.
2021.

A Background of IForest

Algorithm 2 iForest(X , t,ψ)
Require: X− input data, t−number of trees, ψ− sub-sampling size
Ensure: a set of t iTrees

1: initialize Forest
2: set height limit l = ceiling(log2ψ)
3: for i = 1 to t do
4: X ′← sample(X ,ψ)
5: Forest← Forest ∪ iTree(X ′,0, l)
6: end for
7: return Forest

Algorithm 3 iTree(X ,e, l)
Require: X− input data, e− current tree height, l− height limit
Ensure: an iTree

1: if e≥ l or |X | ≤ 1 then
2: return exNodeSize← |X |
3: else
4: let Q be a list of attributes in X
5: randomly select an attribute q ∈ Q
6: randomly select a split point p from max and min values of

attribute q in X
7: Xl ← f ilter(X ,q≤ p)
8: Xr← f ilter(X ,q > p)
9: return inNode { Le f t← iTree(Xl ,e+1, l)

10: Right← iTree(Xr,e+1, l),
11: SplitAtt← q,
12: SplitValue← p }
13: end if

B Hash Collision

First, we explore the choice of operators for bi-hash opera-
tions. We set the experiment as the number of streams is 216,
and the total register size is 217. We find that bi-hash has a
hash collision rate of 54.8% using the addition operation. The
hash collision rate of bi-hash using XOR operation is 31.8%.
The XOR operation is significantly better than the addition op-
eration. This is because binary addition operation will cause
a large amount of overflow in limited resources, resulting in
the loss of information. Further, we measure that the collision
rate under the traditional five-tuple hash algorithm is 29.0%.
Compared with it, the bi-hash algorithm only increases the
hash collision rate lightly, but realizes the bidirectional flow
matching with lower resources.

Second, we investigate the impact of different resource
allocations on the conflict rate through a probabilistic model.
Considering K flows, the numbers of conflicts in the first and

586 32nd USENIX Security Symposium USENIX Association

the second buckets, denoted as C1 and C2, can be obtained as:

C1 = K−M1 ∗ (1− e−
K

M1),

C2 =C1− (M−M1)∗ (1− e−
C1

M−M1),
(5)

where M is the total hash table size, and M1 and M−M1 are
the sizes of the first and second hash table, respectively. The
collision rate of the double hash table is P(C2) =C2/K.

Here we show some simulation double-bucket hash col-
lision experiments (Table 7), when the total bucket size is
131072 and the size of the flow is 32000, and the first hash
table size M1 starts from 32768 and increases with 16384
steps. We find that when M1 is 65546, i.e., the double hash
table resources are equally divided, the hash collision 1.03%
is not much different from the lowest 0.93% in the simulation,
which is approximately optimal. Hence, we use the equally
divided double hash table in our experiments to exploit its
advantage of avoiding further mod operations.

Table 7: Bucket resource allocation v.s. collision rate

M #Flow M1 Collision rate

131072 32000

32768 2.05 %
49152 1.33 %
65536 1.03 %
81920 0.93 %
98304 1.00 %

114688 1.46 %
131072 11.27 %

Then, we measure the average collision rate of single hash
table and double hash table under the same bit resource.
Specifically, we illustrate hash collisions based on the CRC32
hash algorithm, as shown in Table 8. The results show that
under the same resources, the collision rate of the double hash
table is nearly ten times lower than that of the single hash
table. Theoretically, using the double hash table, only 15-bit
hash index width is required to support 8000 flows with an
acceptable collision rate of 1.03%. As the width increases, the
number of flows that can be maintained grows exponentially,
while 18-bit width can support 64000 flows simultaneously.

Table 8: Hash collision

Bit width #Flow Collision rate
Single hash table Double hash table

15 8000 11.38% 1.03%
16 16000 11.28% 1.02%
17 32000 11.25% 1.05%
18 64000 11.31% 1.02%

0 5 10 15 20 25 30
burst sequence length

0

10

20

30

40

50

PD
F(

%
)

Figure 9: PDF of burst sequence length.

C Data Analysis

We analyze the burst length distribution of the training data.
As shown in Figure 9, due to the long tail distribution, we
only show the probability density function (PDF) of the burst
sequence length less than 30. We find that for long video
streams, the burst is often particularly long, and it is difficult
to summarize the fixed rules of its length. However, for state
transitions or heartbeat packets of sensors and smart cameras,
it is a sequence of short bursts with a fixed pattern. Therefore,
we select 15 as the segmentation according to the PDF of
the burst sequence length and divide a long burst sequence
video stream into multiple segmentation bursts. In addition,
each camera has several fixed transmission bit rates, so the
sizes and packets number of segmentation bursts have a fixed
pattern.

D Dataset

Table 9: Details of datasets

Type Dataset Name Name

Normal

Ours

360 camera Ezviz camera
Philips camera Skyworth camera
Tplink camera Mercury wirecamera
Xiaomi camera Hichip battery camera

iHorn-temperature iHorn-door sensor
iHorn-body sensor Xiaomi-light sensor
Xiaodu-doorbell Aqara-water sensor
TCL-body sensor Linksys WRT32X

[32]

Dropcam camera Samsung camera
Insteon camera Nest camera
Tplink camera smart sleep sensor

Netatmo Welcome NEST smoke alarm
Smart Baby Monitor motion sensor

Attacks

Ours
Mirai Service scan

OS scan TCP DDoS
UDP DDoS

[18, 26]

Aidra Bashlite
Mirai Keylogging

Data theft Service scan
OS scan HTTP DDoS

TCP DDoS UDP DDoS

USENIX Association 32nd USENIX Security Symposium 587

Table 10: Detection performance of models trained on the public device set [32]. ≤5e-5 indicates FPR≤5e-5 and ≤ 5e-4
indicates FPR≤5e-4.

Dataset Attack
Kitsune Magnifier HorusEye

TPR PRAUC
TPR PRAUC

TPR PRAUC≤5e-5 ≤5e-4 ≤5e-5 ≤5e-4 ≤5e-5 ≤5e-4

[5]
[18]
[26]

Aidra 0.595 0.611 0.854 0.620 0.657 0.823 0.623 ↑ 4.7% 0.662 ↑ 8.3% 0.880 ↑ 3.0%
Bashlite 0.784 0.795 0.890 0.809 0.843 0.909 0.814 ↑ 3.9% 0.845 ↑ 6.3% 0.935 ↑ 5.0%

Mirai 0.965 0.966 0.993 0.967 0.967 0.993 0.967 ↑ 0.1% 0.967 ↑ 0.1% 0.996 ↑ 0.2%
Keylogging 0.580 0.607 0.869 0.592 0.660 0.923 0.600 ↑ 3.6% 0.677 ↑ 11.5% 0.941 ↑ 8.4%
Data theft 0.591 0.617 0.868 0.598 0.667 0.919 0.604 ↑ 2.3% 0.682 ↑ 10.6% 0.938 ↑ 8.0%

Service scan 0.891 0.896 0.982 0.889 0.905 0.984 0.887 ↓ 0.4% 0.902 ↑ 0.7% 0.990 ↑ 0.9%
OS scan 0.602 0.667 0.989 0.630 0.873 0.995 0.659 ↑ 9.4% 0.880 ↑ 14.5% 0.987 ↓ 0.2%

HTTP DDoS 0.674 0.744 0.984 0.728 0.851 0.994 0.731↑ 8.5% 0.853 ↑ 14.7% 0.984 -
TCP DDoS 0.961 0.965 0.989 0.969 0.980 0.993 0.970 ↑ 1.0% 0.981 ↑ 1.7% 0.994 ↑ 0.5%
UDP DDoS 0.961 0.966 0.989 0.970 0.980 0.993 0.969 ↑ 0.8% 0.980 ↑ 1.5% 0.993 ↑ 0.5%

macro 0.760 0.783 0.941 0.777 0.838 0.952 0.782 ↑ 2.9% 0.843 ↑ 7.7% 0.964 ↑ 2.4%

Ours

Mirai 0.661 0.761 0.986 0.812 0.871 0.994 0.817 ↑ 23.5% 0.888 ↑ 16.7% 0.995 ↑ 1.0%
Service scan 0.993 0.994 1.000 0.991 0.997 1.000 0.991 ↓ 0.2% 0.997 ↑ 0.3% 1.000 -

OS scan 0.987 0.990 1.000 0.986 0.994 1.000 0.987 - 0.994 ↑ 0.4% 1.000 -
TCP DDoS 0.997 0.998 1.000 0.998 0.998 1.000 0.998 ↑ 0.1% 0.999 ↑ 0.1% 1.000 -
UDP DDoS 0.998 0.999 1.000 0.999 0.999 1.000 0.999 ↑ 0.1% 0.999 - 1.000 -

macro 0.927 0.948 0.997 0.957 0.972 0.999 0.958 ↑ 3.3% 0.975 ↑ 2.9% 0.999 ↑ 0.1%

E Detection Performance on Public Device Set

Table 10 summarizes the detection performance of models
trained on the public device sets [32]. All schemes achieve
good results on the dataset [32]. This is because the dataset
has fewer devices and does not trigger multiple behavioral
interactions like our testbed. Therefore, its traffic can be easily
distinguished. Through the experiments on this public dataset,
we demonstrate our schemes have excellent generality.

588 32nd USENIX Security Symposium USENIX Association

	Introduction
	Threat Model
	Overview of HorusEye
	Gulliver Tunnel
	IForest Rule Generation
	Burst Feature Extractor
	Burst segmentation
	Bi-hash.
	Double hash table

	Model Computational Complexity
	Hardware Implementation

	Magnifier
	Asymmetric Autoencoder
	Separable Convolution
	Dilated Convolutions
	Model quantization

	Experimental Evaluation
	Implementation
	Dataset and Feature Processing
	Dataset
	Dataset processing

	Gulliver Tunnel Hyperparameter Analysis
	Number of trees
	Sub-sampling size
	Contamination
	Abnormal frequency threshold

	Performance of Rule Generation
	Interpretability Analysis
	Hardware Performance
	Detection Performance
	Robustness of Detection
	Throughput and Detection Capability

	RELATED WORK
	IoT Anomaly Detection
	Programmable Switches
	IoT Behavior Analysis

	Conclusion
	Background of IForest
	Hash Collision
	Data Analysis
	Dataset
	Detection Performance on Public Device Set

