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Abstract—A variety of model representation methods have
been used in recent works to translate machine learning models
into programmable switch rules to address network classification
tasks at line-speed, i.e., in-network classification. These works
generally deploy a complete but heavy model on a switch with
limited hardware resources, causing both network-wide waste of
resources and unsatisfactory accuracy. Therefore, we propose In-
Forest, a general distributed in-network classification framework.
Firstly, to improve accuracy with limited resources, we develop a
Lightweight Ensemble Generic Optional Model (LEGO), which
can be further enhanced into multiple enhanced base models with
full functionality. Each switch only needs to deploy a simple base
model, rather than the complete ensemble model. Thus, hardware
resources required for both switches and the entire network can
be significantly reduced. Secondly, as traffic traverses multiple
switches, In-Forest aggregates the classification results from dif-
ferent enhanced base models for higher accuracy. Furthermore,
we design a two-phase resource-aware model allocation strategy
that assigns enhanced base models to switches under different
scenarios. We use stable deep reinforcement learning to respond
to dynamic traffic changes. Experimental results show that when
compared to SwitchTree, Planter, and Netbeacon in two real
network topologies, In-Forest can increase accuracy by up to
19.31%, while reducing the number of switch rules by 89.98%.

Index Terms—distributed deployment, in-network classifica-
tion, programmable data plane, deep reinforcement learning

I. INTRODUCTION

Recently, network classification based on Machine Learning
(ML) becomes widespread to support various needs, e.g., flow
size prediction [1–4], traffic classification [5–8], and anomaly
detection [9–12]. They simplify network management, boost
network Quality of Service (QoS), or assure network security.

Typically, conventional network classification solutions off-
path the traffic to remote GPU servers and use complex
learning models, like Long Short Term Memory (LSTM) or
Stacked AutoEncoder, to get better classification performance
[3, 8, 13]. However, they have two problems: a) High latency.
They need to transmit traffic to remote servers for analysis,
introducing additional round-trip latency [14]. b) High cost.
Powerful GPU servers are more expensive but with limited
packet processing capacity compared to network forwarding
devices (e.g., switches), especially when facing massive traffic
of 100Gbps or even Tbps [15–17].

Some solutions deploy ML models on the Programmable
Data Plane (PDP) to address network classification tasks at
line-speed [14, 18–22], i.e., in-network classification. They
translate models into rules of programmable switches (e.g., P4
switches [23]) to support on-path traffic processing. As a rule-
based paradigm, tree-based models [24–26] are compatible
with PDP’s match-action architecture [27]. The existing solu-
tions mainly use two model representation methods to deploy
tree-based models, i.e., direct mapping and feature encoding.
pForest [18] and SwitchTree [14] deploy the tree-based models
by directly mapping every layer of the Decision Tree (DT) to
a stage of the programmable switch. However, the number
of stages (e.g., 12 for Tofino 1 [28]) limits the model depth,
resulting in poor scalability and restricted accuracy. IIsy [19],
Planter [20], and Netbeacon [22] use feature tables to encode
features and a model table for decision-making. Although a
stage can store multiple tables, the feature number must be
limited due to the limitation in memory [29]. As model size
increases, the surge in switch rules worsens scalability.

Above all, existing in-network classification solutions [14,
18–22] are centralized, focusing on deploying the complete
but heavy model on one single switch, which causes two
problems: a) Low accuracy. Due to the limited resources of
one single switch, it is difficult to support the deployment for
large-scale models that have high accuracy [29]. b) Overuse
of resources. For a network-wide model deployment to cover
all the traffic, the same model is deployed multiple times on
different switches. It wastes a significant amount of network
device resources to process traffic that has been processed by
the first switch without offering any extra benefit.

In our view, it is more efficient to distribute the complete
model into multiple switches and process the traffic by sub-
models cooperatively. Distributed deployment enhances classi-
fication performance and reduces hardware resource consump-
tion (detailed in Section III-A2). There are two potential ways
to achieve this: a) We can split the model into layers, with
each switch responsible for deploying one or more layers.
Due to the fact that a tree-based model can only get the
final results at the leaf nodes, a single sub-model cannot
provide full functionality. b) We can also split the model
after translating it into switch rules, and then assign rules to979-8-3503-0322-3/23/$31.00 ©2023 IEEE

20
23

 IE
EE

 3
1s

t I
nt

er
na

tio
na

l C
on

fe
re

nc
e 

on
 N

et
w

or
k 

Pr
ot

oc
ol

s (
IC

N
P)

 |
 9

79
-8

-3
50

3-
03

22
-3

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
 D

O
I: 

10
.1

10
9/

IC
N

P5
92

55
.2

02
3.

10
35

56
02

Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on January 02,2024 at 07:05:30 UTC from IEEE Xplore.  Restrictions apply. 



different switches. However, each sub-model can only process
part of the traffic and possesses limited functionality. The two
ways both need to reschedule the traffic to pass through all
the sub-models for full function processing. This introduces
significant complexity in network routing and management.
Our goal is to design a distributed framework that satisfies the
following requirements: each lightweight sub-model provides
full functionality, and the more sub-models the traffic passes
through, the better classification performance we can get.
In this way, we can achieve high accuracy without single-
point resource limitation, network-wide redundant resource
consumption, and traffic rescheduling.

Therefore, we propose In-Forest, a general distributed in-
network classification framework that utilizes the available
resources of multiple switches to deploy the large-scale model.
We design a Lightweight Ensemble Generic Optional Model
(LEGO) that can be transformed into multiple enhanced
base models with full functionality and different classification
knowledge. Through our designed model allocation strategy
and model update mechanism, In-Forest enables flexible model
distributed deployment under different resource scenarios and
dynamic traffic changes. As traffic passes through switches
with different enhanced base models, In-Forest uses ensem-
ble learning to aggregate classification results, getting more
comprehensive knowledge to correct the errors of individual
models and achieve improved performance. In particular:

• We design a LEGO model, which consists of many simple
but cooperative enhanced base models. Each enhanced
base model is fully functional and can be deployed on
a single switch. In-Forest aggregates the classification
results from different enhanced base models by ensemble
learning (e.g., majority voting) to get higher accuracy
without single-point resource limitation.

• We propose a two-phase resource-aware model allocation
strategy to determine the optimal allocation scheme of
enhanced base models. Firstly, the offline topology-aware
allocation selects models for switches, aiming to maxi-
mize model diversity across all paths within limited op-
tional models and switch resources. Secondly, the online
traffic-aware allocation based on Deep Reinforcement
Learning (DRL) responds to traffic changes by tuning the
deployed models to maximize accuracy. A stable learning
mechanism is employed to ensure effectiveness.

• We devise a lightweight model update mechanism that en-
sures flexibility in adapting to different resource scenarios
and dynamic traffic changes. The enhanced base model
rules are assigned corresponding priorities for optimal
model scaling in/out when the available resources change.
In addition, the model can be updated to another one by
changing only the rules when traffic changes.

In-Forest is evaluated by comparing three advanced in-
network classification solutions, i.e., SwitchTree [14], Planter
[20], and Netbeacon [22]. Our findings show that, in two real
network topologies, In-Forest can increase accuracy by up to
19.31%, while reducing the number of switch rules by 89.98%.

II. BACKGROUND AND RELATED WORK

A. Background

Programmable Data Plane. The rise of the Programmable
Data Plane (PDP) improves network programmability. The
PDP allows network managers to implement customized data
plane algorithms on programmable forwarding devices (e.g.,
P4 switches [23]), catering to a variety of network applications
[14, 20, 22, 30]. This makes in-network classification for
line-speed traffic analysis a reality. However, the PDP has
operational limits, supporting only simple operations such as
shift, add, and boolean, while lacking support for multipli-
cation, loop, or floating operations [27]. These limitations
make it difficult to deploy complex models. Fortunately, tree-
based models are well-suited for programmable switches as
they are rule-based learning classifiers without many hard-to-
implement operations. But each switch has limited resources
(e.g., stage number, memory) [29], posing a challenge in
deploying large-scale models to achieve high accuracy.

Ensemble Model. Ensemble models encompass a range
of methods, e.g., bagging and boosting. Bagging methods,
such as Random Forest (RF) [25], generate an ensemble by
independently training sub-models on different subsets of the
dataset and combining their results. The performance of each
sub-model may be relatively weak, but by majority voting, RF
aggregates their results to obtain comprehensive classification
knowledge, thus correcting misclassified samples, preventing
overfitting, and achieving higher accuracy. Boosting methods,
such as Adaboost (ADB) [31] and Gradient Boosting Decision
Tree (GBDT) [32], successively train sub-models to generate
an ensemble. Each sub-model improves classification accuracy
on samples misclassified by the previous model. Ensemble
models outperform individual models in network classifica-
tion tasks [33, 34], but their complexity and large resource
consumption hinder in-network deployment.

B. Existing Works

Deploying tree-based ML models on the PDP to achieve
in-network classification is a promising technology. Table I
provides a partial snapshot of the existing solutions.

NetWarden [17] and FlowLens [16] collect traffic informa-
tion on the data plane and perform analysis on the control
plane. Due to the communication latency [35], traffic analysis
cannot be achieved at line-speed (not LS). Some solutions
embed tree-based models into PDP’s match-action tables by
different representation methods. pForest [18] and SwitchTree
[14] employ the direct mapping method, where every layer of
the DT is deployed in a switch stage. But the model depth is
limited by the stage number, making it difficult to accom-
modate larger and more accurate models. Another method
used by IIsy [19], Planter [20], and Netbeacon [22] is feature
encoding, which involves feature tables to encode features and
a model table for decision-making. This method requires the
dataset to have a limited number of features, otherwise, tables
take up too much memory. Furthermore, both methods face
a substantial increase in table rules with the larger model,
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TABLE I
COMPARISON OF ADVANCED IN-NETWORK CLASSIFICATION SOLUTIONS

Work • LS • AR • TA • AN
NetWarden [17] ✘ ✔ ✔ ✘

FlowLens [16] ✘ ✔ ✔ ✘

pForest [18] ✔ ✘ ✔ ✘

SwitchTree [14] ✔ ✘ ✔ ✘

IIsy [19] ✔ ✘ ✘ ✘

Planter [20] ✔ ✘ ✘ ✘

Netbeacon [22] ✔ ✘ ✔ ✘

Mousika [21] ✔ ✔ ✘ ✘

In-Forest ✔ ✔ ✔ ✔

• LS: Line-Speed Processing, AR: Accuracy Is Not Restrict by Hardware
Resources, TA: Traffic Awareness, AN: Assess Network-Wide Performance

resulting in accuracy being restricted by hardware resources
(not AR). Mousika [21] applies the distillation method to
transfer knowledge from complex teacher models to Binary
DT (BDT). But it lacks support for different network resource
scenarios and dynamic traffic changes (not TA).

Existing solutions deploy the complete model on a single
switch with limited resources. Extending these solutions to
enable network-wide deployment causes significant resource
waste (not AN). This is because the same model must be
deployed on different switches to cover all the traffic, allowing
the traffic that has been processed by the first switch continues
to traverse the same pipeline without any extra benefit.

To address the challenges, we propose In-Forest, a gen-
eral distributed deployment framework. By distributing the
large-scale ensemble model efficiently across multiple pro-
grammable switches, In-Forest enables high accuracy and
line-speed processing without single-point resource limitation.
In-Forest achieves topology awareness and traffic awareness
to determine network-wide model allocation schemes under
different resource scenarios and dynamic traffic changes.

III. IN-DEPTH ANALYTICS-DRIVEN MOTIVATION

In this section, we use case studies to validate the necessities
and challenges of deploying the ensemble model on the PDP,
leading to our design goals for In-Forest.

A. Motivation

1) Ensemble models offer better performance than indi-
vidual models in network classification tasks: We take the
anomaly detection task as an example, evaluating models
on pcap files with both malicious and benign traffic. Flow-
level features are extracted to generate the dataset, which
is then divided into 80% for training and 20% for testing.
For classification, we utilize an ensemble model (RF) and an
individual model (DT) trained by the widely-used ML frame-
work scikit-learn [36]. Fig. 1 demonstrates the superiority
of RF over DT in accuracy and F1 score. Both RF-10 and
DT-10 have a maximum depth of 10, with RF consisting of
10 sub-models. We reduce the maximum depth of RF sub-
models from 10 to 8, i.e., RF-8, to intentionally decrease their

accuracy. The accuracy of RF, although compromised by this
reduction, is still superior to DT. This toy case shows us that
a) ensemble models outperform individual models in network
classification tasks, and b) the performance of sub-models
directly affects the performance of the ensemble model. Fig. 1
also shows the rule number of RF and DT under different
model representation methods [14, 20, 22]. RF requires up to
17.66× more rules than DT, i.e., 5844 (RF-10) vs. 331 (DT-
10), in SwitchTree. The huge hardware resource consumption
hinders the deployment of ensemble models on a single switch.

2) Distributed deployment reduces hardware resource con-
sumption while enhancing classification performance: We
consider the network-wide model deployment of DT and RF.
Fig. 2(a) shows an example topology with three subnets A∼C
and six switches 1∼6. Traffic between subnet pairs is routed
based on Open Shortest Path First (OSPF) protocol [37]. To
cover all the traffic in the network, at least two models need to
be deployed, e.g., DT on switches 1 and 5. The deployment,
however, causes traffic transmitted from subnet B to A or C
to react slowly. This issue can be resolved by deploying the
additional model, e.g., DT on switch 3. In this way, two same
models are used to process the traffic between subnet pairs
A-B (as well as A-C and B-C), wasting resources and not
improving accuracy. What’s more, as the number of subnets
increases, implementing just-in-time traffic analysis requires
deploying the same model on almost switches, resulting in a
huge waste of network-wide resources.

A more efficient solution is to deploy sub-models on
different switches, enabling traffic to pass through multiple
sub-models. By aggregating the classification results of sub-
models, we can combine their strengths to correct the errors of
individual models and prevent overfitting, resulting in higher
accuracy with less single-point hardware resource consump-
tion. In our preliminary experiments, we design a Lightweight
Ensemble Generic Optional Model (LEGO), which consists
of multiple enhanced base models with full functionality
and different classification knowledge. Fig. 2(b) shows that
LEGO outperforms DT, approaching or even surpassing RF’s
performance as the number of enhanced base models increases.
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Fig. 1. The comparison of RF and DT in the anomaly detection task. RF-x
and DT-x indicate that the maximum depth of RF and DT is x. RF and DT
are translated into switch rules by three model representation methods.
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The reason for this improvement is that the accuracy of RF
is restricted by the single-point resource limitation, whereas
LEGO leverages the resources of multiple switches for de-
ployment and achieves higher accuracy through aggregation.
For different resource scenarios and dynamic traffic changes,
we can flexibly adjust the allocation schemes of enhanced
base models. For example, deploy the optimal three models on
switches 1∼3 to provide the best service for traffic between
subnets A and B with limited resources. Alternatively, deploy
different models on all switches to guarantee network-wide
traffic coverage and classification accuracy.

B. Design Goals

In this paper, we propose In-Forest, a distributed deployment
framework across multiple switches with the high-accuracy
large-scale ensemble model, addressing the challenges of
single-point resource limitation and network-wide redundant
resource consumption. Each switch only needs to deploy
a simple model, but with cooperation, it can achieve high
accuracy. In-Forest needs to ensure flexibility in adapting
to different resource scenarios. Furthermore, when dynamic
traffic changes, models need to be updated to another one
in time for higher classification accuracy. In-Forest does not
require traffic rescheduling, ensuring its generality.

IV. THE DESIGN OF IN-FOREST

A. System Overview

In-Forest is a general distributed in-network classification
framework that leverages the available resources of multiple
switches to deploy the large-scale ensemble model with high
accuracy. Fig. 3 shows a high-level overview of In-Forest.
On the control plane, we redesign conventional ensemble
models into LEGO to better suit distributed deployment.
LEGO consists of multiple enhanced base models with full
functionality. A two-phase resource-aware model allocation
strategy is employed to determine the optimal allocation
schemes under different resource scenarios and dynamic traffic
changes. On the data plane, each enhanced base model can be
translated into interpretable rules and deployed on a single
switch independently, addressing the network classification
task at line-speed. We introduce a lightweight model update
mechanism to ensure flexibility in model deployment. When
traffic passes through multiple switches, In-Forest aggregates
the classification results of models to get better performance.
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Fig. 3. The architecture of In-Forest.

B. LEGO Design Module

In-Forest utilizes a “splitting-reorganization-enhancement”
mechanism to generate LEGO. Algorithm 1 shows the details.

Path-Based Model Splitting. For the raw packet set C, flow
ID hi of each packet is defined by hashing the features (e.g.,
5-tuple), and only the first F packets per flow are stored in the
flow set F (lines 1∼5). Crucial flow-level features for network
classification tasks [22], such as average/minimum/maximum
packet lengths, are extracted to get the training set X (line 6).
Redundant features are eliminated using a backward recursive
method (line 7) to reduce model complexity [38]. This method
iteratively removes the feature with the least effect based on
the cross-validation score until the feature number reaches
S. S is determined based on the feature importances [39],
balancing complexity and accuracy improvement. The training
set X and the selected feature set U ′ are used to generate
the tree-based ensemble model G through bagging or boosting
methods (line 8). When classifying a sample, it starts from the
first internal node (i.e., root node) and traverses a sequence
of internal nodes. Each internal node contains a classification
feature and a threshold. The sample’s feature is compared to
the threshold, determining its direction towards the left or right
branch. This branching process continues until a leaf node is
reached, which contains the classification result of model G.
Suppose there is a path from the root node to a leaf node with
the following knowledge: if u1 ≤ 5, u2 > 7, then class← 1.
We can encode the knowledge as a classification path:

if u1 ∈ [a, 5], u2 ∈ (7, b], then class← 1, (1)

where a denotes the minimum of features u1 and b denotes
the maximum of feature u2. The ensemble model G is split
into multiple classification paths and stored in PathPool, as
depicted in Fig. 4 (line 9).

Coarse-Grained Model Reorganization. Different classi-
fication paths correspond to distinct traffic subsets. We reorga-
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K=1). Leaf nodes in the paths output the predicted classification results (blue
for benign, while red for malicious), with each corresponding to a subset
of traffic. The enhancement mechanism introduces valuable paths to correct
misclassifications (e.g., samples 6 and 7).

nize the paths in PathPool into multiple base models B, each
of which can process all the traffic (line 10). For instance, the
combination of paths 1∼3 in Fig. 4 forms a base model, which
possesses the full functionality to address the classification
task. Then, we apply the Top-K filtering method to select K
base models with the best performance, i.e., B′ (line 11). We
define K ≜ min(|B|, H), where H is the maximum number of
switches between subnet pairs. For Abilene [40] and GEANT
[41] topologies, H is 6 and 8, respectively.

Fine-Grained Model Enhancement. Inspired by Sec-
tion III-A1, we aim to improve the performance of each base
model, ensuring better performance after aggregation. We sort
the paths in descending order according to their priorities. The
priority is determined as follows:

Prj ←
∑

y∈Xj
(y == ŷ)

|Xj |
, (2)

where Xj represents the traffic subset corresponding to path
PathPoolj (lines 12∼14). y and ŷ denote the true class and
the predicted class of the sample.

For classification paths whose combined models are not
chosen by the Top-K filtering method, they remain valuable,
e.g., path 4 in Fig. 4. Path 4 accurately classifies samples 6
and 7, which can serve as a Supplement to the base model
for correcting misclassifications. In this case, both paths 3 and
4 can process sample 6. We opt for the result of path 4 due to
its higher priority, which achieves the correct classification
of sample 6. The same applies to sample 7. We combine
base models with their corresponding Supplements to get
the enhanced base models B′′ (lines 16∼26). The function
CanInsert(·) is used to calculate whether the inserted path
brings a performance improvement. LEGO is further obtained
by aggregating enhanced base models to prevent overfitting
[25] and achieve improved accuracy (line 27).

Notably, classification paths of the enhanced base model are
translated into interpretable range match rules and installed in
the programmable switch [21, 42] (detailed in Section IV-D).

Algorithm 1: LEGO Design Logic
Input: Raw packet set C = {(c1, y1) , . . .}; Flow-level

feature set U = {u1, . . .}; Maximum number of
packets stored per flow F ; Number of selected
features S.

1 F ← {[ ]};
2 for i = 1, . . . , |C| do
3 hi ← Hash(GetFiveTuple(ci));
4 if F [hi].length < F then F [hi].append(ci);
5 end
6 Get the training set X = {(x1, y1) , . . .} by extracting

flow-level features from F based on U ;
7 U ′ ← BackwardFeatureSelection(X ,U , S);
8 G ← Training(X ,U ′);
9 PathPool← ModelSplitting(G);

10 B ← ModelReorganization(PathPool);
11 B′ ← KBestFiltering (B);
12 for j = 1, . . . , |PathPool| do

13 Prj ←
∑

y∈Xj
(y == ŷ)

|Xj | ;
14 end
15 PathPool.Sort(Pr, descending = True);
16 Supplements, j ← {[ ]} , 1;
17 while j ≤ |PathPool| and PathPoolj /∈ B′ do
18 for k = 1, . . . , |B′| do
19 if CanInsert(PathPoolj , B

′
k) then

20 Supplements[k].append(PathPoolj);
21 Break
22 end
23 end
24 j ← j + 1;
25 end
26 B′′ ← Concat(B′, Supplements);
27 LEGO ← ModelAggregation(B′′);

Output: LEGO with K enhanced base models.

There are four characteristics of LEGO that make it highly
suitable for distributed deployment: a) Lightweight. Through
feature selection, path splitting, and model filtering, LEGO
reduces hardware resource consumption while maintaining
full functionality. b) Ensemble/Enhanced. Each base model
is enhanced, further improving the accuracy of the ensemble
model. c) Generic. Classification paths can be obtained from
bagging or boosting methods, and Supplements are flexibly
adapted. d) Optional. Based on the network topology and
dynamic traffic, enhanced base models can be selectively
combined to achieve superior performance.

C. Two-Phase Resource-Aware Model Allocation Module

When deploying LEGO across the network, resource con-
sumption, traffic coverage, and classification accuracy are im-
portant metrics in determining the optimal allocation scheme
of enhanced base models. However, directly modeling the
correspondence between the model allocation scheme and
network traffic is challenging and unreliable. Due to the
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dynamic nature of traffic, the current allocation scheme may
not adapt effectively to future traffic. To overcome this, we
employ a two-phase resource-aware model allocation strategy.

Offline Topology-Aware Allocation. In-Forest employs
the offline phase to obtain topology-aware model allocation
schemes under different resource scenarios, where traffic cov-
erage is converted to path coverage for subnet pairs and clas-
sification accuracy is converted to the diversity of enhanced
base models across all paths. Then, we simplify the model
allocation problem as follows:

max
D

α1

∑N
n=1 Step

(∑W
w=1 pnw

∑B
b=1Dw,b

)
+

α2

∑N
n=1

∑B
b=1 Step

(∑W
w=1 pnwDw,b

)
−

α3

∑W
w=1

∑B
b=1Dw,beb (3)

s.t.
∑W

w=1 Step
(∑B

b=1Dw,b

)
≤ D; (3a)∑W

w=1

∑B
b=1Dw,beb ≤ E; (3b)∑B

b=1Dw,b ≤ 1, w = 1, · · · ,W ; (3c)

Dw,b ∈ {0, 1}, w = 1, · · · ,W, b = 1, · · · , B. (3d)

Table II summarizes the variables. The objective function
is to optimize path coverage and model diversity while min-
imizing the required switch rules. D represents the variable
for determining the model allocation scheme. pn is a one-
dimensional vector of length W encoded with binary values,
indicating whether switch w lies on the selected path between
the subnet pair n. The function Step(·) converts values that are
greater than 0 to 1 and others to 0. To ensure the comparability
among three metrics in the objective function, we normalize
them to the range of [0, 1]. α1, α2, and α3 are weights to the
metrics, with value of α1 = 0.6, α2 = 0.2, and α3 = 0.2.
Model allocation schemes under different resource scenarios
can be obtained by adjusting D and E.

The model allocation problem is computationally complex,
resembling the multiple knapsack problem [43]. In the multiple
knapsack problem, there are B items and W knapsacks. Items
have different gains when assigned to different knapsacks and
the goal is to maximize the overall gain. Our problem is more
complex as there is no explicit gain function between the items
(enhanced base models) and knapsacks (switches). Since the
multiple knapsack problem is known as NP-hard, our problem
is also NP-hard. To efficiently solve this, we employ a heuristic
algorithm, i.e., Genetic Algorithm (GA) [44].

In practice, W is set to the number of switches in the
real network topologies (i.e., 11 for Abilene [40] and 23 for
GEANT [41]), and B is equal to the value of K set in Section
IV-B. We randomly generate a population containing many D
with different values and flatten each into a one-dimensional
vector of length W × B. Each vector represents a candidate
scheme and is evaluated by the fitness (objective function in
Equation (3)). We iteratively evolve the population and the
schemes with higher fitness are more likely to reproduce in

TABLE II
SUMMARY OF VARIABLES IN THE MODEL ALLOCATION PROBLEM

Variable Description
W Number of switches
B Number of enhanced base models in B′′

N Number of subnet pairs
D Maximum number of deployed switches
E Maximum number of rules stored in the network

Dw, b Whether to deploy enhanced base model b on switch w

pn Selected path between the subnet pair n
eb Number of rules for enhanced base model b

the next iteration. Offspring are generated through crossover
and mutation, replacing partial schemes to maintain population
size. The process iterates until the fitness converges. To ensure
the satisfaction of constraints (3a)∼(3c), we penalize non-
compliant schemes by assigning a large negative value to
fitness. The scheme with the highest fitness is deemed the
optimal model allocation scheme in the offline phase.

Online Traffic-Aware Allocation. To ensure In-Forest
adapts to dynamic traffic changes, we introduce an online
phase. By selecting the most suitable enhanced base models
for classifying corresponding traffic, we can maximize the
accuracy. We employ a model-free DRL approach to address
the challenges in dynamic traffic modeling.

We formulate the traffic transmission as a Markov Decision
Process (MDP) to effectively utilize DRL. The MDP is defined
by the tuple (S,A,R, T ) [45], where S represents the state
space, A represents the action space, R represents the reward
space, and T represents the state transition probability. At
time step t, In-Forest receives network information st and
determines the model allocation scheme at, which then gets
a reward rt. The MDP aims to find an optimal policy πθ that
maximizes the objective function J(θ), where θ represents
the policy parameters. Policy Gradient (PG) [46] methods
are commonly employed to update πθ, but they suffer from
inefficient data sampling [40]. To address this problem, we
utilize the Proximal Policy Optimization (PPO) algorithm [47],
which is known for its improved sampling efficiency and
reduced training variance. PPO leverages importance sampling
to efficiently make use of the data sampled by the old policy
parameters θ′. The update of policy πθ follows the form:

∇θJ(θ) = Eτ∼Pθ′ (τ )[W(θ′)A(s,a)∇θ log πθ(a|s)], (4)

where τ is the state-action pair (s, a) sampled from Pθ′(τ ).
The advantage function A(·) quantifies the superiority of the
selected action compared to others in a given state [48]. The
importance weight is denoted as W(θ′) = πθ(a|s)

πθ′ (a|s) .
It is important to note that the new policy parameters θ

and old policy parameters θ′ should not differ significantly.
Following [47], we adjust the objective function to limit the
gap between them. The new objective function is:

JCLIP (θ) = Eτ∼Pθ′ (τ )[min(W(θ′)A(s,a),W′(θ′)A(s,a))],
(5)
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where W′(θ′) = Clip(W(θ′), 1− ϵ, 1 + ϵ) is used to ensure
the probability of the good (or bad) action does not increase
(or decrease) substantially [47]. We set ϵ to 0.2.

We define the Covered Flow Accuracy (CFA) metric as the
reward function to assess the model allocation scheme:

CFA ≜

∑L
l=1 ml(yl == ŷl)

L
, (6)

where ml represents whether flow l is covered by enhanced
base models. If models are deployed on the routing path of
flow l, we set ml = 1, otherwise, ml = 0. yl and ŷl are the
true class and the predicted class, respectively.

In the state space, we consider the flow feature (5-tuple
of each flow), the traffic distribution (flow number in links),
and the current model allocation scheme. The action output for
each switch is a vector of length B+1. The first B dimensions
denote the deployment probability of each enhanced base
model, while the last dimension represents the non-deployment
probability. To determine the model allocation scheme in the
online phase, we select the action with the highest probability
of each switch and combine them as the global action.

To ensure the effectiveness of the online phase, we employ
a stable learning mechanism. We determine the deployed
switches through the offline phase and then use the online
phase to tune the enhanced base models on these switches.
This can reduce the dimensions of action space for faster
convergence. In addition, the allocation scheme from the
offline phase serves as the initial value of PPO, which explores
and refines the scheme further. If the action output does not
outperform the offline phase, the model allocation scheme
remains unchanged. The scheme in the online phase is also
required to satisfy the constraints. We add a penalty value
to the reward for schemes with lower performance than the
offline phase or that do not satisfy the constraints (3a)∼(3c).

D. Model Deployment Module
In-Forest deploys enhanced base models on different pro-

grammable switches to achieve in-network classification. Each
switch aggregates the classification results of enhanced base
models deployed on preceding switches, improving accuracy.
Furthermore, a lightweight model update mechanism is de-
signed to maintain flexibility in model deployment.

Feature Extraction. In-Forest uses flow-level features for
classification, as described in [22]. These features are obtained
by combining attributes from other packets within the same
flow. To balance memory consumption and classification accu-
racy, we extract features by the first F packets per flow, where
F is set to 4. Features, e.g., average/minimum/maximum
packet lengths, are taken into account.

Model Representation. Once the features are extracted,
their values are used as input for classification. Each enhanced
base model can be deployed as a single match-action table
matching all the features. Each classification path of the
enhanced base model, as shown in Equation (1), is translated
into a range match rule and stored in the table. This model
representation method ensures flexibility in adding or deleting
switch rules for model updating.

Classification Result Aggregation. We use a packet header
field to record the classification results of models deployed
on the preceding switches. Specifically, a variable prob is
initialized with the value of H , where H represents the
maximum number of switches between subnet pairs. In the
anomaly detection task, if an enhanced base model classifies
the incoming flow as malicious, we increment prob by 1.
Subsequently, we check the value of prob. If prob exceeds
H , it indicates that at least one model predicts the flow
as malicious, and a larger prob signifies higher confidence.
Conversely, if prob is less than H , it implies that at least two
preceding models classify the flow as benign, which means
that the result of the current model is probably wrong and the
result will be corrected by majority voting. When prob equals
H , forwarding of the flow continues, indicating that the flow’s
class cannot be determined at that point. The comparison of
prob can be implemented by range match rules [42].

Lightweight Model Update Mechanism. To enhance the
flexibility in model deployment, we introduce a lightweight
model update mechanism. Benefiting from the model repre-
sentation method we use, each switch rule is obtained from
the translation of a classification path. The switch rule obtained
from the classification path with higher priority in Equation (2)
also has higher priority. Switch rules with higher priority
are given preference for matching PHVs. When the available
resources change, we can achieve optimal model scaling in
(or out) by adding (or deleting) switch rules with higher (or
lower) priority. In the online phase, it is crucial to ensure
timely model updates to respond to dynamic traffic changes.
For the enhanced base model on each switch, we can update
it with another one that has the same number of rules. This
updating can be accomplished by changing the rules alone,
eliminating the need for switch restarts.

V. EVALUATION

Our evaluation of In-Forest focuses on (a) the lightweight
and enhancement of LEGO in comparison to conventional
ensemble models; (b) the effectiveness and superiority of
network-wide model distributed deployment under different
resource scenarios and dynamic traffic changes compared to
baselines; and (c) the lower hardware resource consumption.

A. Experiment Setup

We simulate traffic transmission by building two real net-
work topologies, i.e., Abilene [40] with 11 switches and 14
bidirectional links as well as GEANT [41] with 23 switches
and 37 bidirectional links, on Linux servers. The servers are
equipped with NVIDIA GeForce RTX 2080Ti GPUs and Intel
Xeon Gold 6230R CPUs. The tree-based models are trained
by the commonly used ML framework scikit-learn [36]. For
the online traffic-aware model allocation, we implement the
PPO [47] algorithm in PyTorch [49]. Model deployment is
implemented on Tofino 1 switches, i.e., H3C S9850-32H1.

1https://www.h3c.com/en/Products Technology/Enterprise Products/
Switches/Data Center Switches/H3C S9850/
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Fig. 5. The comparison in the number of classification paths required by LEGO and conventional ensemble models (RF, ET, ADB, and GBDT) to achieve
the same performance (accuracy and F1 score) under three anomaly detection datasets, i.e., UNSW-NB15, BoT-IoT, and CIC-IDS.

B. LEGO Performance

LEGO is a core component of In-Forest, so we first compare
it to four conventional ensemble models, i.e., Random Forest
(RF) [25], Extra Trees (ET) [50], Adaboost (ADB) [31], and
Gradient Boosting Decision Tree (GBDT) [32].

The comparison focuses on the number of classification
paths required to achieve the same accuracy and F1 score.
As the most popular and important task for in-network
classification, various recent works highlight the extensive
usage and significance of the three datasets (UNSW-NB15
[51], BoT-IoT [52], and CIC-IDS [53]) in anomaly detection
[14, 18–21, 54–56]. We conduct experiments on the datasets to
identify whether the real-world flows are malicious or benign.
Table III provides the relevant details. Each dataset is divided
into two parts, i.e., 80% for training and 20% for testing.
The conventional ensemble models are trained by scikit-
learn. Since scikit-learn does not support generating LEGO,
we implement the design logic (detailed in Section IV-B)
from scratch, splitting the classification paths from RF. As
suggested by [22], we use the flow-level features for training,
including average/minimum/maximum packet lengths. We set
the number of selected features, i.e., S, in LEGO to 8 and all
other models use the same number of features.

Fig. 5 illustrates that LEGO is lightweight and enhanced,
achieving the same performance with fewer classification
paths. We control the performance of each model by changing
depth while maintaining the other parameters unchanged.
LEGO (W/O) represents a trimmed version without fine-
grained model enhancement, while LEGO (W/) is the full
version. Compared to RF, both versions of LEGO achieve
the same accuracy while notably decreasing the number of

classification paths. LEGO (W/O) reduces paths by 77.10%
(from 2105 to 482) and LEGO (W/) reduces paths by
90.12% (from 2105 to 208), in UNSW-NB15. LEGO (W/O)
showcases the contribution of path-based model splitting and
coarse-grained model reorganization in forming lightweight
base models, eliminating redundant information. The fine-
grained model enhancement in LEGO (W/) further enhances
base models by inserting valuable paths as Supplements
to ensure the capability of classification paths. In contrast,
conventional ensemble models suffer from heavy sizes, e.g.,
30563 classification paths of ET in UNSW-NB15, limiting
their practical deployment. They need to compromise between
model size and performance, while LEGO is not restricted by
this limitation. Moreover, only the enhanced base model needs
to be deployed on a switch, which requires fewer resources.

C. Model Distributed Deployment Performance

We extend LEGO for network-wide deployment to show
the effectiveness and superiority of In-Forest. In-Forest is
compared to three advanced in-network classification solu-
tions, i.e., SwitchTree [14], Planter [20], and Netbeacon [22].
These solutions adopt different model representation meth-

TABLE III
EXPERIMENTAL DETAILS

Dataset Training
(flows)

Testing
(flows) Class

UNSW-NB15 [51] 500K 125K 9 attacks and 1 benign
BoT-IoT [52] 1108K 277K 5 attacks and 1 benign
CIC-IDS [53] 1420K 355K 8 attacks and 1 benign

Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on January 02,2024 at 07:05:30 UTC from IEEE Xplore.  Restrictions apply. 



SwitchTree Planter Netbeacon2

4

6

8

# 
N

um
be

r o
f r

ul
es

×101

RF-100% RF-70% RF-20% DT-100% In-Forest

SwitchTree Planter Netbeacon In-Forest0

5000

10000

15000

20000

# 
N

et
w

or
k-

w
id

e 
ru

le
s

(a) Number of Network-Wide Rules

SwitchTree Planter Netbeacon In-Forest50

60

70

80

90

C
ov

er
ed

 F
lo

w
 

 A
cc

ur
ac

y 
(C

FA
) (

%
)

(b) Covered Flow Accuracy (CFA)

SwitchTree Planter Netbeacon In-Forest60

70

80

90

100

Fl
ow

 c
ov

er
ag

e 
(%

)

(c) FLow Coverage

Fig. 6. The network-wide model deployment performance of In-Forest and existing solutions (SwitchTree, Planter, and Netbeacon) in Abilene. To compare
with the distributed deployment of In-Forest, we design four baselines (RF-100%, RF-70%, RF-20%, and DT-100%) for the existing solutions.
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Fig. 7. The CFA of In-Forest and existing solutions (SwitchTree, Planter, and Netbeacon) under different numbers of network-wide rules in Abilene. To
compare with the distributed deployment of In-Forest, we design four baselines (RF-100%, RF-70%, RF-20%, and DT-100%) for the existing solutions.

ods. Specifically, SwitchTree utilizes direct mapping, while
Planter and Netbeacon use feature encoding. The comparison
relies on the number of network-wide switch rules needed
to achieve equal CFA (defined in Equation (6)) and flow
coverage (percentage of flows with models deployed on the
routing path). The number is calculated by summing up the
rules required on each switch. We use UNSW-NB15 as the
flow dataset and Abilene as the network topology to simulate
traffic transmission. Eight subnets are connected to different
switches. We use a hash function based on the 5-tuple to assign
each flow to a subnet pair, and the flow routing is determined
by OSPF [37] protocol. RF is selected as the ensemble model
for the deployment of existing solutions because it is supported
by each of them. Deploying RF requires a limit on the size
due to the single-point resource limitation. In addition, we
consider the deployment of DT to verify if the distributed
deployment of In-Forest can outperform the individual model
through ensemble learning. Since the existing solutions lack a
network-wide distributed deployment mechanism, we extend
them by adding four deployment methods (RF-100%, RF-
70%, RF-20%, and DT-100%), and use them as baselines:

• RF-100%. Deploy RF on all switches.
• RF-70% and RF-20%. Deploy RF randomly on 70% or

20% switches.
• DT-100%. Deploy DT on all switches.
• In-Forest. Employ the offline model allocation to choose

the optimal allocation scheme of enhanced base models.

In RF-100%, RF-70%, RF-20%, and DT-100%, the com-
plete RF or DT is deployed on every single switch by the exist-
ing solutions (SwitchTree, Planter, and Netbeacon). The model
depth is set to 10, as deeper trees are impractical for switch
deployment [18, 30]. Similar to [30], RF is configured as 3
sub-models. Fig. 6 shows that In-Forest achieves the same CFA
and flow coverage compared to RF-100%, while significantly
reducing the number of rules, e.g., from 19371 (SwitchTree)
to 3454. In Fig. 6(a), we can find that, even with the partial
deployment of RF (RF-70% and RF-20%), the rule number in
SwitchTree remains higher than In-Forest. Notably, reducing
rules by using RF-70% and RF-20% does not guarantee flow
coverage (Fig. 6(c)), and traffic rescheduling is required which
leads to complex network routing and management. Compared
to DT-100%, In-Forest achieves a 16.39% higher CFA (89.26%
vs. 72.87%). Since the models are the same, a flow does not
get any improvement after passing through multiple DTs. In
contrast, In-Forest can aggregate the classification results of
different enhanced base models, leading to improved accuracy,
while covering all the traffic without rescheduling.

Additionally, we perform a comprehensive comparison un-
der different resource scenarios. We limit the number of rules
stored across the entire network. In-Forest adapts to different
resource scenarios by adjusting D and E for optimal model
allocation (detailed in Section IV-C). Simultaneously, LEGO’s
model depth is adjusted and the optimal model scaling in/out
is achieved through the lightweight model update mechanism
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Fig. 8. The CFA under dynamic traffic changes in two topologies. We set
three different random seeds (i.e. seeds 0/1/2) to simulate diverse changes.

TABLE IV
AVERAGE CFA IMPROVEMENT IN THE ONLINE PHASE

Network Average CFA (%) Improvement
Topology Offline Offline + Online

Abilene [40] 89.26% 90.41% 1.15% ↑
GEANT [41] 88.50% 90.07% 1.57% ↑

(detailed in Section IV-D). Larger D and E indicate that
the entire network has more hardware resources available for
model deployment, resulting in higher CFA. Conversely, when
resources are limited, network managers set smaller D and E.
The other four baselines do not have a similar mechanism and
adapt by only adjusting the model depth. Fig. 7 shows that
In-Forest has the highest CFA. Compared to RF-100%, In-
Forest can improve the accuracy by 19.31% (from 62.21% to
81.52%) while reducing the number of switch rules by 89.98%
(from 1727 to 173), as shown in Fig. 7(b). Furthermore, when
they have the same CFA (i.e., 81.52%), the number of rules
for In-Forest is reduced by 92.47% (from 2299 to 173).

Next, we demonstrate In-Forest’s traffic awareness in Abi-
lene and GEANT topologies with different H settings. H de-
pends on the topology scale, ensuring the diversity of enhanced
base models to improve the classification performance after
aggregation. Specifically, H is 6 in Abilene and 8 in GEANT.
We set the survival time for each flow, which is 10 time steps
in Abilene and 15 time steps in GEANT, allowing the traffic to
change over time [45]. To simulate diverse traffic changes, we
add a random number from 0 to 3 into the survival time and set
three different random seeds, i.e., 0, 1, and 2. We choose the
model allocation scheme in the offline phase as a good initial
value and employ the online phase to sense the dynamic traffic
changes. Fig. 8 demonstrates the effectiveness of the online
phase, which converges in both network topologies and brings
a better CFA compared to the offline phase. We average the
results under different random seeds to avoid evaluation noise.
Table IV shows the average CFA improvement, i.e., 1.15% ↑
in Abilene and 1.57% ↑ in GEANT, respectively.

D. Hardware Resource Performance

We now compare In-Forest with SwitchTree, Planter, and
Netbeacon in single-point switch resource consumption. In
our setting, SwitchTree uses direct mapping to deploy RF,
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Fig. 9. The resource consumption of different solutions on the H3C switch.

while Planter and Netbeacon use feature encoding. In-Forest
deploys the enhanced base model. The models are all from the
task of UNSW-NB15 in Section V-C, which achieve the same
CFA and flow coverage. We compare memory resources, i.e.,
the percentage of used SRAM and TCAM, and computational
resources, i.e., the percentage of used tMatch xBar and VLIW.
SRAM is used to store exact match rules, while TCAM is used
to store ternary match, longest prefix match, and range match
rules. tMatch xBar is used to perform ternary match or range
match, and VLIM is used for actions [21].

Fig. 9 illustrates that In-Forest consumes the lowest switch
resources. For instance, in Fig. 9(a), the SRAM usage for
SwitchTree and In-Forest is respectively 3.23% and 0.94%
(i.e., 70.90% ↓) and the TCAM usage for Netbeacon and
In-Forest is respectively 24.65% and 5.55% (i.e., 77.48% ↓).
In Fig. 9(b), In-Forest occupies the least percentage of both
tMatch xBar and VLIW, e.g., 31.25% (SwitchTree), 2.86%
(Planter), 3.65% (Netbeacon), and 2.08% (In-Forest) of VLIW.

VI. CONCLUSION

In this paper, we propose In-Forest, a general distributed
in-network classification framework. Firstly, we design a
Lightweight Ensemble Generic Optional Model (LEGO).
LEGO can be transformed into multiple enhanced base mod-
els, each of which can enable line-speed network classi-
fication on a single switch. Secondly, we propose a two-
phase resource-aware model allocation strategy to optimize
the allocation schemes. In addition, we devise a lightweight
model update mechanism to ensure flexibility in adapting
to different resource scenarios and dynamic traffic changes.
Experimental results show that In-Forest outperforms existing
in-network classification solutions in accuracy and hardware
resource consumption under network-wide model deployment.
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