
Genos: General In-Network Unsupervised
Intrusion Detection by Rule Extraction

Ruoyu Li§†, Qing Li†, Yu Zhang§, Dan Zhao†, Xi Xiao♮, Yong Jiang♮†
§Tsinghua University, China; †Peng Cheng Laboratory, China
♮Tsinghua Shenzhen International Graduate School, China
{liry19,yu-zhang23}@mails.tsinghua.edu.cn;

{liq,zhaod01}@pcl.ac.cn; {jiangy,xiaox}@sz.tsinghua.edu.cn

Abstract—Anomaly-based network intrusion detection systems
(A-NIDS) use unsupervised models to detect unforeseen attacks.
However, existing A-NIDS solutions suffer from low throughput,
lack of interpretability, and high maintenance costs. Recent
in-network intelligence (INI) exploits programmable switches
to offer line-rate deployment of NIDS. Nevertheless, current
in-network NIDS are either model-specific or only apply to
supervised models. In this paper, we propose Genos, a general in-
network framework for unsupervised A-NIDS by rule extraction,
which consists of a Model Compiler, a Model Interpreter, and a
Model Debugger. Specifically, observing benign data are multi-
modal and usually located in multiple subspaces in the feature
space, we utilize a divide-and-conquer approach for model-
agnostic rule extraction. In the Model Compiler, we first propose
a tree-based clustering algorithm to partition the feature space
into subspaces, then design a decision boundary estimation mech-
anism to approximate the source model in each subspace. The
Model Interpreter interprets predictions by important attributes
to aid network operators in understanding the predictions.
The Model Debugger conducts incremental updating to rectify
errors by only fine-tuning rules on affected subspaces, thus
reducing maintenance costs. We implement a prototype using
physical hardware, and experiments demonstrate its superior
performance of 100 Gbps throughput, great interpretability, and
trivial updating overhead.

Index Terms—intrusion detection, P4 switch, rule extraction

I. INTRODUCTION

The network intrusion detection system (NIDS) has been
a crucial network security infrastructure for decades. Among
its various categories, anomaly-based NIDS (A-NIDS) that
works in an unsupervised manner is drawing more attention.
Compared to supervised methods, this type of methods is more
promising because 1) it eliminates the need of attack data
for training; 2) it does not rely on predefined threat models,
improving the detection of unforeseen anomalies. With the
advances of various unsupervised machine learning (ML) and
deep learning (DL) models, many A-NIDS approaches [1]–
[8] have been proposed. While these approaches have demon-
strated considerable malicious traffic detection capability, they
suffer from a few limitations that hinder their practical use.
Low throughput and high delay. The inference speed of
ML/DL models can hardly catch up with the soaring speed
of today’s high-throughput networks (e.g., 100 Gbps). As a

Corresponding author: Qing Li (liq@pcl.ac.cn).

consequence, most of these methods can only work in an off-
path deployment fashion (e.g., deploy on a GPU server on
control plane), causing prolonged response time.
Limited interpretability. Due to the black-box nature of many
ML/DL models, network operators are often reluctant to trust
the high-stake decisions made by these models, whose output
are typically scores/labels unintuitive for humans.
High updating overhead. Most methods require retraining to
update models (e.g., to solve false positives), which is time-
consuming and induces extra overhead.

Meanwhile, the recent advance in programmable data plane
empowers in-network intelligence (INI), and opens up the pos-
sibility of fully deploying ML/DL-based NIDS on switching
ASICs for line-speed processing. Prior works have realized
the deployment of a series of learning models for intrusion
detection, such as neural networks [9]–[11], SVM [12], [13],
decision trees [12], [14], and ensemble models [15], [16].
However, existing INI solutions have two problems: 1) the
vast majority are only applicable to specific models; 2) the
only one general INI method (Mousika [17]) conducts model-
agnostic translation to decision trees for deployment, while it
only supports supervised models. Currently, there is no work
proposing general INI methods for unsupervised A-NIDS.

Designing a general INI framework of A-NIDS faces several
challenges. First, most existing rule extraction methods (e.g.,
[17]–[20]) are supervised, mainly due to their heavy reliance
on rule extraction models that inherently require labeled data
for each class (e.g., CART decision trees). Second, existing
methods often lack support for incremental updates, as their
rules are obtained from the overall distribution of data, which
needs to be re-estimated even for small updates. Yet retraining
models can lead to significant changes in the extracted rule
set, requiring reinstallation of a large number of rules on the
switch. Third, A-NIDS typically requires more complex fea-
tures, especially flow-level statistics (e.g., packet size mean/-
variance), to achieve sufficient accuracy without using labels.
However, current switching ASICs usually have arithmetic
constraints (e.g., do not support division) that restrict the
support for complex features. As such, most prior methods
(e.g., [12], [13], [17]) only consider packet-level features.

In this paper, we present Genos, a general in-network
deployment framework for various A-NIDS models. We adopt

a systematic approach, referring to the tools of program
development, and design three modules: Model Compiler,
Model Interpreter, and Model Debugger. The Model Compiler
treats an A-NIDS as the “source model”, converts it into
a rule set as the “intermediate representation”, and forms
a set of P4 tables as the “object representation”, enabling
the efficient deployment of A-NIDS within programmable
switches’ data plane. The Model Interpreter comes into play
when an anomaly is detected. It utilizes the decision logic of
the extracted rules and provides explanations for the identified
anomalies, which assists network operators in understanding
the underlying reasons for the predictions. To address false
positives, the Model Debugger can identify the rules responsi-
ble for incorrect decisions and incrementally generate a limited
number of new rules to rectify the errors.

Due to the multimodal nature of benign data (e.g., a
server often supports multiple services), benign samples often
locate in multiple disjoint subspaces within the feature space.
Following this intuition, Genos resolves the aforementioned
challenges with three key designs. First, we design adivide-
and-conquer rule extraction method. Specifically, we propose
a Score Clustering Tree, which partitions the feature space
according to scores generated by the unsupervised source
model into subspaces, each containing samples of similar
normality. Then, for each subspace, we design a Decision
Boundary Estimation approach to obtain axis-aligned rules that
accurately approximate the decision boundaries of the source
model. Second, we realize incremental updating to rectify
errors, which locates errors to the granularity of subspaces,
and directly fine-tunes the extracted rules only on the affected
subspaces. In this way, we avoid retraining the source model
and reduce the number of rules to be reinstalled. Third, we
realize a feature extractor on the data plane that supports
the acquisition of bidirectional flow-level features, especially
finding a workaround to handle the comparison of complex
features that cannot be easily computed by switching ASICs.

We implement a prototype on a commodity programmable
switch and evaluate the deployment of four distinct A-NIDS
models. Compared to four prior works (including Mousika),
our rule extraction method achieves better results of 97.79%
fidelity and 98.80% detection accuracy. In general, Genos can
achieve about 100 Gbps throughput, interpretable detection
results, and trivial model updating overhead.

We summarize our contributions as follows:
• A general in-network A-NIDS framework achieving bet-

ter throughput, interpretability, and incremental update.
• To the best of our knowledge, it is the first work to realize

the model-agnostic rule extraction of A-NIDS models to
P4 tables in a fully unsupervised manner.

• A prototype on hardware, realizing flow-level feature
extraction within switching ASICs’ limited operations.

II. BACKGROUND AND MOTIVATION

A. Anomaly-based Network Intrusion Detection (A-NIDS)

A-NIDS is a promising category of NIDS as it requires no
attack data and meanwhile can better detect unseen attacks.

A-NIDS approaches are typically built upon unsupervised
learning models. For example, Mirsky et al. [1] and Li et al.
[7] both use autoencoders for intrusion detection. Binbusayyis
et al. propose an unsupervised NIDS combining convolutional
autoencoder and one-class SVM [21]. In [22], the authors
propose an A-NIDS approach based on isolation forest.

Formally, for a d-dimensional feature space X , given a
stationary distribution D of normal traffic, an A-NIDS can be
abstracted as a function f that estimates the probability density
function of benign data distribution, i.e., f(x) ≈ PX∼D(x),
and detects anomalies via a threshold f(x) < φ. In prac-
tice, this probability can be translated to different criteria of
anomaly scores, such as reconstruction error of autoencoders
and average traversing path length of isolation forests.

Though A-NIDS has many advantages, there are also some
limitations that hinder their practical use: 1) low throughput:
on control plane, even extremely efficient approaches like
[5] can only achieve 10 Gbps-level throughput; 2) limited
interpretability: most approaches only output a score (e.g.,
mean squared error [3], [6]) or a label (e.g., one-hot label [4])
that cannot explain anomalies in terms of important attributes;
3) high overhead of updating: cumbersome retraining process
is required to update models.

B. P4 Switch and In-Network Intelligence

P4 switches [23] are equipped with programmable switch-
ing ASICs. They allow customized processing logic inside
match-action pipelines through P4 programs, while reaching
extraordinary processing speed and throughput (e.g., Tbps).
Such advantages prompt the research on deploying ML/DL
models directly on P4 switches, which is referred to as in-
network intelligence (INI).

To realize INI, several computation constraints of P4 need
to be considered, such as lack of support for division, float
operations and loop operations. Recent works have realized the
deployment of different ML models. For example, Xiong et al.
transform four ML models into match-action tables to realize
INI [12]. Some other works focus on tree-based models for
INI as they naturally fit the match-action logic [13]–[16]. As
the ML community flourishes, ML/DL models will continue to
evolve, and the race of deploying new models will never end.
Instead of designing model-specific INI solutions, Mousika
[17] first proposes the concept of general INI. It adopts
the technique of knowledge distillation [18] to translate the
knowledge of well-trained models into binary decision trees,
enabling indirect deployment of complex models and better
flexibility over model-specific methods. However, Mousika
can only work for supervised models and cannot be applied
to A-NIDS approaches that are unsupervised.

C. Challenges of General INI for A-NIDS

To the best of our knowledge, research on general INI for
unsupervised A-NIDS still remains blank. We attribute this
vacancy to the following unresolved challenges:
Unsupervised rule extraction. The key technique used by
Mousika, the general framework for supervised models, is

TNR TPR0.0
0.2
0.4
0.6
0.8
1.0

M
et

ric
 (%

) Original After KD

(a) Autoencoder
TNR TPR0.0

0.2
0.4
0.6
0.8
1.0

M
et

ric
 (%

) Original After KD

(b) Variational autoencoder

Fig. 1: Rules that extract A-NIDS using knowledge distillation
(KD) and only benign data suffer huge accuracy loss.

knowledge distillation. In a larger scope, it belongs to model-
agnostic rule extraction aiming to translate black-box models
into interpretable rules. Most of existing methods use CART
decision trees as the translation target for rule extraction [19],
[20], [24]. They require labeled data for each class to precisely
determine the decision logic of the models, which cannot meet
A-NIDS’ requirement of only using unlabeled benign data.
Yet forcing supervised rule extraction methods in a one-class
scenario will cause severe accuracy loss. For example, in Fig.
1, compared to the original models, decision trees obtained by
knowledge distillation show drastic performance degradation
in detecting attacks (i.e., low true positive rate).
High overhead of update. Deployed models sometimes need
updates, e.g., when network operators find alarms are false
positives and expect to reduce similar cases. Typically, we
need to retrain the models and re-obtain the rules. However,
many rule extraction methods [18]–[20], [25] adopt decision
trees, which inherently do not support incremental updates.
Retraining tree models, even using a small scale of data, can
cause remarkable changes in tree structure and rules. Fig.
2 illustrates such an example. As such, a large number of
deployed rules have to be deleted and reinstalled to fix a
small number of errors. Worse, this process can cause certain
downtime of a switch, increasing the risk of being infiltrated.
Acquisition of flow-level features. A-NIDS approaches usu-
ally need sophisticated features to precisely represent normal
traffic, particularly flow-level features. Most methods (e.g.,
Planter [16], Mousika [17]) only support packet-level feature
extraction on P4 switches. A more recent work [26] first real-
izes stateful flow-level features, including statistics like mean
and variance, by using bit shift operations to replace division
operations. However, this approach can only summarize a flow
at a fixed inference length of a power of 2, which can be
insufficient for detecting time-related attacks. For example,
there might be little difference between the bytes of the first
four packets of a normal HTTP request and a CC attack.

III. OVERVIEW

This paper proposes a novel framework, Genos, which
implements a complete life cycle for general in-network de-
ployment of A-NIDS. We observe that benign samples often
locate in multiple disjoint subspaces within the feature space,
due to the multimodal nature of benign data. Therefore, we
adopt a divide-and-conquer approach, and extract rules on the
granularity of subspace. This not only enables accurate ap-
proximation of the source model, but also allows incremental
updating by only fine-tuning rules on the affected subspaces.

iat_fwd_min ≤ 0.0
gini = 0.27

samples = 100.0%
value = [0.839, 0.161]

class = normal

iat_fwd_var ≤ 4.111
gini = 0.006

samples = 84.2%
value = [0.997, 0.003]

class = normal

True

gini = 0.0
samples = 15.8%
value = [0.0, 1.0]
class = abnormal

False

ps_max ≤ 3678.0
gini = 0.004

samples = 84.1%
value = [0.998, 0.002]

class = normal

gini = 0.0
samples = 0.1%

value = [0.0, 1.0]
class = abnormal

gini = 0.002
samples = 84.0%

value = [0.999, 0.001]
class = normal

gini = 0.0
samples = 0.1%

value = [0.0, 1.0]
class = abnormal

(a) Before update

iat_fwd_min ≤ 0.0
gini = 0.272

samples = 100.0%
value = [0.838, 0.162]

class = normal

iat_fwd_max ≤ 2.452
gini = 0.01

samples = 84.2%
value = [0.995, 0.005]

class = normal

True

gini = 0.0
samples = 15.8%
value = [0.0, 1.0]
class = abnormal

False

ps_bwd_max ≤ 3678.0
gini = 0.003

samples = 83.7%
value = [0.999, 0.001]

class = normal

ps_fwd_min ≤ 41.0
gini = 0.497

samples = 0.5%
value = [0.462, 0.538]

class = abnormal

gini = 0.002
samples = 83.6%

value = [0.999, 0.001]
class = normal

gini = 0.0
samples = 0.0%

value = [0.0, 1.0]
class = abnormal

gini = 0.0
samples = 0.2%

value = [1.0, 0.0]
class = normal

gini = 0.0
samples = 0.3%

value = [0.0, 1.0]
class = abnormal

(b) After update

Fig. 2: Updating false positives with only 0.24% of data causes
changes in tree structure and splitting criteria.

Fig. 3 shows the overview. We refer to the concepts in
program development and design three modules running on
control plane: 1) Model Compiler that translates an A-NIDS
model into P4 tables by rule extraction; 2) Model Interpreter
that explains important attributes for decisions; 3) Model
Debugger that fixes wrong decisions by incremental updates.
Model Compiler. This module achieves the translation of
a black-box A-NIDS model into a set of rules, which are
subsequently transformed into match-action tables for efficient
in-network deployment. We propose a model-agnostic rule
extraction algorithm that addresses the challenge of unsu-
pervised model extraction. The algorithm comprises a Score
Clustering Tree to partition the feature space into subspaces,
and a Decision Boundary Estimation approach to determine
the decision rules of the source model on each subspace.
Model Interpreter. This module interprets the opaque output
of A-NIDS models (e.g., anomaly scores) by feature impor-
tance. Considering that rule extraction inherently provides a
global explanation for the decision logic of the source model,
we realize an effective and efficient local explanation method,
i.e., explaining the detection of one anomaly at a time, based
on the feature deviations of extracted rules.
Model Debugger. Thanks to our divide-and-conquer rule
extraction, we design this module that can pinpoint the rules
producing errors and incrementally update them. We develop
an excluding mode for the scenarios where data go into some
subspace misidentified as anomalies inherently by the source
model, and a patching mode for the scenarios where errors
are attributed to insufficient generalization of the rule in a
certain subspace. As a result, only a small number of rules
from the affected subspaces need to be reinstalled on switches
to increase accuracy, reducing the overhead of updates.

Besides, Genos realizes bidirectional flow-level feature ex-
traction on the data plane. We manage to compare mean and
variance values to rule thresholds without division. Particu-
larly, we design an adaptive timeout mechanism for flow length
determination, executing active timeout for long lived flows
and inactive timeout for burst flows, promoting more timely
and accurate representations of flows.

IV. FRAMEWORK DESIGN

A. Model Compiler

1) Design Goal: When designing the Model Compiler, we
aim to derive an in-distribution rule set C = {C1, C2, ...} from

Rule Extraction
(Intermediate Representation)

A-NIDS
Model

(Source)

Match-Action Table
(Object Representation)

Model Compiler

Model Interpreter

Key Value
Key Value

Benign
Data

Anomaly
Score

False Positive Rules

Key Value

Incremental Update

Key Value

Feature-level Interpretation

Model Debugger

Ingress Traffic Egress TrafficFlow-level
Feature Extractor

Fig. 3: Overview of Genos.

a trained A-NIDS model f , utilizing its anomaly threshold
φ and benign training data X . To ease the final deployment
on P4 switches, we focus on axis-aligned rules that involve
straightforward comparison and exclude rules of other formats
to avoid additional calculations (e.g., linear models [27]). Each
rule C = ...∧(xi⊥υi)∧ ...∧(xj⊥υj) represents a conjunction
of feature constraints, where υi denotes the bound for the i-th
dimension; ⊥ ∈ {≤, >} denotes the comparison. We represent
a data sample satisfying a rule as x ∈ C. The anticipated
outcome entails the derived rules to exhibit a substantial
fidelity to the source model, implying a comparable coverage
of benign data and a similar detection rate of anomalies:

argmin
C
LX∼D(C, f, φ) + LX≁D(C, f, φ), (1)

where D is the stationary distribution of benign data, and L
is a loss function to measure fidelity in a certain space.

2) Rule Extraction: The biggest challenge in solving the
problem in (1) is the minimization of the second term. Without
labeled abnormal samples, this term is neither deterministic
nor can be easily estimated by sampling points in a high-
dimensional large space. The essence of the challenge comes
from the multimodal nature of normal data. For example, a
server supports multiple services such as web, email, and
database, each represented by distinct features that are possibly
located in separate regions within the feature space. The
limited transition between these regions makes axis-aligned
rules incompetent in accurately approximating the decision
boundary of the source model.

Motivated by the above intuition, we design a divide-and-
conquer strategy. The primary concept revolves around parti-
tioning the space into subspaces that encapsulate normal data
with more compact distributions and then using axis-aligned
rules to approximate the source model on each subspace. To
this end, we design a tree model for problem breakdown and
an estimation approach for problem resolution.

Score Clustering Tree. We notice that, even in the ab-
sence of labeled data, the output of A-NIDS models (i.e.,
anomaly scores) can serve as a valuable indicator to guide the
partitioning of the feature space into subspaces for compact

distribution of normal data. Built upon the CART decision tree
[28], Score Clustering Tree (SCT) introduces a new splitting
criterion. Given the data N at a tree node, SCT first obtains
the output of the source model f(x) for each x ∈ N . SCT
seeks a splitting point s for the node that maximizes the gain:

argmax
s

I(N)− |N l|
|N |

I(N l)−
|N r|
|N |

I(N r), (2)

where s includes the splitting feature and threshold, N l and
N r are the data split to the left and right child nodes,
respectively, and |N | denotes the number of data samples. I is
the Gini index calculated by 1−

∑
p2j , where pj originally is

the probability of each class on this node. Given that we only
have unlabeled benign data, we modify p to be the average
output scores of the source model:

p =
1

|N |
∑

f(x),∀x ∈N . (3)

Unlike clustering techniques that rely solely on Euclidean
distance (e.g., K-means), our approach takes the predictions of
the source model to acquire a more profound understanding of
benign data distribution, thus can more effectively categorize
related benign data into one subspace. A tree splits nodes until
it satisfies one of the conditions: i) the number of data samples
at the node |N | = 1; ii) output scores between any of the data
samples at the node are below a limit, i.e., ∀x(i),x(j) ∈ N ,
|f(x(i))− f(x(j))| < ϵ; iii) it reaches the maximum depth τ .

While our tree primarily serves as a space-splitting mecha-
nism, it can also directly identify certain subspaces as anoma-
lies. We define two types of leaf nodes in our tree: anomalous
leaf nodes and unlabeled leaf nodes. The former is assigned
only when all the data samples at a leaf node possess output
scores lower than the threshold set by the source model, i.e.,

yN = 1 iff |{x ∈ N ; f(x) < φ}| = |N |. (4)

With benign training data, such cases may arise when outliers
are present within the data or if the source model exhibits
false positives due to inadequate generalization. For the latter
scenario, we will discuss how to rectify errors in the Model
Debugger. For unlabeled leaf nodes, we use the following
method to further extract their rules of normality.

Decision Boundary Estimation. For each of the subspaces
determined by a leaf node, we design an approach using axis-
aligned rules to approximate the decision boundary of the
source model. Let Xk represent the training data falling into
the k-th leaf node. To begin with, we utilize the minimal
hypercube Hk as a reference to bound each dimension of
the data samples in Xk, which are identified as normal by
the source model, thus ensuring Lx∈Xk

(Hk, f, φ) = 0. The
minimal hypercube Hk is encompassed by 2× d axis-aligned
hyperplanes, and can be described using the following rule:

Hk = (υ−
1 ≤ x1 ≤ υ+

1) ∧ ... ∧ (υ−
d ≤ xd ≤ υ+

d),

υ−
i = min(xi|f(x) > φ,x ∈Xk),

υ+
i = max(xi|f(x) > φ,x ∈Xk),

(5)

where xi denotes the i-th dimension of features in x.

To explore the decision boundary, for the i-th dimension,
we first conduct uniform sampling of Ne data points on each
hyperplane of the hypercube, denoted as e(1), . . . , e(Ne) ∈
Hk ∧ (xi = υi), υi ∈ {υ−

i , υ
+
i }. These data points are

referred to as initial explorers. For each initial explorer e, we
further generate Ns auxiliary explorers in its vicinity, drawn
from a truncated multivariate Gaussian distribution denoted as
N (e,Σ, i). The center of sampling is an initial explorer e, and
the sampling radius is determined by the covariance matrix:

Σ = diag(ρ|υ+
1 − υ−

1 |, . . . , ρ|υ
+
d − υ−

d |), (6)

where ρ is a hyperparameter to control the sampling radius.
The sampling along the i-th dimension is half-truncated to
ensure that only samples outside the hypercube are retained,
in an attempt to extend the boundary. With Ne×Ns auxiliary
explorers in total, we query the source model and utilize Beam
Search to select Ne samples with the lowest output scores,
indicating their proximity to the model boundary. To guarantee
fast convergence towards the boundary, we refer to Fast
Gradient Sign Method (FGSM) [29] for adversarial attacks and
design an approximation approach for black-box scenarios. Its
basic idea is to move towards the opposite direction to model
training. As an initial explorer e and its auxiliary explorer ê are
spatially close, we can assume the model score is monotonous
between the two points, and approximate the score’s gradient
at their midpoint by calculating the slope between the two
points. Similar to FGSM, we subtract the sign of gradient from
the midpoint as the new initial explorer for the next iteration:

enext = emid − η · sign(∇emid
),

emid =
e+ ê

2
,∇emid

=
∇f(emid)

∇emid
≈ f(e)− f(ê)

e− ê
,

(7)

where sign(·) is the sign function, and η controls the stride.
The iteration stops when it meets one of the two conditions:
i) an auxiliary explorer êlast that satisfies f(êlast) < φ is
found. For the i-th dimension, we establish a constraint to
extend the boundary of the hypercube, i.e., ci = (xi ≤ êlast,i)
if êlast,i > υ+

i , or ci = (xi > êlast,i) if êlast,i < υ−
i ;

ii) it reaches the maximum iterations, suggesting the difficulty
in moving towards the decision boundary by perturbing a par-
ticular feature dimension. We calculate the difference between
the model output for the last auxiliary explorer êlast and that
of the first initial explorers ê. If |f(ê) − f(êlast)| < δ, we
conclude that this dimension represents a contour line for the
source model. In this case, we do not produce any constraints
for this dimension. Otherwise, we generate constraints in the
same manner as those produced under the first condition.

The final rule is obtained by taking the disjunction of the
hypercube and the constraints on each dimension:

Ck = Hk ∨ (c1 ∧ c2 ∧ ... ∧ cd). (8)

The rule extraction algorithm is presented in Algorithm 1.
The result rule set comprises both the complementary rule for
anomalous leaf nodes (lines 4∼6), and the conjunction of the
top-down tree rules and the rules obtained through boundary
estimation for each unlabeled leaf node (lines 8∼10).

Algorithm 1: Rule Extraction from A-NIDS
Input: A-NIDS model f and threshold φ; dataset X
Output: axis-aligned rule set C

1 Initialize an empty set C;
2 T ← ClusteringTree(X, f, φ);
3 for leaf node N in T do
4 CN , yN ← Root2LeafRule(T,N);
5 if yN = 1 then
6 C.append(¬CN);
7 else
8 Cbe ← BoundEstimate(N , f, φ);
9 C ← CN ∧ Cbe;

10 C.append(C);
11 end for
12 return C;

3) Translation to P4 Table: Due to the axis-aligned nature,
our extracted rules can be readily translated into P4 tables
using range matching for each feature dimension, as shown
in Listing 1. The majority of the table serves as an allowlist
except for the rules derived from anomalous leaf nodes. Flows
failing to match any rules are set as anomalies. We also adopt
prior efforts [17], [26] to further encode range matching into
ternary matching to enhance compatibility across switches.

table anids_rules {
key = {

meta.f_1: range;
meta.f_2: range;
...
meta.f_d: range;

}
actions = {set_benign, set_anomalous}
default_action = {set_anomalous;}}

Listing 1: P4 table for extracted rules.

B. Model Interpreter

This module demystifies the opaque outputs of A-NIDS
to improve human understanding and trust in model deci-
sions. This process is known as local interpretation, typically
outputting the most important features related to a decision.
Existing works in this field [30]–[33] often involve fitting a
local linear model (e.g., lasso) to uncover the feature weights,
which can be slow and unsuitable for delay-sensitive detection
tasks, e.g., real-time online security analysis. Our method can
provide accurate and fast interpretations thanks to the inherent
global interpretation provided by our rule extraction, which
captures the decision logic of the source model and allows for
the interpretation of individual decisions.

Considering a data sample x, its prediction yx and the
extracted rule set C, the goal of Module Interpreter is to output
a feature importance vector px to explain the prediction. The
process is described in Algorithm 2. In line 2, we first pinpoint
the rule corresponding to x. As SCT splits the feature space
into subspaces by leaf nodes, the rules obtained on each leaf
node are disjoint, resulting in at most one rule matching a
given data sample. For a normal prediction, its important

Algorithm 2: Interpretation by extracted rules
Input: data sample (x, yx), extracted rule set C
Output: feature importance vector px

1 Initialize a zero vector px;
2 C ← FindRule(x, C);
3 for i in x.size and (υ−

i ≤ xi ≤ υ+
i) ∈ C do

4 if yx = normal then
5 px[i]← 1/(υ+

i − υ−
i);

6 else
7 px[i]← ReLU(xi − υ+

i) + ReLU(υ−
i − xi);

8 end for
9 return px;

feature should be a distinct space that anomalies are unlikely
to fall in. Thus, we use the reciprocal of each feature constraint
range as the importance (line 5). For an abnormal prediction,
as our rules describe the space of normality, the features that
do not conform to the rules reveal the anomaly, and higher
deviations indicate more anomalous. So we use the distance
between the feature and its violated bound as the weight (line
7). If there is no constraint on a feature, we will not assign
weights to this feature. All feature values and rule bounds are
normalized so that the computed weights are comparable.

C. Model Debugger

This module updates the deployed model to address errors,
especially false positives. Unlike the conventional updating
pipeline which involves model retraining and redeployment,
our method circumvents these steps by directly operating on
the extracted rules. This is made possible by our rule extraction
algorithm, which isolates the model extraction from the overall
feature space into small subspaces.

Suppose a network operator finds a batch of reported
anomalies are false positives, denoted by Xfp. Depending on
the types of leaf nodes on which the samples are identified,
our Model Debugger adopts two different modes (Fig. 4):

Patching Mode. False positives that happen on an unlabeled
leaf node may result from our rule extraction not being suffi-
ciently generalized to approximate the real decision boundary.
Despite narrowing the overall feature space to small subspaces
via our tree model, axis-aligned hyperplanes might still not
perfectly fit the complex source model, especially when it is far
from linear. In this case, our method incrementally generates a
set of new rules, referred to as patches. False positive samples
that arrive at the same leaf node may violate the rule of the
leaf node with respect to different feature constraints. For each
sample x ∈Xfp, we use a 2× d-length bitmap Bx to record
the dimensions that the sample does not conform to:

Bx[i] =

{
01, xi > υ+

i ,

10, xi < υ−
i ,

(9)

where υ−
i and υ+

i represent the upper and lower bounds of
the rule’s constraint on the i-th dimension.

Next, we employ our Decision Boundary Estimation method
to generate a new rule for samples that have identical bitmaps.

(a) Patching Mode on unlabeled leaf node

(b) Excluding Mode on anomalous leaf node

Fig. 4: Illustration of Model Debugger to fix false positives.

These patch rules not only involve the false positives but also
explore the boundary to a more reasonable space, improving
the generalization of the rules and better mimicking complex
and nonlinear decision boundaries of the source model.

Excluding Mode. This mode applies when false positives
occur on an anomalous leaf node due to the source model’s
misidentification of samples in this subspace. As a result, our
tree model also labels this leaf node as anomalous. Since this
subspace already falls outside the source model’s decision
boundary, our decision boundary estimation method cannot
generate a patching rule. Instead, we use a minimal hypercube
to exclude the area containing the false positive samples from
the subspace, effectively creating a rule that removes the
influence of these misidentified samples from the leaf node.

D. Data Plane Implementation

We implement the data plane of Genos on a Tofino pro-
grammable switch (1400 lines of P4 code). We detail the im-
plementation of the flow-level feature extractor, which realizes
the 30 flow-level features list in Table I on the data plane.

Bidirectional Flow Record. Like many control plane flow
analyzers (e.g., [34]), our implementation on the data plane
also records bidirectional flows rather than unidirectional flows
to better represent flow patterns. When a packet arrives, we
parse its 5-tuple, packet size, and timestamp. Based on the
packet direction (e.g., LAN to WAN), we use two hash tables
to record the flow: a forward table and a backward table, where
the keys are the forward and backward 5-tuples, respectively.

Stateful Storage. Each hash table entry points to a register
array for stateful storage. Each register contains an incremental
statistic of the flow. The first five statistics are space-related,
including 1) packet counts M ; 2) sum of packet sizes LSs;
3) squared sum of packet sizes SSs (data plane supports
the approximate square calculation); 4) maximum packet size
Maxs; 5) minimum packet size Mins. In addition, we record
the timestamp of the first packet t1 and the timestamp of the
last packet tM in the flow. Using these timestamps, we can
calculate the flow duration and inter-arrival time between pack-
ets, which enable us to preserve four time-related incremental
statistics: 1) sum of inter-arrival times LSt; 2) squared sum of
inter-arrival times SSt; 3) maximum inter-arrival time Maxt;
4) minimum inter-arrival time Mint. The calculation of these
time-related statistics can be implemented in two stages.

TABLE I: Flow-level features implemented on data plane.

Attribute Statistics Direction Number

packet count 1∼m(active timeout) fwd, bwd, both 3
packet size mean/max/min/var fwd, bwd, both 12

inter-arrival time mean/max/min/var fwd, bwd, both 12
flow duration microsecond both 1

destination port 0∼65535 fwd 1
L4 protocol TCP or UDP - 1

Timeout Mechanism. Referring to the classic NetFlow
[35], we design an adaptive timeout mechanism for flow
length determination, which has two types of timeouts: 1)
active timeout, which segments long flows to reduce persistent
storage occupation, and is triggered when flow packet count
reaches a threshold m; 2) inactive timeout, which identifies
burst flows and is triggered when inter-arrival time exceeds a
threshold value ∆. This mechanism offers dynamic flow length
determination, enabling a more comprehensive understanding
of flow patterns.

Feature Acquisition. When a timeout occurs, we retrieve
the statistics of the flow from the register array to build a
feature vector for model inference. Since a register can only
be accessed once in the pipeline, we utilize the resubmit mech-
anism to obtain register values. For features like L4 protocol,
port, packet count, and maximum/minimum statistics, we can
directly obtain them from the packet header and registers. The
most challenging features are the mean and variance values,
which cannot be computed by switching ASICs. We notice
that their comparison to rule thresholds (υi), i.e.,

µi =
LS

M
⊥υi, σi =

SS

M
− (

LS

M
)2⊥υi, (10)

where ⊥ ∈ {≤, >}, can be rearranged into:

LS⊥M · υi, M · SS − LS2⊥M2 · υi, (11)

where M ·υi and M2 ·υi can be computed in advance. In this
way, we achieve the comparison without division operation.
We pre-encode M ·υi and M2·υi in P4 tables as rule thresholds
for every possible value of M (i.e., 1 to m at most due to active
timeout). While this may increase the number of table entries,
it remains acceptable as our extracted rules are efficient.

V. EVALUATION

A. Experimental Setup
We use two benchmark datasets for network intrusion

detection: CIC-IDS [36] and TON-IoT [37]. These datasets
are in PCAP files, providing sufficient benign data (e.g., server
traffic) and a wide range of realistic attack traffic (e.g., DDoS,
scanning, botnet). The datasets are randomly split into training
(40%), validation (30%), and testing (30%) sets by flows.

We adopt four types of unsupervised models commonly
as A-NIDS source models, including autoencoder (AE), vari-
ational autoencoder (VAE), one-class SVM (OCSVM), and
Isolation Forest (iForest). These models are trained as well as
hyperparameter calibration using only benign data. The perfor-
mance of these models is evaluated using the Area Under the
ROC Curve (AUC) score. Table II provides a description of the
datasets, along with the AUC scores achieved by the A-NIDS
models. We use grid search to decide our hyperparameters.

TABLE II: Datasets and A-NIDS models.

Characteristics CIC-IDS TON-IoT

PCAP size 40.1GB 6.27GB
#Attack types 6 9

#Normal samples 687,565 309,086
#Attack samples 288,404 893,006

source model
AUC

AE 0.9921 0.9998
VAE 0.9901 0.9998

OCSVM 0.9967 0.9993
iForest 0.9879 0.9877

TABLE III: Performance on each type of attacks.

Attack AE VAE OCSVM iForest
TPR TNR TPR TNR TPR TNR TPR TNR

backdoor 1.000 0.9772 1.000 0.9715 1.000 0.9857 1.000 0.9686
DDoS 1.000 0.9832 1.000 0.9832 1.000 0.9851 1.000 0.9767
DoS 1.000 0.9849 1.000 0.9849 1.000 0.9915 1.000 0.9831

injection 1.000 0.9888 1.000 0.986 1.000 0.9795 1.000 0.9701
MITM 1.000 0.9776 1.000 0.9669 1.000 0.9835 1.000 0.9582

brute force 1.000 0.9816 1.000 0.9903 1.000 0.9874 1.000 0.9709
ransomware 1.000 0.9962 1.000 0.9808 1.000 0.9789 1.000 0.9607

scanning 1.000 0.9904 1.000 0.9865 1.000 0.9846 1.000 0.9605
XSS 1.000 0.9862 1.000 0.9882 1.000 0.9774 1.000 0.9518

#Rules 29 27 17 17

B. Model-Agnostic Rule Extraction

Metrics. We use four metrics to evaluate the performance
of rule extraction: 1) fidelity, the ratio of data samples on
which the predictions of extracted rules are identical to the
predictions of the source model; 2) robustness, the ratio of data
samples added with a perturbation, on which the predictions
of extracted rules are identical to the predictions of the source
model; 3) true positive rate (TPR) and 4) true negative rate
(TNR), indicating accuracy in unbalanced data scenarios.

Baselines. We compare our method to three baselines:
1) Estimated Greedy Decision Tree (EGDT) [20]: It extracts
a decision tree that actively samples new training points to
mirror the computation performed by the source model.
2) Trustee [19]: It synthesizes high-fidelity and low-complexity
tree models that can demystify black-box model decisions.
3) Mousika [17]: It uses knowledge distillation to translate the
knowledge of a complex model into a binary decision tree.

All baselines are comparable to ours since they are model-
agnostic tree-based models that generate axis-aligned rules and
can be deployed on programmable switches. Extracting rules
using these methods can only access benign datasets.

Fig. 5 shows Genos achieves superior performance in all
metrics. First, it achieves the highest fidelity across all source
models and datasets, with some scores even surpassing 0.999.
It indicates that Genos can accurately capture the decision
logic and precisely match the predictions of the source models.
Second, Genos achieves the highest TPR across all the source
models and datasets, with a TPR of 1.00 for all the models
on the TON-IoT dataset. This exceptional result signifies that
our rules can accurately detect various anomalous traffic. In
contrast, most baselines fail to obtain adequate TPR since
they rely on much anomalous data to determine decision
boundaries, which may not be readily available in practice.
Third, the robustness of Genos is also commendable, with
scores ranging from 0.9890 to 1.00, demonstrating its ability
to handle perturbations in practical environments. Moreover,
the TNR is consistently high (0.9715 to 1.00).

AEVAEOCSVMiForest0.00.20.40.60.81.0
EGDT Trustee Mousika Genos

AE VAE OCSVM iForest0.0
0.2
0.4
0.6
0.8
1.0

(a) Fidelity (CIC-IDS)

AE VAE OCSVM iForest0.0
0.2
0.4
0.6
0.8
1.0

(b) Robustness (CIC-IDS)

AE VAE OCSVM iForest0.0
0.2
0.4
0.6
0.8
1.0

(c) TPR (CIC-IDS)

AE VAE OCSVM iForest0.0
0.2
0.4
0.6
0.8
1.0

(d) TNR (CIC-IDS)

AE VAE OCSVM iForest0.0
0.2
0.4
0.6
0.8
1.0

(e) Fidelity (TON-IoT)

AE VAE OCSVM iForest0.0
0.2
0.4
0.6
0.8
1.0

(f) Robustness (TON-IoT)

AE VAE OCSVM iForest0.0
0.2
0.4
0.6
0.8
1.0

(g) TPR (TON-IoT)

AE VAE OCSVM iForest0.0
0.2
0.4
0.6
0.8
1.0

(h) TNR (TON-IoT)

Fig. 5: Comparison of rule extraction performance on four A-NIDS models using two traffic datasets.

0 5 10 15 20 25 30
Deduction of top-K features

10
30
50
70
90100

NF
R

(%
)

LIME
Genos

(a) CIC-IDS

0 5 10 15 20 25 30
Deduction of top-K features

30
50
70
90

100

NF
R

(%
)

LIME
Genos

(b) TON-IoT

Fig. 6: Feature deduction test on LIME and Genos.

We also study the performance of our extracted rules in
detecting each type of attacks. Table III shows our rules can
perfectly detect all types of attacks using any of the source
models (TPR=1.000). The TNR also reaches a satisfying level
(0.981 on average). Such a remarkable detection performance
is owing to the high efficacy of our method, which extracts
fewer than 30 rules, making it practical for deployment on
resource-constrained network devices.

C. Interpreting Decisions

We compare the Model Interpreter of Genos to LIME [27], a
state-of-the-art model-agnostic explanation method. Following
prior works (e.g., [32]), we conduct a feature deduction test.
Intuitively, if top-K features are selected as important for a
decision, removing these features from this data sample would
probably lead to misclassification by the source model. As
we only access benign data for training, the selected features
are essentially significant attributes of benign data. Thus, we
use the Negative Flipping Rate (NFR) as the metric, which
measures the ratio of the samples that are initially predicted
as normal by the source model and are predicted as abnormal
after nullifying the selected top-K features.

Fig. 6 depicts Genos reaching high NFR faster than LIME
on both datasets. On TON-IoT dataset, Genos attains 100%
NFR with only the top three features. In terms of efficiency,
Genos is over 2000 times faster than LIME (0.168µs v.s.
478.206µs on average) when interpreting a decision. We
attribute the superiority to our rule extraction, which can well
describe the feature ranges of normal data, and accurately and
efficiently interpret decisions by deviations of feature values.

Taking two samples from TON-IoT datasets that scan attack
attempts as examples, Table IV presents the interpretation of
Genos. One sample successfully scans an open port while the

TABLE IV: Interpretation of two scanning attack samples.

Successful scanning Unsuccessful scanning
Top Feature Value Rule Top Feature Value Rule

dest port 139 > 1882 dest port 9000 ≤ 1883
duration 0.0002 > 13.082 duration 0.663 > 13.082

count 3 > 116.48 count 2 > 116.48

(a) (b)

Fig. 7: Two scanning attack samples analyzed by Wireshark.

other fails. As the normal traffic mainly consists of MQTT
brokers with a limited range of ports, the wide scanning range
of ports is a strong indicator for scanning attacks. Another
important feature is the flow packet count: one sample has
three packets, while the other has two. Manual data analysis,
as depicted in Fig. 7, also reveals a clear distinction: a
successful scanning attack receives an ACK from the victim,
while scanning on a closed port is directly reset. Therefore,
this feature captures the distinct patterns between the two
attack scenarios. Overall, it demonstrates that the interpretation
provided by Genos is aligned with expert knowledge.

D. Updating Rules

We first use training sets for model training and rule extrac-
tion, and apply extracted rules to the detection of validation
sets. We then employ the Model Debugger to update the
extracted rules using these false positives, and finally evaluate
the updated rules on testing sets.

In Fig. 8, as we include more false positives in rule updates,
the FPR consistently decreases, showing Genos can learn from
mistakes to enhance its decision-making. Meanwhile, the TPR
remains steady, indicating the persistent detection accuracy for
anomalies even when rectifying false positives. This highlights
the adaptability and resilience of Genos in evolving network
environments, which is vital for the usability of NIDS.

To evaluate the overhead of updates, we employ Trustee
as a baseline, which is based on CART decision trees for
rule extraction. Since incremental update is not viable for
Trustee, we update its rules by retraining the source model
and re-extracting the rules. Fig. 9 shows Genos demonstrates a

0.0 0.2 0.4 0.6 0.8 1.0
Update ratio

0.40
0.62
0.85
1.08
1.30

FP
R

(%
) FPR

80.0
83.8
87.5
91.2
95.0

TP
R

(%
)TPR

(a) CIC-IDS

0.2 0.4 0.6 0.8
Update ratio

0.20
0.30
0.40
0.50
0.60

FP
R

(%
) FPR

90.00
92.50
95.00
97.50
100.00

TP
R

(%
)TPR

(b) TON-IoT

Fig. 8: Updating with incremental ratios of false positives.

0.0 0.5 1.0
FPR drop (%)

FP
R+R

ule
s-R

ule
s

0.03
1.34

Trustee
Genos

0 20 40 60#Rules

6.00

8.00
4.00

0.00

(a) CIC-IDS

0.0 0.5 1.0 1.5
FPR drop (%)

FP
R+R

ule
s-R

ule
s

0.32
1.71

Trustee
Genos

0 20 40 60#Rules

58.00

10.00
11.00

0.00

(b) TON-IoT

Fig. 9: Change of rule numbers and FPR after updates.

higher FPR drop than Trustee with fewer rule changes. Thanks
to the incremental update mechanism supported by our rule
extraction method, Genos can efficiently reduce the overhead
of updates since only a few new rules need to be added. In
contrast, the rule set of Trustee drastically changes since the
updated model changes the fundamental tree structure.

E. Hardware Performance

We install the P4 tables obtained by the Model Compiler and
the P4 program that realizes the flow-level feature extractor
and rule matching on the hardware switch. We use a traffic
generator (Keysight XGS12) to generate high-speed traffic and
evaluate the hardware performance with respect to throughput,
processing latency, and resource consumption.

We conduct experiments with loads of 10 Gbps, 40 Gbps,
and 100 Gbps. As shown in Fig. 10, Genos exhibits ex-
ceptional performance, maintaining a perfect match between
switch throughput and traffic rate. This ensures that the switch
can efficiently process incoming traffic without bottlenecks or
packet loss. Further, the processing latency is impressively low,
at around 0.74 microseconds (1µs=10−6s). In comparison to
A-NIDS deployment on the control plane, even a highly effi-
cient approach using DPDK [5] can only achieve 12.65 Gbps
of throughput and 0.047 seconds of latency. The results show
that Genos, through its general in-network approach, achieves
high throughput and real-time online intrusion detection.

For memory resources, Genos occupies 16.9% SRAM and
0.3% TCAM. For computation resources, Genos utilizes 10

10 40 100
Traffic rate (Gbps)

10
30
50
80

100

Th
ro

ug
hp

ut
 (G

bp
s)

Rx Tx

(a) Throughput

10 40 100
Traffic rate (Gbps)

0.0
0.2
0.4
0.6
0.8
1.0

La
te

nc
y

(
s) Average Maximum

(b) Latency

Fig. 10: Runtime performance of Genos.

stages, 16.3% eMatch Xbar, 0.5% tMatch Xbar, 26.6% Hash
bit, and 52.1% ALU. The relatively heavy utilization of the last
two resources is attributed to the flow-level feature extraction
mechanism. Note that the basic packet forwarding function
of switches does not use ALU extensively, so it will not be
significantly affected by Genos. Overall, Genos is efficient and
practical for deployment on switch ASICs.

VI. RELATED WORK

A. Programmable Data Plane
There have been other works focusing on offloading various

network tasks on programmable data planes, such as measure-
ment [38]–[40], load balancing [41], RTT monitoring [42],
failure detection [43], and DDoS mitigation [44], [45]. The
primary distinction between these methods and ours lies in
the approach they take to perform the tasks. While the afore-
mentioned works mainly depend on threshold-driven logic, our
framework utilizes ML/DL models to achieve in-network A-
NIDS to reduce the reliance on hand-crafted thresholds.

B. Model Extraction and Explanation
There are other related works in the field of model ex-

traction and explanation. However, these methods are either
model/architecture-specific [46], [47], local explanations that
generate a rule for a single data sample [30]–[33], or extracting
rules that need additional calculation (e.g., linear equations)
[48], [49]. Our method is different from theirs as we aim to
generate model-agnostic, global, and axis-aligned simple rules
in an unsupervised manner, which are easily translatable into
P4 tables for efficient deployment on switching ASICs.

VII. CONCLUSION

This paper proposes Genos, a framework for the general
in-network deployment of A-NIDS models, which can realize
unsupervised model extraction and translation, produce ex-
planations for predictions, and incrementally update deployed
rules to handle false positives. Extensive experiments show
that Genos can accurately detect various malicious traffic and
reach line-rate throughput for online intrusion detection. One
limitation of Genos is that it may not be suitable for handling
raw data representations as input (e.g., raw packet bytes used
in [50] that entail additional convolutional layers for latent fea-
ture extraction), as Genos treats every dimension as a semantic
feature. However, such representations are criticized by [51]
for the possible misalignment of header fields for different pro-
tocols, decreasing model performance. Nonetheless, we leave
the exploration of interpreting models using other types of data
representations as our future work to promote versatility. The
authors have provided public access to their code and/or data
at https://github.com/Ruoyu-Li/Genos-INFOCOM24.

ACKNOWLEDGEMENT

This work is supported by National Key Research
and Development Program of China under grant No.
2022YFB3105000, Major Key Project of PCL under grant No.
PCL2023A06, and the Shenzhen Key Lab of Software Defined
Networking under grant No. ZDSYS20140509172959989.

REFERENCES

[1] Y. Mirsky, T. Doitshman et al., “Kitsune: An ensemble of autoencoders
for online network intrusion detection,” in 25th Annual Network and
Distributed System Security Symposium (NDSS), 2018.

[2] M. Du, Z. Chen et al., “Lifelong anomaly detection through unlearning,”
in ACM SIGSAC Conference on Computer and Communications Security
(CCS), 2019.

[3] R. Tang, Z. Yang et al., “Zerowall: Detecting zero-day web attacks
through encoder-decoder recurrent neural networks,” in IEEE Confer-
ence on Computer Communications (INFOCOM), 2020.

[4] Y. Wan, K. Xu et al., “Iotargos: A multi-layer security monitoring system
for internet-of-things in smart homes,” in IEEE Conference on Computer
Communications (INFOCOM), 2020.

[5] C. Fu, Q. Li et al., “Realtime robust malicious traffic detection via
frequency domain analysis,” in ACM SIGSAC Conference on Computer
and Communications Security (CCS), 2021.

[6] R. Li, Q. Li et al., “Adriot: An edge-assisted anomaly detection
framework against iot-based network attacks,” IEEE Internet of Things
J., vol. 9, no. 13, pp. 10 576–10 587, 2022.

[7] R. Li, Q. Li, and Y. Huang, “Iotensemble: Detection of botnet attacks
on internet of things,” in 27th European Symposium on Research in
Computer Security (ESORICS), 2022.

[8] C. Fu, Q. Li, and K. Xu, “Detecting unknown encrypted malicious traffic
in real time via flow interaction graph analysis,” in 30th Annual Network
and Distributed System Security Symposium (NDSS), 2023.

[9] G. Siracusano and R. Bifulco, “In-network neural networks,” CoRR, vol.
abs/1801.05731, 2018.

[10] Q. Qin, K. Poularakis et al., “Line-speed and scalable intrusion detection
at the network edge via federated learning,” in 2020 IFIP Networking
Conference, 2020.

[11] T. Dao and H. Lee, “Jointnids: Efficient joint traffic management for on-
device network intrusion detection,” IEEE Trans. Veh. Technol., vol. 71,
no. 12, pp. 13 254–13 265, 2022.

[12] Z. Xiong and N. Zilberman, “Do switches dream of machine learning?:
Toward in-network classification,” in 18th ACM Workshop on Hot Topics
in Networks (HotNets), 2019.

[13] C. Zheng, M. Zang et al., “Automating in-network machine learning,”
CoRR, vol. abs/2205.08824, 2022.

[14] B. M. Xavier, R. S. Guimaraes et al., “Programmable switches for in-
networking classification,” in IEEE Conference on Computer Commu-
nications (INFOCOM), 2021.

[15] C. Busse-Grawitz, R. Meier et al., “pforest: In-network inference with
random forests,” CoRR, vol. abs/1909.05680, 2019.

[16] C. Zheng and N. Zilberman, “Planter: seeding trees within switches,” in
ACM SIGCOMM Conference, Poster and Demo Sessions, 2021.

[17] G. Xie, Q. Li et al., “Mousika: Enable general in-network intelligence in
programmable switches by knowledge distillation,” in IEEE Conference
on Computer Communications (INFOCOM), 2022.

[18] Y. Li, J. Bai et al., “Rectified decision trees: Exploring the land-
scape of interpretable and effective machine learning,” CoRR, vol.
abs/2008.09413, 2020.

[19] A. S. Jacobs, R. Beltiukov et al., “Ai/ml for network security: The
emperor has no clothes,” in ACM SIGSAC Conference on Computer
and Communications Security (CCS), 2022.

[20] O. Bastani, C. Kim, and H. Bastani, “Interpreting blackbox models via
model extraction,” CoRR, vol. abs/1705.08504, 2017.

[21] A. Binbusayyis and T. Vaiyapuri, “Unsupervised deep learning approach
for network intrusion detection combining convolutional autoencoder
and one-class SVM,” Appl. Intell., vol. 51, no. 10, pp. 7094–7108, 2021.

[22] Y. Dong, Q. Li et al., “Horuseye: Realtime iot malicious traffic detection
framework with programmable switches,” in 32nd USENIX Security
Symposium, USENIX Security, 2023.

[23] P. Bosshart, D. Daly et al., “P4: programming protocol-independent
packet processors,” Comput. Commun. Rev., vol. 44, no. 3, pp. 87–95,
2014.

[24] B. Letham, C. Rudin et al., “Interpretable classifiers using rules and
bayesian analysis: Building a better stroke prediction model,” CoRR,
vol. abs/1511.01644, 2015.

[25] N. Frosst and G. E. Hinton, “Distilling a neural network into a soft
decision tree,” CoRR, vol. abs/1711.09784, 2017.

[26] G. Zhou, Z. Liu et al., “An efficient design of intelligent network data
plane,” in 32st USENIX Security Symposium (USENIX Security), 2023.

[27] M. T. Ribeiro, S. Singh, and C. Guestrin, “”why should i trust you?”:
Explaining the predictions of any classifier,” in 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining
(KDD), 2016.

[28] L. Breiman, J. H. Friedman et al., Classification and Regression Trees.
Wadsworth, 1984.

[29] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” in 3rd International Conference on Learning
Representations (ICLR), 2015.

[30] S. M. Lundberg and S. Lee, “A unified approach to interpreting model
predictions,” in Advances in Neural Information Processing Systems 30:
Annual Conference on Neural Information Processing Systems, 2017.

[31] M. T. Ribeiro, S. Singh, and C. Guestrin, “Anchors: High-precision
model-agnostic explanations,” in AAAI Conference on Artificial Intel-
ligence (AAAI), 2018.

[32] W. Guo, D. Mu et al., “Lemna: Explaining deep learning based security
applications,” in ACM SIGSAC Conference on Computer and Commu-
nications Security (CCS), 2018.

[33] D. Han, Z. Wang et al., “Deepaid: Interpreting and improving deep
learning-based anomaly detection in security applications,” in 2021 ACM
SIGSAC Conference on Computer and Communications Security (CCS),
2021.

[34] “Cicflowmeter,” https://github.com/ahlashkari/CICFlowMeter, Canadian
Institute for Cybersecurity, 2016.

[35] “Netflow,” https://cisco.com/c/dam/en/us/td/docs/security/stealthwatch/
netflow/Cisco NetFlow Configuration.pdf, Cisco, 2023.

[36] I. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani, “Toward generating
a new intrusion detection dataset and intrusion traffic characterization,”
in 4th International Conference on Information Systems Security and
Privacy (ICISSP), 2018.

[37] T. M. Booij, I. Chiscop et al., “Ton iot: The role of heterogeneity and
the need for standardization of features and attack types in iot network
intrusion data sets,” IEEE Internet Things J., vol. 9, no. 1, pp. 485–496,
2022.

[38] S. Wang, C. Sun et al., “Martini: Bridging the gap between network
measurement and control using switching asics,” in 28th IEEE Interna-
tional Conference on Network Protocols (ICNP), 2020.

[39] J. Xing, Q. Kang, and A. Chen, “Netwarden: Mitigating network covert
channels while preserving performance,” in 29th USENIX Security
Symposium (USENIX Security), 2020.

[40] D. Barradas, N. Santos et al., “Flowlens: Enabling efficient flow clas-
sification for ml-based network security applications,” in 28th Annual
Network and Distributed System Security Symposium (NDSS), 2021.

[41] R. Miao, H. Zeng et al., “Silkroad: Making stateful layer-4 load
balancing fast and cheap using switching asics,” in ACM SIGCOMM
Conference (SIGCOMM), 2017.

[42] S. Sengupta, H. Kim, and J. Rexford, “Continuous in-network round-trip
time monitoring,” in ACM SIGCOMM Conference (SIGCOMM), 2022.

[43] E. C. Molero, S. Vissicchio, and L. Vanbever, “Fast in-network GraY
failure detection for isps,” in ACM SIGCOMM Conference (SIGCOMM),
2022.

[44] Z. Liu, H. Namkung et al., “Jaqen: A high-performance switch-native
approach for detecting and mitigating volumetric ddos attacks with
programmable switches,” in 30th USENIX Security Symposium (USENIX
Security), 2021.

[45] M. Zhang, G. Li et al., “Poseidon: Mitigating volumetric ddos attacks
with programmable switches,” in 27th Annual Network and Distributed
System Security Symposium (NDSS), 2020.

[46] D. Kazhdan, B. Dimanov et al., “MEME: generating RNN model
explanations via model extraction,” CoRR, vol. abs/2012.06954, 2020.

[47] P. Liznerski, L. Ruff et al., “Explainable deep one-class classification,”
in 9th International Conference on Learning Representations (ICLR),
2021.

[48] M. W. Craven and J. W. Shavlik, “Using sampling and queries to extract
rules from trained neural networks,” in International Conference on
Machine Learning (ICML), 1994.

[49] Z. Zhou, Y. Jiang, and S. Chen, “Extracting symbolic rules from trained
neural network ensembles,” AI Commun., vol. 16, no. 1, pp. 3–15, 2003.

[50] G. Marı́n, P. Casas, and G. Capdehourat, “Deep in the dark - deep
learning-based malware traffic detection without expert knowledge,” in
IEEE Security and Privacy Workshops (SPW), 2019.

[51] J. Holland, P. Schmitt et al., “New directions in automated traffic anal-
ysis,” in ACM SIGSAC Conference on Computer and Communications
Security (CCS), 2021.

