
AWEsome-Cache: dependency-free rule-caching for
arbitrary wildcard patterns in TCAM

Zeyu Luan1,2, Qing Li 2*, Zutao Zhang3, Yong Jiang1,2, Meng Chen4, Yu Wang2, Kejun Li2

1Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
2Department of Mathematics and Theories, Peng Cheng Laboratory, Shenzhen, China

3Software College of Northeastern University, Northeastern University, Shenyang, China
4Department of Big Data and Software Engineering, Chongqing University, Chongqing, China

Abstract—Ternary Content Addressable Memory (TCAM) is a
specialized high-speed memory that enables fast parallel lookups
for both exact-match rules and wildcard-match rules. TCAM
has become a standard hardware component in Software-Defined
Networking (SDN) switches to implement flow tables for packet
classification. However, limited TCAM storage capacity poses a
significant scalability challenge for SDN to enforce fine-grained
policy-based forwarding. To this end, TCAM-based rule-caching
systems are proposed by combining TCAM with Random Access
Memory (RAM). Specifically, TCAM caches heavy-hitting rules
to capture packets from hot flows, while RAM accommodates
the complete ruleset for other cache-miss packets. However,
previous rule-caching systems either failed to eliminate cross-rule
dependencies or restricted their applications to prefix rules only.
In this work, we propose AWEsome-Cache, a unifying framework
to fundamentally eliminate cross-rule dependencies for wildcard
rules with arbitrary matching patterns. The rationale behind
AWEsome-Cache is to concretize a minimum number of wildcard
bits in the best-match rule, thereby pruning its overlapping
match fields with all direct dependent rules. AWEsome-Cache
also develops replacement algorithms during TCAM updates
to adapt to dynamic traffic locality. Experiments with prefix
and non-prefix rules show that AWEsome-Cache outperforms
baselines in achieving a comparable cache-hit rate but requiring
75.9% less TCAM occupancy.

Index Terms—Rule Caching, TCAM, Software-Defined Net-
working

I. INTRODUCTION

Software-Defined Networking (SDN) [1] enables network
operators to customize fine-grained per-flow forwarding poli-
cies, wherein multi-field packet headers are used as the search
key to match against forwarding rules in flow tables. Ternary
Content Addressable Memory (TCAM) is a standard hardware
component to implement flow tables in SDN-enabled switches
[2]. TCAM supports parallel lookups at line rate for both
exact-match rules and wildcard-match rules. However, due to
expensive hardware costs and intensive power consumption,
TCAM suffers from a limited storage capacity, ranging from
thousands to tens of thousands of entries [3]. In large-scale
networks, fine-grained forwarding policies populate millions
of forwarding rules, far exceeding available table entries in
TCAM [4]. Consequently, the broadening gap between limited

*Corresponding author: Qing Li (liq@pcl.ac.cn)

TCAM capacity and ever-increasing forwarding rules raises a
significant scalability challenge for SDN to implement fine-
grained policy-based forwarding [5].

Inspired by traffic locality observed in real-world networks,
TCAM-based rule-caching [6] is proposed as a promising solu-
tion to address the scalability challenge in SDN. Specifically,
TCAM serves as the high-speed cache memory maintaining
the most heavy-hitting rules for hot flows, while Random
Access Memory (RAM) serves as the auxiliary memory main-
taining the complete ruleset for other cache-miss flows. In
contrast to TCAM, RAM has a cost-effective large storage
capacity, but it requires CPU-involved software algorithms for
packet classifications, resulting in relatively slow lookups [7].
Hence, rule-caching systems combine the characteristics of
TCAM and RAM to enable fast parallel lookups across a large
ruleset for SDN-enabled switches.

One of the most significant challenges in TCAM-based rule-
caching systems is the issue of cross-rule dependencies [8]. In
the multi-dimensional field space, the match fields of multiple
wildcard rules can partially overlap; therefore, packets can
hit multiple overlapping wildcard rules in the ruleset, and
the one with the highest priority is identified as the best-
match rule. Given the best-match rule for a specific hot flow,
there are two types of dependent rules: direct and indirect.
Direct dependent rules have overlapping match fields with the
best-match rule, while indirect dependent rules overlap with
the direct dependent rules, though they may not overlap with
the best-match rule. The naive way to address the cross-rule
dependency is caching the best-match rule and all dependent
rules, both direct and indirect. These dependent rules occupy
additional TCAM space but reduce TCAM utilization because
not all dependent rules are as heavy-hitting as the best-match
rule.

Many efforts have been devoted to addressing the cross-rule
dependency in TCAM-based rule-caching systems [9]–[12].
CacheFlow [13] and its spin-offs [14]–[16] truncate the de-
pendency chain by excluding indirect dependent rules, which
saves part of TCAM entries but still requires caching direct
dependent rules. In contrast, T-Cache [17] [18] fundamentally
eliminates cross-rule dependencies by constructing a so-called
isolate rule, which prunes the original match field of the best-
match rule. However, T-Cache applies to prefix rules only979-8-3503-0322-3/23/$31.00 ©2023 IEEE

20
23

 IE
EE

 3
1s

t I
nt

er
na

tio
na

l C
on

fe
re

nc
e

on
 N

et
w

or
k

Pr
ot

oc
ol

s (
IC

N
P)

 |
 9

79
-8

-3
50

3-
03

22
-3

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
 D

O
I:

10
.1

10
9/

IC
N

P5
92

55
.2

02
3.

10
35

55
86

Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on January 02,2024 at 07:07:24 UTC from IEEE Xplore. Restrictions apply.

where wildcard bits follow strictly behind exact bits.
In this work, we develop novel algorithms for constructing

isolate rules and generalize their applications to any form
of wildcard rules, making T-Cache a special case of our
design. We propose AWEsome-Cache, a unifying framework
to eliminate cross-rule dependencies for wildcard rules with
arbitrary matching patterns, including prefix and non-prefix
rules. To the best of our knowledge, AWEsome-Cache is the
first work focusing on the cross-rule dependency for multi-
field non-prefix rules. We design algorithms for constructing
isolate rules under different circumstances, preserving as many
wildcard bits from the best-match rule as possible to improve
cache-hit rates. We also develop the replacement strategy for
TCAM updates to adapt to dynamic traffic locality.

In summary, our contributions to this paper include:
• We propose AWEsome-Cache, a unifying framework to

fundamentally eliminate cross-rule dependencies, which
can be applied to wildcard rules with arbitrary wildcard
patterns, including prefix and non-prefix rules.

• We develop algorithms for constructing dependency-
free isolate rules by concretizing a minimum number
of wildcard bits in the best-match rule and design the
replacement strategy for TCAM updates.

• Extensive experiments on prefix and non-prefix rules
demonstrate that AWEsome-Cache outperforms state-of-
the-art baselines in achieving comparable TCAM utiliza-
tion with 75.9% less TCAM occupancy.

The remainder of the paper is organized as follows. Section
II and Section III present background and motivation, respec-
tively. Section IV extends the definition of the XOR operation
to identify dependency relationships. Section V and Section VI
design algorithms for constructing isolate rules and refreshing
TCAM, respectively. We evaluate AWEsome-Cache in Section
VII and conclude the paper in Section VIII.

II. BACKGROUND AND RELATED WORK

A. Traffic Locality and Rule Caching

While TCAM supports fast parallel lookup and flexible
matching patterns, the shortage of its storage capacity can
hardly accommodate an ever-increasing number of wildcard
rules populated by fine-grained forwarding policies. Fortu-
nately, studies have revealed a skewed traffic distribution in
real-world networks, known as the traffic locality [19].

From a temporal perspective, a limited number of hot flows
contribute to most network traffic. Statistics from the Equinix
dataset in Fig. 1(a) show that 78.30% of traffic attributes to
the top 1% flows [20]. From a spatial perspective, packets
from hot flows are mostly captured by a limited number of
heavy-hitting rules, which account for a small fraction of the
complete ruleset. As shown in Fig. 1(b), all packets from the
top 1% flows hit only 0.04% (332 out of 8.3K) forwarding
rules in the ruleset.

The observation of the traffic locality inspires wildcard rule-
caching systems with a mix use of TCAM and RAM, where a
limited number of heavy-hitting rules for hot flows are cached

(a) top 1% flows contribute to 78.30%
traffic but hit only 0.04% of ruleset

(b) top 1% flows hit 198 best-match
rules and 1022 dependent rules

Fig. 1. Statistics of traffic locality and cross-rule dependencies from Equinix

in TCAM for fast lookups, while the complete ruleset is stored
in RAM for other cache-miss traffic.

However, the distribution of traffic locality is not static but
constantly varies over time. A measurement from the Equinix
dataset shows that the traffic percentage claimed by the initial
1% top flows fluctuates from 81% to 48% in an hour [20].
To sustain high TCAM utilization, efficient TCAM update is
required to adapt to the dynamics of traffic locality.

B. Cross-Rule Dependency

Prioritized wildcard rules with overlapping match fields
raise the issue of cross-rule dependency. Specifically, given
a hot flow f and its best-match rule rf in the ruleset R,
high-priority rules overlapping with the best-match rule rf
in the field space constitute the set of direct dependent rules
D(rf) ⊆ R. Each direct dependent rule ri ∈ D(rf) may
also depend on other higher-priority rules in R, defined as the
indirect dependent rules for the best-match rule rf . Both direct
and indirect dependent rules collectively constitute the set of
dependent rules P (rf) ⊆ R for the best-match rule rf . Their
relationship can be denoted as D(rf) ⊆ P (rf).

Given a hot flow f , its best-match rule rf and all dependent
rules P (rf) should be cached in TCAM to ensure semantic
correctness. The issue of cross-rule dependencies not only
occupies additional TCAM space but also complicates TCAM
updates. An experiment from the Equinix dataset in Fig. 1(b)
shows that the top 1% hot flows hit only 198 best-match rules
but require caching additional 1,019 dependent rules in TCAM
[20].

C. Related Work

Many efforts have been devoted to addressing the cross-rule
dependency in TCAM-based rule-caching systems. CAB [10]
[11] and CRAFT [12] convert wildcard rules into a set of non-
overlapping sub-rules to limit the number of dependent rules,
which causes severe ruleset expansion. CacheFlow [13] trun-
cates the dependency chain and caches only direct dependent
rules D(rf) rather than P (rf) in TCAM, alleviating cross-
rule dependencies but still requiring additional TCAM space.
In contrast, T-Cache [17] [18] fundamentally eliminates cross-
rule dependencies by constructing isolate rules, which prunes
the original match field of the best-match rule. However, T-

Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on January 02,2024 at 07:07:24 UTC from IEEE Xplore. Restrictions apply.

Cache applies to prefix rules only where wildcard bits follow
strictly behind exact bits.

AWEsome-Cache generalizes the application of isolate rules
to arbitrary wildcard patterns, including prefix and non-prefix
rules. To the best of our knowledge, this is the first work
focusing on addressing cross-rule dependencies for multi-field
non-prefix rules.

III. MOTIVATION AND SYSTEM OVERVIEW

This section introduces the concept of isolate rules in
Section (III-A) and provides a motivating example in Section
(III-B). Section (III-C) presents the system overview.

A. Isolate Rule

AWEsome-Cache follows the idea of constructing isolate
rules to eliminate cross-rule dependencies in the TCAM-
based rule-caching system. The isolate rule is a trade-off
between two extremes: caching the exact rule for the hot
flow, or caching the best-match rule along with all dependent
rules. Compared with caching the exact rule, the isolate rule
preserves part of the wildcard bits from the best-match rule,
leading to larger match fields than the exact rule. On the
other hand, compared with caching the best-match rule along
with all dependent rules, the isolate rule eliminates cross-rule
dependencies, saving TCAM space to cache more hot flows.

Isolate rules are beneficial to TCAM-based rule-caching
systems in three-fold. First, it fundamentally eliminates cross-
rule dependency, saving TCAM space originally reserved for
dependent rules. Second, it improves TCAM utilization by
preserving as many wildcard bits as possible from the best-
match rules, leading to large match fields to capture more
packets from future flows. Third, it simplifies TCAM updates
because the isolate rule allows for free placement at any empty
entry without the need to relocate existing rules in TCAM.

Given a hot flow f , the best-match rule rf ∈ R, and each
direct dependent rule ri ∈ D(rf) ⊆ R, the optimal isolate rule
r′f satisfies the following three criteria: (i) r′f still matches f
in the field space; (ii) r′f is dependency-free with any direct
dependent rule ri ∈ D(rf); (iii) r′f concretizes a minimum
number of wildcard bits in rf , and thus preserves the original
match field of rf as much as possible.

B. Motivating Example

Fig. 2 is a motivating example used to illustrate the rationale
behind isolate rules. For the sake of simplicity, we assume
forwarding rules from r0 to r6 with 2-dimensional match
fields. Fig. 2(b) visualizes the 2-dimensional field space, where
the exact rule for a hot flow occupies a unique point, and
therefore caching the exact rule for the hot flow in TCAM
involves no cross-rule dependency. For example, the exact rule
for the hot flow f corresponds to a unique point at the position
of (010, 011), shown as a star mark in Fig. 2(b). However,
caching this exact rule r = (010, 011) alone for the hot flow
f = (010, 011) undermines TCAM utilization, as it captures
packets only from this specific hot flow.

(a) example of hot flow f and
wildcard rules in ruleset R

(b) visualization of cross-rule dependen-
cies in 2-dimensional field space

Fig. 2. Illustration of cross-rule dependencies and the isolate rule in the field
space. The exact rule (010, 011) for the given flow f is marked as a star.
The best-match rule r0 = (0 ∗ ∗, ∗ ∗ 1) with four wildcard bits corresponds
to 16 positions in green. Direct dependent rules r1 ∼ r6 correspond to
the overlapping positions in six different colors. For example, the position
(001, 101) is overlapped by the best-match rule r0 and five direct dependent
rules r1, r2, r3, r5, and r6. The isolate rule r′0 = (0 ∗ 0, ∗11) with two
wildcard bits corresponding to four positions also captures flow f but does not
overlap any direct dependent rules, thus eliminating the dependency between
r0 and r1 ∼ r6.

On the other hand, the best-match rule r0 = (0 ∗ ∗, ∗ ∗ 1)
comprising four wildcard bits for the hot flow f occupies 16
discrete positions in the field space and incurs the problem
of cross-rule dependency, as these discrete positions are co-
occupied by direct dependent rules of r0. As shown in Fig.
2(b), the best-match rule r0 occupies 16 green points in the
field space, as the four wildcard bits in r0 = (0 ∗ ∗, ∗ ∗ 1)
represent a combination of 16 exact rules. Note that other
rules from r1 to r6 in the ruleset R are all direct dependent
rules of r0 because they share different positions with r0 in the
field space. For example, the point (001, 101) is co-occupied
by six rules, including r0 and {r1, r2, r3, r5, r6}.

Accordingly, all rules from r1 to r6 constitute a set of direct
dependent rules D(r0) for the best-match rule r0. Since their
priorities are all higher than r0, they should be also cached
in TCAM along with r0 to ensure semantic correctness. The
existence of co-occupation on specific positions in the field
space between the best-match rule rf and direct dependent
rules in D(rf) is the root cause of cross-rule dependencies.

To eliminate cross-rule dependencies, AWEsome-Cache
constructs the so-called isolate rule r′0 by reducing the original
match fields of the best-match rule r0. Fig. 2(b) represents the
resulting isolate rule r′0 = (0 ∗ 0, ∗11) with four red blocks,
while exclusively occupying these four positions without co-
occupancy with any direct dependent rule. Compared with
the best-match rule r0 = (0 ∗ ∗, ∗ ∗ 1), the isolate rule
r′0 = (0 ∗ 0, ∗11) is constructed by concretizing two carefully
selected wildcard bits into binary bits. The isolate rule r′0
concretizes a minimum number of wildcard bits to preserve
the original match fields of r0 as much as possible.

C. System Overview

Fig. 3 overviews the system design and presents the work-
flow of packet processing. An incoming packet first accesses

Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on January 02,2024 at 07:07:24 UTC from IEEE Xplore. Restrictions apply.

TCAM to search for the best-match rule among all cached
rules. If it is a cache-hit packet, it will be processed according
to the action specified in the best-match rule. Otherwise, the
cache-miss packet will be punted to RAM to match against
the complete ruleset using software lookup algorithms.

Once the best-match rule rf for the hot flow f is iden-
tified in the complete ruleset R, the isolate rule r′f will be
constructed based on three inputs: the match field of the hot
flow f , the best-match rule rf in the ruleset, and the set of all
direct dependent rules D(rf). Since the resulting isolate rule
r′f is dependency-free, it can be placed at any empty entry or
replaced with a cold rule from TCAM.

IV. EXTENDED DEFINITION OF XOR OPERATION

In the context of the ternary match in TCAM, we extend
the definition of conventional XOR operation in Sec.IV-A,
making it applicable to both exact bits and wildcard bits. Then,
we apply the extended XOR operation to identify the best-
match rule (Sec.IV-B), direct dependent rules (Sec.IV-C), and
all candidate bit positions for concretization to eliminate cross-
rule dependencies (Sec.IV-D).

A. XOR Operation with Wildcard Bits

In the context of the ternary match in TCAM, we extend
the definition of conventional Exclusive OR (XOR) operation,
making it applicable to exact bits (‘1’ or ‘0’) and wildcard
bits (‘*’). XOR is a conventional logical bitwise operation
determining whether two binary operands are identical or not.
XOR operation returns true (‘1’) if the two input bits are
matched, or false (‘0’) if mismatched. The extended XOR
operation inputs two ternary bits and outputs a one-bit Boolean
value. The truth table for all possible inputs is shown in Fig.
4(a).

For exact bits, the extended XOR operation inherits the truth
table of the conventional XOR operation, which returns true
(‘1’) if and only if two exact bits are mismatched; otherwise,
it returns false (’0’). For wildcard bits, on the other hand,
if either of the two input operands is a wildcard bit (i.e.,
both are wildcard bits, or one wildcard and one exact bit),
the extended XOR operator returns false (‘0’). The rationale
behind the extended XOR operation is that the wildcard bit in
the ternary match field is considered to match another input
bit of any form, regardless of its value (‘1’, ‘0’, or ‘*’). The
extended XOR operator can also be applied to a pair of input
bit strings X and Y beyond a pair of input bits, formulated
as follows.

X[1 : K]⊕ Y [1 : K]

= (X[1], ..., X[k], ..., X[K])⊕ (Y [1], ..., Y [k], ..., Y [K])

= (X[1]⊕ Y [1], ..., X[k]⊕ Y [k], ..., X[K]⊕ Y [K])

∀ k ∈ [1,K] (1)

where X and Y are a pair of input bit strings, each consisting
of K bits. If the output bit string is all-zeros, the two input
bit strings match each other. If the output bit string contains

Fig. 3. System overview and packet classification pipeline

(a) truth table for ex-
tended XOR operation

(b) example of matched
inputs (011) and (∗1∗)

(c) example of mis-
matched inputs (1 ∗ ∗)
and (01∗)

Fig. 4. Examples of extended XOR operation for ternary match fields

at least one non-zero bit(s), the two input bit strings mismatch
each other. For example, Fig. 4(b) and Fig. 4(c) show two
examples of matched ((011) and (*1*)) and mismatched ((1**)
and (01*)) bit strings, respectively.

We can apply the extended XOR operation to specific bits
to identify the best-match rule, direct dependent rules, and all
possible concretization bit positions given a hot flow and the
complete ruleset.

B. A-XOR to Identify Best-Match Rule

To identify the best-match rule for a hot flow, we apply
the extended XOR operation to all bits of the given flow and
each rule in the ruleset. We refer to all bits of the two input
bit strings as A-Bits and define the extended XOR operation
on A-Bits as A-XOR. We formulate A-XOR as follows.

f [1 : A]⊕ r[1 : A]

= (f [1], ..., f [k], ..., f [A])⊕ (r[1], ..., r[k], ..., r[A])

= (f [1]⊕ r[1], ..., f [k]⊕ r[k], ..., f [A]⊕ r[A])

∀ r ∈ R, k ∈ [1, A] (2)

where f is a given hot flow, r ∈ R is a forwarding rule in the
ruleset R, and k ∈ [1, A] is the index of A-Bits. If the output
of the A-XOR operation is all-zeros, the result indicates that
flow f matches rule r. Conversely, flow f mismatches rule r
if the output of the A-XOR operation contains any non-zero
bit(s). Note that, if flow f matches more than one rule in
R, the one with the highest priority will be finalized as the
best-match rule rf .

Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on January 02,2024 at 07:07:24 UTC from IEEE Xplore. Restrictions apply.

Fig. 5. A-XOR operation identifies r0 as the best-match rule for hot flow f

As shown in Fig.5, we perform the A-XOR operation to
flow f = (010, 011) and each rule r ∈ R. The result shows
that only r0 satisfies the all-zeros criterion, and r0 is identified
as the best-match rule for flow f . However, other rules in the
ruleset (from r1 to r6) mismatch flow f , as they contain at
least one non-zero bit in the output bit strings.

C. E-Operation to Identify Dependent Rules

We further categorize all-bits (A-Bits) of the best-match rule
rf into exact bits (E-Bits) and wildcard bits (W-Bits) according
to the value of each bit. As shown in Fig. 6, in the best-match
rule r0 = (0 ∗ ∗, ∗ ∗ 1), r0[1] and r0[6] are E-bits while other
bits, from r0[2] to r0[5], are W-Bits. Similarly, we define the
extended XOR operation on E-Bits and W-Bits as E-XOR and
W-XOR, respectively. We apply the E-XOR operation to the
best-match rule rf and each rule r ∈ R− {rf} in the ruleset
to identify all direct dependent rules D(rf). We formalize the
E-XOR operation on E-Bits as follows.

rf [1 : E]⊕ r[1 : E]

= (rf [1], ...rf [k], ..., rf [E])⊕ (r[1], ..., r[k], ..., r[E])

= (rf [1]⊕ r[1], ..., rf [k]⊕ r[k], ..., rf [E]⊕ r[E])

∀ r ∈ R− {rf}, k ∈ [1, E] (3)

where k ∈ [1, E] is the index of E-Bits. The rationale behind
the definition of the E-XOR operation is that the cross-rule
dependency arises between rf and any rule r ∈ R − {rf}
if and only if their exact bits are matched regardless of their
wildcard bits.

As shown in Fig. 6, the results of the E-XOR operation
between the best-match rule r0 and the other rules (from r1
to r6) are all-zeros, indicating that they are all dependent rules
of the best-match rule r0, i.e., D(r0) = {r1, r2, r3, r4, r5, r6}.

D. W-Operation to Identify Concretization Positions

To construct isolate rules, we apply the W-XOR operation
to the hot flow f and each direct dependent rule ri ∈ D(rf) to
obtain all candidate bit positions in the best-match rule to be
concretized as exact bits. We formalize the W-XOR operation
on W-Bits as follows.

Fig. 6. E-XOR operation identifies direct dependent rules, and W-XOR
operation identifies concretization positions to construct isolate rules

f [1 : W]⊕ ri[1 : W]

= (f [1], ..., f [k], ..., f [W])⊕ (ri[1], ri[k], ..., ri[W])

= (f [1]⊕ ri[1], ..., f [k]⊕ ri[k], ..., f [W]⊕ ri[W])

∀ ri ∈ D(rf), k ∈ [1,W] (4)

where f is a given hot flow, ri ∈ D(rf) is one of its direct
dependent rules, and k ∈ [1,W] is the index of W-Bits.

For example, in Fig. 6, the result of W-XOR between f
and r6 is (0001), which means that the cross-rule dependency
between r0 and r6 can be eliminated by concretizing the
wildcard bit r0[5] into a binary value, i.e., r′0[5] = f [5] = 1.
Note that the result of W-XOR between f and a dependent
rule ri ∈ D(rf) may contain more than one non-zero bit. For
example, the result of W-XOR between f and r1 is (1100),
which means that r0 can eliminate its dependency from r1 by
concretizing either r0[2] or r0[3], or both.

E. Concretization Values

We eliminate the cross-rule dependency between rf and
ri ∈ D(rf) by concretizing rf [k] from ‘*’ to ‘1’ or ‘0’ at the
k-th bit according to the value of f [k], i.e., r′f [k] = f [k] =
1/0. The constructed isolate rule r′f still matches f at the k-th
bit but mismatches the direct dependent rule ri at the k-th bit,
thus eliminating the dependency between rf and ri ∈ D(rf).
The concretization values for wildcard bits can be summarized
in two cases.

Case 1: If f [k] = 1, rf [k] = ∗, ri[k] = 0, then r′f [k] = 1.
Case 2: If f [k] = 0, rf [k] = ∗, ri[k] = 1, then r′f [k] = 0.
As shown in Fig. 6, let r′f [5] = f [5] = 1 according to Case

1, the resulting isolate rule r′0 = (0 ∗ ∗, ∗11) still matches
the hot flow f = (010, 011) but no longer matches r6 =
(0 ∗ ∗, ∗01), thus eliminating the dependency between r0 and
r6. However, r′0 = (0 ∗ ∗, ∗11) still has dependencies with
other dependent rules, including r1 = (0 ∗ ∗, ∗ ∗ 1), r2 =
(001, 1 ∗ 1), and r4 = (0 ∗ 1, 111). Therefore, concretizing
only one wildcard bit w5 in the best-match rule is insufficient
as cross-rule dependencies still exist between rf and other
dependent rules r1, r2, and r4 in D(r0). The final isolate rule
is r′0 = (0∗0, ∗11), which concretized a total of two wildcard
bits in the best-batch rule r0 = (0 ∗ ∗, ∗ ∗ 1).

Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on January 02,2024 at 07:07:24 UTC from IEEE Xplore. Restrictions apply.

(a) concretization matrix
for direct dependent rules
in D(r0)

(b) example of a sub-
optimal solution to con-
cretize {w3, w4, w5}

(c) example of optimal
solution to concretize
{w3, w5}

Fig. 7. Examples of concretization matrix C for direct dependent rules D(r0)

V. ALGORITHM OF WILDCARD CONCRETIZATION

In this section, we design algorithms to concretize a min-
imum number of wildcard bits in the best-match rule under
different circumstances to construct isolate rules.

A. Concretization Matrix

Recall that in Fig. 6, the output bit string of the W-XOR
operation between the hot flow f and each direct dependent
rule ri ∈ D(rf) represents all candidate wildcard bits that can
be concretized to eliminate the cross-rule dependency between
rf and ri. AWEsome-Cache aims to concretize a minimum
number of wildcard bits in rf to construct the isolate rule r′f ,
which preserves the original match field of rf as much as
possible.

We organize the output of the W-XOR operation between
f and each direct dependent rule ri ∈ D(rf) into a |D(rf)|×
|W (rf)| matrix, called the concretization matrix as shown
in Fig. 7. Each row indexed by ri represents all candidate
wildcard bits {wj} ⊆ W (rf) in the best-match rule rf that
can be concretized to eliminate its dependency from ri. For
example, the row indexed by r1 is [1, 1, 0, 0], which means
that the dependency between r0 and r1 can be eliminated
by concretizing the wildcard bits(s) from {w2, w3}, either
w2 or w3, or both. Each column indexed by wj ∈ W (rf)
represents a subset of direct dependent rules Dj ⊆ D(rf)
whose dependencies with the best-match rule rf will be
eliminated if wj is concretized as f [j]. In other words, all
direct dependent rules in Dj are covered by the j-th wildcard
bit wj in rf . For example, the column indexed by w2 is
[1, 1, 0, 0, 0]T , which means that rules in D2 = {r1, r2} will
eliminate their dependencies with r0 if the wildcard bit w2 of
r0 is concretized as f [2], i.e., r′0[2] = f [2].

For all wildcard bits W (rf) in the best-match rule, our
objective is to concretize a minimum number of wildcard bits
W ∗(rf) ⊆ W (rf), such that the union of direct dependent
rules covered by all selected wildcard bits in W ∗(rf) equals
D(rf), which can be formulated as follows.

∪wj∈W∗(rf) Dj = D(rf), ∀rf ∈ R (5)

For example, in Fig. 7(b), one feasible solution is W ′′(r0) =
{w3, w4, w5} such that the union of dependent rules covered
by these wildcard bits is D3 ∪ D4 ∪ D5 = D(r0), and the

resulting isolate rule is r′′0 = (01∗, 011). As shown in Fig. 7(c),
however, the optimal solution in this example is W ∗(r0) =
{w3, w5} and the union of covered dependent rules are D3 ∪
D5 = D(r0), and the resulting isolate rule is r′0 = (0∗0, ∗11).
Compared with the suboptimal solution r′′0 = (01∗, 011), the
optimal solution r′0 = (0∗0, ∗11) preserves one more wildcard
bit, and thus potentially captures more packets from future
flows.

B. Problem Formulation

The problem of concretizing a minimum number of wild-
card bit W ∗(rf) ⊆W (rf) to cover D(rf) can be reduced as
the classic Set Cover Problem (SCP), which is proven to be
NP-hard [21]. SCP is formulated as follows: given a universe
set U = {1, 2, ...,m} of m distinct members and a collection
of subsets S = {S1, S2, ..., Sn}, where Sj ⊆ U . The objective
of SCP is to find an optimal sub-collection S∗ ⊆ S such that
the union of all members in S∗ equals U , while the number
of subsets in S∗ is minimized.

From a matrix perspective, SCP can be formally defined as
follows. Let C = (cij) be a binary m × n matrix. We refer
to the index of rows and columns in C as M = {1, 2, ...,m}
and N = {1, 2, ..., n}, respectively. We define a column j ∈ N
covers a row i ∈M if cij = 1. SCP aims to find a minimum
number of columns S∗ such that all rows are covered by at
least one column j ∈ S∗.

The reduction between SCP and our problem can be per-
formed in polynomial time as follows. A member in U is
mapped to a unique direct dependent rule ri ∈ D(r). A subset
Si ⊆ S corresponds to Dj ⊆W . If our problem can be solved
in polynomial time, then SCP can also be solved in polynomial
time, which contradicts the NP-hardness of SCP. Therefore, we
prove the NP-hardness of our problem.

Next, we propose three algorithms to solve the problem
under different circumstances by making trade-offs between
optimality and time efficiency. Furthermore, to reduce the
solution space, we promote three optimization techniques to
pre-process the concretization matrix.

C. Algorithm for Limited Wildcard Bits

Despite the NP-hardness of SCP, the number of wildcard
bits |W (rf)| and the number of direct dependent rules |D(rf)|
are both finite for any best-match rule rf in our instances.
When the number of wildcard bits |W (rf)| is far less than the
number of direct dependent rules |D(rf)|, or the concretization
matrix C has a relative small number of columns, we can
exhaustively enumerate all possible combinations of wildcard
bits in the best-match rf , and then determine whether the
union of rules in ∪j∈S{Dj} covers all direct dependent rules
in D(rf). The computational complexity of this algorithm is
O(|D(rf)| · 2|W (rf)|), where |D(rf)| is the number of direct
dependent rules, and |W (rf)| is the number of wildcard bits
in the best-match rule rf .

Moreover, this algorithm can accelerate its convergence
speed across the solution space with an early-stop condition by
enumerating all possible combinations on an increasing order

Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on January 02,2024 at 07:07:24 UTC from IEEE Xplore. Restrictions apply.

of wildcard bits: i.e., firstly enumerating combinations with
one wildcard bit only, then combinations with two wildcard
bits, and finally the combination with all wildcard bits. As
the number of wildcard bits in the combinations increases
from 1 to |W (rf)|, this variant algorithm would trigger a
stop-early condition if a specific combination covers all direct
dependent rules in D(rf). In this case, it is unnecessary to con-
tinue enumerating other possible combinations with additional
wildcard bits, as they would require concretizing additional
number of wildcard bits than those in the early-stop condition.
For example, in Fig. 7(c), the algorithm triggered an early-
stop condition for the combination with two wildcard bits w3

and w5, i.e., D3 = {r1, r2, r3, r4} and D5 = {r3, r5, r6} as
D3 ∪D5 = D(rf).

D. Algorithm for Limited Dependent Rules

When the number of direct dependent rules |D(rf)| is
far less than the number of wildcard bits |W (rf)|, or the
concretization matrix C has a relative small number of rows,
we propose another algorithm using dynamic programming to
find the optimal solution.

We define F (j) = {w1, w2, ..., wj} ⊆ W (rf) as the first
j wildcard bits in the best-match rule rf . When j = 1, we
constrain the range of candidate wildcard bits to be concretized
to w1, i.e., whether or not to concretize the first wildcard
bit w1. When j = 1, we only consider concretizing the
first two wildcard bits w1 and w2. When the value of j
increases to |W (rf)|, all the wildcard bits in rf are regarded
as candidate wildcard bits to be concretized. We design a 2-
dimensional table T [Fj][S] for the recursion function, where
S ⊆ D(rf) represents desired subsets of direct dependent
rules to be covered. We enumerate S as all possible subsets
of direct dependent rules in D(rf). The value of T [Fj][S]
records the minimum number of wildcard bits selected from
the first j wildcard bits in Fj that can cover all desired
direct dependent rules in S ⊆ D(rf). Therefore, we have the
following recurrence function:

T [Fj][S] = min(T [Fj−1][S], T [Fj−1][S −Dj] + 1). (6)

Recall that we define Dj ⊆ D(rf) as a subset of direct
dependent rules covered by the j-th wildcard bit wj of the
best-match rule rf .

The value of T [Fj][S] will be updated depending on
whether or not to concretize the j-th wildcard bit in the best-
match rule rf . The first term refers to the case that we maintain
the original form of the j-th wildcard bit as it was and only
concretize specific wildcard bits selected from the first (j−1)-
th wildcard bits to cover all desired direct dependent rules
in S. The second term, however, refers to the case that we
assume the j-th wildcard bit in the best-match rule rf will be
concretized, which will accordingly cover all direct dependent
rules in Dj . To cover the remaining direct dependent rules
in S − Dj , we just need to select a minimum number of
wildcard bits from the first (j − 1)-th wildcard bits in Fj−1
for concretization, denoted by T [Fj−1][S −Dj].

As shown in Fig. 8(a), we first initialize the value of
T [Fj][∅] as 0, T [F1][{r1}] and T [F1][{r2}] as 1, and others
as ∞. The algorithm applies dynamic programming until it
iterates over all subsets of D(rf). Since there are |W (rf)|
rows and 2|D(rf)| columns, the computational complexity is
O(|W (rf)| · 2|D(rf)|).

E. Algorithm of Greedy Heuristic

For a large-scale instance in terms of both large number of
|W (rf)| and |D(rf)|, we also propose a greedy heuristic to
prioritize time efficiency over solution optimality. We define
wj .weight as the weight of the j-th wildcard bit in the
best-match rule rf , representing the number of direct depen-
dent rules covered by wj . From the concretization matrix’s
perspective, the value of wj .weight equals the number of
non-zero entries in the j-th column. As shown in Fig. 7(a),
w2.weight = 2 because both r1 and r2 will be covered if w2

is concretized as f [2].
The greedy heuristic selects the wildcard bit with the

largest weight at each iteration until all direct dependent
rules are covered. The complexity of this greedy heuristic is
O(|W (rf)||D(rf)|). As shown in Fig. 7(b), w3.weight =
w4.weight > w5.weight > w2.weight. Therefore, the
solution of the greedy heuristic is {w3, w4, w5}, though it
is suboptimal compared with the optimal solution {w3, w5}
consisting of only two wildcard bits.

F. Optimization Techniques

To reduce the solution space, we propose three optimization
techniques to pre-process the concretization matrix before
applying the above mentioned three algorithms.

1) Inclusion of Unique Wildcard Bit: If a specific direct
dependent rule ri ∈ D(rf) can be covered by only one specific
wildcard bit wuniq in rf , then wuniq has to be included in the
optimal solution. From a matrix perspective, if a row consists
of only one non-zero entry, this wildcard bit corresponding to
this non-zero entry must be concretized. For example, in Fig.
9(a), the row indexed by r6 has only one non-zero entry at
w5; therefore, w5 is recognized as the unique wildcard bit to
cover r6. The unique wildcard bit wuniq for ri can be formally
defined as follows.

wuniq = {j ∈ N |cij = 1,
∑
k∈N

cik = 1}, ∀i ∈M (7)

2) Removal of Associated Rules: Once a specific wildcard
bit wj is concretized, all rules in Dj will also be covered by
wj . We define dependent rules in Dj are associated rules of
wj . From a matrix perspective, if the column indexed by wj is
concretized, then all associated rules in the j-th column will
be removed from D(rf). For example, in Fig. 9(b), once w5

is concretized for its uniqueness to cover r6, then r3 and r5
will also be covered as they are both associated rules of w5.
We can formally define associated rules as follows.

Dj = {ri ∈ D(rf)|cij = 1, i ∈M}, ∀j ∈ N (8)

Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on January 02,2024 at 07:07:24 UTC from IEEE Xplore. Restrictions apply.

(a) select wildcard bits from F1 = {w2} for concretization (b) select wildcard bits from F2 = {w2, w3} for concretization

(c) select wildcard bits from F3 = {w2, w3, w4} for concretization (d) select wildcard bits from F4 = {w2, w3, w4, w5} for concretization

Fig. 8. Update of recurrence function T [Fj][S] in dynamic programming to cover direct dependent rules in D(r0) by concretizing {w3, w5}

(a) w5 is unique wild-
card bit to cover r6

(b) r3 and r5 are associ-
ated with r6 once w5 is
concretized

(c) w2 is redundant as
w3 also covers r1 and
r2

Fig. 9. Example of concretization matrix with optimization techniques

3) Removal of Redundant Wildcard Bits: If there exists a
redundancy between a pair of wildcard bits wj and w′j such
that Dj ⊆ Dj′ , then wj is redundant as the concretization of
w′j also covers all dependent rules in Dj . Since there is no
benefit to concretizing wj and w′j simultaneously, wj can be
removed from the solution space. From a matrix perspective,
a column is considered redundant if all of its non its non-
zero entries also exist in another column. For example, in Fig.
9(c), w2 is redundant in the presence of w3 because r1 and
r2 can also be covered by concretizing w3 even if w2 is not
concretized.

VI. TCAM UPDATES

The measurement from real-world datasets shows that the
distribution of traffic locality is not static but changes over
time. This section proposes a group-based replacement algo-
rithm for evicting less heavy-hitting rules to make room for
newly constructed isolated rules of hot flows.

A. Metrics for Past Performance and Future Potentials

An isolate rule can be freely placed at any empty entry in
TCAM because it is dependency-free with any other cached
rules. However, when there is no spare entry in TCAM,
it requires evicting a cold rule to make room for a newly

Algorithm 1: Cold Rule Replacement
Input: group[k][1 : m]: k-th group with m entries
Output: entryIndex: index of the coldest entry
/* calculate U for each group */

1 Function calGroupU(entry[1 : m]):
2 groupHits = sum(entry[i].h)
3 groupT ime = queryT ime−min(entry[i].t)
4 return groupHits/groupT ime
5 End Function
/* build minHeap for group of minU */

6 for k ← 1 to dn/me do
7 minU = min(calGroupU(group[k].entries))
8 if minU = −∞ then
9 return k

10 end if
11 end for
12 minHeap = MinHeap(minGroup.entries)
13 for i← 1 to m do
14 entryT ime = queryT ime−minGroup[i].t
15 u = minGroup[i].h/entryT ime
16 u′ = u ∗ |W (minGroup[i])|
17 minHeap.push(i, u′)
18 end for
/* query coldest rule */

19 entryIndex = minHeap.pop()
20 minHeap.push(isolateRule)
21 return entryIndex

constructed isolate rule. Traditional replacement algorithms
periodically query each counter to find the coldest entry [22]–
[24]. However, they require frequent interactions between
the control and data planes. Worse, they only compare the
past performance of cached rules without considering their
potential capabilities to capture packets in the future flows.
Therefore, we proposes a comprehensive algorithm to identify
the coldest entry by considering past performance and future

Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on January 02,2024 at 07:07:24 UTC from IEEE Xplore. Restrictions apply.

potential.
We define the past performance of a specific entry ui in

TCAM as the cumulative number of cache-hit packets divided
by the time since its placement in the TCAM.

ui =
hi

t− ti
(9)

where hi refers to the cumulative cache-hit packets from its
initial placement time ti to the current time t.

Similarly, we define the past performance U for a group of
entries as the cumulative number of all cache-hit packets since
placing the earliest entry of this group in TCAM.

U =

∑
i∈U hi

t− t0
(10)

where hi refers to the cumulative cache-hit packets of the i-th
entry in the group, t is the current time, and t0 represents the
current and earliest placement times among all group entries.
Note that, we set U = −∞ if there is an empty entry in the
group, as there is no need to evict an already cached entry
from this group.

Besides the past performance of each entry, we define the
potential capability of the i-th entry in TCAM for future flows
as the number of wildcard bits in the match field, i.e., |W (ri)|.
An isolate rule with more wildcard bits is an aggregation of
more exact rules, which is more likely to be hit by packets
from future flows than the one with smaller match fields. As
a comprehensive metric, we define the utilization of the i-th
entry in TCAM as the product of its past performance ui and
its future potential |W (ri)|.

u′i = ui × |W (ri)|. (11)

B. Algorithm for Cold Rule Eviction

As shown in Algorithm 1, n entries in TCAM are divided
into a set of groups with at most m entries in each group.
Once there is no empty entry in TCAM to accommodate a
newly constructed isolate rule, the control plane will identify
a group with the minimum value of U (Lines 6-11) and
then evict the coldest rules from this minGroup. Then,
minGroup builds a minHeap for m entries with respect to
their utilizations (Lines 12-18), and returns the coldest one to
make room for a newly constructed isolate rule (Lines 19-21).
The utilization for the new isolate rule is initialized as the
average value of u′i within its group to avoid an immediate
eviction. Note that, if there are groups with empty entries, the
newly constructed isolate rule will be directly placed at one
of these groups, as there is no need to evict existing entries
from TCAM (Lines 8-10). The computational complexities of
identifying minGroup, building minHeap, and returns the
coldest rules winthin the group are O(dn/me), O(m), and
O(logm), respectively.

VII. EVALUATION

A. Experimental Setup

1) Datasets: We evaluate AWEsome-Cache on a Dell Pow-
erEdge R750 commodity server with a 4-core Intel Xeon

TABLE I
RULESETS AND PACKET TRACES

Dataset Type # of Rules # of Flows # of Packets

Synthetic Prefix 3.00× 105 1.83× 105 1.31× 106

Non-Prefix 3.61× 105 1.71× 106 1.03× 107

Realistic Prefix 3.00× 105 3.12× 103 4.21× 105

Non-Prefix 3.61× 105 1.18× 104 5.98× 105

(a) Prefix Rules (ClassBench) (b) Non-Prefix Rules (ClassBench)

Fig. 10. Cache-hit rates under different TCAM capacities with synthetic traffic

(a) Prefix Rules (Tor) (b) Non-Prefix Rules (Tor)

Fig. 11. Cache-hit rates under different TCAM capacities with realistic traffic

Silver 4314 CPU and 480GB memory. We use ClassBench
[25] to synthesize prefix and non-prefix rules and generate
packet traces following the traffic locality, and add timestamps
to reflect real-world dynamics. We also use the real-world Tor
traffic dataset [26] with both prefix and non-prefix rules in the
experiment. The statistics of two types of rulesets and packet
traces are detailed in Table I.

2) Baselines: We compare AWEsome-Cache on prefix
rules with our most relevant works, i.e., CacheFlow and T-
Cache. On the other hand, AWEsome-Cache is the first work
designed to eliminate cross-rule dependencies with arbitrary
matching patterns, especially for non-prefix rules. There-
fore, we compare three algorithms under different circum-
stances when constructing isolate rules for non-prefix rules
in AWEsome-Cache.

• Wildcard-Bit-Combination (WB) is favorable when the
number of wildcard bits is limited (|W (rf)| < |D(rf)|).

• Dependent-Rule-Combination (DR) is favorable when
the number of direct dependent rules is limited
(|D(rf)| < |W (rf)|).

• Greedy Heuristic (GH) optimizes time efficiency for
large-scale instances but may return sub-optimal solu-
tions.

Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on January 02,2024 at 07:07:24 UTC from IEEE Xplore. Restrictions apply.

(a) Prefix Rules (ClassBench) (b) Non-Prefix Rules (ClassBench)

Fig. 12. Match fields to capture hot flows with synthetic traffic

(a) Prefix Rules (Tor) (b) Non-Prefix Rules (Tor)

Fig. 13. Match fields to capture hot flows with realistic traffic

B. Experimental Results

1) Cache-Hit Rates: Fig. 10 and Fig. 11 compare the cache-
hit rate under different TCAM capacities for synthetic and
real-world datasets, respectively.

For prefix rules, AWEsome-Cache consistently outperforms
CacheFlow and T-Cache. In Fig. 10(a), when TCAM’s ca-
pacity reaches 3.0K entries, cache-hit rates for CacheFlow,
T-Cache, and AWEsome-Cache are 26.71%, 57.59%, and
98.70%, respectively. The reason is that AWEsome-Cache
constructs isolate rules preserving more wildcard bits from
the best-match rule than T-Cache; therefore, they capture more
packets from future flows. In contrast, CacheFlow caches not
only the best-match rules but also their direct dependent rules,
some of which are not heavy-hitting rules.

As for non-prefix rules, all three algorithms implemented by
AWEsome-Cache have similar performance in terms of cache-
hit rates. In Fig. 10(b), when the TCAM’s capacity reaches
1.2K entries, cache-hit rates for WB, DR, and GH are 95.86%,
95.78%, and 95.73%, respectively. Since the GH algorithm can
obtain sub-optimal solutions, its cache-hit rate is slightly worse
than those of WB and DR algorithms.

2) Match Fields: Fig. 12 and Fig. 13 compare the potential
capability of match fields to capture packets from different
numbers of hot flows.

AWEsome-Cache captures more hot flows than CacheFlow
and T-Cache for prefix rules because of the preservation of
larger match fields in isolate rules. In Fig. 12(a), consider-
ing the top 5.0K flows, the number of cache-hit flows in
CacheFlow, T-Cache, and AWEsome-Cache are 1257, 2597,
and 4265, respectively. The reason is that CacheFlow requires
additional entries to accommodate direct dependent rules,
which occupies TCAM space that can be otherwise used to

(a) Prefix Rules (ClassBench) (b) Non-Prefix Rules (ClassBench)

Fig. 14. Comparison of TCAM occupancy for hot flows with synthetic traffic

(a) Prefix Rules (Tor) (b) Non-Prefix Rules (Tor)

Fig. 15. Comparison of TCAM occupancy for hot flows with realistic traffic

capture more hot flows. Compared with T-Cache, AWEsome-
Cache preserves more wildcard bits from the best-match,
enabling the capture of cache-hit packets from hot flows.

As for non-prefix rules in Fig. 12(b), the cache-hit/cache-
miss performance of three AWEsome-Cache variants is similar
under different numbers of flows. For example, for the top
2.0K flows, the number of cache-hit flows for WB, DR, and
GH are 1499, 1500, and 1479, respectively. The reason is that
both WB and DR algorithms construct isolate rules with the
largest match fields, while the GH algorithm’s sub-optimal
leads to fewer cache-hit flows.

3) TCAM Occupancy: Fig. 14 and Fig. 15 show the number
of wildcard rules required to be cached in TCAM to capture
packets from different numbers of hot flows.

For prefix rules in Fig. 14(a), AWEsome-Cache requires
less TCAM occupancy than CacheFlow and T-Cache. Specifi-
cally, capturing packets from the top 5K hot flows requires
CacheFlow, T-Cache, and AWEsome-Cache to cache 8163,
2189, and 528 rules, respectively. In other words, each isolate
rule constructed by AWEsome-Cache can capture an average
number of 9.5 hot flows. AWEsome-Cache requires the least
TCAM occupancy because it concretizes the least number of
wildcard bits to eliminate cross-rule dependencies. In contrast,
each isolate rule constructed by T-Cache can capture an
average number of 2.3 hot flows due to its significant loss
of original match fields. CacheFlow can only partly address
cross-rule dependencies but still requires caching all direct
dependent rules, leading to the largest TCAM occupancy.

As for non-prefix rules, two exact variants of AWEsome-
Cache, including WB or DR, require slightly less TCAM occu-
pancy than the greedy GH heuristic. In Fig. 14(b), considering
the top 5.0K flows, WB, DR, and GH require caching 523,

Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on January 02,2024 at 07:07:24 UTC from IEEE Xplore. Restrictions apply.

(a) Prefix Rules (ClassBench) (b) Non-Prefix Rules (ClassBench)

Fig. 16. Computation time to construct isolate rules with synthetic traffic

(a) Prefix Rules (Tor) (b) Non-Prefix Rules (Tor)

Fig. 17. Computation time to construct isolate rules with realistic traffic

514, and 528 rules, respectively. The reason is that WB and
DR guarantee the optimal solution, while the solution of GH
may be sub-optimal.

4) Time Efficiency: Fig. 16 and Fig. 17 show the computa-
tion time to construct isolate rules for cache-miss flows under
different TCAM capacities.

In Fig. 16(a), when the TCAM capacity reaches 3.0K
entries, the computation time for CacheFlow, T-Cache, and
AWEsome-Cache are 322s, 1126s, and 14s, respectively.
AWEsome-Cache requires the least computational time for
prefix rules because three pre-processing techniques signifi-
cantly reduce the solution space.

As for non-prefix rules in Fig. 16(b), when the capacity
of TCAM reaches 1.0K entries, the computation time for
cache-miss flows required by WB, DR, and GH algorithms
is 114s, 29s, and 11s, respectively. GH requires the least
computational time because its computational complexity is
not an exponential function of the number of wildcard bits in
WB or the number of direct dependent rules in DR.

5) Forwarding Latency: Fig. 18 and Fig. 19 show the
overall forwarding latency for all packets from hot flows under
different TCAM capacities, which is significantly impacted by
the slow lookup speed of cache-miss packets.

For the prefix rules, AWEsome-Cache has the least for-
warding latency compared with CacheFlow and T-Cache, as
its highest hit rate enables most packets to be forwarded at
line rate. In Fig. 18(a), when the TCAM capacity reaches
2.4K entries, the overall forwarding latencies in CacheFlow,
T-Cache, and AWEsome-Cache are 1725s, 1520s, and 24s,
respectively. On the one hand, AWEsome-Cache constructs
isolate rules with the largest match fields, thereby reducing
the number of cache-miss flows punted to RAM. On the other

(a) Prefix Rules (ClassBench) (b) Non-Prefix Rules (ClassBench)

Fig. 18. Forwarding latency with synthetic traffic

(a) Prefix Rules (Tor) (b) Non-Prefix Rules (Tor)

Fig. 19. Forwarding latency with realistic traffic

hand, the computation time for constructing isolate rules is
more efficient than T-Cache.

As for non-prefix rules, GH requires the least forwarding
latency than WB and DR, as the optimization techniques
significantly reduce the computation time when constructing
isolate rules for cache-miss packets. In Fig. 18(b), when the
TCAM capacity reaches 1.4K entries, forwarding latencies
of WB, DR, and GH algorithms are 105s, 23s, and 9s,
respectively.

VIII. CONCLUSION

This work proposed AWEsome-Cache as a unifying frame-
work to eliminate cross-rule dependencies for wildcard
rules with arbitrary matching patterns, especially non-prefix
rules. Extensive evaluations on both prefix and non-prefix
rules demonstrated that AWEsome-Cache achieves comparable
TCAM utilization by caching 75.9% fewer isolate rules for hot
flows and efficiently evicting cold rules with TCAM updates.
AWEsome-Cache addresses the scalability challenge in the
SDN data plane to support fine-grained forwarding policies.
We seek to deploy AWEsome-Cache in real networks in our
future work.

IX. ACKNOWLEDGMENTS

This work is supported in part by the National Key
R&D Program of China under Grant No.2022YFB3105000,
the National Natural Science Foundation of China un-
der Grant No. 61972189, the Major Key Project of
PCL under Grant No. PCL2023AS5-1, and the Shenzhen
Key Lab of Software Defined Networking under Grant
No.ZDSYS20140509172959989.

Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on January 02,2024 at 07:07:24 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: enabling innovation in
campus networks,” ACM SIGCOMM computer communication review,
vol. 38, no. 2, pp. 69–74, 2008.

[2] V. Ravikumar and R. N. Mahapatra, “Tcam architecture for ip lookup
using prefix properties,” IEEE Micro, vol. 24, no. 2, pp. 60–69, 2004.

[3] A. Kondel and A. Ganpati, “Evaluating system performance for handling
scalability challenge in sdn,” in 2015 International Conference on Green
Computing and Internet of Things (ICGCIoT), pp. 594–597, IEEE, 2015.

[4] T. Benson, A. Anand, A. Akella, and M. Zhang, “Microte: Fine grained
traffic engineering for data centers,” in Proceedings of the 7th conference
on emerging networking experiments and technologies, pp. 1–12, 2011.

[5] S. H. Yeganeh, A. Tootoonchian, and Y. Ganjali, “On scalability of
software-defined networking,” IEEE Communications Magazine, vol. 51,
no. 2, pp. 136–141, 2013.

[6] B. Isyaku, M. S. Mohd Zahid, M. Bte Kamat, K. Abu Bakar, and
F. A. Ghaleb, “Software defined networking flow table management
of openflow switches performance and security challenges: A survey,”
Future Internet, vol. 12, no. 9, p. 147, 2020.

[7] V. S. Srinivasavarma and S. Vidhyut, “A tcam-based caching architecture
framework for packet classification,” ACM Transactions on Embedded
Computing Systems (TECS), vol. 20, no. 1, pp. 1–19, 2020.

[8] P. He, W. Zhang, H. Guan, K. Salamatian, and G. Xie, “Partial order
theory for fast tcam updates,” IEEE/ACM Transactions on Networking,
vol. 26, no. 1, pp. 217–230, 2017.

[9] M. Yu, J. Rexford, M. J. Freedman, and J. Wang, “Scalable flow-based
networking with difane,” ACM SIGCOMM Computer Communication
Review, vol. 40, no. 4, pp. 351–362, 2010.

[10] B. Yan, Y. Xu, H. Xing, K. Xi, and H. J. Chao, “Cab: A reactive wildcard
rule caching system for software-defined networks,” in Proceedings
of the third workshop on Hot topics in software defined networking,
pp. 163–168, 2014.

[11] B. Yan, Y. Xu, and H. J. Chao, “Adaptive wildcard rule cache man-
agement for software-defined networks,” IEEE/ACM Transactions on
Networking, vol. 26, no. 2, pp. 962–975, 2018.

[12] X. Li and W. Xie, “Craft: A cache reduction architecture for flow tables
in software-defined networks,” in 2017 IEEE Symposium on Computers
and Communications (ISCC), pp. 967–972, IEEE, 2017.

[13] N. Katta, O. Alipourfard, J. Rexford, and D. Walker, “Cacheflow:
Dependency-aware rule-caching for software-defined networks,” in Pro-
ceedings of the Symposium on SDN Research, pp. 1–12, 2016.

[14] J.-P. Sheu and Y.-C. Chuo, “Wildcard rules caching and cache replace-
ment algorithms in software-defined networking,” IEEE Transactions on
Network and Service Management, vol. 13, no. 1, pp. 19–29, 2016.

[15] R. Li, B. Zhao, R. Chen, and J. Zhao, “Taming the wildcards: Towards
dependency-free rule caching with freecache,” in 2020 IEEE/ACM 28th
International Symposium on Quality of Service (IWQoS), pp. 1–10,
IEEE, 2020.

[16] R. Li, Y. Pang, J. Zhao, and X. Wang, “A tale of two (flow) tables:
Demystifying rule caching in openflow switches,” in Proceedings of the
48th International Conference on Parallel Processing, pp. 1–10, 2019.

[17] Y. Wan, H. Song, Y. Xu, Y. Wang, T. Pan, C. Zhang, and B. Liu, “T-
cache: Dependency-free ternary rule cache for policy-based forwarding,”
in Proceedings of IEEE INFOCOM 2020, pp. 536–545.

[18] Y. Wan, H. Song, Y. Xu, Y. Wang, T. Pan, C. Zhang, Y. Wang, and
B. Liu, “T-cache: Efficient policy-based forwarding using small tcam,”
IEEE/ACM ToN, vol. 29, no. 6, pp. 2693–2708, 2021.

[19] N. Sarrar, S. Uhlig, A. Feldmann, R. Sherwood, and X. Huang,
“Leveraging zipf’s law for traffic offloading,” SIGCOMM Computer
Communication Review, vol. 42, no. 1, pp. 16–22, 2012.

[20] “The caida ucsd anonymized internet traces.” www.caida.org/catalog/
datasets/passive dataset download/.

[21] A. Caprara, P. Toth, and M. Fischetti, “Algorithms for the set covering
problem,” Annals of Operations Research, vol. 98, no. 1-4, pp. 353–371,
2000.

[22] L. Yu, J. Sonchack, and V. Liu, “Mantis: Reactive programmable
switches,” in Proceedings of the Annual conference of the ACM Special
Interest Group on Data Communication on the applications, technolo-
gies, architectures, and protocols for computer communication, pp. 296–
309, 2020.

[23] Z. Su, T. Wang, Y. Xia, and M. Hamdi, “Cemon: A cost-effective flow
monitoring system in software defined networks,” Computer Networks,
vol. 92, pp. 101–115, 2015.

[24] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma, and
S. Banerjee, “Devoflow: Scaling flow management for high-performance
networks,” in Proceedings of the ACM SIGCOMM 2011 Conference,
pp. 254–265, 2011.

[25] D. E. Taylor and J. S. Turner, “Classbench: A packet classification
benchmark,” IEEE/ACM transactions on networking, vol. 15, no. 3,
pp. 499–511, 2007.

[26] A. H. Lashkari, G. D. Gil, M. S. I. Mamun, and A. A. Ghorbani,
“Characterization of tor traffic using time based features,” in Interna-
tional Conference on Information Systems Security and Privacy, vol. 2,
pp. 253–262, SciTePress, 2017.

Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on January 02,2024 at 07:07:24 UTC from IEEE Xplore. Restrictions apply.

