
Smart Data-Driven Proactive Push to Edge Network
for User-Generated Videos

Xiaoteng Ma∗†, Qing Li∗, Junkun Peng∗‡, Gareth Tyson§, Ziwen Ye‡, Shisong Tang‡,
Qian Ma¶, Shengbin Meng¶, Gabriel-Miro Muntean∥

∗Peng Cheng Laboratory, China †Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, China
‡Tsinghua Shenzhen International Graduate School, Tsinghua University, China
§IoT Thrust, Hong Kong University of Science and Technology (GZ), China

¶ByteDance Inc., China ∥School of Electronic Engineering, Dublin City University, Ireland
Emails: †‡{maxt17, pjk20, yezw21, tangss}@mails.tsinghua.edu.cn, ∗liq@pcl.ac.cn, §gtyson@ust.hk

¶{maqian.zero, mengshengbin}@bytedance.com, ∥gabriel.muntean@dcu.ie

Abstract—To reduce costs and improve performance, video
Content Delivery Networks (CDNs) have started to incorporate
lightweight edge nodes, e.g., WiFi access points. Because of this,
it is necessary for CDNs to intelligently select which video files
should be placed at their core data centers vs. these edge nodes.
This is more complex than traditional CDN management, as
lightweight edge nodes are much more numerous and unstable
than data centers. With this in mind, we present SDPush —- a
system for managing content placement in edge CDNs. SDPush
tackles two problems. First, it is necessary for SDPush to select
which files to proactive push. To address this, we build a file
popularity prediction model that effectively identifies video files
that will receive many views. Second, SDPush should determine
how many replicas of each file to push. To address this, we design a
model to predict the benefits of pushing particular files (regarding
traffic savings) and then formulate the replica decision problem
as a lightweight problem, which is solvable within seconds, even
for platforms that accommodate millions of daily active users.
Through a trace-driven evaluation and a live deployment on a
real video platform, we validate SDPush’s effectiveness, offloading
peak-period traffic by 12.1% to 23.9% from the data center to
edge nodes, thereby reducing the CDN costs.

Index Terms—Data-Driven, Popularity Prediction, Proactive
Push, Lightweight Edge Caches

I. INTRODUCTION

Content Delivery Networks (CDNs) rely heavily on central-
ized data centers and dedicated racks, often placed in Internet
Service Providers (ISPs). To improve performance and reduce
costs, some CDNs (e.g., Aliyun [1] and Lumen [2]) have
started to extend cache capacity to edge networks using ultra-
lightweight devices such as WiFi access points, Femto Base
Stations, and Internet of Things devices. These devices, often
leased from other companies (e.g., Aliyun [1], PacketFabric
[3]), effectively supplement the more conventional dedicated
infrastructure by caching content.

This new model of operation offers several benefits. These
ultra-lightweight edge nodes have lower bandwidth prices
[4] and are far more numerous. By combining the high
availability of their data centers with the proximity and low
cost of the edge nodes, CDNs can reduce operating costs by
redirecting clients’ requests to nearby heir edge locations [1],

Corresponding author: Qing Li. Email: liq@pcl.ac.cn

[5]. Reducing costs can also reduce the price of its services,
making it more commercially competitive. This does introduce
a number of challenges, though, as these ultra-lightweight edge
deployments often have scarce resources. Due to this, it is vital
to ensure that each edge node has the files demanded in its
region, especially during peak periods (i.e., 20:00 ∼ 21:00).
From our measurements taken from Xigua, one of the top
user-generated video content providers in China, we find that
the request distribution of files peaks between 1.66x – 2.44x
higher than the average. Thus, incorrect file caching leads to a
surge in requests to the data center’s backend, driving up CDN
costs. This is particularly critical since both network operators
and content providers usually get paid based on peak periods
(rather than average), as seen in iQiYi [6] and Kwai [7].

To overcome this, several systems have been proposed to
proactively push popular content to edge devices (e.g., during
low traffic periods) [6], [8], [9]. These previous schemes have
several limitations. They solely rely on video-level attributes
to predict popularity. Yet our later analysis shows that features
related to encoding can also be highly predictive (Section
II-B). Also, they use regression-based methods that accurately
predict highly popular files but exhibit limited effectiveness
in predicting files with moderate or low popularity [10]. This
poses a significant challenge for SDPush to select files for
proactive push accurately. Additionally, these schemes solely
rely on a single feature of the file (e.g., popularity or size) to
determine the number of edge nodes to which the file should be
pushed, without analyzing the impact of these factors on data
center bandwidth savings and integrating them together. This
could result in pushing the wrong file and cache wastage. We
argue that, by overcoming these prior limitations, we can better
place video files at the ultra-lightweight edge nods before they
are requested, such that traffic can be localized, and offloaded
from the (expensive) data centers. We distill this task down
to overcoming two key challenges: (i) determining which files
to push to the edge nodes, and (ii) how many edge nodes to
push each file to.

To address the above challenges, this paper introduces the
Smart Data-driven Proactive Push mechanism (SDPush). The
goal of SDPush is to reduce the peak traffic load on the core

data centers. It does this by proactively pushing file replicas to
lightweight edge nodes, so that more requests can be handled
at the edge. To underpin and then evaluate our design, we build
a dataset with the help of a leading professional user-generated
video platform, encompassing 200 million client traces and
2.5 million file records (Section II-A). This dataset reveals
issues that previous studies have not addressed, including the
high correlation between encoding features and file popularity
(Section II-B), as well as factors influencing the optimal
number of edge nodes at which each file should be cached
(Section II-C). We rely on these insights to overcome the
challenges of the proactive push mechanism.

The first challenge for SDPush is determining which files
to push to the edge nodes. For this, accurate popularity
prediction is crucial. Previous solutions [6], [8] work well in
predicting the volume of requests for popular files. However,
it has been shown that these previous models perform poorly
for moderate and low-popularity files [10]. Consequently,
we adopt a pairwise-based popularity ranking, which dis-
criminates between moderate and low-popularity files. Our
approach compensates for inaccuracies in the predictions for
moderate and low-popularity files (Section III-C).

The second challenge involves determining how many
edge nodes to push each file to. Pushing too many replicas
of a given file will deprive other files of cache resources.
Conversely, underallocation may hinder performance. Thus,
we must identify the optimal number of edge nodes for caching
each file in real-time, a daunting task for systems that must
push millions of replicas within short periods. To address this,
we model the non-linear correlation between the number of
edge caches per file and the potential data center’s bandwidth
savings. Using our unique dataset, we develop a model that
predicts the total traffic from all edge nodes for a given
file under different cache conditions (Section III-D). We then
formulate the problem as an integer programming problem,
and show how we can scale-up our implementation to calculate
results for millions of files in seconds (Section III-E).

The contributions of this paper are as follows:
• We conduct an extensive study on video file access

patterns using 200 million client traces. We identify file
features that effectively predict popularity and show how
this can be used for improving proactive push.

• We introduce SDPush, a smart data-driven proactive push
mechanism that reduces peak-period data center traffic
by identifying and pushing high-traffic files during peak
periods to the edge.

• We present a trace-driven evaluation and real-world de-
ployment of SDPush. Our real-world deployment shows
that SDPush effectively offloads peak period traffic by
between 12.1% to 23.9% from the data center to edge
nodes, compared to the previous mechanisms.

II. MOTIVATION

A. Dataset
Our motivation relies on a unique dataset taken from Xigua,

a top professional user-generated video platform in China.

The dataset consists of three parts. The first part is the client
request data, which contain about 200 million client traces that
span two weeks in November 2021. The key features include
access time, leave time, client ID, file ID, connected edge node
ID, and download size from each edge node and data center,
respectively, per video view. Each file is encoded using specific
encoding parameters (i.e., resolution, codec, and quality), with
a duration of 1 to 4 minutes. The second part is the file
information data, which contains 2.5 million file records that
appeared in the first dataset’s time range. It includes file
resolution, codec, quality, size, content author, category, and
publish time. The third part is the author information data.
This covers their number of fans, published videos, and total
received likes (appearing in the second dataset).

B. Impact of File Features on Popularity

We first explore how different file features influence popu-
larity.

1) Encoding features: Clients are more likely to request
files with a resolution below 720p. Fig. 1(a) shows the request
ratio of different resolution files. The request ratio refers to
the ratio of requests for files of each resolution vs. requests
for all files at the peak period (i.e., 20:00∼21:00) in a day.
We see that 360p, 480p, and 720p have a high probability of
having requests during the peak period. Therefore, SDPush
should preferentially push files with these resolutions.

Clients prefer to request H265 encoded files with a “Nor-
mal” quality level. Fig. 1(b) and Fig. 1(c) show the request
ratio for different codecs and quality levels. The “quality”
indicator represents three different encoding parameters (i.e.,
constant rate factor distribution) for a video under a certain
resolution. We see that popularity varies significantly across
different codecs and quality levels. This is because when
receiving an original video, the data center server first encodes
the video file in a low-computational manner (i.e., H264
coding). Such encoded files usually have large sizes and
relatively low quality. If the file becomes popular, the data
center utilizes a more computationally expensive encoding
method (i.e., H265 v1 or H265 v2). The newly encoded file
has a smaller size and higher quality so that clients who request
such files experience a better quality of experience. When
files using the new codec are produced, clients who support
playing these newly encoded files prefer to request files with
the new codec, thus reducing the popularity of old codec files.
Although the specific codes and encoding rates may vary in
the future, we argue that the observation remains the same: a
subset of codecs and resolutions will dominate at any given
period.

2) Social Features: Videos published by a popular au-
thor are more likely to become popular. Fig. 2 shows the
relationship between files’ peak-period request volume and
the video author’s number of fans/likes. We utilize min-max
normalization to normalize the values on the Y-axis for each
metric. Unsurprisingly, the number of peak-period requests
increases as the authors’ number of fans and the average

360p 480p 720p 1080p 2k 4k
Resolution Type

0.0

0.2

0.4

0.6

0.8

1.0
Re
qu
es
t
Ra
ti
o

(a) Resolution

0.0 0.2 0.4 0.6 0.8 1.0

Request Ratio

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

H264

H265_v2
H265_v1

(b) Codec

0.0 0.2 0.4 0.6 0.8 1.0

Request Ratio

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Lower

High
Normal

(c) Quality

Fig. 1: Encoding Features

0.0 0.2 0.4 0.6 0.8 1.0

Normed Requests

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

ed
 V

al
ue

s Fans
Likes

Fig. 2: Social Features

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of days since created

0.2

0.4

0.6

0.8

1.0

CD
F

 views>=10% of total
 views

>=90% of total views
>=50% of total

(a) Age

0h 2h 4h 6h 8h 10h 12h 14h 16h 18h
Hour

Ga
me

Sp
or
t

Ca
te
go
ry

0.
20

0.
06

0.
13

0.
37

0.
31

0.
26

0.
44

0.
18

0.
42

0.
70

0.
37

0.
37

0.
31

0.
32

0.
17

0.
37

0.
38

0.
44

0.
49

0.
75 0.2

0.4

0.6

0 5 10 15 20
Hour

0

10

Re
qu
es
ts Game

Sport

(b) Category

Fig. 3: Request Pattern Features

0 3 6 9 12 15 18 21 24
Hour

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 P
ea

k
Pe

rio
d

Po
pu

la
r F

ile
 N

um
be

r

Mon

Tue

Wed

Thr

Fri

Sat

Sun

Fig. 4: # of Popular Files

0.0

0.5

1.0
small_s large_s

[0,
2)
[2,

4)
[4,

6)
[6,

8)

 Range of Edge Node Caches Number

0.0

0.5

1.0

D
at

a
C

en
te

r
Tr

af
fic

small_r large_r

[8,
10)

[10
,12

)

[12
,14

)D
at

a
C

en
te

r
Tr

af
fic

Fig. 5: Benefit Heterogeneity

number of received likes increase. Thus, the author’s fans/likes
may be useful for making popularity predictions.

3) Request Pattern Features: Most of the requests arrive
early in the file’s lifecycle. Fig. 3(a) presents the fraction of
days required to get n% of each file’s view count. This covers
up to two weeks after video generation. 63% of the files get
more than 90% views in the first 20% of their lifetime. This
suggests that most files should only be pushed early in their
lifecycle.

We also observe that such differences may vary across video
categories. To study this, Fig. 3(b) shows a heatmap of the
Pearson correlation between the average request number in
each daily period and the daily peak (just for weekdays). It also
presents the average number of requests per hour. We show
results for all videos in two example video categories. For
gaming videos, only the request volume in the early morning,
noon, and evening correlate with the request volume in the
peak period (i.e., the Pearson coefficient is larger than 0.3).
In contrast, for sports videos, the volume of requests in most
periods correlates well with the number of requests in the peak
period. This trend probably emerges due to the differences
among audiences, e.g., most viewers of games are young
people who perhaps watch videos during their breaks [11]. The
result highlights that per-category temporal features might be
useful when making popularity predictions for different videos.

4) Temporal Features: The number of files that should be
pushed to the edge network varies at different times of the
day. Any content push mechanism should be executed within
a given interval, T . For example, with fixed time intervals, if
we decide at time td, the next decision should be made at time
td+T . We call the period [td, td+T) a “push period”.

Fig. 4 presents the normalized number of the peak-period
popular files during each push period according to the data

from November 7th to November 13th, where we set T to 10
minutes. The peak-period popular file number can be calcu-
lated as

∑
j∈J⃗d 1{rpj |r

p
j≥C}(r

p
j)x

td
j , where 1{rpj |r

p
j≥C}(r

p
j) ={

1 rpj ≥ C

0 rpj < C
, rpj is the requests volume of file j during

the peak period, C is the cut-off threshold of popular and
unpopular files, and J⃗d is the set of selected files’ ID at time
td. For Fig. 4, we set C=50 and J⃗d includes the ID of files
that have been requested in the time period [td-3600, td). We
use min-max normalization to normalize the value of peak-
period popular file numbers according to the maximum and
minimum values in the whole dataset.

Fig. 4 reveals there is a large difference in the number of
popular files at peak periods in different push periods. For
instance, the number of popular files at 12:00 is 9.3∼12.5
times the number of popular files at 03:00. This indicates that
we should vary the total number of files pushed in different
periods to avoid deploying unpopular files that may occupy
cache resources of popular files.

C. Impact of Number of Edge Node Caches

The above study has identified the file features that correlate
with popularity. Next, we explore the individual bandwidth
savings that can be achieved when pushing content to edge
nodes. We conjecture that when different files are deployed to
the same number of edge nodes, there may be differences in
the benefits attained (because of heterogeneity in file size and
popularity). Fig. 5 shows the distribution of the normalized
data center traffic attained per file in different ranges of edge
nodes that cache a certain file during the peak period. For each
file, the traffic of the edge nodes plus the traffic of the data
center equals the total traffic attained by the file. To understand
how this varies across types of files, we separate files into four

categories: “small s” and “large s” indicates files with a small
size (0MB∼500MB) and large size (500MB∼1000MB), while
“small r” and “large r” represents files with a small number
of requests (0∼50) and a large number of requests (larger than
50), respectively.

Fig. 5 illustrates that larger files and those with more re-
quests require more edge nodes due to longer session durations
and simultaneous request limitations, underscoring the need
for a proactive push mechanism that adapts the number of
replicas on a per-file basis.

III. SDPUSH DESIGN

A. Problem Formulation

We first define the problem SDPush tackles. Assuming that
SDPush processes J files daily and each push period lasts T
minutes, we formulate the objective of SDPush as follows:

argmax
D

∑
td∈⃗t

J∑
j=1

gtdj × φ(gtdj , rpj , sj)

s.t.

gtdj = gtd−T

j + ρtd−T
j − e

[td−T,td)
j∑J

j=1 ρ
td
j ≤ ωtd , ρj ∈ Z+ ∪ {0}∑D

d=1 ω
td ≤ Γ,∀td ∈ t⃗,∀j ∈ [1, J]

(1)

where φ(·) is the model to predict the average traffic attained
for all streams for a given file from all edge nodes during the
peak period (described in Section III-D). Note that file seg-
ments can be downloaded from the edge or data center nodes
during a video view. A higher traffic from the edge network
implies a higher utilization of edge nodes, and therefore more
data center bandwidth savings. As bandwidth costs at the edge
are cheaper, offloading from the data center is more desirable
[1], [5]. rpj is the volume of requests for the file j at the
peak period. sj is the size of file j. t⃗ = {t1, t2, ..., td, ..., tD}
is the start time of the push period. gtdj is the number of
replicas for file j cached at the edge network in the push
period starting at time td. Note that each edge node caches
at most one replica of a particular file. ρtdj is the number of
replicas of file j that decided to be pushed in the push period
starting at time td. D⃗td={ρtd1 , ρtd2 , ..., ρtdj , ...} is the set of ρtd

for each file. D = {D⃗t1 , D⃗t2 , ...} is the set of D⃗td . ωtd is the
upper bound of the total number of replicas pushed in the push
period starting at time td. ej is the number of evicted replicas
of file, j, in the time period [td − T, td). Γ is the maximum
number of pushed replicas in a day, which is related to the
number of edge nodes and the storage capacity.

To solve the problem in Eq.(1), we must select Dtd at time
td. We formulate the problem’s objective at time td as follows:

argmax
Dtd

J∑
j=1

[(ρtdj + gtdj)× φ(ρtdj + gtdj , rtdj , sj)

− gtdj × φ(gtdj , rtdj , sj)]

s.t.

gtdj = gtd−T

j + ρtd−T
j − e

[td−T,td)
j∑J

j=1 ρ
td
j ≤ ωtd ;xtd

j ρtdj = 0

ρtdj ∈ Z+ ∪ {0};xtd
j ∈ {0, 1};∀j ∈ [1, J]

(2)

Top Kt files
with features

Push Task
Scheduler

Traffic Predictor Maximum Push
Replica Number

Lookup Table

Model
Repository

Top Kt files
with features

Popularity
Predictor Ranking

Predicting
1

2

3

SDPush

File ID 3 …
Edge ID 2 5 …

Fig. 6: SDPush Workflow

where rtdj is the predicted number of requests per file, j, at
time td. xtd

j is a binary variable: xtd
j = 0 when the file j is

selected at time td; otherwise xtd
j = 1.

It is worth noting that motivated by Fig. 4 and the analysis
in Section II-B, varying ωtd according to the push period has
the potential to avoid replicating too many unpopular files.
Thus, we should predict the number of popular files to push in
different push periods to achieve the above goals. Fortunately,
predicting this distribution is not a difficult task. The ratio
of the peak-period popular files at each push period is quite
stable on different weekdays and weekends (see Fig. 4). This
indicates that we can store the upper bound ωtd for the number
of push replicas during different push periods of weekdays and
weekends in a lookup table, respectively.

B. SDPush Overview

Fig. 6 illustrates the SDPush workflow during a push
period. The solid line represents the working process, and
the dotted line indicates the transmission of information. The
SDPush architecture comprises the following three blocks: the
Popularity Predictor, the Traffic Predictor, and the Push Task
Scheduler. These three blocks run sequentially to complete the
whole workflow of SDPush.

Step 1: Popularity Prediction (Section III-C): In Step 1,
SDPush sorts the files according to the requested volume of
files in the past H hours. It then extracts the top Kt files
with fewer than three replicas at the edge as the potential
files to push. The Popularity Predictor ranks and predicts
the selected files’ peak-period request volume based on its
prediction models. The Popularity Predictor may use different
models in different push periods.

Step 2: Traffic Prediction (Section III-D): In Step 2, the
Traffic Predictor utilizes the file size and the predicted peak-
period request volume to predict the traffic from edge nodes
under different edge node caches.

Step 3: Push Task Scheduling (Section III-E): In Step 3,
the Push Task Scheduler decides the number of replicas to
push for files according to the Traffic Predictor’s output and a
lookup table of the maximum number of pushed replicas per
push period. Finally, our edge allocator determines the target
edge node where each replica is pushed.

C. Step 1: Popularity Prediction

There are two requirements for the Popularity Predictor. For
selecting which files to push, the Popularity Predictor should
calculate the priority rank of each file. For deciding how many
replicas to push, the Popularity Predictor should then give an

Embedding LayerDense Layer

1 0 0 1 0 0

Codec Resolution

Fans Historical
Requests

DNNCIN

File

Concatenate Layer

Inputs

Feature
Extraction

Output

Output
Layer

File Reference File

+ -

Output

LinearLinear

Ranking Output
Score Score

File

Predicting

Dense Layer
……

CIN DNN

Concatenate

EmbeddingDense

Dense Embedding

CIN DNN

Concatenate
Dense Embedding

CIN DNN

Concatenate Layer

Fig. 7: Popularity Prediction Model

accurate estimate of the number of requests for files (during
the peak period). Because optimizing one of the indicators will
not lead to the decline of the other, we use different prediction
models to predict the popularity ranking and the number of
requests per file, respectively. Both models have identical input
formats and feature extraction modules, as shown in Fig. 7.
Only the output layer is different.

Based on the analysis in Section II-B, we find that the
popularity of a file is affected by various features. Therefore,
we next explore and utilize the relationship between multi-
dimensional features and file popularity. We try a variety of
feature fusion schemes and find that the popularity prediction
architecture that attains the best performance combines the
explicit features extracted by a Compressed Interaction Net-
work (CIN), the implicit features extracted by a Deep Neural
Network (DNN), and the linear combination features extracted
via Linear Regression (LR). Such a method is inspired by the
xDeepFM [12] model, which was designed for click-through
rate prediction tasks. We do not show the linear regression part
in Fig. 7 for the sake of brevity. The categorical features (i.e.,
codec, resolution, quality, and video category) are encoded
as one-hot vectors and then embedded. After embedding, the
neural network expands continuous variables (i.e., historical
requests, file age, author fans, and received likes) to the
same dimensions as categorical features. Then we concatenate
the dense and embedding layers and connect them to the
compressed interaction and deep neural networks. The ranking
model output is a score representing the popularity difference
between the file that needs to be predicted and the reference
file. The loss function is Lr = − 1

MN

∑N
i=1

∑M
j=1 yij logŷij +

(1 − yij)log(1 − ŷij), where ŷij = eoij

1+eoij
. oij is the output

of the model and could be any real number. If oij is positive
and the value is higher, the popularity of file i is higher than
that of file j. Conversely, if oij is negative and the value is
lower, file j is less popular than file i. yij ∈ {0, 0.5, 1} and
represents the real relative popularity relationship between file
i and file j. The values of y are 1, 0.5, and 0, respectively,
representing that file i is more popular than file j, file i and
file j have the same popularity, and file j is more popular
than file i. M and N refer to the number of references and
predicted files, respectively. To adapt to daily changes in the
peak popularity distribution of files, we re-select Q reference

TABLE I: Performance of the popularity prediction models

Predicting Ranking
Metrics MSE(1e-6) R2 NDCG AUC

LR 11.2 0.6093 0.8742 0.9058
XGBoost 9.25 0.6772 0.9117 0.9318
DNN [6] 8.99 0.6842 0.9189 0.9446

DeepFM [13] 8.81 0.6865 0.9219 0.9467
DCN [14] 8.72 0.6902 0.9210 0.9480

xDeepFM [12] 8.56 0.6941 0.9246 0.9501

TABLE II: Performance of the traffic prediction models

LR DT RF GBDT DNN XGBoost

MSE(1e-6) 11.87 9.54 6.82 5.61 5.54 5.23
R2 0.62 0.68 0.79 0.81 0.82 0.83

files daily when using the model. We have experimented with
various Q values and found that when Q > 5, the ranking
performance does not change with the increase of Q. So, we
set Q=5. The reference files used for the current day are those
ranked around the 70th percentile regarding requests number
during the last day’s peak periods, sorted in descending order.
The reason why we choose files with relatively low popularity
is that these files’ popularity is not easily distinguishable. We
also try different files as reference files, and find that using
files ranked by popularity between 60% and 80% performs
best in ranking.

For the popularity prediction model, the output approxi-
mates the volume of file request in the peak period. The loss
function is expressed as Lp =

∑N
i=1(r̂i−ri)

2, where r̂i and ri
are the file’s predicted and real request volume, respectively.

For context, Table I summarizes the performance of various
schemes for fusing multidimensional features. For the rank-
ing task, we use Normalized Discounted Cumulative Gain
(NDCG) and Aera Under the Curve (AUC) to evaluate its
ranking accuracy. NDCG evaluates files whose actual popu-
larity ranks in the top 50%. AUC is used to judge whether the
comparison between the prediction result and the number of
requests in the peak period for the reference file is correct. For
the peak-period request volume prediction task, we evaluate
its prediction accuracy by Mean Squared Error (MSE) and
R-square (R2). The result implies that the feature extraction
method used by xDeepFM makes the best use of the features.

D. Step 2: Traffic Prediction

The next step is establishing and using the model φ(·)
mentioned in Section III-A, which predicts the average traffic
attained for all streams for a given file from all edge nodes
during the peak period.

We use the dataset described in Section II-A to train the
model φ(·). To train the proposed model, we compile a feature
set containing the file size, number of file replicas in the
network in the peak period, total number of requests in the
peak period for the file, and total traffic that clients obtain
when accessing the file from the edge nodes during the peak
period. Then the peak-period traffic wj from an edge node for
a file j is calculated as φ(gj , rj , sj), where gj is the number of

edge caches of file j at the edge network, rj is the number of
requests for video file j in the peak period, and sj is the size of
the file j. To train φ(·), we experiment with multiple models:
Linear Regression (LR), Decision Tree (DT), Random Forest
(RF), Gradient-Boosted Decision Trees (GBDT), Deep Neural
Network (DNN), and eXtreme Gradient Boosting (XGBoost).
Our results show XGBoost performs best based on the input
features, as listed in Table II. Its R2 between the estimated and
real edge traffic is 0.83, which implies that it can accurately
estimate the traffic from the edge network [15].

However, formulas cannot express φ(·) directly. This pre-
vents us from obtaining an analytical solution for Eq. (2).
We, therefore, fit the model, φ(·), using polynomial fitting to
tackle this problem scalably. At each time td, the Push Task
Scheduler obtains the selected files’ predicted popularity and
size. This allows us to estimate the traffic, ϕj(ρ), from an
edge node serving the file, j, when we push ρ replicas to
the edge. We find that there is a good fitting performance
(0.9672 R2 score) when the polynomial degree is equal to 4.
Therefore, considering the complexity of the problem, we use
the fourth-order fitting method to fit the relationship between
the number of replicas to push, ρ, and the normalized edge
traffic for a file, ϕtd

j , at time td. This can be expressed as
ϕtd
j (ρ) = αtd

j ρ4+βtd
j ρ3+γtd

j ρ2+δtdj ρ+ηtdj , where αtd
j , βtd

j ,
γtd
j , δtdj and ηtdj are all constant terms which are related to

gtdj , rtdj and sj . Finally, we formulate the objective of Eq.(2):

argmax
Dtd

J∑
j=1

[atdj (ρtdj)5 + btdj (ρtdj)4 + ctdj (ρtdj)3

+ dtdj (ρtdj)2 + f td
j ρtdj]

s.t. Constraints in Eq.(2)

(3)

where atdj = αtd
j , btdj = 5αtd

j gtdj + βtd
j , ctdj = 10αtd

j (gtdj)2 +

4βtd
j gtdj +γtd

j , dtdj = 10αtd
j (gtdj)3+6βtd

j (gtdj)2+3γtd
j gtdj +δtdj ,

f td
j = 5αtd

j (gtdj)4 + 4βtd
j (gtdj)3 + 3γtd

j (gtdj)2 + 2δtdj gtdj + ηtdj .
However, our experience has shown that there still remain

scalability challenges when dealing with a large number of
files. Fortunately, based on our data, we find that only the top
1% of files ranked by the peak period’s request number require
more than 30 edge nodes to store their replicas. Thus, we can
reduce the complexity of solving this problem by limiting the
maximum number of replicas to M (30 in our paper) for each
file at every single push period (i.e., ρtdj ∈ [0,M], ∀j ∈ [1, J]).
For files that are predicted to be in the top 1% of the request
number of the peak period, the Push Task Scheduler selects
them again in the next period. It then determines how many
more replicas to push. Thus, we can convert Eq. (3) to a 0-1
integer programming problem with O(MJ) complexity.

E. Step 3: Push Task Scheduling

In this section, we describe how the Push Task Scheduler
uses the Popularity Predictor and thetraffic Predictor to make
real-time decisions on which replicas to push to which edge
nodes. The Push Task Scheduler process is divided into three
sub-steps: (i) File Clustering, (ii) Parallel Optimization, and

…

Optimization
Solvers

File
Clusters

……

Rank File
ID

Push
Number

1 2 8

2 3 7

… … …

Rank Edge
ID

Max Download
Replicas Number

1 1 200

… …

7 32 300

8 25 200

… … …

File ID 2 …

Edge ID 1 … 8 …

Edge Allocator

File ID … …
Push

Number … …

File ID … …
Rank … …

Cluster
1

Cluster
K

Solver
1

Solver
2

Solver
P-1

Solver
P

File ID 4 …
Push

Number 3 …

File ID 2 …
Push

Number 6 …

File ID 9 …
Push

Number 4 …

File ID 10 …
Push

Number 5 …

Popularity & Traffic
Prediction Results

Maximum Push
Replica Number

Lookup Table

K-means based
Clustering

3

2

1

Fig. 8: Push Task Scheduler Workflow

(iii) Edge Allocation, which are executed sequentially (see
Fig. 8).

Sub-step 3.1: File Clustering. At time td, the popularity and
traffic prediction results are fed into the workflow. SDPush
first uses K-means to cluster files with a similar relationship
between the number of edge nodes and the average traffic
attained for all streams for a given file from all edge nodes.
This groups together files that should be treated similarly. The
similarity among files is estimated by the Euclidean distance
of the traffic prediction results (i.e., atdj , btdj , ctdj , dtdj , and f td

j

in Eq.(3)). K’s value is determined by the elbow method [16];
we find that K=16 effectively separates the files.

Sub-step 3.2: Parallel Optimizing. The Push Task Scheduler
distributes files evenly among P parallel optimization solvers
after clustering. Each solver can push the same total number
of replicas, which is an even share of the maximum number of
replicas to be pushed in the lookup table. For instance, if there
are five solvers and a maximum budget of 100 replicas, each
solver can allocate 20. This parallel computation reduces the
computational complexity to O(M/P). Finally, each solver
determines the number of replicas for each file and sends the
results to the edge allocator.

Sub-step 3.3: Edge Allocation. The edge allocator is respon-
sible for deciding which edge node each replica is pushed to.
It maintains a table representing the edge node priorities in
a push period for all files, where each row is an individual
node. To build this table, each edge node periodically reports
its content requests and their available cache space to the edge
allocator [6], [8]. The priority order of edge nodes in the table
is then obtained according to the sequence of requests received
by the data center from edge nodes, i.e., the first entry in the
table is the node that sent the first request during the push
period. Importantly, for scalability, the node priority is global,
and not specific to each file. In practice, this results in content
being pushed to the most popular edge nodes, as these tend
to most frequently issue requests to the data center. The table
is periodically refreshed; after the replicas have been pushed
to an edge node, the edge allocator removes it from the table.

Next, we explain how the edge allocator finally selects
which nodes to push each replica to. Recall, the optimization
solvers output the number of replicas to push for each file,
and the file ranking results list the predicted popularity of

each file. Subsequently, the edge allocator iterates over the
file ranking list and, for each file, selects the corresponding
required number of nodes from the prioritized edge node list.
For instance, if the number of replicas for a file is 10 (taken
from Step 2 above), the edge allocator selects the top 10
prioritized edge nodes. Fig. 8 illustrates the edge allocator that
chooses the target nodes for two files. Initially, it selects the
top eight nodes for File 2 (red dashed box), then selects seven
nodes for File 3 based on node rank (green dashed box).

IV. EVALUATION

We deployed SDPush on a top user-generated video plat-
form with millions of daily active users, evaluating its efficacy
through trace-driven emulations and our real deployment.

A. Evaluation Methodology

1) Parameter Settings: For the popularity prediction model,
we set the dimension of the embedding vector of each feature
to 8. The deep component consists of two fully connected
layers (each with a size of 128). The compressed interaction
network consists of 3 layers, and each layer outputs the feature
map with a size of 12. Then the outputs from the linear part,
the compressed interaction network, and the deep component
are concatenated. For the prediction model, the concatenated
values are passed into a dense layer with 128 neurons and
a linear function sequentially. The concatenated values are
passed into a linear function for the ranking output. The output
of the predicted and reference files is subtracted as the final
output. All the feature layers use ReLu, except the output layer,
which uses the linear function. For the Push Task Scheduler,
if not specified, we set the number of optimization solvers to
100.

2) Baselines: We compare SDPush with the following
baseline methods: (i) Size Based (SB): the number of pushed
replicas is only related to the file size, which can be repre-
sented as kbsj + qb for file j. kb and qb are constants and we
find the best (kb, qb) combination through a grid search. This
is the previous method used on our deployed video platform.
(ii) Requests Based (RB) [6], [8]: the number of pushed
replicas is only related to the historical request count, which
can be represented as krr

p
j + qr for file j. kr and qr are

constants and we find the best (kr, qr) combination through
the grid search method. (iii) SDPush without the number
of replicas limitation Lookup Table (SDPush-LT): The
upper bound of the total number of replicas pushed during
each period remains the same (rather than vanilla SDPush,
which adapts the limit per time period). The total number of
replicas pushed per push period is Γ

Np
, where Np is the number

of push periods in a day. Γ is the total number of pushed
replicas per day, equal to the vanilla SDPush. (iv) SDPush
without Popularity Predictor (SDPush-PP): This is SDPush
without the Popularity Predictor. Instead, it uses the number
of requests for each file in the past hour as a prediction of
its peak-period popularity. (v) SDPush without Push Task
Scheduler (SDPush-PTS): This is SDPush without the Push

Task Scheduler. Instead, the decision of the number of push
replicas for each file is based on the Size Based method.

3) Evaluation Metrics: We evaluate SDPush using several
metrics. (i) Peak-period’s Covered Requests: This metric
counts the sum of all requests served by edge nodes. This
indicates the accuracy of the popularity prediction. The value
of this metric is scaled to protect the privacy of the commercial
system. (ii) Data Center’s 95th Percentile Traffic: We collect
all daily traffic samples and record the 95th percentile from
them. 95th percentile pricing is widely used by CDNs [17].
Thus, reducing the 95th percentile traffic of the data center
indicates reducing the bandwidth cost of CDN. We scale
the value of data center traffic to protect the privacy of the
commercial system. (iii) Zero Request Replica Ratio: The
daily ratio of the number of deployed replicas without requests
during the peak period vs. the number of all replicas at the
edge. This metric captures the number of wasted replicas.
(iv) Magnification Ratio: This metric is the ratio of the traffic
generated by edge nodes each day vs. to the traffic required
to push replicas to the edge nodes. This metric measures the
cost-effectiveness of the pushing mechanism.

B. Trace-driven Simulations

1) Experimental Implementation: We randomly sample
20% of the video files that appear from December 6th, 2021,
to December 19th, 2021, and record all requests for these
files. Each file is encoded using specific encoding parameters
(i.e., resolution, codec, and quality), with a length of 1 to 4
minutes. This test dataset contains all the features mentioned
in Section II-A. Consistent with the production environment,
SDPush only pushes replicas from 00:00 to 20:00 in our trace-
driven experiments. This is because the data center may reach
its peak in the number of requests after 20:00. Thus, pushing
files after 20:00 may run the risk of incurring additional data
center pricing traffic. The push period is 10 minutes, the same
as the settings in the production environment. The edge nodes
periodically send file requests to the data center. Finally, The
edge nodes adopt the Least Recently Used algorithm [18] as
the cache eviction strategy to evict cached replicas.

2) Results: Fig. 9 shows the benefits of each method to the
proactive push mechanism. We highlight three key takeaways.

First, the Push Task Scheduler significantly decreases the
data center’s 95th percentile traffic with a slight reduction in
peak-period’s covered requests number (compared the blue
line with the red line in Fig. 9(a) and Fig. 9(b)). This
equates to a significant cost saving, due to the common use
of 95th percentile pricing. The Popularity Predictor and the
upper bound lookup table compensate for the reduced covered
requests number. Consequently, SDPush achieves a reduction
of 10.6% data center traffic at 95th percentile without reducing
the number of covered requests.

Second, the Popularity Predictor and lookup table for the
upper bound of the push replica number improve the peak-
period’s covered requests, and decrease the data center’s
95th percentile traffic. Without the upper bound lookup table

Mon Tue Wed Thr Fri Sat Sun

0.94

0.95

0.96

0.97

0.98

0.99

1.00
Pe

ak
 P

er
io

ds
Co

ve
re

d
Re

qu
es

ts

SDPush

SDPush-LT

SDPush-PP

SDPush-PTS

(a) Peak-Period’s Covered Requests

Mon Tue Wed Thr Fri Sat Sun

0.75

0.80

0.85

0.90

0.95

1.00

Da
ta
 C

en
te
r'

s
95
th

Pe
rc
en

ti
le
 T

ra
ff
ic

(b) 95th Percentile Traffic

Mon Tue Wed Thr Fri Sat Sun
0.44

0.45

0.46

0.47

Ze
ro
 R
eq
ue
st

Re
pl
ic
a
Ra
ti
o

(c) Zero Request Copy Ratio

Mon Tue Wed Thr Fri Sat Sun
1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

Ma
gn
if

ic
at

io
n

Ra
ti
o

(d) Magnification Ratio

Fig. 9: SDPush Overall Performance

Mon Tue Wed Thr Fri Sat Sun
0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

Pe
ak

 P
er

io
ds

Co
ve

re
d

Re
qu

es
ts

LR

XGBoost

DNN

DeepFM

DCN

xDeepFM_R

xDeepFM_P

(a) Peak-Period’s Covered Requests

Mon Tue Wed Thr Fri Sat Sun

0.74
0.76
0.78
0.80
0.82
0.84
0.86
0.88
0.90

Da
ta
 C

en
te
r'

s
95
th

Pe
rc
en

ti
le
 T

ra
ff
ic

(b) 95th Percentile Traffic

Fig. 10: Popularity Prediction Evaluation

Mon Tue Wed Thr Fri Sat Sun

0.94

0.95

0.96

0.97

0.98

0.99

1.00

Pe
ak

 P
er

io
ds

Co
ve

re
d

Re
qu

es
ts

PTS

SB

RB

(a) Peak-Period’s Covered Requests

Mon Tue Wed Thr Fri Sat Sun
0.75

0.80

0.85

0.90

0.95

1.00

Da
ta

 C
en
te

r'
s
95
th

Pe
rc

en
ti
le

 T
ra
ff
ic

(b) 95th Percentile Traffic

Fig. 11: Push Task Scheduling Evaluation

(orange line) and Popularity Predictor (green line), the peak-
period’s covered requests number is 1.1% and 0.8% lower than
that of SDPush, respectively (Fig. 9(a)). The data center’s 95th
percentile traffic is 1.03% and 1.09% higher than SDPush,
respectively (Fig. 9(b)).

Third, Fig. 9(c) shows the zero request copy ratio. We see
that all methods reduce the zero request replica ratio, and
the Popularity Predictor (green line) plays the most important
role. The Popularity Predictor and upper bound lookup table
reduce the zero request replica ratio by filtering out files
that are not worth pushing. On the other hand, since the
Push Task Scheduler deploys more replications for high-
benefit files, it reduces the deployment of low-benefit files,
which also reduces the zero request replica ratio. Finally,
Fig. 9(d) presents the magnification ratio. We see that all
methods effectively increase the magnification ratio implying
the benefit of replicating the files significantly exceeds to
initial cost of pushing them.

3) Ablation Study: We first highlight the differing per-
formance of the various Popularity Prediction models we
experimented with. Fig. 10 shows the peak period’s covered
requests and the data center’s 95th percentile traffic of all
popularity prediction methods. We only vary the popularity
prediction model — the other optimization methods remain

consistent with SDPush. xDeepFM R (used by SDPush) and
xDeepFM P indicate using the ranking and predicting models’
results to rank files, respectively. The ranking results are finally
fed to the edge allocator (shown in Fig. 8).

Compared with other methods, the xDeepFM-based feature
extraction model increases the peak period’s covered requests
by 0.2%∼2.2% (shown in Fig. 10(a)) , while saving the
data center’s 95th percentile traffic by 0.15%∼0.86% (shown
in Fig. 10(b)). On the other hand, the use of xDeepFM R
increases the covered requests of the peak period by 0.9%
compared to xDeepFM P. It also reduces the data center’s 95th
percentile traffic by 0.51%. This proves that ranking objectives
can filter out unpopular files from the files at the junction of
popular and unpopular than other methods.

Next, we inspect the Push Task Scheduler component. The
Push Task Scheduler decides the appropriate number of repli-
cas per file by fusing the popularity and size information of
the files. We first verify how much performance improvement
the Push Task Scheduler has compared to methods that simply
use raw popularity (Requests Based) or size (Size Based). We
find that the Push Task Scheduler results in a slight decrease in
the peak period’s covered requests (shown in Fig. 11(a)), but a
significant decrease in the data center’s 95th percentile traffic
(shown in Fig. 11(b)). This represents a notable cost saving,
due to 95th percentile bandwidth pricing. The Push Task
Scheduler decreases the data center’s 95th percentile traffic by
9.73% and 3.49%, with 1.28% and 0.27% loss of the covered
requests compared with the Size Based and Request Based
methods, respectively. The decrease in the data center’s 95th
percentile traffic implies the Push Task Scheduler effectively
combines the advantages of Request Based and Size Based
methods, and finds a more beneficial decision for the replica
number per file.

Another optimization of the Push Task Scheduler is to
reduce the computational complexity using file clustering and
parallel optimization solvers. We find that decreasing the
solver number P (i.e., increasing in the number of files in
each solver) results in a linear increase in computation time,
but a slight decrease in the data center’s 95th percentile traffic.
When we decrease the solver number from 400 to 50, the
computing time decreases from 2.89 seconds to 0.36 seconds,
while the data center’s 95th percentile traffic only increases by
0.27%. Thus, in our evaluation setup, we set P to 100, which is
mentioned in Section IV-A1. We believe this a suitable trade-
off, considering the benefits of scalability.

Mon Tue Wed Thr Fri Sat Sun
0.75

0.80

0.85

0.90

0.95

1.00

1.05
Co

ve
re

d
Re

qu
es

ts

(a) Peak-Period’s Covered Requests

Mon Tue Wed Thr Fri Sat Sun
0.6

0.7

0.8

0.9

1.0

Da
ta
 C

en
te
r'

s
95
th

Pe
rc
en

ti
le
 T

ra
ff
ic Original

SDPush

(b) 95th Percentile Traffic

Mon Tue Wed Thr Fri Sat Sun
0.40

0.42

0.44

0.46

0.48

0.50

ZR
RR

(c) Zero Request Replica Ratio

Mon Tue Wed Thr Fri Sat Sun
1.3

1.4

1.5

1.6

1.7

1.8

1.9

Ma
gn

if
ic

at
io

n
Ra

ti
o

(d) Magnification Ratio

Fig. 12: Real-World Deployment Performance

C. Real-world Deployment

1) Experimental Implementation: We have deployed SD-
Push on the production network of Xigua and run between
the 22nd and 28th August 2022. To measure its effectiveness,
we randomly select 25% files and use SDPush to push them to
the edge nodes. The remaining files use the original strategy
(Size Based).

2) Results: Fig. 12 shows the comparison between the
original Size Based mechanism and SDPush. We again plot
all four evaluation metrics. The results show that SDPush
saves 12.1%∼23.9% of 95th percentile traffic, and increases
the covered requests at edge nodes by 4.07%∼8.09%. This
reduces subsequent bandwidth cost, which is typically priced
at the 95th percentile. Fig. 12(c) shows the zero request replica
ratio is reduced by 6.23%∼8.77%, and the magnification
ratio increases by 8.34%∼17.59%. The results show SDPush
effectively improves the probability that edge nodes serve
clients, and reduces the data center’s bandwidth cost.

V. RELATED WORKS

Edge-assisted video delivery for quality increase and
bandwidth saving: Research has tried to improve video
content delivery by using diverse smart solutions deployed at
the edge, including adaptivity [19] [20] and edge caching [21]
[22]. Researchers have deployed cache admission mechanisms
at the edge, whereby they only cache videos with high revenue,
avoiding the problem of frequent cache replacement. Such
works can be divided into three groups: (i) frequency-based
[23], [24]; (ii) size-based [25], [26]; and (iii) video-based
[4]. However, these works only perform cache admission
based on the information perceived by a single edge node.
To further improve caching efficiency, other works take into
account decisions by multiple edge caches. Thus, several
centralized [27]–[29] and decentralized [30]–[33] cooperative
edge caching schemes have been proposed. In these schemes,
the edge nodes decide whether to cache a video according
to other edge nodes’ information. However, it is difficult
for existing solutions to coordinate video information (i.e.,
popularity and size), leading to poor decisions. Additionally,
some works design cache eviction algorithms for edge nodes
to reduce the traffic from the data center [34]–[38]. These
predict the duration of file popularity and replace files with
a rapid popularity decay. In contrast to the above reactive
caching strategies, many works focus on proactive caching
methods [6], [8], [9]. These solutions relieve the pressure

on the data center during the peak period by proactively
pushing popular videos to edge nodes during off-peak periods.
However, these schemes are yet to incorporate the popularity
and size heterogeneity among files. Thus, edge networks have
lower cache utilization due to replicating the wrong objects.
Popularity prediction by fusion of multi-dimensional fea-
tures: File popularity is related to multiple features. Sev-
eral works have proposed techniques to integrate multi-
dimensional features to predict content popularity [4], [39],
[40]. However, such methods fail to leverage combined fea-
tures for popularity prediction effectively. Nowadays, many
deep learning-based models, such as DCN [14], DeepFM
[13], and xDeepFM [12], have excellent performance for
recommendation systems. Their feature extraction methods
can extract high-order cross-features of content to improve
the models’ performance in predicting clients’ click-through
rates. However, all the above works aim to predict the precise
popularity of files. The proactive push mechanism also needs
to predict the relative popularity between multiple files to
determine which files should be pushed to the edge network
more urgently under constraints.

VI. CONCLUSIONS

In conclusion, this paper introduced SDPush, a novel smart
data-driven proactive push mechanism, devised to mitigate
peak-period data center traffic usage to the lightweight edge
nodes. By strategically pushing files with high peak-period
traffic to edge nodes during non-peak periods, SDPush effec-
tively alleviates the resource scarcity problem of lightweight
edge nodes. Unlike conventional proactive caching methods,
SDPush takes into account both the popularity of each file
and the estimated benefits of pushing them, offering a holistic
approach to file selection. By evaluating the proposed solu-
tion using real-world traces and operational deployments, we
have shown that SDPush outperforms existing proactive push
mechanisms in terms of saving data center traffic consumption,
thereby reducing CDN costs.

ACKNOWLEDGMENTS

We express our appreciation to Professor Jiang Yong and
the engineers at ByteDance for their constructive assistance
in completing this paper. This work is supported by the
Major Key Project of PCL under grant No. PCL2023A06.
Prof. Muntean thanks Science Foundation Ireland for grants
12/RC/2289 P2 (Insight) and 21/FFP-P/10244 (FRADIS).

REFERENCES

[1] A. Clouder. (2018) Content delivery acceleration and cost reduction
with p2p cdn (pcdn). [Online]. Available: https://www.alibabacloud.com

[2] Lumen. (2023) Dynamically adjust to changes in consumer demand.
[Online]. Available: https://www.lumen.com/en-us/industries/media-
entertainment.html

[3] PacketFabric. Packetfabric cloud router: The industry’s most
scalable and performant multi-cloud connectivity. [Online]. Available:
https://packetfabric.com/cloud-router

[4] Y. Guan, X. Zhang, and Z. Guo, “CACA: learning-based content-aware
cache admission for video content in edge caching,” in Proceedings of
the 27th ACM International Conference on Multimedia (ACM MM 19).
ACM, 2019, pp. 456–464.

[5] Cloudstream. (2023) Pcdn. [Online]. Available:
https://www.cloudstream-tech.com/en/pcdn-2/

[6] Y. Zhang, C. Gao, Y. Guo, K. Bian, X. Jin, Z. Yang, L. Song,
J. Cheng, H. Tuo, and X. Li, “Proactive video push for optimizing
bandwidth consumption in hybrid CDN-P2P VoD systems,” in 2018
IEEE Conference on Computer Communications (INFOCOM 18), 2018,
pp. 2555–2563.

[7] R.-X. Zhang, M. Ma, T. Huang, H. Pang, X. Yao, C. Wu, J. Liu,
and L. Sun, “Livesmart: A qos-guaranteed cost-minimum framework
of viewer scheduling for crowdsourced live streaming,” in Proceedings
of the 27th ACM International Conference on Multimedia (ACM MM
19), 2019, pp. 420–428.

[8] Y. Guo, Y. Zhang, Z. Yang, K. Bian, H. Tuo, and Y. Dai, “Atdps: An
adaptive time-dependent push strategy in hybrid cdn-p2p vod system,”
in 2018 IEEE International Conference on Communications (ICC 18).
IEEE, 2018, pp. 1–6.

[9] Y. Zhang, K. Bian, H. Tuo, B. Cui, L. Song, and X. Li, “Geo-
edge: Geographical resource allocation on edge caches for video-on-
demand streaming,” in 2018 4th International Conference on Big Data
Computing and Communications (BIGCOM 18). IEEE, 2018, pp. 189–
194.

[10] R. Zhan, C. Pei, Q. Su, J. Wen, X. Wang, G. Mu, D. Zheng, P. Jiang, and
K. Gai, “Deconfounding duration bias in watch-time prediction for video
recommendation,” in The 28th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, Washington, DC, USA, August 14 - 18, 2022
(KDD 22), 2022, pp. 4472–4481.

[11] J. Deng, F. Cuadrado, G. Tyson, and S. Uhlig, “Behind the game: Ex-
ploring the twitch streaming platform,” in 2015 International Workshop
on Network and Systems Support for Games (NetGames 15). IEEE,
2015, pp. 1–6.

[12] J. Lian, X. Zhou, F. Zhang, Z. Chen, X. Xie, and G. Sun, “xdeepfm:
Combining explicit and implicit feature interactions for recommender
systems,” in Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining (KDD 18), 2018,
pp. 1754–1763.

[13] H. Guo, R. Tang, Y. Ye, Z. Li, and X. He, “Deepfm: a factorization-
machine based neural network for ctr prediction,” arXiv preprint
arXiv:1703.04247, 2017.

[14] R. Wang, B. Fu, G. Fu, and M. Wang, “Deep & cross network for
ad click predictions,” in ACM SIGKDD Conference on Knowledge
Discovery and Data Mining (KDD 17), 2017, pp. 1–7.

[15] N. R. Draper and H. Smith, Applied regression analysis. John Wiley
& Sons, 1998, vol. 326.

[16] M. Syakur, B. Khotimah, E. Rochman, and B. D. Satoto, “Integration k-
means clustering method and elbow method for identification of the best
customer profile cluster,” in IOP Conference Series: Materials Science
and Engineering, vol. 336, no. 1. IOP Publishing, 2018, p. 012017.

[17] R. Stanojevic, N. Laoutaris, and P. Rodriguez, “On economic heavy
hitters: Shapley value analysis of 95th-percentile pricing,” in Proceed-
ings of the 10th ACM SIGCOMM Conference on Internet Measurement,
2010, pp. 75–80.

[18] H. Johnson and J. Larson, “Data management for microcomputers,” in
1979 Compcon Fall. IEEE Computer Society, 1979, pp. 191–192.

[19] X. Ma, Q. Li, Y. Jiang, G.-M. Muntean, and L. Zou, “Learning-based
joint qoe optimization for adaptive video streaming based on smart
edge,” IEEE Transactions on Network and Service Management, vol. 19,
no. 2, pp. 1789–1806, 2022.

[20] X. Ma, Q. Li, L. Zou, J. Peng, J. Zhou, J. Chai, Y. Jiang, and G.-M.
Muntean, “Qava: Qoe-aware adaptive video bitrate aggregation for http

live streaming based on smart edge computing,” IEEE Transactions on
Broadcasting, vol. 68, no. 3, pp. 661–676, 2022.

[21] H. S. Goian, O. Y. Al-Jarrah, S. Muhaidat, Y. Al-Hammadi, P. D. Yoo,
and M. Dianati, “Popularity-based video caching techniques for cache-
enabled networks: A survey,” IEEE Access, vol. 7, pp. 27 699–27 719,
2019.

[22] A. Zhang, Q. Li, Y. Chen, X. Ma, L. Zou, Y. Jiang, Z. Xu, and G.-
M. Muntean, “Video super-resolution and caching—an edge-assisted
adaptive video streaming solution,” IEEE Transactions on Broadcasting,
vol. 67, no. 4, pp. 799–812, 2021.

[23] B. M. Maggs and R. K. Sitaraman, “Algorithmic nuggets in content
delivery,” ACM SIGCOMM Computer Communication Review, vol. 45,
no. 3, pp. 52–66, 2015.

[24] G. Einziger, R. Friedman, and B. Manes, “Tinylfu: A highly efficient
cache admission policy,” ACM Transactions on Storage (ToS), vol. 13,
no. 4, pp. 1–31, 2017.

[25] D. Starobinski and D. Tse, “Probabilistic methods for web caching,”
Performance evaluation, vol. 46, no. 2-3, pp. 125–137, 2001.

[26] D. S. Berger, R. K. Sitaraman, and M. Harchol-Balter, “AdaptSize:
Orchestrating the hot object memory cache in a content delivery net-
work,” in 14th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 17), 2017, pp. 483–498.

[27] A. Larbi, L. Bouallouche-Medjkoune, and D. Aissani, “Improving
cache effectiveness based on cooperative cache management in manets,”
Wireless Personal Communications, vol. 98, no. 3, pp. 2497–2519, 2018.

[28] E. E. Ugwuanyi, S. Ghosh, M. Iqbal, T. Dagiuklas, S. Mumtaz, and
A. Al-Dulaimi, “Co-operative and hybrid replacement caching for multi-
access mobile edge computing,” in 2019 European Conference on
Networks and Communications (EuCNC 19). IEEE, 2019, pp. 394–399.

[29] C. Zhong, M. C. Gursoy, and S. Velipasalar, “A deep reinforcement
learning-based framework for content caching,” in 2018 52nd Annual
Conference on Information Sciences and Systems (CISS 18). IEEE,
2018, pp. 1–6.

[30] W. Jiang, G. Feng, S. Qin, T. S. P. Yum, and G. Cao, “Multi-agent
reinforcement learning for efficient content caching in mobile d2d
networks,” IEEE Transactions on Wireless Communications, vol. 18,
no. 3, pp. 1610–1622, 2019.

[31] F. Wang, F. Wang, J. Liu, R. Shea, and L. Sun, “Intelligent video caching
at network edge: A multi-agent deep reinforcement learning approach,”
in 2020 IEEE Conference on Computer Communications (INFOCOM
20). IEEE, 2020, pp. 2499–2508.

[32] L. Wang, G. Tyson, J. Kangasharju, and J. Crowcroft, “Milking the cache
cow with fairness in mind,” IEEE/ACM Transactions on Networking,
vol. 25, no. 5, pp. 2686–2700, 2017.

[33] J. Peng, Q. Li, X. Ma, Y. Jiang, Y. Dong, C. Hu, and M. Chen,
“Magnet: Cooperative edge caching by automatic content congregating,”
in Proceedings of the ACM Web Conference 2022 (TheWebConf 22),
2022, pp. 3280–3288.

[34] G. Vietri, L. V. Rodriguez, W. A. Martinez, S. Lyons, J. Liu, R. Ran-
gaswami, M. Zhao, and G. Narasimhan, “Driving cache replacement
with ML-based LeCaR,” in 10th USENIX Workshop on Hot Topics in
Storage and File Systems (HotStorage 18), 2018.

[35] L. V. Rodriguez, F. Yusuf, S. Lyons, E. Paz, R. Rangaswami, J. Liu,
M. Zhao, and G. Narasimhan, “Learning cache replacement with
cacheus,” in 19th USENIX Conference on File and Storage Technologies
(FAST 21), 2021, pp. 341–354.

[36] T. Zong, C. Li, Y. Lei, G. Li, H. Cao, and Y. Liu, “Cocktail edge caching:
Ride dynamic trends of content popularity with ensemble learning,” in
2021 IEEE Conference on Computer Communications (INFOCOM 21).
IEEE, 2021, pp. 1–10.

[37] N. Megiddo and D. S. Modha, “ARC: A Self-Tuning, low overhead
replacement cache,” in 2nd USENIX Conference on File and Storage
Technologies (FAST’03), 2003, pp. 52–66.

[38] V. Kirilin, A. Sundarrajan, S. Gorinsky, and R. K. Sitaraman, “Rl-cache:
Learning-based cache admission for content delivery,” IEEE Journal
on Selected Areas in Communications, vol. 38, no. 10, pp. 2372–2385,
2020.

[39] C. Koch, G. Krupii, and D. Hausheer, “Proactive caching of music videos
based on audio features, mood, and genre,” in Proc. of the 8th ACM on
Multimedia Systems Conference (MMsys 17), 2017, pp. 100–111.

[40] L. Tang, Q. Huang, A. Puntambekar, Y. Vigfusson, W. Lloyd, and K. Li,
“Popularity prediction of facebook videos for higher quality streaming,”
in 2017 USENIX Annual Technical Conference (USENIX ATC 17), 2017,
pp. 111–123.

