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ABSTRACT
Nowadays, the surge of Internet contents and the need for high

Quality of Experience (QoE) put the backbone network under un-

precedented pressure. The emerging edge caching solutions help

ease the pressure by caching contents closer to users. However,

these solutions suffer from two challenges: 1) a low hit ratio due

to edges’ high density and small coverages. 2) unbalanced edges’

workloads caused by dynamic requests and heterogeneous edge

capacities. In this paper, we formulate a typical cooperative edge

caching problem and propose the MagNet, a decentralized and co-

operative edge caching system to address these two challenges. The

proposed MagNet system consists of two innovative mechanisms:

1) the Automatic Content Congregating (ACC), which utilizes a

neural embedding algorithm to capture underlying patterns of his-

torical traces to cluster contents into some types. The ACC then

can guide requests to their optimal edges according to their types

so that contents congregate automatically in different edges by

type. This process forms a virtuous cycle between edges and re-

quests, driving a high hit ratio. 2) the Mutual Assistance Group

(MAG), which lets idle edges share overloaded edges’ workloads by

forming temporary groups promptly. To evaluate the performance

of MagNet, we conduct experiments to compare it with classical,

Machine Learning (ML)-based and cooperative caching solutions
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using the real-world trace. The results show that the MagNet can

improve the hit ratio from 40% and 60% to 75% for non-cooperative

and cooperative solutions, respectively, and significantly improve

the balance of edges’ workloads.
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1 INTRODUCTION
In recent years, the backbone network has faced severe pressure.

It mainly arises from the rapid growth of the network users, the

upgrade of video quality from traditional 1080P high-definition

content to 4K and 8K levels [39], and the emergence of sophisticated

human-computer interactions like 360 videos [34], VR [20], and AR

[6], which are more sensitive to latency [25].

In order to alleviate the pressure, mature Content Delivery Net-

work (CDN) solutions [22, 32] have been widely used. However,

nodes in CDN solutions are limited and are still far away from users,

which results in high latency and low QoE [4].

The state-of-the-art edge computing technology has provided a

new perspective for content distribution. Edges can be used to sig-

nificantly reduce the distances between contents and users, which

can save enormous transmission traffic in the backbone and lower
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the latency effectively [18]. However, as the distribution of edges is

dense and their serving areas are small, requests are sent to differ-

ent edges, resulting in a low hit ratio. We prove this in Section 5. In

addition, edges suffer from unbalanced workloads due to the highly

dynamic requests made by users with diverse distribution, content

preferences and habits. The limited and heterogeneous capacities

of edges make the workloads’ balance even worse.

To address the two challenges of edge caching solutions dis-

cussed above, we formulate a typical cooperative edge caching

problem which jointly optimizes the latency, traffic, and workload

balance. The problem is proved to be an NP-complete problem. To

solve it, we propose the MagNet, a decentralized and cooperative

edge caching system. The MagNet has two innovative mechanisms

to address the two challenges: 1) the Automatic Content Congregat-

ing (ACC) mechanism. First, the ACC utilizes a neural embedding

algorithm to generate vectors for all contents, which tries to capture

underlying patterns of historical traces. Second, a novel clustering

algorithm is designed to cluster the vectors into some types. Third,

the ACC guides requests to their optimal edges by type so that re-

quests of the same type tend to congregate in the same edges. As a

result, each edge accumulates contents of one dominant type more

than other types. Then, more requests of this type are attracted to

the edge. This process forms a virtuous circle between edges and

requests, which eventually leads to a high hit ratio. 2) the Mutual

Assistance Group (MAG) mechanism. When an overloaded edge

emerges, the MAG finds some idle edges for it to form a tempo-

rary group. The group runs in a master-worker mode where the

master, i.e., the overloaded edge, shift some of its workloads to the

workers, i.e., idle edges, according to their capacities to balance

their workloads. The group dismisses when the overload problem

is eliminated.

To evaluate the MagNet performance, we conduct experiments

from three different perspectives using a real-world trace dataset.

We compare the MagNet with some benchmark caching solutions,

including classical, ML-based and cooperative solutions. The result

shows that the MagNet can improve the hit ratio from 40% and 60%

to 75% for non-cooperative and cooperative solutions, respectively,

and significantly balance the edges’ workloads.

2 BACKGROUND AND MOTIVATION
2.1 Background
It has been predicted by Cisco that Internet video streaming

will occupy 82% of all Internet business traffic by 2022 [6]. One

unique property of the traffic is that the content requests are highly

concentrated [5]. Thus, caching technology has become an essential

solution [36]. It can reduce requests’ latency, which can significantly

improve users’ Quality of Experience (QoE) [27], and relieve the

heavy burden of network transmission [23]. There are two types

of caching solutions: 1) traditional CDN solutions; and 2) edge

caching solutions. CDN solutions consist of some super-powerful

nodes, each of which can serve a large number of requests in a

wide-range area. However, the super-powerful nodes are limited,

even for giant companies, e.g., Akamai and Google [1, 8]. Thus, as

shown in Figure 1a, all requests must be aggregated to the central

node, which causes high latency [7] and low QoE [4].

The edge computing is drawing unprecedented attention with

its rapid evolution and is used to address various challenges [26]

including the efficiency of content delivery and caching [23]. Ac-

cording to estimates by the Uptime Institute [38], by 2021, half of

all workloads will be offloaded from data center infrastructures to

edge computing devices. Compared with CDN nodes, edges are

closer to users, which deliver contents to users with a lower latency

when requests hit [18]. However, edge caching solutions still face

some challenges due to their characteristics.

2.2 Challenges of Edge Caching Solution

CDN

High Latency

High Hit Ratio

"All in CDN"
"Far"

RequestUserCDN Result In

(a) CDN Caching

Heterogeneous 
Workloads 

Low Hit Ratio

IdleOverloaded

Low Latency

"Close""Scattered to edges"

RequestUser Result InOverloaded 
Edge

Idle
Edge

Normal
Edge

(b) Edge Caching

Figure 1: Comparison between CDN solutions and edge
caching solutions

First, edge caching solutions suffer from a Low Hit Ratio. The
hit ratio result severely affects requests’ latency and network traffic

[28]. As illustrated in Figure 1, in contrast with a CDN node that

serves a large area, each edge’s serving area is small since edges are

densely distributed. As such, each edge aggregates fewer requests,

which results in a low hit ratio of edge caching solutions. Consider-

ing a typical edges’ density [42], like one edge per square kilometer,

even with the state-of-the-art machine-learning caching algorithms,

the hit ratios of non-cooperative caching systems are low. This is

demonstrated in Section 5 of the paper. Therefore, cooperation

among edges is necessary.

Second, edge caching solutions face Heterogeneous Work-
loads due to the limited and heterogeneous capacities and dynamic

requests. Most edges are limited in caching and computational ca-

pacities [23, 30], making them more sensitive to caching solutions.

The limited caching capacity leads to competition between popu-

lar contents. The limited computational capacity causes excessive

requests to be blocked. Therefore, it is necessary to allocate an

appropriate number of requests for each edge. However, most coop-

erative edge caching solutions [14, 19, 37, 41, 43–45] assume edges

have the same caching and computational capacities. Moreover,

the number of requests varies greatly in different areas, resulting

in dynamic requests [41]. The dynamic requests add more hetero-

geneity to the edges’ workloads. Therefore, allocating appropriate

workloads according to edges’ capacities can improve the flexibility

and robustness of a cooperative edge caching solution under highly

dynamic requests.
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2.3 Related Work
In recent years, some caching solutions have been proposed to

Improve The Hit Ratio. The Least Recently Used (LRU) [15], the

Least Frequently Used (LFU) [21] and the Adaptive Replacement

Cache (ARC) [24] are widely used in industry. However, these

solutions consider only the frequency and recency of requests and

are therefore hard to adapt to highly dynamic requests. With the

rapid development of ML, some ML-based caching solutions have

been proposed. The LeCaR [40] and CacheUs [29] useML to identify

which eviction strategy is currently suitable. The Cocktail [45]

utilizes an ensemble method to learn the dynamic trend of user

requests. The CACA [11] combines the video category and the

author’s information of a video to predict the video’s popularity, but

it is restricted in the environment with video category and author

attributes. Some cooperative caching solutions have been proposed

to promote the hit ratio by edges’ cooperation. The CCSP [19]

allows requests to be sent to at most four edges for a high hit ratio.

The DIMA [35] and MacoCache [41] use the deep reinforcement

learning to control the forwarding logic to pursue a high hit ratio.

Nevertheless, they cost enormous computational capacities in edges

which have limited computational capacities.

Some cooperative edge caching solutions have also been pro-

posed toUtilize Heterogeneous Capacities. There are two types
of solutions to organize the cooperative edge caching systems: 1)

centralized cooperative solutions [19, 37, 43, 44], which use some

central edges to record and manage the information. These solu-

tions make the central edge a key and high-pressure part of the

system, resulting in poor robustness. Additionally, synchronizing

all edges’ cache information with the central edge becomes in-

tractable as cache replacements happen frequently. 2) decentralized

cooperative solutions [14, 41], which manage edges in a distributed

way. These solutions forward requests to many of their neighbors,

which linearly increases edges’ burden with the increased number

of forwarding.

3 SYSTEM DESIGN
In this section, we first introduce the network topology and

formulate a typical cooperative edge caching problem. Then, we

propose the MagNet, a decentralized and cooperative edge caching

system, and present its framework.

3.1 Problem Formulation
3.1.1 Network Topology. The considered system includes a cloud

server e0 containing all the contents, E edges, C contents, and

U users. Let E = {e1, e2, · · · , ei , · · · , eE } denote the set of edges.
Let fi denote the finite caching capacity of edge ei . Edges can ex-

change caching information with the surrounding edges called

"neighbors". Let Ni =
{
ei1 , ei2 , · · · , eimi

}
denote the neighbors

of edge ei , where mi is the number of neighbors and Ni ⊂ E.

Let C =
{
c1, c2, · · · , c j , · · · , cC

}
denote the set of contents and

sj be the size of transmission with content c j . Specially, let s0
denote the size of transmission without any content. Let U ={
u1,u2, · · · ,uд , · · · ,uU

}
denote the set of users.

3.1.2 Load Constraint Modeling. We consider a system operating

over a finite time horizon. The requestsR =
[
r1, r2, · · · , rp , · · · , rR

]

are generated by users in order, where R is the number of requests.

Let ep′
1
denote the home edge which is the closest edge to the user

of rp . And let cp′′ and up′′′ denote the content and the user of rp .
In this Edge Caching problem, the request rp is sent firstly to its

home edge ep′ . If it hits, i.e., content cp′′ is cached in ep′ , then cp′′ is
returned by ep′ ; otherwise, ep′ sends rp to some neighbors in Np′ .

If it still misses at the neighbor edge ep′m , the request is sent to e0
to fetched cp′′ , which then will be cached in ep′m and sent back to

user up′′′ . To measure the workload of ei , the set of requests sent

to ei is denoted as Ri =
[
ri1 , ri2 , · · · , riRi

]
, where Ri is the number

of requests received by ei .
In this paper, we use LRU [15] as the default cache replacement

strategy for edges.

Given the caching capacity fi and the edge’s history requests[
ri1 , ri2 , · · · , rik

]
, the current edge caching contents is given as

LRU
(
fi ,

[
ri1 , ri2 , · · · , rik

] )
= UNIQy∗ , where UNIQ is the set

of unique contents, UNIQy =
{
cp′′ |rp ∈

[
riy , riy+1 , · · · , rik

]}
and

y∗ = min

{
y | |UNIQy | ≤ fi

}
. Let l (a,b, s) be the latency function

of the element a and b where a,b ∈ {e0} ∪ E ∪U, and s is the size
of the content. Let y

p
i ∈ {0, 1} denote whether rp hits in ei :

y
p
i =

{
1 i f cp′′ ∈ LRU

(
fi ,

[
ri1 , ri2 , · · · , rik

] )
0 else

. (1)

The edge ei has limited caching capacity, therefore

|LRU
(
fi ,

[
ri1 , ri2 , · · · , rik

] )
| ≤ fi ,∀ei ∈ E . (2)

The cloud server e0 contains all the contents, therefore

y
p
0
= 1,∀rp ∈ R. (3)

Let SCST denotes the size of the Cache Summary Table (CST) that

is exchanged between edges to notify each other their cache sum-

maries. Let EUP denotes the period that an edge exchanges its CST

with its neighbors. Let RT denotes the running time of the system.

Latency. The latency occurs during the following 3 steps. Step 1:
When a request rp is sent to its home edge ep′ , it either hits (y

p
p′=1)

or miss (y
p
p′=0). The latency of this step is lhhome = l

(
up′′′ , ep′ , sp′′

)
if it hits, or lmhome = l

(
up′′′ , ep′ , s0

)
if it does not hit. Step 2: When

the request is sent to neighbors one by one, if it hits in one neighbor

ep′m , the latency of this step is

lhnei =
∑

ei ∈ Np′
ei , ep′m

x
p
i l

(
up′′′ , ei , s0

)
+l

(
up′′′ , ep′m , sp′′

)
. Letq denotes

the number of neighbors that rp is sent to. Let x
p
i ∈ {0, 1} denote

whether rp is sent to ei . q satisfies

∑
ei ∈Np′

x
p
i = q and

0 ≤ q ≤ |Np′ | < E. (4)

If it does not hit in any neighbor, the latency of this step is given as

lmnei =
∑

ei ∈Np′
x
p
i l

(
up′′′ , ei , s0

)
. In particular, if rp is not forwarded

to any neighbor, which means q = 0, lhnei and l
m
nei equal 0. Whether

rq hits or not in neighbors, the hit result can be formulated as

1
For consistent using the edge symbol ei , the content symbol c j , the user symbol uд ,

and the request symbol rp , the p′, p′′ and p′′′ are used to denote the indexes of the
home edge, the content and the user of this request rp , respectively.
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hnei =
∑

ei ∈Np′
x
p
i y

p
i . Step 3: If rp is sent to the cloud server by

neighbor ep′m , the latency of this step is le0 = l
(
ei , e0, sp′′

)
+

l
(
ei ,up′′′ , sp′′

)
. Summing up the latency incurred in the above 3

steps, the total latency of request r j is given as: lj = y
p
p′l

h
home +(

1 − y
p
p′

) (
hnei l

h
nei + (1 − hnei )

(
lmnei + le0

))
. The sum latency L of

all requests in a period is L =
∑
j ∈R

lj .

Traffic. There are two types of traffic in the system, the Back-

bone Traffic (BT) and the Local Traffic (LT). The BT only occurs

when contents need to be fetched from the cloud server e0, given

as BT =
∑
p∈R

(
1 − y

p
p′

)
(1 − hnei ) sp′′ . The LT is given as LT =∑

p∈R
sp′′ + (RT /EUP)

∑
ei ∈E

∑
eim ∈Ni

SCST .

Workload Balance. The Workload Standard Deviation (WSD)

is calculated in the following four steps to measure the workload

balance status:

• Step 1: because the number of requests varies over time,

normalize request numbers into [0,100] interval by the min-

max normalization: R′i =
Ri−min(Ra )

max(Rb )−min(Ra )
∗ 100,∀a,b ∈ E.

• Step 2: calculate the average capacity: favд =

∑
ej ∈E

fj

E .

• Step 3: because of edges’ heterogeneous capacities, normal-

ized numbers are processed considering capacities:

R′′i =
R′i
fi

favд

.

• Step 4: calculate WSD:

WSD =

√√√√√√√ ∑
ei ∈E

©­­«R′′i −
∑

ek ∈E
R′′k

E

ª®®¬
2

. (5)

3.1.3 Cooperative Edge Caching Problem.

Problem 1. Given α , β ,γ , θ , R, E, C, U, s0, SCST and RT , find
x
p
i and q to jointly minimize latency, traffic and WSD as follows:

min : αL + βBT + γLT + θWSD

subject to : (1) , (2) , (3)and (4) .
(6)

3.1.4 Complexity Analysis. To analyze the complexity of Problem

1, we first consider Problem 1
′
, a simplified case of Problem 1 where

we assume requests’ orders are already settled down. In this case,

if a specific solution is given, the overall result of Problem 1 can be

calculated in a polynomial time. Moreover, the main contribution

of this problem is to choose the neighbor, which can be represented

by y
p
p′m

. This simplified problem can be converted to the Helper

Decision Problem [31] in a polynomial time. As the Helper Decision

Problem has been proved as an NP-complete problem, Problem 1
′

is an NP-complete problem. Therefore, the more complex Problem

1 is at least an NP-complete problem. For now, there is no efficient

polynomial solution for this problem. In this paper, we try to solve

it heuristically and propose a novel solution named MagNet.

3.2 MagNet Framework
The MagNet is a decentralized and cooperative edge caching

system. This system can guide requests to their optimal edges and

Edge n

GT ONED GT Size 
in ONED 

GT1 Edge 3 s3

GTn Edge 8 s8

Edge Candidate Table(ECT)

... ... ...

Edge 8

Edge1 
(home)

Edge 3

Content Request or Delivery Edge-Edge Link

Content CSTEdge User

User

Cloud Server

Figure 2: Framework of the MagNet

achieve a high hit ratio and balanced workloads. The guidance is

based on the content type, called the Guidance Type (GT). The

MagNet clusters all contents into some GTs, which can be done

offline and periodically, e.g., per day.

In MagNet, each edge has its own Cache Summary Table (CST),

which records the cached size of each GT in the edge. At runtime,

the edge exchanges its CST with its neighbors periodically. Based

on its and neighbors’ CSTs, the edge builds or updates a table named

Edge Candidate Table (ECT), as illustrated in Figure 2. In ECT, the

edge designates each GT an Optimal Neighbor EDge (ONED). The

process of designating ONEDs concerns many factors, e.g., the la-

tency between the two neighbors and the cached-content size of the

corresponding GT, which is another complex and valuable problem

we may do more research on in the future. In this paper, with-

out loss of generality, the neighbor which contains the maximum

corresponding GT size is chosen as the ONED.

Every request in MagNet is processed in the following four

stages:

• Stage 1: the user sends it to the home edge, the closest edge

to the user. If the home edge contains the requested content,

the content is returned directly to the user. Otherwise, the

request goes to Stage 2.

• Stage 2: if the requested content has no GT, which means

it is new coming after the last content clustering, the home

edge fetches the content from the cloud server that stores all

contents. Then, the home edge caches the content locally and

sends it back to the user. Otherwise, the home edge suggests

the user an ONED to try next based on the content’s GT, and

the request goes to Stage 3.

• Stage 3: the user sends the request to the ONED. If the ONED

contains the content, the content is returned to the user.

Otherwise, the request goes to Stage 4.
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• Stage 4: the ONED fetches the content from the cloud server.

Then, the ONED caches the content locally
2
and sends it

back to the user.

During the processing of the request, only one neighbor edge is tried

except for the home edge, because the performance of trying one

neighbor edge is already good enough from experience. If there are

sufficient edges’ resources and network’s resources, the framework

of MagNet is easy to adapt to trying more neighbors for higher a

hit ratio. As the way of choosing the ONED for one GT, it is easy

to maintain the second and even third priority trying neighbors in

an ECT.

Over every two minutes, each edge counts the number of re-

ceived requests and updates its status: if this number is greater

than 1.5 times the expected service quantity, it is treated as an Over-

loaded Edge (OE); if this number is less than 0.67 times the expected

service quantity, it is treated as an Idle Edge (IE); otherwise, it is

treated as a Normal Edge (NE). The expected service quantity is

set considering each edge’s caching and computational capacities.

The values 1.5 and 0.67 are both adjustable factors, which can be

customized to accommodate different system needs. When an OE

appears, it tries to ally with some Idle Edges (IEs) to form a tempo-

rary Mutual Assistance Group (MAG) to alleviate the workload.

4 TWOMECHANISMS OF THE MAGNET
In this section, we introduce the two key mechanisms of the

MagNet: Automatic Content Congregating (ACC) and Mutual As-

sistance Group (MAG).

4.1 Automatic Content Congregating (ACC)
As discussed in Section 2.2, the low hit ratio caused by the lack of

efficient cooperation among edges is a challenging problem in edge

caching solutions, leading to high latency and excessive traffic. The

ACC is designed to guide requests to their optimal edges evenly.

4.1.1 Cluster Contents. In the ACC, contents are clustered and

tagged with GT. The gist of clustering is to cluster the contents of

consecutive requests into different GTs. As such, the ACC can use

the GT to divert consecutive requests to different edges evenly. In

the process, as illustrated in Figure 3, the history traces are used to

generate the vector for each content using embedding technology.

Then, the vectors are clustered into some sets, which means the

corresponding contents are clustered into some GTs.

Timestamp

Content ID

User ID

History Traces
Embedding

Clustering
AlgorithmVideo Vectors

[a1,a2...]

[b1,b2...]

[c1,c2...]

[d1,d2...]

Clustering Process

GT_ A

GT_ B

GT_ C

Figure 3: Contents Clustering Process

Content Embedding. The critical step of clustering is to cap-

ture the underlying pattern of the history traces. To this end, we

2
Whether the fetched content should be cached or not depends on the caching replace-

ment strategy that is out of the scope of this paper. In order to show the universality

of the framework, all edges use the Least Recently Used (LRU) [15] caching strategy.

Algorithm 1 Furthest Clustering Algorithm

Input: vectors of contents, NGT
Output: GTs

Initialize: GTs ← [ ] [ ], i ← 0

1: while |vectors | , 0 do
2: for j = 0 to NGT do
3: if |vectors | = 0 then
4: break
5: end if
6: v ← GetMaxDistanceVector (vectors,GTs [j])
7: GTs [j] [i + +] ← v
8: Remove (vectors,v)
9: end for
10: end while
11: return GTs

use the embedding technology [10] to get the vector for every con-

tent [2]. The embedding technology utilizes a neural embedding

algorithm to conduct collaborative filtering [33]. The vectors are

generated in such away that the distance between vectors is as close

as possible to the probability they are requested consecutively by

users. More specifically, first, all the contents accessed by one same

user within a period, e.g., 1 day or 1 week, are extracted into one

standalone set. According to collaborative filtering, the contents

in one set are considered to have a closer relationship. Second, by

using the item2vector [2] method, the skip-gram model [12], which

is well packaged in the fastText library [3, 16], takes the extracted

sets as input to calculate the vector representation of each content.

This content embedding process only requires user ID, content ID,

and timestamp as input features since it uses collaborative filtering

to get the implicit relationship between contents. This facilitates

the adaptability of MagNet.

Furthest ClusteringAlgorithm (FCA).Clustering the vectors
generated by the embedding layer is essential, as clustering algo-

rithms generate different GTs and then affect the content guidance.

Under the assumption that popular contents are divided into the

same GT, the popular contents tend to compete for the limited

caching capacity, causing excessive requests guided to a small num-

ber of edges, which results in unbalanced workloads. To avoid the

intra-GT competition, the FCA is proposed. The FCA makes vec-

tors that are far apart from each other clustered in the same GT.

This means that contents of the same GT are less likely to be re-

quested consecutively. Because the distance between two vectors is

inversely proportional to the probability of the two contents being

requested consecutively, reducing the probability is equivalent to

maximizing the distance between the same-GT vectors. The process

of the FCA can be described by Algorithm 1, where NGT is the

Number of GT.

4.1.2 Guide Requests By GT. With the help of ECT, when one

request misses in the home edge, the user can get a suggestion of the

ONED based on the request’s GT. This process causes an interesting

phenomenon. Initially, when one GT’s requests frequently appear

in an area, the edge accumulates the contents of this GT (called the
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Figure 4: Automatic Content Congregating (ACC)

dominant GT) more than those of the other GTs. In return, more

requests of the dominant GT are attracted to the edge, which further

drives up the cached contents of the dominant GT and forms the

edge’s unique hit advantage. Eventually, each edge accumulates

its dominant GT contents and attracts requests of its dominant GT

like a magnet. This virtuous cycle leads to a high hit ratio. Edges in

MagNet forms a Magnetic Network (MagNet).

4.1.3 ECT Update Algorithm. Besides forming the competitive hit

advantages, spreading the advantages to edges’ neighbors is also

essential. The spreading step ensures that each edge can perceive

its neighbors’ dominant GTs. The ECT is the key to spread hit

advantages and is maintained by exchanging CSTs with their neigh-

bors. The system should choose an appropriate cooperative scope

controlled by the Number of Exchanging Neighbors (NEN) or the

maximum distance threshold between two neighbor nodes. An

overly small scope results in a low hit ratio, while an overly exten-

sive scope causes heavy traffic between edges. The scope of this

cooperation can be flexibly adjusted according to the needs of the

system. In this paper, we choose 7km as the cooperative scope from

experience. Over each ECT Updating Period (EUP), the edge fetches

its neighbors’ CSTs and updates its ECT according to Algorithm

2. In the updating process, for each GT, the MagNet chooses the

edge that has the biggest cached GT size as its ONED. This choice

means that for each GT, the edge with a bigger cached GT size is

more attractive for requests of this GT. With GT and maintained

ECT, requests can be guided to their ONEDs.

4.2 Mutual Assistance Group (MAG)
The MAG is designed to balance the edges’ workloads under high

dynamic requests. Balanced workloads facilitate a stable and ro-

bust system. In MagNet, each OE tries to find some IEs to form

a temporary MAG according to Algorithm 3. IEs are added to a

MAG one by one until the original OE of the MAG becomes an

NE, or there is no IE left. A MAG runs in a master-worker mode

where the original OE is the master that records all the caching

information of all the workers. The MAG appears as a whole to

the outside, as if all contents are cached in the master edge while

the workers have none. As illustrated in Figure 5b, the master’s

Cache Summary Table (CST) shows it contains all the contents

of the MAG, while the worker’s CST shows it contains nothing.

Algorithm 2 ECT Update Algorithm

Input: CSTs from neighbors, ECT
Output: ECT
1: for each CST in CSTs do
2: for each entry in CST do
3: if ECT [entry.GT ] .size < entry.size then
4: let ECT [entry.GT ] .ONED ← CST .edдe
5: let ECT [entry.GT ] .size ← entry.size
6: end if
7: end for
8: end for

E2

E1

GT Size

GT1 s1

GTn sn
Cache Summary Table

... ...

GT Size

GT1 c1

GTn cn
Cache Summary Table

... ...

RequestUser
Idel 

Edge
Overloaded

Edge
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worker
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GT Size
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GTn 0
Cache Summary Table

... 0E1

E2 GT Size

GT1 0

GTn 0
Cache Summary Table

... ...MAG

Normal 
Edge

RequestUser Edge-Edge
Link

(b) With MAG

Figure 5: Mutual Assistance Group (MAG)

Therefore, the neighbors and users do not even know it is a MAG,

which helps maintain the system’s consistency. As a result, the

master attracts all feasible requests and then distributes them to the

workers. To avoid a MAG occupying too much caching capacity to

become a "CDN", each MAG is restricted to cache one GT contents.

The workers in a MAG will be released once the master becomes an

IE. The MAG is operated on the fly and thus can help relieve a hot

spot area’s pressure promptly and promote the MagNet’s resource

utilization.

5 EVALUATION
In this section, we conduct experiments on the real trace to

evaluate the performance of the MagNet. The results show the

MagNet’s superiority in terms of the hit ratio and workload balance

over the classical, learning-based and cooperative edge caching

solutions.

5.1 Methodology
Dataset. Throughout this section, we use Trace1 described in

Table 1 as the data set of the experiments. For Trace1, each request

contains a user ID, timestamp, latitude, longitude, and content ID,

which identify when and where the user requested which specific

content. We divide Trace1 into two parts: 1) data of the first 12 days,

which is used for training and analyzing purposes, and 2) data of

the last day, which is used for testing and evaluation purposes.

3285



MagNet: Cooperative Edge Caching by Automatic Content Congregating WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France

Algorithm 3MAG Running Algorithm

Input: edдe ,workload
1: while Every two minutes do
2: edдe .status ← UpdateStatus (edдe,workload)
3: if edдe .status==OE then
4: while edдe .status ,NE and Exist(IE) do
5: ie ← FindIE ()
6: JoinMAG (ie)
7: UpdateMAG ()
8: end while
9: else if edдe .status==IE then
10: while edдe .status , NE and edдe .workers , null do
11: ReleaseWorker()

12: UpdateMAG ()
13: end while
14: end if
15: end while

Name From Time Range Amount Area

Trace1 iQiYi 13 days 50 Million Beijing City

Table 1: Trace Dataset

Testbed. Since the spatial area of Trace1, i.e., the whole Beijing
city, is too big for experiment purposes, we choose a 20km × 20km
target area in Beijing with 400 edges deployed. Since files can be

divided into units of the same size in caching environment, we

assume all contents have the same unit size. Each edge is set to

have the same caching capacity to cache 135 files by default. NEN

is set to be a default value of 154, which is the number of edges in a

7km-radius circle. We set EUP as 6 minutes by default to maintain

the balance between the timeliness and traffic overhead. We set

the Number of GT (NGT) as 621. We use Java [9] to implement

the MagNet with object-oriented programing [17]. It runs on a

computer with one GeForce GTX 1660 TI GPU, one Intel i7-9700

CPU and 16GBmemory. Additionally, we build amulti-edge caching

experiment platform. It accepts a prepared trace to simulate parallel

sending requests to edges. It can measure edges’ hit ratios and

workloads. In the experiments, we use Trace1 and set 400 edges in

the platform.

Baseline solutions. To evaluate the MagNet performance, clas-

sical, ML-based and cooperative solutions are used for comparison.

• ARC [24]. It is a self-tuning and low-overhead caching so-

lution. It combines the advantages of LRU and LFU, which

enables it to be flexibly adjusted in different scenarios.

• LeCaR [40]. It is a caching framework that uses reinforce-

ment learning and regrets minimization to adjust the usage

of LRU and LFU dynamically.

• CACHEUS [29]. It is an adaptive caching algorithm which

uses online reinforcement learning to take advantage of some

state-of-the-art caching algorithms, including ARC, SR-LRU,

CR-LRU [24] and LIRS [13].

• CCSP [19]. It is a cooperative caching scheme. It chooses

some central nodes which retrieve caching summaries from

their neighbors and provide caching information for other

normal nodes. Each request in it can try four edges at most.

Evaluation Metrics.

• Hit ratio: is calculated by dividing the total number of hits

by the total number of requests.

• Workload SD: WSD is calculated according to Eq.(5) to ob-

serve the workload balance of the system.

• Max Requests’ Number of A Single Edge (MAXRN): the max-

imum served requests’ number of one edge in the 400 edges.

• Min Requests’ Number of A Single Edge (MINRN): the mini-

mum served requests’ number of one edge in the 400 edges.

Since the same edge in different non-cooperative solutions receives

the same amount of requests, we use the ARC as a representative

in WSD, MAXRN and MINRN.

5.2 Overall Performance
We conduct experiments from three different perspectives.

Performance in onewhole day. In this case, we use the default
standard setups. In Figure 6a, we find the MagNet has a significantly

higher hit ratio than the others, exceeding 70% in the most time of

one day. In Figure 6a, CCSP-0 represents CCSP where each request

can try only its home edge; CCSP-1, CCSP-2 and CCSP-3 represent

CCSPs where each request can try at most one, two and three more

edges, respectively, except its home edge. Compared with CCSP,

the MagNet selects only one more edge to try except its home

edge, and it enjoys about a 15% higher hit ratio than the CCSP-3.

This outstanding hit ratio performance is because the ACC helps

guide requests to their optimal edges. Figure 6b shows the WSD of

each hour, where the MagNet has lower WSD than others in most

hours, especially in the request-intensive hours (13:00 to 24:00) [41],

meaning it has the most balanced workload. Figure 6c and Figure 6d

indicate that no edge is under excessive pressure and the MagNet

utilizes edges efficiently. This case proves that the MagNet has a

higher hit ratio and a more balanced workload than others in most

time of one day.

Different Edge Densities. Next, we investigate the impact of

different edge densities on the performance of MagNet. In this

20km × 20km target area, we set the number of edges from 4 to

900. As indicated in Figure 7a, the hit ratio decreases as the edge

number increases for all caching solutions. Because as the density

increases, requests are served by more edges and then the hit ratio

decreases. The hit ratios of all non-cooperative solutions decrease

drastically by about 35%. The CCSP solution has a better hit ratio

performance than non-cooperative solutions, but its hit ratio still

decreases significantly by 25%. Even though the MagNet only tries

one more edge except for the home edge, it achieves an excellent

hit ratio result, which only decreases only 5%. Figure 7b , 7c and

7d show that the workload balance of all solutions is better as the

edge density increases, while the edges’ workloads are reduced.

Moreover, the MagNet has the best workload balance performance

than the others from all three metrics. This case proves that the

MagNet has an outstanding hit ratio performance and prominent

workload balance in various edge-density areas.
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Figure 7: Different Edge Densities

Different Capacities’ Standard Deviation. In this case, we

set the 400 edges with different caching capacities. In real-world

scenarios, the capacities of different devices are generally different,

which challenges the adaptability and flexibility of the solution. We

use the capacities’ standard deviation (SD) to control the capacities’

difference degree. In Figure 8a, with the increase of capacities’

SD, the MagNet’s hit ratio steadily remains at a high level, while

the hit ratios of the other solutions show a significant downward

trend. Figure 8b reveals that the MagNet achieves a more balanced

workload. In this case, the WSD values are much more prominent

because the WSD considers the differences of capacities in Eq.(5).

This case proves that the MagNet is more flexible and adaptable

under the environment of heterogeneous edges’ capacities.
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6 CONCLUSION
In this paper, we analyze the challenges of edge caching solutions

and propose a decentralized and cooperative edge caching system

named MagNet. The MagNet has two innovative key mechanisms.

The ACC mechanism uses the neural embedding technology and

novel clustering algorithm to cluster contents and then guides

requests to their optimal edges to enhance the hit ratio. The MAG

mechanism combines the overloaded edges and the idle edges into

temporary groups to enhance the workload balance. To evaluate the

MagNet, we compare it with the classical, ML-based and cooperative

caching solutions from three different perspectives using a real trace.

The results prove that the MagNet significantly outperforms other

solutions in terms of both hit ratio and workload balance.

7 CODE
To introduce the technical details of MagNet more clear, we share

the code, which includes the Java version implementation of Mag-

Net and the edge-based caching evaluation environment, at

https://github.com/pengjunkun/MagNet.
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