
How Powerful Switches Should be Deployed:
A Precise Estimation Based on Queuing Theory

Gengbiao Shen∗, Qing Li†‡, Shuo Ai∗, Yong Jiang∗, Mingwei Xu§, Xuya Jia∗
∗Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
†Southern University of Science and Technology, Shenzhen, China

‡PCL Research Center of Networks and Communications, Peng Cheng Laboratory, Shenzhen, China
§Department of Computer Science and Technology, Tsinghua University, Beijing, China

Emails: sgb16@mails.tsinghua.edu.cn, liq8@sustc.edu.cn, ais16@mails.tsinghua.edu.cn,

jiangy@sz.tsinghua.edu.cn, xmw@cernet.edu.cn, jxy14@mails.tsinghua.edu.cn

Abstract—Software-Defined Networking (SDN) provides a
tractable and efficient architecture for operators to customize
their network functions. Many traditional Data Center Networks
(DCNs) are upgraded by SDN to improve link utilization and
management flexibility, but they are lack of the instructions for
selecting the substitutive SDN switches with the proper flow table
space to achieve cost-effective and energy-saving networks. In this
paper, we fill the gap of solving the flow table space estimation
problem based on queuing theory. First, we divide the life process
of a flow table entry into the packet-in process, the handling
process and the serving process to establish a queuing system
to estimate the least required number of the flow table entries
of SDN switches. Second, we analyze the traffic distribution of
DCNs to calculate the critical parameters in our model. Third,
on the basis of the essence of the structured topologies in DCNs,
we construct a probability model of routing strategies to quantize
the influence of path selection. Comprehensive experiments show
that the relative flow table space estimation error of our model
can be less than 10%, which can give operators insights into the
requirement of the SDN switches at specific positions.

I. INTRODUCTION

With the ever-increasing requirement of improving network

controllability and flexibility, Software-Defined Networking

(SDN), as a promising networking paradigm, has been widely

used in Wide Area Networks (WANs) [1, 2] and Data Center

Networks (DCNs) [3, 4]. It separates control plane from data

plane and delegates most network functions, e.g., topology dis-

covery, traffic engineering and load balancing, to a centralized

controller, while leaving only simple matching and forwarding

functions at switches [5, 6]. Having a global view and fine-

grain control makes the controller capable of further enhancing

network performance. Considering the advantages of SDN,

traditional DCNs are gradually upgraded by SDN to improve

throughput and realize flexible management. However, oper-

ators have some difficulties in selecting the substitutive SDN

switches with appropriate performance to execute forwarding

and network functions, even though they have historical traffic

statistics and the information of networks.
In SDN-based DCNs, customized SDN switches utilize the

specific south-band interface, prevalently OpenFlow protocol

[7], to communicate with the controller. These switches gen-

erally adopt Ternary Content Addressable Memory (TCAM)

Corresponding author: Qing Li (liq8@sustc.edu.cn).

to store flow table entries for achieving high throughput and

fast packet processing [8, 9]. Recent measurements show

that the number of concurrent active flows in DCNs can

be up to 10,000 per second, while the traffic distribution is

usually inclined because of particular service deployments or

asymmetric network scenarios [10, 11]. Thus, the switches

at different positions require distinct TCAM demands. In

practice, SDN switches have the limited capacity of TCAM

and can only support several thousands of flow table entries

[12], since TCAM chip is expensive (US$350 for a 1 M-bit

chip) and power-hungry (15 Watt/1 Mbit) [13, 14]. Assigning

all switches with equal TCAM resources (i.e., flow table space)

is unnecessary and wasteful. Supplying a switch with excessive

flow table space not only increases additional expense, but also

causes redundant power overhead. Consequently, estimating

the least required flow table space is crucial for operators to

select the appropriate switches in networks for reducing capital

investment and energy consumption.

To date, there are several works to construct the analyti-

cal model of the OpenFlow-based SDN or characterize the

performance of routing strategies. Some researchers establish

analytical models to evaluate the queuing length and the packet

sojourn time in SDN [15, 16]. Others model the communica-

tion between the controller and switches as a queuing system

to estimate the buffer size of the controller and the setup

delay of a flow table entry [17–20]. Meanwhile, revealing

the essence of routing strategies has attracted substantial

attentions. Building the systematic model of routing strategies

provides insights into the principles of traffic engineering

[21–23]. To the best of our knowledge, there is no work to

utilize queuing theory to solve the flow table space estimation

problem with both SDN and routing strategies taken into

consideration. Since the flow table space is proportional to

the number of flow table entries with a fixed ratio, we can

simply utilize the number of flow table entries to evaluate the

corresponding flow table space. To solve the aforementioned

problems, it is intuitive to aggregate the previous works to

establish an accurate analytical model to characterize the

quantity variation of flow table entries, which can realize the

selection of proper performance and facilitate the identification

of hotspot switches.

811Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on January 08,2024 at 06:33:29 UTC from IEEE Xplore. Restrictions apply.

������� ��	�

�	�	 ��	�

��������
�

��� ���� �		
���

��
����
� �������

�������� �������

�������� �������

���
������� �������

����	�� �������

�����
�
��

����

Fig. 1: The architecture of SDN

In this paper, we aim to fill the gap of estimating the least

required flow table space of the SDN switches in DCNs. First,

we divide the whole process from new flows arriving at the

switch to the flow table entry expiring into three parts: the

packet-in process that new flows trigger packet-in messages,

the handling process that the controller makes routing deci-

sions, and the serving process that the flow table entry serves

for forwarding. We model these three parts as M/M/1/∞,

M/M/1/∞, and M/G/c/c systems respectively, and utilize

the synthetical model to derive the least required number of

flow table entries under the constraint of the upper bound

probability of failing to establish the path. Then we make

some practical traffic distribution assumptions and calculate

the critical parameters in our model through analyzing the

real workloads in DCNs. Last, we take full advantages of

the structured topologies in DCNs to establish a probability

model of routing strategies to quantize the influence of path

selection. We conduct comprehensive experiments to evaluate

the performance of our model under various model parameters

and different workloads. The results show that our model

can estimate the least required flow table space of different

switches at specific positions and achieve little relative flow

table space estimation error that can be less than 10%, which

can give operators insights into the performance requirement

of the SDN switches in DCNs.

In summary, our contributions are three-fold:

• We are the first to utilize queuing theory to establish a

queuing system to estimate the least required flow table

space of the SDN switches in SDN-based DCNs.

• We make some practical assumptions through observing

the real workloads in DCNs and calculate the critical

parameters in our model.

• We set up a probability model of routing strategies based

on the essence of the structured topologies in DCNs.

The rest of the paper is organized as follows. Section II

describes the analytical models of queuing systems in SDN. In

Section III, we calculate the corresponding parameters in our

estimation model under the assumptions of the traffic distribu-

��������
�

�
����
�����	

��	�
��

���� �����

����
�� ��

���� ����� ���	� �
���� ����� ���	�

���

���� ����� ���	� �

��	��	�
��

���� �����

����
�� ��

!�������

�
�
���	�

"����

����
�
��

#���
��

��	�����
� � �

��
����
�

$����

!���� �
��
�
�

��������

��
�������

%��	��� $����

Fig. 2: The life process of a flow table entry

tion and the model of routing strategies in DCNs. In Section

IV, we conduct simulation and discuss the performance of our

estimation model. Section V states the conclusion.

II. ANALYTICAL MODEL

A typical architecture of the OpenFlow-based SDN includes

one centralized controller and some customized switches as

shown in Fig. 1. SDN separates the network into a control

plane that contains a centralized controller with various ap-

plications for global control and a data plane that forwards

packets and collects network states. The switches connect to

the controller directly through dedicated links. When a packet

arrives at a switch, the switch looks up its flow table to find

the matching rule. If the switch finds the result, it performs

the corresponding actions, otherwise it encapsulates the packet

into a packet-in message sent to the controller. Then the

controller generates routing path and forwarding actions and

returns control messages including the flow-mod message used

to set up a flow table entry and the packet-out message used

to put the packet back to the network. A flow table entry has

the limited lifetime and it expires when the condition of the

idle timeout or the hard timeout is satisfied [24].

As illustrated above, the whole life process of a flow table

entry can be abstracted into three parts:

• The packet-in process. This process is from the new

flow packet arriving at a switch to the switch sending the

corresponding packet-in message.

• The handling process. This process is from the controller

receiving packet-in messages to the controller making

decisions and sending control messages to the corre-

sponding switches.

• The serving process. This process is from the switch

receiving control messages and setting up a flow table

entry to the flow table entry expiring.

Combining with the structures of the OpenFlow-based SDN

switch and the controller, the life process of a flow table entry

is depicted in Fig. 2. Then we model the three parts as queuing

systems to calculate the least required number of flow table

entries of each switch.

812Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on January 08,2024 at 06:33:29 UTC from IEEE Xplore. Restrictions apply.

A. Model of the Packet-in Process

For the OpenFlow-based SDN, the switch typically has a

single processor which provides enough processing capaci-

ties to execute looking up, matching and forwarding. In the

network, an edge switch receives new flow packets from its

multiple ports that connect to several subnets, and aggregates

them into an ingress queue to wait for the processor idle time.

Since the switch executes the header parsing and the flow

table looking up independently, the processing rate is stable

generally. Thus, for an edge switch ve ∈ Ve, where Ve is the

set of edge switches in the network, we suppose the processing

time of ve generating the packet-in message for a new flow

packet as a random variable that conforms to the negative

exponential distribution with parameter μ(ve).

Previous works suppose that the packet arrival in switches

conforms to the Poisson process [16, 20] or the compound

Poisson process [19]. In practice, different applications have

distinct traffic features. For example, remote login and file

transfer can be well modeled as the Poisson process, but

others conform to the compound Poisson process because of

the traffic burst [25]. Moreover, clustered application hosts in

DCNs generate the relatively stable and periodic traffic, which

simplifies modeling the traffic. In our model, we only focus on

the first packets of new flows that trigger the table miss and the

packet-in message generating in the switch. Hence, for an edge

switch ve with n
(ve)
ep external ports, i.e., the ports that connect

to external networks, we suppose the arrivals of new flows

from different external ports are independent and conform

to the Poisson process with rate λ
(ve)
i (i = 1, · · · , n(ve)

ep)
respectively. Here, we consider all packets that trigger the

switch generating packet-in messages as the arrivals of new

flows regardless of whether they result from the actual new

flow arriving or the flow table entry expiring. According to

[26], a process that consists of multiple Poisson processes is

also a Poisson process, and the rate of the process is the sum

of the rates of all Poisson processes. So the synthetical arrival

rate of new flows in ve is λ
(ve)
in =

∑|n(ve)
ep |

i=1 λ
(ve)
i .

After new flows arrivie at an edge switch, the packets of

flows are cached in the switch to wait for the setup of the

flow table entry. As the performance of the switch improves,

the switch has sufficient storage space and enough processing

capacities to handle this situation. Thus, for simplicity, we can

assume that during the waiting process the switch can cache all

packets of new flows without limitation. Combining with the

previous discussion, we can model the packet-in process as a

M/M/1/∞ system. According to [26], the departure process

of a M/M/1/∞ system is also a Poisson process with the rate

identical to the rate of the arrival process. Hence, the departure

process of the packet-in messages generated by ve conforms

to the Poisson process with rate λ
(ve)
out = λ

(ve)
in .

B. Model of the Handling Process

The centralized controller in SDN manages all switches in

the network. It aggregates the packet-in messages received

from edge switches into a packet-in queue, and handles the

!�������

�
�
���	�

"����

����
�
��

#���
�� ��	�����

��
����
� $����� �ev
pi�

� ��
pi�
� �
pi�

� �v
fm�

� �
fm�

� ��
fm�

Fig. 3: The queuing model of the handing process

messages in order independently. The controller makes routing

decisions according to the routing strategy and the network

states obtained from the modules of topology discovery and

state collection. Then the controller sends flow-mod messages

to the corresponding switches along the forwarding path.

The model of this process is described in Fig. 3. Generally,

the centralized controller is a high performance server that

can handle packet-in messages with steady rate. Thus, we

suppose the duration of the controller handling a packet-in

message conforms to the negative exponential distribution with

parameter μ(c). Meanwhile, the arrival rate of the packet-in

messages from ve can be defined as λ
(ve)
pi which is equal to

the corresponding departure rate, i.e, λ
(ve)
pi = λ

(ve)
out . Based

on the previous discussion, the synthetical arrival rate of the

packet-in messages in the controller can be expressed as

λ
(c)
pi =

|Ve|∑
ve=1

λ
(ve)
pi =

|Ve|∑
ve=1

λ
(ve)
out =

|Ve|∑
ve=1

λ
(ve)
in

In addition, the cache capacity in the controller can be

regarded as infinity, since the size of packet-in messages

is not large (normally 128 bytes [24]) and the number of

concurrent new flows is no more than tens of thousands [10].

Hence, the handling process can be modeled as a M/M/1/∞
system. The controller handles packet-in messages to find the

most appropriate paths for flows and generates multiple flow-

mod messages for the corresponding switches. Similar to the

previous discussion, the departure rate of flow-mod messages

λ
(c)
fm is identical to the arrival rate of the synthetical packet-in

messages λ
(c)
pi , i.e., λ

(c)
fm = λ

(c)
pi . In the handling process, the

departure process of flow-mod messages is a batch departure

process, because the routing strategy generates the routes that

contain multiple switches. The batch size depends on the

selected path and the width of the network.
For a switch v ∈ V , where V is the set of switches, we

suppose its arrival rate of flow-mod messages is λ
(v)
fm. When

the network deploys a known routing strategy, we define the

probability of the flow-mod messages that originate from the

edge switch ve and are to be sent to the switch v as π
(ve)
v .

Hence, combining with the model of the packet-in process,

the arrival rate of flow-mod messages in v can be expressed

as λ
(v)
fm =

∑|Ve|
ve=1 π

(ve)
v λ

(ve)
pi , where π

(ve)
v ∈ (0, 1). The arrival

of flow-mod messages conforms to the Poisson process.

C. Model of the Serving Process
Once receiving a flow-mod message, the SDN switch either

establishes the corresponding flow table entry or returns an

813Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on January 08,2024 at 06:33:29 UTC from IEEE Xplore. Restrictions apply.

���� ����� ���	�

���� ����� ���	� �

���� ����� ���	�

���� ����� ���	�

���� �����

����
�� ��

� �v
fm�

& ' �vm �
& 'vm

"���� ��	��
��

"���� ��	��
��

"���� ��	��
��

"���� ��	��
��

"���� ��	��
��

Fig. 4: The queuing model of the serving process

error message to the controller while there is no enough flow

table space. So the serving process can be divided into two

parts. One is the process of the switch establishing the flow

table entry. Another is the process of the flow table entry

expiring. For the first part, the switch sets up flow table

entries in order of the arrivals of flow-mod messages. All setup

durations are independent and related to the number of the

existing flow table entries and the inserted positions of new

flow table entries[12]. In steady states, the duration of setting

up a flow table entry is relatively stable, since the number of

flow table entries and the inserted position of the new flow

table entry have no significant changes. For simplicity, we

ignore the rule aggregation in the switch. And we assume all

setup durations of flow table entries are identical and constant

and suppose the average duration of this part as t̄
(v)
s for v.

The second part is the timeout process of the flow table

entry. Each flow table entry contains an idle timeout and a

hard timeout [24]. The flow table entry will be removed when

it exists for the hard timeout duration or the time interval

of matching it exceeds the idle timeout duration. Generally,

all flow table entries in the network have the identical idle

timeout and hard timeout. We suppose the idle timeout and the

hard timeout are oidle, ohard respectively. Hence, the average

duration of this part depends on the traffic distribution and the

timeout values. We suppose the average duration of this part

as t̄
(v)
d for the switch v.

Thus, the average life duration of a flow table entry can be

expressed as t̄
(v)
f = t̄

(v)
s +t̄

(v)
d , which indicates that the average

serving rate of a flow table entry is μ
(v)
f = 1/t̄

(v)
f . Obviously,

this serving rate is a random variable which conforms to the

general distribution. The previous discussion shows that the

arrival of flow-mod messages conforms to the Poisson process

with rate λ
(v)
fm. Moreover, the arrival of a flow-mod message

occupies one flow table entry in advance. And the switch can

only hold the limited number of flow table entries related to

the flow table space without caching extra flow-mod messages.

Hence, we can model the serving process as a M/G/c/c
system, as shown in Fig. 4. We suppose the maximum number

of flow table entries that can be stored in the flow table of the

switch v as m(v), which implies that different switches have

distinct serving capacities with parameter c(v) = m(v). For

a M/G/c(v)/c(v) system, we use p
(v)
n to denote the steady-

state probability of having n flow table entries in the switch

v. According to [26], this probability can be expressed as

p(v)n =
(λ

(v)
fm/μ

(v)
f)n/n!∑c(v)

i=0(λ
(v)
fm/μ

(v)
f)i/i!

where n ∈ {0, 1, · · · , c(v)}.

Combining with the previous models, the flow table setup

failure probability which denotes the probability of failing to

respond the flow-mod action can be expressed as

p
(v)
loss = p

(v)

c(v) = p
(v)

m(v) =
(λ

(v)
fm/μ

(v)
f)m

(v)

/(m(v))!∑m(v)

i=0 (λ
(v)
fm/μ

(v)
f)i/i!

where λ
(v)
fm =

∑|Ve|
ve=1 π

(ve)
v

∑|n(ve)
ep |

j=1 λ
(ve)
j .

This failure probability decreases as the serving capacity

increases. For each switch v, the maximum flow table setup

failure probability can be defined as η(v). We define the Upper

Bound Probability of Failing to establish the path (UBPF) as

ξ. For a network G with the structured topology, we can obtain

η(v) = Γ(G, v, ξ), where Γ(·) is related to the topology and the

routing strategy. In order to satisfy the UBPF, the flow table

setup failure probability of every switch cannot exceed the

corresponding maximum flow table setup failure probability.

Consequently, for the network G and the given UBPF ξ, we

can solve (1) to obtain the least required number of flow table

entries m
(v)
least of the switch v.

m
(v)
least = min

m(v)
(p

(v)
loss ≤ Γ(G, v, ξ)) (1)

Then we suppose the storage size of a flow table entry is

B in the given OpenFlow version. Since the flow table space

is proportional to the number of flow table entries, we can

obtain that the least required flow table space of the switch

v is T (v) = m
(v)
leastB which can be used to evaluate the

least required flow table space of the switches at different

positions. Since the storage size of a flow table entry is fixed

and determined by the OpenFlow version that the network

adopts, we can briefly utilize (1) to evaluate the least required

flow table space. The previous discussion indicates that the

probability π
(ve)
v depends on which routing strategy that the

network deploys and the average serving rate μ
(v)
f is related

to the traffic distribution of the network. Thus, we make some

assumptions and model the routing strategies to calculate the

corresponding parameters in the next section.

III. PARAMETERS CALCULATING

A. Traffic Distribution Assumption

1) Flow Completion Time in DCNs: Traffic distribution in

DCNs is relatively regular, stable and predictable [27]. The

crucial flow characteristics consist of Flow Completion Time

(FCT) and the ingress-egress pairs. The previous work shows

that the traffic size in DCNs conforms to the distribution with

heavy tail [10], which means that most flows are the short

flows with small FCTs but others are the long flows with huge

FCTs. Hence, the FCT distribution of flows can be modeled

as the Pareto Type II distribution that can be expressed as

F (t) = 1− [1 +
t− tmin

σ
]−α, (t >= tmin)

where F (t) is the cumulative distribution function of the flows

with the FCT of t s, tmin is the minimum FCT of the flows

814Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on January 08,2024 at 06:33:29 UTC from IEEE Xplore. Restrictions apply.

(a) univ1 (b) univ2

Fig. 5: FCT distribution

that can be set as the round trip time trtt of the network, σ > 0
is the scale factor, and α > 1 is the shape factor.

To validate our FCT assumption, we analyze the traffic

distribution of two real workloads, i.e., univ1 and univ2
in [10]. The fitting results are shown in Fig. 5. We assume

the idle timeout and the hard timeout are oidle = 10s and

ohard = 20s respectively. In our analysis, we regard the

arrival of packets after the hard timeout as the arrival of new

flows, so the flow that lasts for more than ohard is split into

several short flows. Fig. 5a shows that the FCT distribution

in univ1 matches with the Pareto Type II distribution with

parameters σ = 0.015, α = 0.36, tmin = 3.815 × 10−6s.

Fig. 5b shows that the FCT distribution in univ2 matches

with the Pareto Type II distribution with parameters σ =
0.05, α = 0.35, tmin = 9.54 × 10−7s. Obviously, the fitting

results demonstrate that our FCT assumption is reasonable.

2) Average Serving Rate of the Flow Table Entry: The

transfer duration of a flow and the inter-arrival behavior of the

packets in a flow depend on the different type of applications

that the flow belongs to. In most scenarios, the durations of

short flows are smaller than the idle timeout of the flow table

entry, while the durations of long flows are larger. Hence, all

flows can be divided into three types:

• Type I: Short flow. The FCT of this type flow is smaller

than the idle timeout.

• Type II: Long flow with small interval. The FCT of

this type flow is larger than the idle timeout, and the

maximum packet arrival interval in this type flow is

smaller than the idle timeout.

• Type III: Long flow with large interval. The FCT of this

type flow is larger than the idle timeout, but the maximum

packet arrival interval in this type flow is larger than the

idle timeout.

For the type I flow, the expected timeout duration of the

flow table entry can be express as

E1[t
(v)
d] = min(

∫ oidle

tmin

tF ′(t) + oidle, ohard)

= min(
σ

α− 1
+ tmin − ε+ oidle, ohard)

(2)

where

ε = (oidle +
σ + oidle − tmin

α− 1
)(1 +

oidle − tmin

σ
)−α

(a) univ1 (b) univ2

Fig. 6: Packet arrival interval of the type III flow

Then, we suppose the proportion of long flows that belong

to the type II is ϕ. Since the packet arrivals of the type II flow

do not trigger the idle timeout, the expected timeout duration

of the flow table entry can be expressed as

E2[t
(v)
d] = [1− F (oidle)]ϕohard (3)

The type III flow is the flow that lasts for a long time and has

the remarkable on-off characteristic. The applications that this

type flows belong to are mostly remote login and file transfer.

Hence, we can model the type III flow as the Poisson stream

with rate γp, which indicates that the cumulative distribution

of the packet arrival interval of this type flow is A(Δt) =
1− e−γpΔt, where Δt is the packet arrival interval.

We analyze the packet arrival interval distribution of the

type III flow in the two real workloads. Fig. 6a shows that

the packet arrival interval distribution of the type III flow

in univ1 matches with the negative exponential distribution

with parameter γp = 2. Fig. 6b shows that the packet arrival

interval distribution of the type III flow in univ2 matches

with the negative exponential distribution with parameter

γp = 5. The fitting results demonstrate that our assumptions

conform to real scenarios.
The timeout duration of the flow table entry depends on

the first time when the arrival interval is larger than the idle

timeout. We assume that there are k − 1 arrivals before it

happens. The probability that the interval between the kth and

(k−1)th arrival is larger than the idle timeout conforms to the

geometric distribution with parameter p = e−γpoidle . It is easy

to obtain that the expected arrival number is 1/p = eγpoidle .

So the expected life duration of the flow table entry before the

first interval larger than the idle timeout is

Er = eγpoidle

∫ oidle

Δt=0

tA′(Δt) =
1

γp
(eγpoidle − 1)− oidle

Hence, the expected timeout duration of the flow table entry

of the type III flow can be expressed as

E3[t
(v)
d] = [1−F (oidle)](1−ϕ)×min(Er+oidle, ohard) (4)

All flow table entries in switches serve for the flows belong

to the three types. Therefore, the average duration of a flow

table entry can be expressed as t̄
(v)
d =

∑3
l=1 El[t

(v)
d]. Hence,

the average serving rate of the flow table entry is

μ
(v)
f =

1

t̄
(v)
f

=
1

t̄
(v)
s + t̄

(v)
d

=
1

t̄
(v)
s +

∑3
l=1 El[t

(v)
d]

(5)

815Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on January 08,2024 at 06:33:29 UTC from IEEE Xplore. Restrictions apply.

3) The Trace of Flows: Our estimation model is influenced

by the trace of flows. In DCNs, flows are injected from one

edge switch then transferred to the other edge switch. The

pairs of edge switches consist of all ingress-egress pairs, which

can be used to classify the flows from the source-destination

perspective. For a source edge switch vs ∈ Ve, we define the

fraction of the new flows that are injected into this switch

and transferred to the destination edge switch vt ∈ Ve as

ω(s,t) ∈ [0, 1]. Hence, for every edge switch ve, there are

several parameters ω(e,t) to assign the corresponding fractions

of flows to all other edge switches vt, where
∑

vt∈Ve
ω(e,t) =

1. Meanwhile, the forwarding paths of ingress-egress pairs

depend on the practical routing strategy.

B. Model of Routing Strategies

Typically, DCNs have structured topologies, which can sim-

plify modeling routing strategies. Existing models of routing

strategies consider more about the dynamic of the schemes, but

they are lack of the probability essence in the steady states.

So they are not suitable for our estimation model. We design

our model of routing strategies based on probability theory.

We only consider the routing strategies with the stable path

selection probability in steady states, which can characterize

the probability essence of routing strategies directly. For the

edge switches vs, vt ∈ Ve, we define the set of paths from vs to

vt as R(s,t) = {r(s,t)(i)} and the corresponding path selection

probability as ρ(s,t)(i) ∈ [0, 1] where
∑

i ρ
(s,t)(i) = 1.

Therefore, according to the previous discussion, the probability

that the switch v is selected by the new flow arriving at the

edge switch ve can be expressed as

π(ve)
v =

∑
vt �=ve
vt∈Ve

∑
v∈r(e,t)(i)

r(e,t)(i)∈R(e,t)

ω(e,t)ρ(e,t)(i) (6)

In our model, we utilize the widely adopted Clos topology,

i.e., fat-tree [28], as an example to analyze the model of

routing strategies. Other topologies can use the same methods

to construct the model. In SDN-based DCNs, the controller

selects one of the available equal cost paths for a new flow

according to the routing strategy. For the fat-tree topology, a

path can be divided into the upstream route that is from the

source edge switch to the top level switch and the downstream

route that is from the top level switch to the destination edge

switch, while the two routes do not include the top level

switch. The whole path depends on the selected upstream

route, since the downstream route is determined by the top lev-

el switch. We suppose that the number of the upstream egress

ports in each switch v is n
(v)
up . Different routing strategies have

distinct selection probabilities because of various scenarios. In

our model, we utilize two stable routing strategies, i.e., ECMP

and WCMP that are widely adopted in DCNs, as an example

to construct the model. Other routing strategies can also be

modeled by this method through analyzing steady network

states and considering real traffic scenarios.

ECMP utilizes the static hash mechanism to hash five-

tuple packet header to select the egress port for each flow. In

SDN, this mechanism is realized in the centralized controller

without maintaining per-flow states. For stochastic flows, the

hashing results are random, which causes the probabilities of

selecting every feasible forwarding egress port for a switch on

the upstream route are equal. Therefore, the possibilities of

selecting each feasible path r(s,t)(i) are identical. For every

R(s,t), we suppose the switch that belongs to the upstream

route of the path i is vh ∈ r
(s,t)
up (i), where r

(s,t)
up (i) is the set

of all the switches on the upstream route of the path r(s,t)(i).
Hence, the path selection probability can be expressed as

ρ(s,t)(i) =
∏

vh∈r
(s,t)
up (i)

1

n
(vh)
up

. Combining with (6), we can

get the corresponding probability.

WCMP is similar to ECMP but chooses the upstream

egress ports according to the prescribed weights instead of

randomness. WCMP is typically utilized to surmount the

asymmetric scenarios, e.g., asymmetric topology or skew

traffic distribution, for balancing all flows in the network.

The centralized controller can assign the proper weights for

the upstream egress ports of each switch on the basis of

network states and the known traffic distribution. For a switch

v ∈ V with n
(v)
up upstream egress ports, we suppose the

weight that the controller assigns for each upstream egress

port j is β
(v)
j ∈ [0, 1], where

∑n(v)
up

j=1 β
(v)
j = 1. The set of

the upstream egress ports of the switch v can be defined as

N
(v)
up . Hence, the path selection probability can be expressed

as ρ(s,t)(i) =
∏

vh∈r(s,t)up (i),j∈N
(vh)
up

β
(vh)
j . According to (6), we

can calculate the corresponding selection probability.

Consequently, combining with (1), (2), (3), (4), (5), (6), we

can obtain the least required number of flow table entries of

every switch to estimate the least required flow table space of

the switches at different positions.

IV. EVALUATION

In this section, we evaluate our flow table space estimation

model under various parameters and different workloads. We

implement a simulator to imitate the behaviors of the SDN

switches and the controller to collect the number of the flow

table entries of all switches.

A. Experiment Setup

1) Topology: We evaluate our estimation model in the fat-

tree topology that is widely adopted in DCNs. The fat-tree

topology consists of multiple layer switches and the number of

equal cost paths between the ingress-egress pairs is identical.

In our model, we utilize fat-tree topology with parameter k =
4, as shown in Fig. 7.

2) Maximum Flow Table Setup Failure Probability: Ac-

cording to the previous discussion, for each switch v, the

maximum flow table setup failure probability η(v) is related

to the network G and the UBPF ξ. In the fat-tree topology,

the switches can be divided into three types: the ToR switch,

the aggregation switch and the core switch, on the basis of the

switch positions. For simplicity, we suppose that the switches

belong to the same type have the identical maximum flow table

setup failure probability which can be assumed as ηe, ηa, ηc

816Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on January 08,2024 at 06:33:29 UTC from IEEE Xplore. Restrictions apply.

�
�

	� 	�

�
�

	� 	�

�
�

	� 	�

�
�

	� 	�

�� �� �� ��

��

	���
���

Fig. 7: k = 4 fat-tree topology

respectively. Furthermore, there are only three types, i.e., 1,

3 or 5, of path length in our fat-tree topology. We define the

fractions of the three type paths as θ1, θ3, θ5 respectively.

Consequently, to satisfy the UBPF ξ, the following inequality

should be satisfied

θ1[1− (1− ηe)] + θ3[1− (1− ηe)2(1− ηa)]+

θ5[1− (1− ηe)2(1− ηa)2(1− ηc)] ≤ ξ
(7)

Combining with the previous discussion, the value of

Γ(G, v, ξ) is the acceptable solution of (7). Once the UBPF ξ
is given, the η(v) of each switch v can be obtained.

3) Metrics: To evaluate the performance of our estimation

model, we utilize the relative flow table space estimation error

ζ between our model values and the simulation results to

evaluate the precision of our model. For each switch v, we

define the average top 20% number of flow table entries that

is measured in the simulation as m̄
(v)
least. Consequently, the

value of ζ can be expressed as

ζ = |
∑

v∈V m
(v)
least −

∑
v∈V m̄

(v)
least∑

v∈V m̄
(v)
least

| (8)

Through ζ, we can figure out the gap between the real size

of flow table space and the theoretical values of our model.

4) Default Parameters: We give some default model pa-

rameters for the simulation when there are no specific instruc-

tions. We set the average setup duration of a flow table entry is

t̄
(v)
s = 0.05s, since the OpenFlow-based switch can establish

200 flow table entries per second on average [12]. The idle

timeout and the hard timeout are set as oidle = 10s and

ohard = 20s respectively. According to the previous discus-

sion, we set the default parameters of the FCT distribution are

α = 0.36, σ = 0.015 and tmin = 5× 10−6s. The probability

that a long flow belongs to the type II flow is ϕ = 0.6. And the

average packet arrival rate of the type III flow is γp = 2. We

set the default flow arrival rate of each switch as λ
(ve)
in = 100.

B. Average Serving Rate of the Switch

We first investigate the effects of different model parameters

on the average serving rate of the switches in the network.

We vary the shape factor from α = 0.1 to 2 while the

scale factor is set as σ = 0.1, 0.2, 0.5, 1.1, 2.0 respectively.

As shown in Fig. 8a, the average serving rate of the switches

increases as the shape factor increases and the scale factor

(a) Traffic distribution factors (b) Timeouts

(c) Probability of the Type II flow (d) Expected timeout durations

Fig. 8: Effects of different parameters on average serving rate

decreases, since the larger shape factor or the smaller scale

factor causes the more intensive flows that have the smaller

FCTs. Then we vary the values of the hard timeout and the

idle timeout. From Fig. 8b we can see that the average serving

rate decreases when the hard timeout or the idle timeout

increases, because the larger timeout values result in the longer

durations of flow table entries. Therefore, the hard timeout

and the idle timeout of flow table entries should be selected

properly in different scenarios, since the small timeout values

cause the frequent flow table establishing which degrades

the forwarding performance, while the large timeout values

damage the serving rate of the switches. Moreover, we vary

the probability of the long flows that belong to the type II from

ϕ = 0.5 to 0.9, while the average arrival rate of the type III

flow is set as γp = 0.0001, 0.01, 0.1, 1, 5. As shown in Fig. 8c,

we can obtain that the average serving rate decreases as ϕ
increases or γp increases, since it causes the more fraction of

the type II flows or the longer durations of the type III flows.

The expected timeout durations of the three type flows are

shown in Fig. 8d, We can obtain that the expected duration of

short flows is approximately 5 times longer than the expected

duration of long flows, and the expected duration of the type

III flow decreases as ϕ increases, since most of flows are the

short flows that contribute most to the consumption of flow

table entries in the network.

C. Real Workloads

We utilize two real workload univ1 and univ2 both in

[10] to evaluate our model. We assume the network deploys

ECMP to make route decisions for each new flow, while we

can utilize the same simulation method to evaluate our model

in the WCMP scenarios.
1) univ1: We analyze univ1 to obtain the necessary

parameters in our model. According to the previous discussion

about univ1, we can obtain the parameters of the FCT dis-

tribution are α = 0.36, σ = 0.015 and tmin = 3.815×10−6s.

817Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on January 08,2024 at 06:33:29 UTC from IEEE Xplore. Restrictions apply.

(a) univ1 (b) univ2

Fig. 9: Real workloads

TABLE I: The flow arrival rates of real workloads

Flow Arrival Rates (/s)
e0 e1 e2 e3 e4 e5 e6 e7

univ1 156.461 58.312 8.350 2.243 2.046 1.992 1.931 16.246
univ2 113.098 0.558 0.291 0.209 0.104 0.097 0.095 0.531

And the average packet arrival rate of the type III flow is

γp = 2. The probability that a long flow belongs to the type

II flow is ϕ = 0.6. We assign the flows to each edge switch

based on the different subnets. The flow arrival rates of all edge

switches are shown in Table I, and the fractions of all ingress-

egress pairs can also be obtained from univ1. We set the

UBPF in univ1 as ξ = 0.0001. According to (7), we can get

the acceptable maximum flow table setup failure probabilities

of each type switch, and the corresponding probabilities are

ηe = 0.0001, ηa = 0.0004 and ηc = 0.0008 respectively

We inject the traffic of univ1 into our simulator and collect

the number of flow table entries of all switches every 500ms.

Then we run our model to obtain the theoretical number of

flow table entries. The result is shown in Fig. 9a. We find

that the theoretical result is extremely close to the real value.

According to (8), we can obtain the relative flow table space

estimation error ζ = 1.37%, which means that our model can

precisely estimate the real requirement of the flow table space

of the switches at different positions.

2) univ2: We further analyze univ2 to validate our

model. The same as the previous experiment, we firstly give

some critical model parameters. According to the previous

discussion about univ2, we can obtain the parameters of

the FCT distribution are σ = 0.05, α = 0.35 and tmin =
9.54× 10−7s. And the average packet arrival rate of the type

III flow is γp = 5. The probability that a long flow belongs to

the type II flow is ϕ = 0.61. Through analyzing univ2, we

can obtain the flow arrival rates of all switches, as shown in

Table I. Given the UBPF ξ = 0.0001, the acceptable maximum

flow table setup failure probabilities of each type switch are

ηe = 0.0001, ηa = 0.00039 and ηc = 0.0008 respectively.

We inject the traffic of univ2 into our simulator and collect

the number of flow table entries of all switches every 500ms.

We compare the simulated results with our model results, as

shown in Fig. 9b. We find that the theoretical result is still

close to the real value. According to (8), we can obtain the

relative flow table space estimation error ζ = 7.64%. Although

the traffic in univ2 is more skewed than the traffic in univ1

(a) workload I (b) workload II

Fig. 10: Simulated workloads

TABLE II: Simulated workloads parameters

Pods Pod1 Pod2 Pod3 Pod4

workload I
Rack 64.0% 48.0% 32.0% 16.0%
In-pod 16.0% 12.0% 8.0% 4.0%
Out-pod 20.0% 40.0% 60.0% 80.0%

workload II
Rack 13.3% 2.7% 12.1% 0.0%
In-pod 80.9% 81.3% 56.3% 30.7%
Out-pod 5.8% 16.0% 31.6% 69.3%

which results in the larger estimation error, our model can still

obtain the great estimation results.

D. Simulated Workloads

For further validating the efficiency of our model, we utilize

real workload parameters to generate the simulated workloads

to conduct simulations.

1) workload I: This workload parameters are from [10],

as shown in Table II. We generate the traffic trace accord-

ing the given workload I parameters. The fractions of all

ingress-egress pairs can be obtain according to the ratio of

the different type of flows. We set the rack ratio as the

fraction of the same switch pair, the in-pod ratio as the fraction

of the pair between the original edge switch and the other

edge switch in the same pod, and the out-pod ratio as the

fraction of the pair between the original edge switch and other

edge switches in other pods where all other edge switches

share the fraction equally. We set the UBPF in workload
I as ξ = 0.0001, and get the corresponding probabilities

ηe = 0.00011, ηa = 0.00038 and ηc = 0.0008.

We inject the traffic of workload I into our simulator

and collect the number of flow table entries of all switches

every 500ms. The results of the number of flow table entries

are shown in Fig. 10a. According to (8), we can obtain the

relative flow table space estimation error ζ = 7.69%, which

means that in the heavy-load scenario, our model can also get

a good estimation for each switch.

2) workload II: This workload parameters are from [27],

as shown in Table II. The same as the previous experiment,

we generate the corresponding traffic trace, and the fractions

of all ingress-egress pairs can be obtained according to the

ratio parameters. We set the UBPF in workload II as ξ =
0.0001, and get the corresponding probabilities ηe = 0.00009,

ηa = 0.00039 and ηc = 0.0008.

We inject the traffic of workload II into our simulator and

collect the number of flow table entries of all switches every

818Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on January 08,2024 at 06:33:29 UTC from IEEE Xplore. Restrictions apply.

500ms. The simulated and the theoretical results are shown

in Fig. 10b. According to (8), we can obtain the relative flow

table space estimation error ζ = 8.53%, which indicates that

our model has great universality and can achieve excellent

estimation in various scenarios.

Consequently, through comprehensive experiments includ-

ing the real and the simulated workloads, the simulation results

demonstrate that our estimation model can precisely estimate

the least required flow table space of all switches in the

network, and the relative flow table space estimation error can

be less than 10%. In the practical situations, on the basis of

our theoretical model, operators can utilize its own historical

statistics to estimate the flow table space requirement of the

switches at different positions and deploy the most suitable de-

vices. For guaranteeing data plane connectivity, operators can

allocate some redundant flow table space for some switches

to satisfy the special demands. Moreover, our model can even

facilitate topology design and energy assessment.

V. CONCLUSION

In this paper, we construct a flow table space estimation

model based on queuing theory. We divide the life process

of the flow table entry into the packet-in process, the han-

dling process and the serving process, and model them as

M/M/1/∞, M/M/1/∞ and M/G/c/c systems respectively.

Given the upper bound probability of failing to establish

the path, we obtain the least required flow table space of

every switch. Then we calculate the critical parameters in

our model by making some practical assumptions about the

traffic distribution and establishing the probability model of

routing strategies. The results of comprehensive experiments

demonstrate that our model can precisely estimate the least

required flow table space of the switches at specific positions,

and the relative flow table space estimation error can be less

than 10%. Operators can deploy the switches with the proper

flow table space in DCNs based on our estimation results and

real situations. In the future, we will extend our estimation

model to the more general and complicated scenarios.

ACKNOWLEDGMENT

The research is supported by the National Key R&D Pro-

gram of China under Grant 2017YFB0803202, the project

of PCL Future Regional Network Facilities for Large-scale

Experiments and Applications, the R&D Program of Shenzhen

under grant No. JCYJ20170307153157440 and the Shenzhen

Key Lab of Software Defined Networking under grant No.

ZDSYS20140509172959989.

REFERENCES

[1] Sushant Jain, Alok Kumar, Subhasree Mandal, Joon Ong, Leon Poutievs-
ki, Arjun Singh, Subbaiah Venkata, Jim Wanderer, Junlan Zhou, Min
Zhu, et al. B4: Experience with a globally-deployed software defined
wan. In SIGCOMM, 2013.

[2] Chi-Yao Hong, Srikanth Kandula, Ratul Mahajan, Ming Zhang, Vijay
Gill, Mohan Nanduri, and Roger Wattenhofer. Achieving high utilization
with software-driven wan. In SIGCOMM, 2013.

[3] Mohammad Al-Fares, Sivasankar Radhakrishnan, Barath Raghavan,
Nelson Huang, and Amin Vahdat. Hedera: Dynamic flow scheduling
for data center networks. In NSDI, 2010.

[4] Andrew R Curtis, Jeffrey C Mogul, Jean Tourrilhes, Praveen Yalagan-
dula, Puneet Sharma, and Sujata Banerjee. Devoflow: Scaling flow
management for high-performance networks. In SIGCOMM, 2011.

[5] Diego Kreutz, Fernando MV Ramos, Paulo Esteves Verissimo, Chris-
tian Esteve Rothenberg, Siamak Azodolmolky, and Steve Uhlig.
Software-defined networking: A comprehensive survey. Proceedings of
the IEEE, 103(1):14–76, 2015.

[6] Wenfeng Xia, Yonggang Wen, Chuan Heng Foh, Dusit Niyato, and
Haiyong Xie. A survey on software-defined networking. IEEE Commu-
nications Surveys & Tutorials, 17(1):27–51, 2015.

[7] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar,
Larry Peterson, Jennifer Rexford, Scott Shenker, and Jonathan Turner.
Openflow: enabling innovation in campus networks. In SIGCOMM,
2008.

[8] Xuya Jia, Yong Jiang, Zehua Guo, and Zhenwei Wu. Reducing and
balancing flow table entries in software-defined networks. In LCN, 2016.

[9] Zehua Guo, Yang Xu, Marco Cello, Junjie Zhang, Zicheng Wang,
Mingjian Liu, and H. Jonathan Chao. Jumpflow: Reducing flow table
usage in software-defined networks. Computer Networks, 92:300–315,
2015.

[10] Theophilus Benson, Aditya Akella, and David A Maltz. Network traffic
characteristics of data centers in the wild. In IMC, 2010.

[11] Junlan Zhou, Malveeka Tewari, Min Zhu, Abdul Kabbani, Leon
Poutievski, Arjun Singh, and Amin Vahdat. Wcmp: Weighted cost
multipathing for improved fairness in data centers. In EuroSys, 2014.

[12] Naga Katta, Omid Alipourfard, Jennifer Rexford, and David Walker.
Cacheflow: Dependency-aware rule-caching for software-defined net-
works. In SOSR, 2016.

[13] Kalapriya Kannan and Subhasis Banerjee. Compact tcam: Flow entry
compaction in tcam for power aware sdn. In ICDCN, 2013.

[14] Xuya Jia, Qing Li, Yong Jiang, Zehua Guo, and Jie Sun. A low over-
head flow-holding algorithm in software-defined networks. Computer
Networks, 124:170–180, 2017.

[15] Michael Jarschel, Simon Oechsner, Daniel Schlosser, Rastin Pries, Se-
bastian Goll, and Phuoc Tran-Gia. Modeling and performance evaluation
of an openflow architecture. In ITC, 2011.

[16] Kashif Mahmood, Ameen Chilwan, Olav Østerbø, and Michael Jarschel.
Modelling of openflow-based software-defined networks: the multiple
node case. IET Networks, 4(5):278–284, 2015.

[17] Siamak Azodolmolky, Reza Nejabati, Maryam Pazouki, Philipp Wieder,
Ramin Yahyapour, and Dimitra Simeonidou. An analytical model for
software defined networking: A network calculus-based approach. In
GLOBECOM, 2013.

[18] Jie Hu, Chuang Lin, Xiangyang Li, and Jiwei Huang. Scalability of
control planes for software defined networks: Modeling and evaluation.
In IWQoS, 2014.

[19] Bing Xiong, Kun Yang, Jinyuan Zhao, Wei Li, and Keqin Li. Perfor-
mance evaluation of openflow-based software-defined networks based
on queueing model. Computer Networks, 102:172–185, 2016.

[20] Yuki Goto, Hiroyuki Masuyama, Bryan Ng, Winston KG Seah, and
Yutaka Takahashi. Queueing analysis of software defined network with
realistic openflow–based switch model. In MASCOTS, 2016.

[21] Zhiruo Cao, Zheng Wang, and Ellen Zegura. Performance of hashing-
based schemes for internet load balancing. In INFOCOM, 2000.

[22] Marco Chiesa, Guy Kindler, and Michael Schapira. Traffic engineering
with equal-cost-multipath: An algorithmic perspective. IEEE/ACM
Transactions on Networking, 25(2):779–792, 2017.

[23] Zehua Guo, Ruoyan Liu, Yang Xu, Andrey Gushchin, Anwar Walid, and
H. Jonathan Chao. STAR: preventing flow-table overflow in software-
defined networks. Computer Networks, 125:15–25, 2017.

[24] Anders Nygren et al. Openflow switch specification, version 1.3. 4 (pro-
tocol version 0× 04), mar. 27, 2014. Open Networking Foundation.(Part
1 of 2), pages 1–84.

[25] Vern Paxson and Sally Floyd. Wide area traffic: the failure of poisson
modeling. IEEE/ACM Transactions on Networking, 3(3):226–244, 1995.

[26] Donald Gross. Fundamentals of queueing theory. John Wiley & Sons,
2008.

[27] Arjun Roy, Hongyi Zeng, Jasmeet Bagga, George Porter, and Alex C S-
noeren. Inside the social network’s (datacenter) network. In SIGCOMM,
2015.

[28] Mohammad Al-Fares, Alexander Loukissas, and Amin Vahdat. A
scalable, commodity data center network architecture. In SIGCOMM,
2008.

819Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on January 08,2024 at 06:33:29 UTC from IEEE Xplore. Restrictions apply.

