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Abstract—The outstanding increase in video traffic, puts
increasing pressure on network transmission. Since the Dynamic
Adaptive Streaming over HTTP (DASH) adjusts the delivery to
the dynamic network conditions, it has emerged as a popular
approach for video transmissions. However, bitrate switching
and video rebuffering may still occur and influence negatively
quality of experience (QoE). Additionally the popular videos
are transmitted multiple times, which leads to high bandwidth
consumption, despite large transmission redundancy. In this
context, we propose a Cooperative Learning-based scheme for
the smart Edge servers with cAching and Prefetching (CoLEAP)
to improve the QoE of adaptive video streaming. CoLEAP
employs edge servers which cache the most beneficial contents
to reduce redundant video transmissions and prefetches content
to decrease network transmission delay. Considering user-related
information and the state of network, CoLEAP intelligently makes
the most advantageous decisions of caching and prefetching by
employing a novel QoE-oriented deep neural network model. To
demonstrate the performance of our scheme, we test the proposed
solution in comprehensive simulated scenarios and against four
alternative solutions. When compared with the existing schemes,

Manuscript received February 22, 2020; revised July 29, 2020 and Septem-
ber 29, 2020; accepted October 1, 2020. Date of publication October 12,
2020; date of current version October 19, 2021. This work is supported
in part by the National Natural Science Foundation of China under Grant
61972189, in part by Guangdong Province Key Area R&D Program under
Grant 2018B010113001, in part by the Project “PCL Future Regional Network
Facilities for Large-scale Experiments and Applications (PCL2018KP001)”,
and in part by the Shenzhen Key Laboratory of Software Defined Networking
under Grant ZDSYS20140509172959989. The associate editor coordinating the
review of this manuscript and approving it for publication was Dr. Sanjeev
Mehrotra. (Corresponding author: Qing Li.)

Wanxin Shi is with Tsinghua Shenzhen International Graduate School, Shen-
zhen 518055, China, and also with the PCL Research Center of Networks,
and Communications, Peng Cheng Laboratory (PCL), Shenzhen 518066, China
(e-mail: shiwx17@mails.tsinghua.edu.cn).

Chao Wang is with Tsinghua-Berkeley Shenzhen Institute, Tsinghua Univer-
sity, Shenzhen 518055, China (e-mail: wangchao17@mails.tsinghua.edu.cn).

Yong Jiang is with Tsinghua Shenzhen International Graduate School, Shen-
zhen 518055, China, and also with Peng Cheng Laboratory (PCL), Shenzhen
518066, China (e-mail: jiangy@sz.tsinghua.edu.cn).

Qing Li is with the Southern University of Science and Technology, Shenzhen
518055, China, and also with the PCL Research Center of Networks and
Communications, Peng Cheng Laboratory (PCL), Shenzhen 518066, China
(e-mail: liq8@sustech.edu.cn).

Gengbiao Shen is with the Tsinghua Shenzhen International Graduate School,
Shenzhen 518055, China (e-mail: sgb16@mails.tsinghua.edu.cn).

Gabriel-Miro Muntean is with the Performance Engineering Laboratory,
School of Electronic Engineering, Dublin City University, Galsnevin Campus,
Dublin D09, Ireland (e-mail: gabriel.muntean@dcu.ie).

Color versions of one or more figures in this article are available at https:
//doi.org/10.1109/TMM.2020.3029893.

Digital Object Identifier 10.1109/TMM.2020.3029893

CoLEAP increases average bitrate by up to 181.8%, reduces video
rebuffering by up to 70.8% as well as decreases response time by up
to 28.0%. These values result in minimum improvements of 57.4%
and 29.0%, respectively in terms of cache hit rate and QoE.

Index Terms—DASH, caching, prefetching, QoE, edge
computing.

I. INTRODUCTION

THERE is an exponential increase in video traffic, which, ac-
cording to a Cisco report, is expected to exceed 82% of the

total IP traffic by 2022 [1]. This video traffic increase puts pres-
sure on existing heterogeneous network environment in terms of
its delivery and may as well result in lower viewer quality of ex-
perience (QoE). In this context, there is a need for solutions for
optimization of video delivery in order to improve user QoE and
consequently influence positively user satisfaction and user en-
gagement [2], [3]. The Dynamic Adaptive Streaming over HTTP
(DASH) [4] was standardised and is widely being employed to
enable highly flexible and dynamic video content adjustment.
Diverse client-side adaptive bitrate (ABR) algorithms [5]–[7]
were proposed to complement DASH and support in improving
the quality of adaptive video delivery. These algorithms can se-
lect the most appropriate bitrates for video transmissions, which
not only meet user requirements, but also adaptively respond
to the rapid change of network state, eventually mitigating the
pressure put by the increasing video traffic.

However, even when employing DASH-based solutions,
video deliveries still need to overcome some serious challenges.
The issues of most concern contain the unstable QoE related to
network dynamics and inefficient bandwidth utilization caused
by redundant transmissions. First, the highly dynamic Internet
can support best-effort content delivery only [8], [9]. For a re-
mote video viewer, the bandwidth fluctuations may result in
frequent bitrate switching and even rebuffering, which severely
affect QoE and ultimately degrade user satisfaction and engage-
ment [3]. Secondly, video transmissions are strongly correlated
temporally and spatially in relation to their content [10]. This
double correlation refers to the fact that the end users from
some specific area networks tend to request few popular videos
during specific time intervals. For instance, 62%-83% of Face-
book video transmissions concentrate on its merely top 0.1%-1%
videos [11]. Moreover, these clips are always requested during
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peak time (i.e. non-working hours). The redundant transmission
of frequently-requested videos contributes to most of bandwidth
consumption, inevitably leading to an inefficient use of limited
bandwidth resources.

Therefore, optimization of video transmissions continues to
attract important research efforts. Based on their principles, ex-
isting innovative solutions can be classified in diverse avenues, as
follows. A first research direction includes client-side adaptive
bitrate adjustment schemes [12]–[14], in which each client mak-
ing decisions by itself competes for the shared bandwidth [15].
Such solutions may lack global optimization or fairness. The
second research avenue focuses on global optimization at the
server side. However, it is of difficulty for the server to per-
ceive the whole network state and/or serve all users perfectly in
highly dynamic network conditions. The third type of solutions
employ cache-based redundancy elimination, including Content
Delivery Network (CDN) [16], Information Centric Network
(ICN) [17] and cache proxy [18], [19], etc. These techniques
have their pros and cons, mostly related to deployment cost,
implementation difficulties and function flexibility.

Accordingly, there is necessity to propose a scheme for QoE
video delivery improvement with the following properties:
� Optimize globally the video transmission for the clients

that share the same bottleneck, instead of allowing each
client make decisions locally.

� Reduce content transmission redundancy, which enables
that the limited dynamic network bandwidth be utilized
efficiently.

� Include mechanisms to reduce network jitter and smooth
the viewing experience for end users.

� Perform intelligent differentiation of services for different
users and/or videos (including video segments).

� Facilitate cooperation among adjacent edges to reduce un-
necessary overhead from redundant transmissions.

� Have commercial sense and be easy to deploy in the current
Internet.

In a previous work, we have proposed the smart edge LEAP
as a solution to achieve some of the aforementioned goals [20].
However, LEAP does not cooperate with adjacent edges to assist
busy backhaul links or utilize the resources available at other
edge nodes. Sometimes backhaul links are busy or down, so
cooperation between edge servers is beneficial in terms of both
supporting services and improving their performance. When the
origin server suffers failures, the adjacent edge nodes can act as
backup. Additionally fetching content from neighbouring edges
helps improve transmission delay.

In this context, the paper introduces the Cooperative scheme
for Learning-based Edge scheme with cAching and Prefetch-
ing (CoLEAP), which extends LEAP by employing node coop-
eration and caching in order to improve the performance of video
content delivery. CoLEAP considers multiple adjacent edge
nodes as part of a large cooperating edge structure, which enables
sharing of node storage and supports common utilization of their
computing capacity. Similar to LEAP, CoLEAP collects infor-
mation regarding video sessions from the clients, being aware
of video popularity and delivery quality. CoLEAP prefetches

the most popular video segments when there is available band-
width from the origin server. CoLEAP caches video segments
from the origin server according to a QoE-weighted popularity.
When there is not enough available bandwidth, CoLEAP deliv-
ers the prefetched video segments from the edge nodes instead
of the origin server and the clients benefit from an improved
service quality. The CoLEAP edge nodes cooperate with each
other to best share their limited computation and storage re-
sources and support video delivery at improved QoE levels in
dynamic network conditions.

This paper makes the following contributions:
� An edge-based scheme for caching and prefetching to re-

duce video transmission redundancy and mitigate the effect
of network jitter.

� A neural network model for the edge nodes to automati-
cally make caching and prefetching decisions such as to
maximize the QoE gains by using cooperation.

� A cooperative solution which effectively efficiently utilizes
the resources of adjacent edges.

CoLEAP was implemented and tested using simulations in
two major scenarios, involving a single and multiple cooperat-
ing edge nodes, respectively. The results show how CoLEAP
is very efficient in terms of performance as it outperforms sig-
nificantly other existing approaches in terms of average bitrate,
video rebuffering, cache hit rate, transmission duration and QoE
levels.

This paper is organized as follows. Section II presents related
works. Section III details the network model and some important
definitions. The designs of the CoLEAP-related schemes are
presented in Section IV. In Section V, the testbed is described
and evaluation results are presented. Section VI is the conclusion
of the paper.

II. RELATED WORK

Network transmission capacity affects user experience while
user experience facilitates the continuous optimization of net-
work transmission capacity. In order to improve user experience
in the context of highly dynamic network delivery environments,
various schemes are proposed including client-side, server-side
and network-based solutions.

A. Client-Side Adaptive Bitrate Adjustment Schemes

Lately, there is increased focus on client-side adaptive video
bitrate adjustment schemes. The model predictive control al-
gorithm (MPC) [5] assumes accurate prediction of network
throughput and utilizes a control-theoretic approach to select
the appropriate bitrate at the client in order to achieve the best
QoE. Huang et al. [21] proposed a buffer-based bitrate selection
scheme that explores the influence of buffer occupation on bitrate
adaptation. JM Batalla et al. [22] exploited a buffer-based tracker
to fulfill the guarantees of maximum rebuffering probability.
Buffer Occupancy based Lyapunov Algorithm (BOLA) [6] per-
forms local optimization of bitrate selection in a utility-based
approach and achieves near-optimal utility by employing the
Lyapunov technique. Oboe [7] auto-tunes dynamically the deliv-
ery parameters in order to adapt to different network conditions,
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improve throughput and reduce throughput variability in current
network conditions. However, each client makes decisions by it-
self despite competing for shared bandwidth with other clients
and therefore these approaches lack global optimization or fair-
ness.

B. Server-Based Optimization Schemes

The server-based optimization schemes refer to solutions
which apply global optimization methods at the server side in
order to improve user QoE associated with video transmissions.
For instance, the traffic shaping methods in [23] need to maintain
the stability and fairness for the users competing for the avail-
able bandwidth. The tracker in [24] should manage the clients
globally and help them share knowledge with each other. How-
ever, assessing the whole network state in real time at the server
is extremely difficult, so it is a challenge to support any online
global optimization for the fact that decisions are taken remote
from end users.

From another perspective, although the server-based ap-
proaches are effective, they demand high investment in devices
and maintenance due to their computing and storage require-
ments. S Altamimi et al. [25] proposed a server-side QoE-fair
rate adaptation method where the learning-based sever con-
sumes great computing resources. The sever-side scheme for
360-Degree video streaming [26] minimizes the overall re-
ceived video distortion of all users but requires great comput-
ing and storage capacity. Therefore, the classic server-based
approaches are not strongly recommended mostly due to their
coarse-grained optimization and high associated costs.

C. Network-Based Optimization Solutions

Network-based optimization schemes include cache-based
solutions, prefetching schemes and hybrid methods. Particularly
relevant are some works on caching and prefetching that are vital
for improving the performance of DASH streaming.

Cache Schemes: In order to improve the video delivery per-
formance with the limited storage capacity in the network, di-
verse cache schemes are proposed. The existing cache schemes
include offline and online types. Offline schemes adopt some
fixed replacement policies without considering the dynamic of
clients and servers in a long update period. While online schemes
adapt to the real-time dynamic to replace cache content. Some
offline cache schemes [11], [27] employ complex algorithms to
select and cache the most popular content. In order to improve
the response time, online cache schemes are proposed including
advanced algorithms or models, e.g., a Markov model based re-
placement algorithm for popular content [16], a reinforcement
learning method based caching method [28] and a real-time dy-
namic caching for non-popular content [29]. Further improve-
ments were proposed to provide finer granularity caching in a
fragmental proxy-caching scheme [30] and to introduce QoE
influence into cache replacement policies in some QoE-based
cache schemes [31]–[34].

Prefetching Schemes: The current cache-based approaches
employ diverse prefetching strategies following a cache miss

Fig. 1. SSIM: the videos are categorized into five types indicating variance in
quality.

Fig. 2. The distribution of chain lengths: note that chain lengths are denoted
in logarithms.

due to any of the following: first-time request, limited stor-
age space or device failure. First, prefetching was employed
mostly for interactive streaming [35]. Now customized video
prefetching is widely used. For instance, Google provides a
preload-webpack-plugin for web browsers [36], accelerating the
loading speed. HotDASH [37] implements a prefetching mod-
ule in the open source DASH player, which is powered by an
optimal prefetching and bitrate decision engine. These works
focus on client-side optimization but do not have a global sys-
tem perspective. Considering network-side HTTP content down-
load, prefetching is performed to the end of the video without
considering bitrate level adjustments [13], [14]. Focusing on
DASH-based video delivery acceleration, some works construct
utility-based models to prefetch content, such as iPac [38]. Un-
fortunately it does not take into account the bitrate switches in
the start-up phase [39].

Hybrid Schemes: Lately, following the increasing emphasis
on QoE, integrated cache-prefetching schemes have been pre-
vailing [13], [38]. However, despite of the rapid growth of these
schemes applied in the network, the existing third party infras-
tructure is either not practical or smart enough. These schemes
are not well compatible with the existing physical infrastructure
such as ICNs and CDNs. So it is of great necessity to exploit the
potential of smart edges. Smart edges can be regarded as the ex-
tension of proxies, working as an intelligent accelerator between
client and origin server as Fig. 4. In order to explore the available
resources of edges, cooperative caching schemes [40]–[42] are
also proposed but without consideration of prefetching.

DASH-aware caching and prefetching schemes are well de-
veloped and evaluated. In terms of HTTP-based adaptive stream-
ing (HAS), V Krishnamoorthi et.al [43] quantified the benefits
of basic best effort policies and more advanced content quality
aware prefetching policies. They proved that policy selection
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Fig. 3. The architecture of a single smart edge: it works with the client and
origin server under the dynamic network environment. The edge includes four
key modules detailed in Section IV.

Fig. 4. The architecture of an integrated system: the proposed edge can prac-
tically run on the mentioned positions above, serving numbers of users.

Fig. 5. The cooperative architecture of adjacent edges: each edge serves the
covered users with the assistance from the adjacent edge.

is important when trying to enhance HAS performance in edge
networks, which also motivates other research on QoE-based
prefetching, such as 4 K Video-on-Demand delivery in the mo-
bile network [44]. Besides, S Benno et.al [45] proved the key
role of response delay in HAS and the effect of cache on re-
sponse delay. In summary, these works are enlightening to our
research on the cooperative smart edge scheme with caching
and prefetching for DASH video delivery, as the architecture
of Fig. 5 illustrates, with the purpose of optimizing both user
experience and edge performance.

III. MODEL AND DEFINITION

To formulate the problem and solution, we construct the net-
work model and give the concrete definition of notations. We
also clarify the definition of QoE which is a key part of defining
Utility. Besides, the role of Utility playing in our scheme will
be illustrated.

A. Network Model

Consider a network model with three types of entities: end
users, edge servers and origin servers. End users request video
content which by default resides at the origin servers. However
the proposed solution CoLEAP employs a cooperative approach,
caching and prefetching and involves edge servers to deliver the
video content to end users more efficiently. Therefore, the net-
work in our work is defined as a bipartite graphGE,U,O,LE ,LO,L,
including the set of edge servers E = {e1, e2, . . ., eN}, the set
of end users U = {u}, the set of origin servers O = {o}, the set
of links between end users and edge servers LE = {lu,e|u ∈
U, e ∈ E}, the set of links between edge servers and origin
servers LO = {le,o|e ∈ E, o ∈ O} and the set of links between
the edges L = {lei,ej |ei, ej ∈ E}. Besides, cu,e(t), ce,o(t) and
cei,ej (t) represent the transmission capacities of lu,e, le,o and
lei,ej at time t, respectively. The proposed scheme requires end
users and cooperative edges to supply some local performance-
related information to edge servers. For instance, the following
information for the end user u requesting the file fm at time
t should be collected such as QoE value QoEu(fm, t), buffer
length bu(fm, t), rebuffering time ru(fm, t) and the perceived
Round Trip Time (RTT) τu(fm, t). Since the adaptive algorithm
makes the bitrate decision for the next segment sequentially,
these four values can be rewritten as QoEu(fm, k), bu(fm, k),
ru(fm) and τu(fm)wherek means the moment when requesting
the kth segment.

The features of DASH-based video are also illustrated. The set
of video files that users can watch is assumed as F = {f}. Each
video f is encoded into M(f) different bitrate versions and split
into K(f) segments. In our work, each segment lasts for 4 sec-
onds. Each segment is defined as fm,k,m ∈ M(f), k ∈ K(f).
The delivery-related values for the requested segments are saved,
fm,k they can be used to calculate the value of QoE. As a DASH
request arrives, the edge server extracts the required informa-
tion and calculates the utility with the QoE value. Therefore, we
define its utility as Utility(fm,k) for the video segment fm,k.
Then, the prefetching decisions of edge servers are made ac-
cording to utility values.

B. Qoe

In spite of diverse QoE definitions, its value is influenced by
average bitrate, bitrate switching, rebuffering ratio and rebuffer-
ing frequency [46] as well as total rebuffering time and start-up
stage [5]. QoE definitions describe the experience for a specific
period of S segments. Generally, QoE is defined across S seg-
ments of video f as follows:

QoEu =

S∑

s=1

[q(fm,s)− μru(fm,s)

− λ|q(fm,s+1)− q(fm,s)|]
where q(·) indicates the video quality, ru(·) indicates rebuffering
time and |q(fm,s+1)− q(fm,s)| indicates the bitrate switching
of two sequential video segments. Here QoEu may depend on
several continuous video segments (e.g., 5 or more). Referring to
Pensieve [47], we focus on the most essential factors for QoE and
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TABLE I
LOGS REQUIRED FOR CALCULATING UTILITY

consider bitrate, rebuffering and smoothness as critical elements.
For the user u, the QoE is defined as follows:

QoEu(fm,k) = q(fm,k)− μru(fm,k)

− λ|q(fm,k)− q(fm,k−1)|
where q(·) is used to evaluate the quality related to bitrate. μ and
λ are weight factors associated with rebuffering and smoothness,
respectively. Here QoEu(fm,k) is only influenced by two con-
tinuous segments. Each segment includes a 4-second video clip
in our implementation. Two video clips (8 seconds) are able
to provide enough QoE knowledge for further decisions in our
model. So the defined QoEu(·) is somewhat different from the
conventional one.

In order to provide relevance, q(·) is defined using the struc-
tural similarity (SSIM) index instead of simple bitrate value or
its variants [5], [6], [47].

SSIM was used as its value reflects better the subjective qual-
ity as perceived by users. The larger SSIM value is, the lower
compression loss and better video quality are. The SSIM of a
video can be formulated as a fourth-degree polynomial of the
logarithm of the normalized bitrate as follows, where α is a
synthetic representation of the complexity of a video scene, as
indicated in [48], [49].

SSIM(x) = 1 + αv,1x+ αv,2x
2 + αv,3x

3 + αv,4x
4

Here x = log[
B(fm,k)

Bmax(fm) ] is a logarithmic measure of the nor-
malized bitrate, where B(fm,k) indicates the bitrate of the seg-
ment fm,k and the Bmax(fm) indicates the maximal bitrate of
the video fm. The videos are categorized in one of five types
based on their associated SSIM values. These videos include TV
serials, movies, documentaries, etc. The video segments from
different types with the same bitrate may varies in SSIM that
indicates video quality. Fig. 1 shows the SSIM curves for the
five video types.

C. Utility

Utility is a comprehensive measure for QoE gain and the
being-requested probability of a certain video clip. It influences
the decisions of prefetching the next video segment by assessing
the benefit of prefetching. The utility associated with the videos
is saved at the edge server. The key elements of utility include
QoE gain, the probability of bitrate switching and size of the
next segment as shown in Table I. Taking R1 as a sample, it
represents a certain video clip, e.g., fm,k. At a certain moment,
providing different clients (e.g., C1 and C2, holding different
chain lengths) with the same content (e.g., R1) may bring dis-
tinct QoE Gains that is elaborated in Section III-C1. CHL and

p(CHL) respectively indicate the chain length of requesting the
same bitrate and the probability of keeping a stable chain, which
will be further illustrated in Section III-C2. The content with the
highest utility is prefetched. Next, we will elaborate in details
the utility components used.

1) Qoe Gain: As an important part of the utility, it is em-
ployed to reflect the benefit related to fetching the next seg-
ment of a video. It also provides input information in the cache
replacement process which will be further discussed in Sec-
tion IV-C. In our scheme, the utility of the probably-requested
video segment is updated upon the arrival of new DASH re-
quests, in need of the QoE Gain for each segment. In order to
calculate QoE Gain, we need to determine QoE values of the
requested segments if cache hit and miss happens, respectively.
For the kth segment in the video f , we assume that the values of
QoE if the next segment is cached isQoEhit

u (fm,k+1) and if it is
not cached is QoEmiss

u (fm,k+1). Therefore, we describe QoE
Gain of the probably-requested segment in video f as follows:

ΔQoEu(fm,k+1) = QoEhit
u (fm,k+1)−QoEmiss

u (fm,k+1)

However, it is very difficult to get the information of
QoEhit

u (fm,k+1) and QoEmiss
u (fm,k+1) due to the unknown

future network state. We use instead a prediction model to esti-
mate these values. We deploy the prediction model on the edge
server and collect user information to be used to calculate QoE
Gain. A deep neural network is designed to predict the QoE
Gain for all users, which is detailed in Section IV.

2) Chain-Based Utility: The utility should consider, apart
from QoE, also the content popularity to reflect the necessity
of fetching the content. The Utility formula, is as follows:

Utility(fm,k+1) =
∑

u∈U
ΔQoEu(fm,k+1)

×Popularity(fm,k+1)/c(fm,k+1)

However, the prediction of Popularity(·) for the next segment
is usually coarse-grained and not easy to compute. Additionally,
in general, Popularity(·) of the content is assessed for a whole
video instead of for each segment. Besides, the update period of
the content popularity is relatively long, which may be of little
use for the timely calculation of utility-based prefetching.

Instead, we focus on the characteristics of content itself. It can
be easily concluded that the DASH requests from a client con-
sists of a series of segments with certain bitrate, characterizing
bitrate switches. The sequence of the segments with constant
bitrate is called a chain. The length of the chain is consistent
with the constant requests. Simply according to the historical
statistics, the chain length distribution can be obtained [50]. It
can be modeled as a piecewise distribution by multiple fitting
lines or a special continuous function. As defined, the probabil-
ity of a chain length larger than x is p(x). With the collected logs
from the end users deployed on PlanetLab [38], we propose a
5-degree polynomial approximation as a function of the chain
length, i.e. p(x) =

∑5
i=0 aix

i, to fit the distribution as shown in
Fig. 2.

To clarify the definition of Utility, the size of the next seg-
ment is defined as c(fm,k+1) for the kth segment with a bitrate
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of m in the file f . Since the video segments have the same dura-
tion when employing DASH, segment bitrate represents segment
size in the experiment. Therefore, the utility value is namely the
expected QoE gain per unit, as follows:

Utility(fm,k+1) =

∑
u∈U ΔQoEu(fm,k+1)× p(l)

c(fm,k+1)

where l represents the length of corresponding chain of a single
end user, when requesting the kth segment.

To sum up, Utility, based on QoE gain and the probability of
bitrate switching, influences prefetching decisions in real time.
Besides, QoE Gain also influences cache replacement as stated
in Section IV-C. The concrete use of Utility is further detailed
in Section IV-E

IV. COLEAP DESIGN

A. Overview

Consider a single Edge that handles the DASH requests from
a Client and makes decisions to cache-prefetch the video content
from the origin Server, based on the QoE. Fig. 3 shows the archi-
tecture of the CoLEAP smart edge which consists of four mod-
ules including Request Collector, Cache Manager, QoE Gain
Predictor and Prefetch Manager. Request Collector gathers and
parses the requests from users and supplies user information to
other modules. Cache Manager achieves cache update, cache
lookup and content reply. QoE Gain Predictor utilizes the user
information and the network state to predict throughput and QoE
Gain. Prefetch Manager calculates the utility for videos and ex-
ecutes the utility-based prefetch strategy.

These modules cooperate with each other to serve the users
covered by the smart edge interactively. This design optimizes
the transmission globally instead of making the decision for
each client locally, which is beneficial to the efficient utilization
of the limited network bandwidth. Additionally, it can achieve
intelligent differentiation of services for different users or videos
(even video segments). Moreover, the differentiated service does
not result in transmission redundancy, but can help the smart
edge reduce network jitter in real time, ultimately providing
users with a smooth viewing experience.

In order to avoid long public Internet path with no quality as-
surance, CoLEAP is deployed closer to users at the level of the
smart edge server. The corresponding entities should have the
motivation to deploy the edge. According to the number of users,
the computing and storage capacity of the edge will be different.
So the smart edge can be deployed in multiple potential positions
as shown in Fig. 4. An option is for the campus or enterprise
network to deploy the edge server at the exit point connected
to network providers. In this way, edge managers themselves
achieve the optimization for their covered users. For example,
iQIYI Open Cache Program [51] is exactly an available plat-
form that provides customizable edge functions. Actually, the
smart edge can also be compared to a reverse proxy which in-
tercepts the requests before they reach the origin server. This
can be achieved by setting up appropriately the DNS entry for
the origin server. Alternatively, with the aid of public could, vir-
tualized edge data center of the Internet Service Provider (ISP)

and chosen super clients, content providers can deploy the smart
edge as a container, virtual machine (VM) or application. For
example, content providers, e.g., ByteDance and Youku, utilize
the hardware of Internet Data Center (IDC) to serve end users.
They depend on the storage and traffic capacity of IDC, which
motivates them to customize the edge functions. In this way,
the content providers themselves are of necessity to optimize
caching and prefetching. It follows that the content provider can
both help improve QoE for its users and reduce the required
bandwidth.

However, independent edges cannot take full advantage of
network capacity. Because certain edges may be too far from
the origin server. So even with prefetching, the responses from
the origin server to the edge are slow. The backhaul link may not
have enough transmission capacity for prefetching or may even
break down in some extreme conditions. So it is necessary to
make adjacent edges cooperate as illustrated in Fig. 5. The figure
shows how fetching content from a nearby edge is more efficient.
In our work, we set the first edge efirst as the cache server
for the geographically concentrated clients. It helps accelerate
video transmissions to these users. The second edge esecond is
an adjacent edge for efirst, but not covering the users. If the
link between the two edges has high transmission capacity, then
efirst and esecond can work as a cooperative cache. However,
these two edges cache distinctive content to support the users,
being complementary. For instance, esecond caches the content
with high utility, while efirst stores content with relatively low
utility.

B. Request Collector

In a DASH-based approach, the user performs adaptive video
streaming by dynamically selecting the bitrate for next video
segments requested. The smart edge collects some key infor-
mation from the geographically-concentrated DASH requests.
When such a DASH request arrives at the edge, the Request
Collector parses the obtained URL and identify the requested
video, and updates the information associated with the requested
content. The related modules record or calculate the latest fea-
ture values and writes them into these previously mentioned
modules including Prefetch Manager and QoE Gain Predictor.
Additionally, the edge periodically updates request information
and network status data to train the neural network model which
will be discussed later concretely.

As the smart edge takes the QoE-related cache-prefetch deci-
sions, alongside URL, the DASH request needs to provide some
relevant information. These requests may originate from either
the end user or the adjacent edge. The following information is
appended to the HTTP header of each DASH request, includ-
ing lastQoE, buffer, bitrate, videoType, chainLength, through-
putList_n, downloadTime_n, segmentSize_n and ifHit_n, RTT.
In Fig. 9, these variables are respectively abbreviated as LSTQ,
BFR, BTRT, TYP, CL, THP, DWT, IFHIT and RTT. Request Col-
lector extracts this information from the DASH requests for
further use. This information only consumes little transmission
bandwidth, so the extra overhead in the DASH scenario is low.
(e.g., 1 byte for lastQoE, 5 byte for throughputList_n, 1 byte
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Fig. 6. Prediction convergence.

Fig. 7. Throughput regression.

Fig. 8. Scatter matrix of QoE metrics: it shows the correlation between every
two metrics. A strong correlation presents regularly-distributed dots.

Fig. 9. The deep neural network for QoE prediction: the figure illustrates the
operations of the whole predicting process along with generating requests, in-
cluding collecting client-side information, estimating throughput and predicting
QoE gains.

for ifHit_n, etc. For instance, n=5, 22 bytes data is sent at each
request.)

C. Cache Manager

The cache strategy is relatively independent of the prefetch
strategy. This is as caching is performed for the already-
requested content, while prefetching is executed for the con-
tent which may be requested in the future. The storage space
for caching is allocated larger than that for prefetching, due to

the relative utilization ratio of content in the two situations. The
prefetched content may not be used and be discarded quickly in a
short update period of prefetching. So Cache Manager performs
the designed cache strategy and updates the local cache content
during an update period. Replacing different cached segments
has a distinct impact on QoE because of their different SSIM
values.

The cache update period is defined as Tc. We assume that, for
a certain video f during the θth period, there are Hf (θTc) seg-
ment IDs in all requests.hi

f (θTc), in which i = 1, . . . , Hf (θTc),
is the number of requests regarding each segment ID. The aver-
age QoE Gain for the video segments from historical statistics

are maintained and denoted as Δ̂QoE
k

f , k = 1, . . . ,K(f). To
sum up, the Accumulated QoE gain (AQ) for the received seg-
ments in the period can be described asAQi

f (θTc) = hi
f (θTc)×

Δ̂QoE
x(i)

f , i = 1, . . . , Hf (θTc), where x(i) is the function to
map the ith segment into the real ID.

As illustrated above,AQ is based on the request frequency and
QoE Gain, which takes both request characteristics and video
features into account. So we regard that AQ is useful to figure
out the priority of corresponding videos. If there are multiple
contents that have similar priority but without enough storage
spaces, we just remove the old ones which were requested early.
Even if a small number of cached contents are not so frequently
requested, the contents will be updated in the next cache replace-
ment period due to its changing request frequency and QoE Gain.

We design a novel cache strategy which we name Propor-
tional Accumulated Cooperative QoE gain (PACQ) to max-
imize the expected overall QoE gains for CoLEAP. During
the cache update period for a domain smart edge, for instance
efirst, its Cache Manager first calculates all values of the AQ
gains for the content requested directly by the domain users,
i.e. AQi

f (θTc). Then the list of AQi
f (θTc) is sorted in descend-

ing order. After that, Cache Manager selects the sorted seg-
ments sequentially till it cannot add more contents to the limited
cache space. The local cached contents is also checked. Finally,
the non-selected segments will be replaced. The periodical up-
date mechanism in Cache Manager improves the adaptability of
CoLEAP, leading to timely reaction to any dynamic scenario.

At the same time, for an adjacent edge e.g., esecond, its Cache
Manager also calculates the AQ gains for the content requested
directly by the clients, as well as AQ gains for the content re-
quested by other edges i.e. efirst.PACQ has a tuning parameter
η used to adjust the importance of the other edges’ requests. f(u)
and f(e) are the requests from users and edges, respectively for
the file f .

PACQi
f (sTc) = hi

f(u)(θTc)×Δ̂QoE
x(i)

f(u)

+ η × hi
f(e)(θTc)×Δ̂QoE

x(i)

f(e)

Any CoLEAP edge performs the same process described for
efirst to replace the items which have the AQ gains. In fact, each
edge acts both as primary edge (i.e. efirst) and as a cooperative
edge (i.e. esecond) for other edges. CoLEAP edges work as a
large cooperative cache to support the domain clients and offload
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traffic from the origin servers. This is achieved by edges by
dynamically and intelligently storing and serving content using
the CoLEAP approach.

To better distinguish different requests, the requests from
clients have user labels in the implementation, while those from
other edges do not. With the user labels, the edge can execute
the differentiated responses to different requests. We regard that
PACQ well solves the problem that duplicate contents may be
cached by adjacent edge servers. When the edge is relatively
idle, it can serve the adjacent edge more by increasing the pa-
rameter η, and vice versa. But the η in our implementation is not
automatically adaptive, which needs further improvement.

D. Qoe Gain Predictor

Any cache hit is associated with positive QoE gains, since
the cache edge server closer to the user than the origin server
accelerates the download process as well as decreases the trans-
mission latency. Additionally the edge load may be lighter and
network conditions better, so it may provide the user with higher
throughput. Therefore, prefetching the segments with high QoE
gains is beneficial. However, the actual QoE gains at the mo-
ment of content request can only be predicted. We employ a
deep neural network approach to predict the QoE gains in two
cases. Besides, as network throughput is a vital factor in the
QoE gain prediction, we also design a simple prediction model,
using linear regression, to forecast future throughput. Next, we
elaborate on the two prediction models.

1) Throughput Prediction: Network throughput is greatly in-
fluenced by many factors. We have analysed the correlation be-
tween the throughput and other factors by plotting the scatter-
based correlation diagram in cache hit and cache miss scenarios,
as shown in Fig. 8. The data is collected from the nodes on Plan-
etLab. These nodes act as client players requesting for video seg-
ments from the multimedia server deployed on Amazon Cloud.
The regular trend in subfigures indicates a strong correlation
between two features, while a disperse behaviour reflects weak
correlation. It can be concluded that segment size, user-to-edge
RTT and download time of video segments are strongly relative
to the throughput.

We cannot acquire the network throughput of cache hit when
cache miss happens because cache hit and cache miss cannot
occur at the same moment, and vice versa. Fortunately, it was
noted that there is a strong correlation between the throughput
during cache hit and the throughput during cache miss. Thus,
linear regression is available to predict throughput in two cases,
and the inputs of the regression model are the factors which were
identified to have the highest correlation. The fitting results show
a good agreement with actual measurement values, as Fig. 7
illustrates. The discrete dots scatter around the standard line,
indicating a good performance.

2) Qoe Gain Prediction: QoE gain prediction is performed
using a deep neural network approach. QoE gain is defined as
the difference between the QoE values associated with cache
hit and cache miss, which means that two QoE values need to
be predicted. We design a three-layer neural network to cal-
culate two QoE values by instantiating the model twice. The
difference between the two instances is in terms of network

throughput values, illustrated in Fig. 9. The inputs of the deep
neural network model consist of the information obtained from
the Request Collector. Moreover, the deep neural network adds
into the model the predicted throughput of cache hit, cal-
culated by using the historical throughput in cache hit sce-
narios to determine QoEhit

u (fm,k+1). Similarly, it calculates
QoEmiss

u (fm,k+1) by using predicted throughput of cache miss.
By subtracting the two values, the QoE gain of the next seg-
ment is computed and is used to calculate the corresponding
utility.

The QoE gain prediction model is trained at the server side due
to the requirement of computing capacity and power consump-
tion. We make use of a back-end server similar to Pytheas [52]
to train the model. For deployment in a cache scenario, the edge
in CoLEAP is an excellent choice. The edge server is able to
train the QoE prediction model, calculate the QoE gain and col-
lect historical statistics with the aid of its computing capacity.
In addition, if the prefetched content has already been cached at
the edge server, it is not necessary to repeat the calculation of
the QoE gain, saving computing resources to some extent.

E. Prefetch Manager

CoLEAP performs the prefetch following utility computation
and evaluation. Selecting the prefetch segments that generate
the maximum overall benefit result in an optimal result. We
design a periodical prefetch process and assume the prefetch
period is Tp. The ideal solution involves selecting the prefetch
segments such as the sum of the associated utilities is maximised
in each period. However, this simple method has two problems.
First, a large number of requests received in any period results
in excessive maintenance overhead and makes very hard solving
the complicated selection process. The second relates to the fact
that the fixed period solution inevitably postpones some prefetch
decisions and degrades the overall benefit. Hence, there is a need
for a more practical and timely method to make the prefetch
decision.

This content selection process is similar to the secretary prob-
lem [53] which is one of the famous optimal stopping problem.
We adopt the classic solution of the secretary problem as it re-
sponds to requests dynamically and timely, achieving high ef-
ficiency in each period. Note, we do not have to prefetch every
content which may be requested, as coarse-grained level selec-
tion offers good results. Additionally, caching and prefetching
are relatively independent to each other and they both improve
the overall results. Caching targets popular content requested in
the past and content that may be used in the future. Caching
is a process with a long update period and large storage space
requirements. Decisions refer to caching the whole video or just
certain video segments. Prefetching consumes the transmission
capacity and aims at content which may be accessed in a short
time in the future. If the prefetched content is not accessed in a
short period of time, it will be replaced immediately. Therefore,
the update cycle of prefetch is short, and its prefetch granularity
is in favor of saving resources. The secretary problem solution is
appropriate to the prefetching problem. Once the Prefetch Man-
ager has collected enough statistics, it can directly make the
prefetch decision for the subsequent requests.
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Algorithm 1: p-Tops Mechanism

Inputs: Utility(fm,k+1), r(dTp), Utilitymax(ηTp),
ncount

Outputs: xf - Binary variable denoting the prefetch
decision.

1: xf = 0
2: if t ≥ (η + 1)Tp then
3: update the value of r(ηTp)
4: Utilitymax(ηTp) = Utility(fm,k+1)
5: ncount = 1, η = η + 1
6: else
7: if ncount ≤ r(ηTp) then
8: Utilitymax(ηTp) =
9: max{Utilitymax(ηTp), Utility(fm,k+1)}

10: ncount = ncount + 1
11: else
12: if Utility(fm,k+1) ≥ Utilitymax(ηTp) then
13: xf = 1
14: end if
15: end if
16: end if
17: return xf

We design a novel Periodical Two-stage Optimal Prefetch
Selection mechanism (p-Tops) to solve the optimal selection
problem as shown in Algorithm 1. The details of the p-Tops’
two stages are described as follows.

Stage 1: The Prefetch Manager performs this stage at the
beginning of each period. For the dth prefetch period, the cur-
rent available bandwidth between the edge server and origin
server can be obtained: ce,o(ηTp). The obtained average bi-
trate in the last prefetch period is assumed as π̂(ηTp). Thus,
the possible maximum number of the prefetch segments can
be concluded in this period: κ(ηTp) =

ce,o(ηTp)
π̂(ηTp)

The weighted
average, as a useful approach to alleviate the influence of un-
certainty and randomness, is utilize to compute this value,
i.e. ν(ηTp) = αν((η − 1)Tp) + βκ(ηTp), where α and β are
weight factors. Similar to [48], it can be figure out that the
number of the accumulated segments in Stage 1 is as follows:
r(ηTp) = � ν(ηTp)

κ(ηTp)e
1/κ(ηTp) �. This indicates that the Prefetch

Manager only gathers request statistics in the first r(ηTp) re-
quests to find the maximum utility Utilitymax(ηTp) and does
not prefetch segments. This process is detailed in Lines 7-10 of
Algorithm 1.

Stage 2: With the collected information in Stage 1, the
Prefetch Manager implements the utility-based prefetch strat-
egy. The process of filtering prefetch requests is shown in Lines
11-14 of Algorithm 1. Once a request arrives during Stage 2, the
Prefetch Manager compares the utility of the request with the
acquired maximum utility Utilitymax(ηTp) from Stage 1. As
defined in Section III, the Utilityf ′ (t) is mapped to the video

segment in Utility(f
′
m,k). The possible-to-prefetch segment,

i.e. the next segment, will be prefetched if the Utility(fm,k+1)
is larger than Utilitymax(ηTp).

For more details in p-Tops, Lines 2-5 reset the parameters at
the beginning of a new prefetch period while Line 17 returns the
prefetch decision. By deploying p-Tops, we perform sequential
prefetching with a minimum influence on delay. Since it is as-
sumed that the bottleneck is between the edge server and the
origin server, the number of prefetch decisions in one period
does not exceed the upper bound of transmission capacity. In
addition, the weighted average method makes full use of the
estimated results and historical information, enhancing the per-
formance of prefetch strategy.

For better understanding that how to avoid the overlap of
caching and prefetching, we give a brief illustration on the ex-
ecution. We regard that the cache-miss requests are based on
traversing the cache space to ensure no corresponding contents.
In fact, the edge makes a quick comparison between the prefetch-
ing requests and the cache-miss logs, so as to ensure no over-
lapping requests. It also ensures that the prefetched contents
and to-be-prefetched contents do not exist in the cache space.
Besides, the prefetching requests sent during a prefetch period
are also recorded to avoid cache-miss requests. We record the
prefetching requests by generating a labeled cache-miss log at
the edge and dumping it in a prefetch period. The above simple
operations are helpful to avoid content redundancy.

However, the problem that the contents being returned may be
duplicate with the contents already cached, is difficult to solve
in the concurrent network. In spite of it, we believe that the
probability of its occurrence is small and the impact of it is
little. Because in the next prefetch period, the old prefetched
contents will be cleared and replaced depending on the com-
parison with the real cache-miss requests, which ensures that
a content will not be prefetched in an infinite loop or cause a
waste of bandwidth. Moreover, prefetching should be executed
during the idle time to avoid affecting the response to normal re-
quests. In other words, the inevitable overlapping contents from
the concurrent network are trivial. Because the space ratio of
caching to prefetching is 1000:1, or even 1000:0.5. Meanwhile,
the cache replacement period (e.g., minutes to hours) is gener-
ally long, which is not synchronized with the prefetch period
(e.g., seconds to minutes). Compared with spending more time
and computing resources on redundancy elimination, it works
well to wait and update in the next prefetch period. To sum up,
we believe that prefetching will not cause serious space waste
and bandwidth waste.

V. IMPLEMENTATION AND EVALUATION

A. Implementation and Setup

1) Implementation: In order to evaluate the performance of
our scheme in diverse network scenarios, we deploy CoLEAP in
a prototype based on the Apache Traffic Server (ATS) [54]. The
associated 4,000 lines of C++ and python code is available open
source in Github [55]. ATS uses a state machine to handle HTTP
transactions. Based on current states and HTTP transactions,
ATS uses HOOKS to call specific plug-ins and perform user-
defined functions. That is, the scheme is realized in the form of
plug-in which can be flexibly added or removed.
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Fig. 10. The architecture of neural network: it is adopted in the prediction of
QoE under cache miss/hit.

Fig. 11. The correspondence of hooks in ATS: it shows how a request triggers
the related actions in ATS which exploits hooks to finish transactions.

The main computing overhead is from training the QoE Gain
model, which mainly depends on the number of users and re-
quests. Larger user groups, containing more feature information,
lead to higher training cost, and vice versa. In our implemen-
tation, the server with NVIDIA Tesla M60 (16 GB GPU) is
adopted to train the model for hours to support hundreds of
clients. We regard that, in different real networks, the model
should be modified in accordance with the user scale, thus caus-
ing variance in demand for training power. With a well-trained
model, the ATS-based plug-in can be recompiled and applied
into other networks easily.

Fig. 11 illustrates how CoLEAP is deployed in the ATS con-
text. Four modules of the smart edge is implemented through
the plug-ins in ATS. READ_REQUEST_HDR_HOOK parses
user requests, achieving the function of Request Collector.
CACHE_LOOKUP_HOOK implements the Cache Manager
module to complete cache state feedback and the QoE-based
cache replacement. QoE Gain Predictor, obtaining the inputs
from the caller of Operation System (OS), runs when CUS-
TOMISED_NETWORK_HOOK triggers it. It is known that
Convolutional Neural Network (CNN) is a feedforward neural
network including a convolutional layer and a pooling layer.
For QoE Gain Predictor, the one-dimensional features pass
through a fully connected layer with 128 neurons as Fig. 10.
The multi-dimensional features pass through a one-dimensional
convolution layer with 128 neurons. The convolution kernel size
is 3. The past n values of the variables are first processed by the

CNN before the hidden layer. The stride and padding of the con-
volutional network are both 1 respectively. The outputs of the
full connection layer and the convolution layer are input into
a network composed of three full connection layers. There are
three hidden layers which contain 256, 128 and 128 neurons,
respectively. Besides, the activation function of the neural net-
work is Relu which has fast convergence and better consistence
with the characteristics of biological neurons. In our work, the
neural network is implemented in PyTorch with a C++ interface
libtorch.

In summary, QoE Gain Predictor is a compiled C++ program
that is invoked before the Prefetch Manager module runs. Then,
Prefetch Manager deals with prefetch requests and sends the
selected ones to the origin server with the aid of the proposed
prefetch strategy. The download throughput of the origin server
is continuously updated by executing TXN_CLOSE_HOOK.

2) Framework Setup: Next, we will give a complete picture
of the evaluation settings. There are five machines simulating
client hosts, edge servers and origin server in the experiments.
Two client hosts run 80 DASH request programs in total, simu-
lating different users downloading videos. The rate-based ABR
algorithm adopted is to choose the maximal bitrate according to
the throughput, which is similar to FastMPC [5]. DASH video
requests sent to the edge are attached with user state informa-
tion. Additionally, the distribution of client-side video requests
is set conforming to the Zipf law with a parameter, e.g., 0.73.

Two edge servers run ATS to implement the LEAP-based
schemes and the origin server serves the video requests with
Nginx Web Server [56]. To demonstrate the efficiency of the
proposed schemes under different cache sizes, the experiments
are executed with 5 GB and 10 GB cache. Additionally, CoLEAP
has two edges with 5 GB cache each. These two edges have good
transmission connectivity. The transmission capacity between
the client hosts and the edge server, is set at three levels: good,
average and poor by setting the delay on different program ports
using Linux Traffic Control tools [57]. The corresponding delay
is realized by setting different loss ratio for transmission, i.e.
0, 15%, 30%. As for the origin server, it contains 60 videos
which occupy in total about 100 GB. These videos include some
popular TV series, movies, documentaries and advertisement
videos. The types of these videos are equally distributed across
the five SSIM categories.

3) Schemes and Metrics: Six schemes are compared in our
experimental evaluation: CoLEAP, LEAP, Cache Only, Prefetch
All, iPac and No Cache. LEAP refers to a solution which uses the
proposed approach, but only one edge adopting smart caching
and prefetching strategies to serve the domain clients. CoLEAP
employs two smart edges to serve users cooperatively. In LEAP
and CoLEAP, one edge has a link to the origin server with a
maximum bandwidth of 20 Mbps. In CoLEAP, the backhaul
link between the second edge and the origin server has a max-
imum bandwidth of 90 Mbps. Cache Only refers to a solution
which caches the content with the highest QoE gain. Prefetch
All employs the aggressive prefetching that keep fetching till the
end of videos. iPac prefetches two segments for every request
according to their utility and No Cache performs no caching at
all.
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TABLE II
COMPARATIVE PERFORMANCE DATA FOR DIFFERENT SCHEMES

Fig. 12. Throughput variation when there is background traffic.

To better evaluate the performance of the schemes, five impor-
tant metrics are included in the evaluation, i.e., bitrate, rebuffer-
ing, cache hit rate, transmission speed and QoE. These metrics
are assessed from two perspectives including the average value
in a short period and the global distribution. Among them, bitrate
can represent the video definition at the client side. Rebuffering
time means the video stalling brought from slow transmission.
So the transmission speed is also a key metric for the schemes.
Besides, cache hit rate at the edge is fully considered to evaluate
the performance of caching and prefetching. Finally, QoE is a
defined index to present the effects of the schemes in an intuitive
manner. The overall testing results are presented in Table II, and
are discussed in the next subsection.

B. Evaluation in the Simulated Scenario

1) Throughput: To further illustrate the motivation of the
proposed scheme, the throughput is first analysed when band-
width variation is experienced by the link between the edge
and origin server. This simulates the presence of background
traffic that changes the available capacity of the backhaul link.
The bandwidth is varied between 1 Mbps and 4 Mbps periodi-
cally, i.e., 9 s where high bandwidth availability is maintained
for six seconds in each period followed by three seconds of
low available bandwidth (or high load time). The schemes com-
pared against are Cache Only and LEAP, which differ in terms
of prefetching.

Fig. 12 shows that the throughput of Cache Only is lower
than LEAP, making better use of the available bandwidth. Ad-
ditionally, LEAP achieves higher throughput than the available
bandwidth when Cache Only is declining sharply during the
high load periods. It can be concluded that, with prefetching,

LEAP adjusts the utilization ratio of available bandwidth under
different network conditions.

2) Average Bitrate and Rebuffering: With the variation of
network state, clients play videos and request different segments
with various schemes. Client-side average bitrate and rebuffer-
ing, as important indexes, are first investigated to compare the
effect of the different schemes. Fig. 13 a and Fig. 13 c show
how average bitrate varies in time, for the 5 GB and 10 GB
cache cases, respectively. The average bitrate slightly decreases
in time due to the increasing participation of users. Fig. 13 b
and Fig. 13 d show the Cumulative Distribution Function (CDF)
of bitrate for different schemes for the two cache sizes. In both
scenarios, the No Cache scheme acts as the baseline, exhibit-
ing the lowest average bitrate. Its bitrate CDF converges at a
low level because all user requests need to be served by the ori-
gin server. Cache Only and Prefetch All schemes show slightly
better average bitrate. However, the Prefetch All scheme does
not intelligently react to the changing bandwidth and some-
times even brings about backhaul congestion. Instead, the smart
prefetch schemes, i.e. iPac, LEAP, and CoLEAP, perform bet-
ter in both average bitrate and rebuffering. Besides, considering
bitrate switches, LEAP-based schemes obtains higher average
bitrate and lower rebuffering significantly than iPac does. Com-
pared with iPac, LEAP achieves 19.2% and 34.4% improve-
ments of average bitrate in the 5 GB and 10 GB cache scenar-
ios respectively. In the 10 GB scenario, CoLEAP obtains high
average bitrate, with 109.6% improvement in comparison with
LEAP. Because CoLEAP employs collaboratively an adjacent
edge to fetch more beneficial contents and also achieves the best
bitrate CDF as the curves show. Moreover, the larger the cache
size, the more the efficiency increases for all the schemes, im-
proving their performance.

Fig. 14 illustrates the rebuffering time for all schemes with
the same two cache sizes: 5 GB and 10 GB. It is obvious that
the Prefetch All scheme performs the worst due to its aggressive
prefetching behaviour while LEAP-based schemes obtain low
rebuffering time. Compared with iPac in both 10 GB and 5 GB
cache scenarios, Table II shows that LEAP reduces rebuffering
time with 42.7% and 40.0%, respectively. Noteworthy is that
CoLEAP barely suffers from rebuffering due to the availabil-
ity of the adjacent edge backhaul path. Compared with iPac,
CoLEAP reduces rebuffering time by 70.8% in the 10 GB cache
scenario. However, perhaps the utility-based prefetching does
not always work in the cooperative pattern because the statisti-
cal information of chain length is collected based on one-edge
experiments. Although the chain-based utility works fine in most
cases, it still causes rebuffering as Fig 14.(c) around Time 2 and
Time 9. To sum up, the LEAP-based schemes learn during the
learning process that reducing rebuffering can improve user ex-
perience, so they basically give priority to the requests from
users who are suffering from rebuffering.

3) Cache Hit Rate: The cache hit rate described here in-
cludes not only the traditional cache hit pertinent to the already-
requested contents cached by the edge server, but also the
prefetch hit related to the prefetch requests in the edge server.
Fig. 15 a and Fig. 15 b show the cache hit rate and its CDF with
a 5 GB cache. Fig. 15 c and Fig. 15 d illustrate the cache hit

Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on January 08,2024 at 03:31:02 UTC from IEEE Xplore.  Restrictions apply. 



3642 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 23, 2021

Fig. 13. Comparison of average bitrate.

Fig. 14. Comparison of rebuffering.

Fig. 15. Comparison of cache hit rate.

rate and its CDF with a 10 GB cache. As the baseline, Cache
Only is inferior to Prefetch All in both 10 GB and 5 GB sce-
narios. It can be concluded that Prefetch All improves its hit
rate by substantially consuming bandwidth resources and may
prefetch lots of unnecessary segments with the constant bitrate.
In both cache scenarios, the cache hit rate of iPac keeps declin-
ing till converging with the baseline, which can be attributed to
the increasing number of users and video requests. Moreover,
iPac executes a simple LRU cache policy combined with a con-
servative utility-based prefetching strategy. So iPac still needs
improvement.

LEAP-based schemes are superior to the other schemes. As
Table II shows, LEAP improves the cache hit rate by 33.9%
and 44.7% in 10 GB and 5 GB cache scenarios in compari-
son with iPac. In the 10 GB cache scenario, CoLEAP achieves
96% hit rate 57.4% better than that of Cache Only. At the same
time, the deep learning model ensures that the prefetched con-
tent has larger QoE. Moreover, CoLEAP also takes advantage of
the available bandwidth of the adjacent edge. However, both the
cache hit rates of iPac and LEAP in both 10 GB and 5 GB cache
scenarios decrease gradually and keep stable finally, because the

transmission capacity of the backhaul link is exhausted by the
increasing number of users and video requests. We also note
that, as expected, the larger cache size results in higher cache hit
rates. The hit rate of LEAP with a 10 GB cache is 4.4% improve-
ment than that with a 5 GB cache. Besides, CoLEAP achieves
25.0% higher hit rate than single LEAP due to the benefit of the
cooperative cache mechanism.

4) Response Speed and Qoe: Although the defined QoE does
not include explicitly response speed as an influencing factor,
the response speed affects viewing experience. Response speed
is a metric which helps verify the feasibility of a method and is
used to reflect the efficiency of our proposed scheme. The trans-
mission time for every segment and its distribution are shown
in Fig. 17a and Fig. 17b for the 5 GB cache edge and in Fig. 17c
and Fig. 17d for the 10 GB cache edge. The transmission results
are similar for all the schemes tested due to the similar settings
in the network simulations. CoLEAP transmission results in the
10 GB cache edge case, also shown in Table II, are better than
those of the other schemes, as CoLEAP uses edge cooperation
to provide the requested content. CDF also shows how CoLEAP
consistently supports low transmission times, while the other
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Fig. 16. Comparison of QoE.

Fig. 17. Comparison of response speed.

schemes have both low and very high transmission times. This
is a great result, despite the fact that the connection between the
edges in CoLEAP also adds to the transmission time.

Next we investigate the effect of all schemes on QoE. When
comparing the different schemes, we take No Cache as the base-
line, so its QoE value fluctuates around the zero line, as shown in
Fig. 16 a and Fig. 16 c, for the 5 GB and 10 GB cache size cases,
respectively. The CDF of QoE presented in Fig. 16 b and Fig. 16
d also describe the effect of these schemes in the two cases.
We find that the aggressive prefetching behavior of Prefetch All
causes the inevitable transmission delays even rebuffering. No
Cache shows a relatively better QoE, but the scheme does not
make good use of edge server resources. Cache Only, iPac and
LEAP obtain even higher values of QoE as the figures show.
Of these schemes, LEAP improves QoE by at least 15.9% and
13.4% in the 10 GB and 5 GB cache scenarios, respectively as
shown in Table II. We also find that cache size has little influence
on QoE for single LEAP, further demonstrating the efficiency
of LEAP. However, CoLEAP achieves the highest average QoE
and the best distribution, which confirms that utilizing adjacent
edges is highly beneficial. Note that the initial value of QoE is

lower for all the schemes, because waiting delay in the start-up
phase is considered as rebuffering and affects QoE. After the
buffer fills to a given threshold, the client starts playing and the
value of QoE reflects the schemes’ behaviour.

VI. CONCLUSION

The increasing deployments of DASH make smart edges be-
come the preferred target for transmission optimization. In order
to provide end users with high QoE, it is of necessity to design an
efficient edge scheme with caching and prefetching to take ad-
vantage of the available edge-side resources. This paper presents
a cooperative learning-based smart edge caching and prefetch-
ing solution to improve the QoE of adaptive video streaming.
We formalize the network problem and design a deep neural net-
work to predict the QoE gain, which is employed in the proposed
cooperative utility-based caching and prefetching strategy. The
results of comprehensive simulation-based testing demonstrate
the efficiency of our scheme in terms of multiple performance
metrics and in comparison with several existing solutions. By
smart prefetching, CoLEAP mitigates traffic load in the back-
haul links, increases average bitrate, reduces transmission time
and rebuffering and improves QoE. Further work considers de-
ploying CoLEAP in a real Internet environment and testing it in
comparison with other classic approaches.

REFERENCES

[1] V. Cisco, “Cisco visual networking index: Forecast and trends, 2017–
2022,” San Jose, CA, USA, Cisco, White Paper, 2018.

[2] F. Dobrian et al., “Understanding the impact of video quality on user
engagement,” in Proc. ACM SIGCOMM, 2011, pp. 362–373.

[3] J. Li, L. Krasula, Y. Baveye, Z. Li, and P. Le Callet, “AccAnn: A new
subjective assessment methodology for measuring acceptability and an-
noyance of quality of experience,” IEEE Trans. Multimedia, vol. 21, no. 10,
pp. 2589–2602, Oct. 2019.

[4] I. Sodagar, “The MPEG-DASH standard for multimedia streaming over
the internet,” IEEE Multimedia, vol. 18, no. 4, pp. 62–67, Apr. 2011.

[5] X. Yin, A. Jindal, V. Sekar, and B. Sinopoli, “A control-theoretic ap-
proach for dynamic adaptive video streaming over HTTP,” in Proc. ACM
SIGCOMM, 2015, pp. 325–338.

[6] K. Spiteri, R. Urgaonkar, and R. K. Sitaraman, “BOLA: Near-optimal
bitrate adaptation for online videos,” in Proc. IEEE INFOCOM, 2016,
pp. 1–9.

[7] Z. Akhtar et al., “Oboe: Auto-tuning video ABR algorithms to network
conditions,” in Proc. ACM SIGCOMM, 2018, pp. 44–58.

[8] D. Wu, Y. T. Hou, W. Zhu, Y.-Q. Zhang, and J. M. Peha, “Streaming video
over the internet: Approaches and directions,” IEEE Trans. Circuits Syst.
Video Technol., vol. 11, no. 3, pp. 282–300, Mar. 2001.

[9] Q. Zhang, W. Zhu, and Y.-Q. Zhang, “Resource allocation for multime-
dia streaming over the internet,” IEEE Trans. Multimedia, vol. 3, no. 3,
pp. 339–355, Sep. 2001.

Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on January 08,2024 at 03:31:02 UTC from IEEE Xplore.  Restrictions apply. 



3644 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 23, 2021

[10] Z. Wang, L. Sun, W. Zhu, S. Yang, H. Li, and D. Wu, “Joint social and con-
tent recommendation for user-generated videos in online social network,”
IEEE Trans. Multimedia, vol. 15, no. 3, pp. 698–709, Apr. 2012.

[11] L. Tang et al., “Popularity prediction of facebook videos for higher quality
streaming,” in Proc. USENIX ATC, 2017, pp. 111–123.

[12] J. Jiang, V. Sekar, and H. Zhang, “Improving fairness, efficiency, and sta-
bility in HTTP-Based adaptive video streaming with festive,” IEEE/ACM
Trans. Netw., vol. 22, no. 1, pp. 326–340, Feb. 2014.
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