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ABSTRACT
Duration bias widely exists in video recommendations, where mod-
els tend to recommend short videos for the higher ratio of finish
playing and thus possibly fail to capture users’ true interests. In this
paper, we eliminate the duration bias from both data and model.
First, based on the extensive data analysis, we observe that play
completion rate of videos with the same duration presents a bimodal
distribution. Hence, we propose to perform threshold division to
construct binary labels as training labels for alleviating the draw-
back of finish playing labels overly biased towards short videos.
Algorithmically, we resort to causal inference, which enables us
to inspect causal relationships of video recommendations with a
causal graph. We identify that duration has two kinds of effect on
prediction: direct and indirect. Duration bias lies in the direct effect,
while the indirect effect benefits prediction. To this end, we design
a model-agnostic Counterfactual Video Recommendation for Dura-
tion Debiasing (CVRDD) framework, which incorporates multi-task
learning to estimate different causal effect during training. In the
inference phase, we perform counterfactual inference to remove
the direct effect of duration for unbiased prediction. We conduct
experiments on two industrial datasets, and in addition to achiev-
ing highly promising results on traditional top-k recommendation
metrics, CVRDD also improves the user watch time.
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1 INTRODUCTION
With the prevalence of Web 2.0 and mobile devices, an increas-
ing number of users are joining online video platforms such as
Youtube1, TikTok2, and Douyin3 for sharing and viewing. In sce-
narios of video recommendations, previous studies focus on fitting
historical interactions to learn the matching score between user
preference and item feature [1, 4], where finish playing [7, 12] is
widely used as the training label. However, the presence of the
duration feature may make the prediction of such data-driven rec-
ommendation models biased. For example, short videos are more
likely to finish, even if users are not interested in the video content.
The spurious correlation between video duration and interaction
makes predictions deviate from users’ real preference [12, 41].

Figure 1(a) shows the duration bias on the ByteDance data, where
we train a MLP [4] and count the frequency of videos in the top-20
recommendation lists of all users. Blindly fitting data makes short
videos over-recommended. Worse, the model is more susceptible
to attacks, such as video creators who may intentionally post short
videos to obtain more exposure. Therefore, it is crucial to remove
the shortcut between duration and prediction to build personalized
video recommendation systems.

A straightforward solution is to use post-feedback (e.g., com-
ments and likes) instead of finish playing as training labels [39].
However, in the real scenarios, we observe that videos with post-
feedback are extremely sparse, so only collecting these videos for
training means that we will lose a large proportion of positive sam-
ples [35]. Existing solutions are mainly from a causal perspective
to debias. Inverse Propensity Weighting (IPW) [19, 29–31] adjusts
1https://www.youtube.com/
2https://www.tiktok.com/
3https://www.douyin.com/
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Figure 1: (a) An illustration of duration bias in recommender
system. The blue histogram indicates the ratio of videos in
different duration levels. The curve represents the average
recommendation frequency of models. (b) PCR distribution
of three different duration levels.

the data distribution by re-weighting the training samples to make
them unbiased. However, inaccuracy of the estimated propensity
scores may lead to high variance [1, 40, 42]. Some recent works
applied causal intervention with backdoor adjustment [27] over the
causal graph tomitigate the bias [12, 34, 41, 42]. Different from these
previous works, we design a novel framework with counterfactual
inference to perform duration debiasing.

First of all, based on extensive data analysis, we found that users’
play completion rate (PCR) show a bimodal distribution under the
same video duration. Figure 1(b) shows the distribution of PCR
under three different duration levels on the ByteDance data. This
statistical phenomenon is also consistent with the behavior of most
people in watching TikTok, who directly cross out the videos they
don’t like and might watch multiple times for the content they
prefer. Therefore, based on such natural properties of PCR, we can
easily perform threshold division to obtain binary labels to alleviate
the over-bias of finish playing as a training label for short videos.
Specifically, we obtain the threshold using Otsu’s algorithm [24],
which is a widely used image segmentation method when the image
gray histogram shows a bimodal distribution.

Although using binary PCR as training labels can help alleviate
the issue of duration bias, this kind of data-level optimization is
still incapable of eliminating the shortcut between video duration
and prediction. To this end, we resort to causal inference [27], in
which we formally define the video recommendation process as a
causal graph. From the graph, we find two effects of video duration
on model prediction: direct and indirect. The direct effect refers to a
shortcut from duration to prediction, showing spurious correlations
in duration (i.e., undesirable effects). For indirect effect, it extracts
reliable information by considering user-item matching scores. For
example, when two videos relatively match a user’s interest, the
shorter video may be more likely to finish playing.

To eliminate the direct effect of duration on prediction and retain
the indirect effect it brings, we propose a model-agnostic counter-
factual video recommendation framework (CVRDD). Specifically,
CVRDD incorporates duration into the matching score modeling to
retain the indirect effect. Meanwhile, we design a residual module
to separately model the shortcut from duration to prediction dur-
ing training. CVRDD estimates the direct effect by counterfactual
inference in the inference phase, i.e., imagining what the prediction
would be if the model only saw the effect of duration. CVRDD

achieves duration debiasing by retaining the indirect effect of dura-
tion and removing the direct effect during the inference phase. In
the experiments, we use binary PCR for training and post-feedback
labels for evaluation that can reflect the real user preference. The
results show that CVRDD not only achieves good results on Top-k
recommendation metrics, but also improves on user watch time.
Our contributions are summarized as follows:

• We formulate duration bias in video recommendation as
causal effects and propose a model-agnostic counterfactual
video recommendation for duration debiasing framework.

• To alleviate over-bias of finish playing labels on short videos,
we propose to perform threshold division to construct binary
training labels based on the play completion rate.

• Extensive experiments on two datasets collected from two
large-scale video-sharing platforms demonstrate the effec-
tiveness of our proposed duration debias scheme.

2 RELATEDWORK
2.1 Bias in Recommendation
Recently, several different types of biases have been studied in the
recommendation system [1]. The first type of biases originates from
experimental data. In other words, the distribution of the training
data is different from the ideal test data distribution. Selection
bias happens as users are free to choose which items to rate, so
that the observed ratings are not a representative sample of all
ratings [13, 22, 33]. Exposure bias occurs when users are exposed
to a part of specific items, so the unobserved interactions do not
always represent negative preference [2, 21, 25]. Conformity bias
results from group psychology in that users follow others in a group
even if the choice goes against their propensity [17, 18, 36]. Position
bias happens as users prefer to interact with those items in a higher
position of the list regardless of the items’ actual relevance [3, 14,
15]. The second type of biases comes from the model. Inductive
bias denotes the assumptions made by the model to better learn
the target function and to generalize beyond training data [5, 26].
The last type of bias in recommendation includes popularity bias
and unfairness. Popularity bias happens when a small fraction of
the whole items gain more popularity recurrently due to the long
tail phenomenon [38, 42]. Unfairness means the predilection of
the recommendation system discriminates against certain users or
groups systematically [6, 20].

2.2 Causal Recommendation
Recently, causal inference has become a hot topic in the recom-
mendation system [1]. The most popular methods can be divided
into three types. Inverse Propensity Weighting (IPW) adjusts
the training distribution by re-weighting training samples with
propensity scores [19, 29–31]. However, inaccuracy of the estimated
propensity scores may lead to high variance [1, 40, 42]. Causal
Intervention, where researchers intervene the causal relationship
that causes the bias and add adjustments to eliminate this harmful
effect for more accurate estimation [12, 34, 37, 41, 42]. Among them,
PD [42] is proposed to solve the popularity bias problem and De-
cRS [34] is used in the bias amplification problem. [12, 41] adopts
the backdoor adjustment to solve duration bias. However, because
the sample space is too large, their approximation of scores over the
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intervention terms is subject to large variance and lacks stability.
Counterfactual Inference adjusts prediction score by reducing
the bad effect of bias [23]. [35] is to solve the clickbait issue, and
[38] is to eliminate the popularity bias.

3 PRELIMINARIES
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Figure 2: The causal graph of placebo effect in drug treat-
ment. 𝑇 , 𝑃 , and 𝑅 stand for treatment, placebo, and recovery,
respectively. White nodes are at the value 𝑃 = 𝑝 while gray
nodes mean the variables are at reference status (e.g., 𝑃 = 𝑝∗).

In this section, we recapitulate some key concepts and theories
about causal inference [27, 28, 40].

Causal Graph. A causal graph is a Directed Acyclic Graph
consisting of nodes and edges, where nodes represent random
variables and edges represent causal relationships between two
connected variables. Figure 2(a) illustrates an example of causal
graph, where random variables 𝑇 , 𝑃 , and 𝑅 stand for treatment,
placebo, and recovery, respectively. The lowercase letters denote the
specific values of random variables.𝑇 → 𝑅 means that treatment𝑇
has a direct effect on recovery 𝑅. 𝑇 → 𝑃 → 𝑅 means that placebo
𝑃 acts as a mediator [28] between the indirect effects of treatment
𝑇 and recovery 𝑅.

Counterfactual Inference. Counterfactual inference is a think-
ing activity that denies facts that have already occurred and re-
represents them in order to construct a possibility hypothesis. In
the example shown in Figure 2(b), it emphasizes "what would hap-
pen if the treatment was the exact opposite of reality" and can be
used to compare the results of interventions in complex systems.
Formally, the structural equation of the causal graph is defined as
follows:

𝑅𝑡,𝑝 = 𝑅(𝑇 = 𝑡, 𝑃 = 𝑝), 𝑝 = 𝑃𝑡 = 𝑃 (𝑇 = 𝑡), (1)

where 𝑅(·) and 𝑃 (·) are the structural equations of 𝑅 and 𝑃 , respec-
tively, which can be learned from the observed data. 𝑃𝑡 indicates
what the placebo of someone would be if he/she has the treatments
𝑡 . 𝑅𝑡,𝑝 denotes what the recovery outcome of someone would be if
he/she has the placebo 𝑝 and treatment 𝑡 .

Figure 2(c) shows the causal graph of the factual and counterfac-
tual worlds, with the gray nodes representing the random variables
in the reference state (e.g. 𝑃 = 𝑝∗). When𝑇 is in the reference state,
𝑃 is set to 𝑝∗ = 𝑃 (𝑇 = 𝑡∗) and 𝑅 is set to 𝑅𝑡,𝑝∗ = 𝑅(𝑇 = 𝑡, 𝑃 = 𝑝∗).
Due to the presence of 𝑝∗ and 𝑡 , the color of node 𝑅 is set to half
gray, which is called the counterfactual scenario because it doesn’t
really happen in the factual world. It is only imagined in order to
study what the final result would be if 𝑇 was simultaneously set to
different values of 𝑡 and 𝑡∗.

Causal Effect. Formally, causal effect can be defined as the
difference between the outcome of the counterfactual world and
the outcome of the real-world observations for the same individual

[27]. The total effect (TE) of treatment 𝑇 = 𝑡 on R compares these
two situations 𝑇 = 𝑡 and 𝑇 = 𝑡∗, which is denoted as:

𝑇𝐸 = 𝑅𝑡,𝑝 − 𝑅𝑡∗,𝑝∗ . (2)

Total effect can be regarded as the sum of natural direct effect
(NDE) and total indirect effect (TIE). NDE represents the effect of
𝑇 on 𝑅 when the mediator 𝑃 is blocked. It expresses the increase
in the recovery 𝑅 with 𝑇 changing from 𝑡∗ to 𝑡 under the pure
environment 𝑃 (𝑇 = 𝑡∗) :

𝑁𝐷𝐸 = 𝑅𝑡,𝑝∗ − 𝑅𝑡∗,𝑝∗ . (3)

Similarly, TIE reflects the effect of 𝑇 on 𝑅 through the mediator 𝑃 .
TIE is the difference between TE and NDE, denoted as:

𝑇 𝐼𝐸 = 𝑇𝐸 − 𝑁𝐷𝐸 = 𝑅𝑡,𝑝 − 𝑅𝑡,𝑝∗ . (4)

4 DEBIAS FRAMEWORK
We first give the definition of the task in Section 4.1, then Section
4.2 presents the scheme for threshold division for PCR, Section 4.3
looks at the duration bias from a causal perspective and introduces
the CVRDD framework, and Section 4.4 presents the details of
instantiation, training and inference for CVRDD.

4.1 Task Fomulation
Let U = {𝑢1, ..., 𝑢𝑁 }, V = {𝑣1, ..., 𝑣𝑀 } and 𝐷 = {𝑑1, ..., 𝑑𝐿} denote
the set of users, items and duration levels, respectively, where 𝑁
is the number of users, 𝑀 is the number of items, and 𝐿 is the
number of duration levels. The user-item historical interactions
are represented by D = {(𝑢, 𝑣, 𝑑,𝑦) |𝑢 ∈ U, 𝑣 ∈ V, 𝑑 ∈ 𝐷 }, where
𝑦 ∈ {0, 1} denotes the binary label (e.g., finish playing or like).
The target of the traditional video recommendation training is
to learn the scoring function 𝑓 (𝑢, 𝑖 |Θ) from D, which is capable
of predicting the preference of user 𝑢 on item 𝑖 , where Θ is the
parameters of 𝑓 .

4.2 Binary PCR Label
A user’s play is defined as finish playing if its duration is greater
than or equal to the video duration. Obviously, finish playing has
serious bias towards short videos, and the model trained with finish
playing as its ground-truth label will exacerbate the preference for
short videos. To mitigate the bias of finish playing label at the data
level, we introduce Play Completion Rate (PCR) defined as:

PCR = min
(
1.0,

𝑃𝑙𝑎𝑦 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛

𝑉𝑖𝑑𝑒𝑜 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛

)
. (5)

Figure 1(b) shows the distribution of PCR for three types of
video durations on ByteDance data (video durations have been
discretized). As can be seen, the distribution of PCR of each video
duration type presents a bimodal distribution. Moreover, as the
video duration increases, the left peak increases while the right
peak decreases. This is also consistent with the perception that
short videos are more likely to finish broadcasting and therefore
have a higher right peak.

Exploiting the natural property of bimodal distribution, we can
easily perform threshold division to obtain binary labels. Inspired
by the Otsu algorithm [24] in image segmentation, we design a
threshold division scheme for bimodal distribution as follows.
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First, we discretize the PCR arrays into 𝑆 bins, each with prob-
ability 𝑝𝑠 . The threshold 𝑡 ∈ [1, 𝑆] divides them into two classes:
𝐶0 and𝐶1. Class𝐶0 has a probability of𝑤0 =

∑𝑡
𝑖=1 𝑝𝑖 , a mean of 𝑢0

and a variance of 𝜎20 . Class 𝐶1 has a probability of𝑤1 =
∑𝑆
𝑖=𝑡+1 𝑝𝑖 ,

a mean of 𝑢1 and a variance of 𝜎21 .
The optimal division should achieve minimum intra-class vari-

ance and maximum inter-class variance. Otsu algorithm proves
that maximizing the inter-class variance is equivalent to minimiz-
ing the intra-class variance. Therefore, we expect to maximize the
inter-class variance 𝜎2

𝑏
, which is given as:

𝜎2
𝑏
= 𝑤0 (𝑢0 − 𝑢)2 +𝑤1 (𝑢1 − 𝑢)2, (6)

where 𝑢 is the overall mean of the two classes, which can be calcu-
lated as 𝑢 = 𝑤0𝑢0 +𝑤1𝑢1. As such, (6) can be rewritten as:

𝜎2
𝑏
= 𝑤0𝑤1 (𝑢0 − 𝑢1)2 . (7)

Due to the large bimodal difference of the PCR distribution, we also
wish to minimize the mean standard deviation 𝜎 in order to make
the intra-classes more compact, where 𝜎 is given as:

𝜎 = 𝑤0𝜎0 +𝑤1𝜎1 . (8)

Finally, incorporating both objectives above, the best division
threshold 𝑡∗ is obtained as:

𝑡∗ = max
𝑡 ∈{1,...,𝑆 }

𝑤0𝑤1 (𝑢0 − 𝑢1)2
𝑤0𝜎0 +𝑤1𝜎1

. (9)

4.3 Counterfactual Video Recommendation.
In this section, we first introduce the duration bias in video recom-
mender systems through cause graphs. Then, we propose CVRDD,
a framework for eliminating the duration bias.

4.3.1 Casual graph. As shown in Figure 3(a), we use a causal
graph to describe the causal relationships in the video recommenda-
tion task, i.e., the relationships among user𝑈 , video𝑉 , match score
𝑀 , video duration 𝐷 , and model prediction 𝑌 . The explanation of
these causal relationships is as follows:

• 𝑈 denotes user features, e.g., ID, location.
• 𝑉 denotes video representation, e.g., ID, category, author.
• 𝐷 denotes video duration which is a confounding feature.
• 𝑀 represents the match score, which reflects the user’s pref-
erence for the video.

• 𝑌 represents the prediction of whether the user interacts
with the video, such as finish playing and likes.

• {𝑈 ,𝑉 } → 𝑀 → 𝑌 represents the indirect effect of 𝑈 , 𝑉 on
𝑌 through the mediator variable𝑀 . This path is to develop
a statistical model for the conditional probability 𝑃 (𝑌 |𝑈 ,𝑉 ).

• {𝑈 ,𝑉 , 𝐷} → 𝑀 → 𝑌 targets at modeling 𝑃 (𝑌 |𝑈 ,𝑉 , 𝐷) via
extending tranditional recommendation model, which ex-
ploits the video duration feature.

• 𝐷 → 𝑌 represents a shortcut between video duration and
interaction, as video duration provides salient features with
spurious correlation for interaction.

From the causal graph, it can be concluded that 𝐷 affects 𝑌 from
two aspects: 1) the indirect effect of𝐷 on𝑌 via mediator𝑀 , which is
useful for prediction; and 2) the direct effect of𝐷 on𝑌 , which makes
the relationship between interaction and match score spurious, thus
creating the duration bias. Therefore, to eliminate the duration bias,
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Figure 3: (a) Causal graph for Video Recommendation tasks.
(b) Illustration of counterfactual inference.

it is necessary to remove the direct effect of video duration on the
interaction, i.e., the path 𝐷 → 𝑌 .

4.3.2 CVRDD framework. Video recommendation model pre-
dicts interaction behavior 𝑌 from the match scores of user 𝑢 and
video 𝑣 , i.e., path {𝑈 ,𝑉 , 𝐷} → 𝑀 → 𝑌 in the causal graph, which
is modeled as 𝑃 (𝑌 |𝑈 ,𝑉 , 𝐷). A good video recommendation model
𝑃 should have prediction results that reflect the real preferences
of users. According to the previous analysis, model 𝑃 mixes the
direct and indirect effect leading to duration bias. Therefore, we
propose CVRDD to remove the direct effect of duration 𝐷 on the
interaction 𝑌 . To further analyze the causes of the interaction, we
describe the form of the interaction Y based on user 𝑢 and video 𝑣
with the duration 𝑑 as:

𝑌𝑚,𝑑 = 𝑓𝑌 (𝑀 =𝑚,𝐷 = 𝑑), (10)

where 𝑓𝑌 is a function that combines the match score and the
duration score. The match score𝑚 is calculated as:

𝑚 = 𝑌𝑚 = 𝑓𝑀 (𝑈 = 𝑢,𝑉 = 𝑣, 𝐷 = 𝑑), (11)

where 𝑓𝑀 is an arbitrary video recommendation model, such as
DeepFM [8]. Following the definition of causal effects in Section 3,
if a no-treatment 𝐷 = 𝑑∗ is applied on both the direct and indirect
effects, the total effect (TE) is:

𝑇𝐸 = 𝑌𝑚,𝑑 − 𝑌𝑚∗,𝑑∗ . (12)

The natural direct effect (NDE) of the duration feature of 𝐷 = 𝑑 is:

𝑁𝐷𝐸 = 𝑌𝑚∗,𝑑 − 𝑌𝑚∗,𝑑∗ , (13)

where 𝑌𝑚∗,𝑑 answers a counterfactual problem: what the model
prediction would be if the VR model only had seen the direct effect
of duration. According to Eq. (4) in Section 3, the natural approach
is to use the total indirect effect (TIE) for inference, i.e., subtract
the natural direct effect (NDE) from the total effect (TE):

𝑇 𝐼𝐸 = 𝑇𝐸 − 𝑁𝐷𝐸 = 𝑌𝑚,𝑑 − 𝑌𝑚∗,𝑑 , (14)

which mitigates the bad effect (i.e., NDE) caused by the path𝐷 → 𝑌 .
As such, we utilize the reliable indirect effect (i.e., TIE) for the
unbiased prediction by counterfactual inference.

4.4 Instantiation.
To achieve debiasing, CVRDD first needs to be instantiated, and
thenwe introduce the correspondingmulti-task training framework
and counterfactual inference scheme as shown in Figure 4.

4897



Counterfactual Video Recommendation for Duration Debiasing KDD ’23, August 6–10, 2023, Long Beach, CA, USA

Model

u v d

ResNet

Y!

Model

u v d

Y! Y"

Y!," Y!∗,"

Y!∗

L$%& L$%&L'(

ResNetModel

u v d

Y! Y"

Y!," Y!∗,"

Y!∗

Model

u v d

Model

u vu v

Y!

Train Test

TrainTrain Test Test

P(Y|U, V) P(Y|U, V, D)L$%&

CVRDD

𝑦,𝑦,

L$%&

TIE

Model

=

Figure 4: Comparison between our CVRDD and traditional
Video Recommendation (VR) methods.

4.4.1 Pameterization. To instantiate the CVRDD framework, we
now need to implement the following functions:

𝑌𝑚 = 𝑓𝑀 (𝑈 = 𝑢,𝑉 = 𝑣, 𝐷 = 𝑑), (15)

where 𝑓𝑀 can be any recommendation model. Here, we use a multi-
layer perceptron (MLP) to compute the match score 𝑌𝑚 between
user 𝑢 and video 𝑣 of duration 𝑑 .

In addition, we adopt a residual network [11] denotes as 𝑓𝐷 to
calculate the score 𝑌𝑑 of duration 𝐷 = 𝑑 :

𝑌𝑑 = 𝑓𝐷 (𝐷 = 𝑑) . (16)

The final perdition score is obtained by aggregating 𝑌𝑚/𝑌𝑚∗ and
𝑌𝑑 through the aggregation function 𝑓𝑌 :

𝑌𝑚,𝑑 = 𝑓𝑌 (𝑀 =𝑚,𝐷 = 𝑑) = F (𝑌𝑚, 𝑌𝑑 ), (17)

𝑌𝑚∗,𝑑 = 𝑓𝑌 (𝑀 =𝑚∗, 𝐷 = 𝑑) = F (𝑌𝑚∗ , 𝑌𝑑 ), (18)
where𝑚∗ = 𝑓𝑀 (𝑈 = 𝑢∗,𝑉 = 𝑣∗, 𝐷 = 𝑑∗) is the reference state (see-
ing in Section 3). F is one of the following three fusion functions:

• Summation [35]

F (𝑌𝑚, 𝑌𝑑 ) = log𝜎 (𝑌𝑚 + 𝑌𝑑 ), (19)

where 𝜎 is the sigmoid function.
• Harmonic [23]

F (𝑌𝑚, 𝑌𝑑 ) = log
𝑌𝐻𝑀

𝑌𝐻𝑀 + 1
, (20)

where 𝑌𝐻𝑀 = 𝜎 (𝑌𝑚) ∗ 𝜎 (𝑌𝑑 ).
• Multiplication [38]

F (𝑌𝑚, 𝑌𝑑 ) = 𝑌𝑚 ∗ 𝜎 (𝑌𝑑 ) . (21)

Since counterfactual inference takes the maximum prediction as
the outcome, whether or not to normalize 𝑌𝑚,𝑑 is optional.

4.4.2 Multi-task training. Based on the CVRDD framework and
parameterization scheme, our model requires two prediction scores:
𝑌𝑚,𝑑 and 𝑌𝑚∗,𝑑 . Therefore, we adopt a multi-task learning method
to train our model. Since both are binary classification tasks, we
take binary cross-entropy (BCE) as the training loss function:

𝐿𝑃 = BCE(𝑌𝑚,𝑑 , 𝑦) + 𝛼 ∗ BCE(𝑌𝑚∗,𝑑 , 𝑦), (22)

where𝛼 is the weight to balance two tasks, and𝑦 is the ground-truth.
Figure 4 shows the workflow of traditional video recommendation
and CVRDD in the training and test phases.

An unsolved question is how to calculate 𝑌𝑚∗,𝑑 = F (𝑌𝑚∗ , 𝑌𝑑 ) ,
where 𝑌𝑚∗ denotes model 𝑓𝑀 without (𝑢,𝑣) as inputs in the coun-
terfactual world. A straightforward solution is to input 𝑢 and 𝑣 as
zero-vectors into the model 𝑓𝑀 to obtain 𝑌𝑚∗ . Instead of that, many
previous works [35, 38] choose to ignore 𝑌𝑚∗ and only model 𝑌𝑑 as
a substitute for 𝑌𝑚∗,𝑑 . However, such a simplified approach leads
to certain inaccuracies. In the real world, humans always tend to
guess with a certain probability when it is undetermined with many
treatments. Therefore, we introduce a learnable parameter 𝑎 as 𝑌𝑚∗

used to control the sharpness of the distribution of 𝑌𝑚∗,𝑑 ,

𝑎 = 𝑌𝑚∗ = 𝑓𝑀 (𝑈 = 𝑢∗,𝑉 = 𝑣∗) . (23)

Since learning is uncontrollable and an unreasonable 𝑎 would
lead to the result that TIE in Eq.(4) is dominated by TE or NDE.
Thus, we introduce Kullback-Leibler Divergence to estimate 𝑎:

𝐿𝑘𝑙 = 𝐾𝐿(𝑝 (𝑦 |𝑚,𝑑) | |𝑝 (𝑦 |𝑚∗, 𝑑)), (24)

where 𝑝 (𝑦 |𝑚,𝑑) = 𝜎 (𝑌𝑚,𝑑 ) and 𝑝 (𝑦 |𝑚∗, 𝑑) = 𝜎 (𝑌𝑚∗,𝑑 ). Accord-
ingly, our final training loss is:

L =
∑︁

(𝑢,𝑣,𝑑,𝑦) ∈D
𝐿𝑃 + 𝛽 ∗ 𝐿𝑘𝑙 , (25)

where 𝛽 is the hyper-parameter to balance the KL loss.

4.4.3 Inference. To eliminate the direct causal effect of path𝐷 →
𝑌 , we need to subtract the prediction score 𝑌𝑚,𝑑 of model 𝑓𝑀 from
the prediction score 𝑌𝑚∗,𝑑 of model 𝑓𝐷 to obtain the final unbiased
prediction scores:

𝑇 𝐼𝐸 = 𝑌𝑚,𝑑 − 𝑌𝑚∗,𝑑 = F (𝑌𝑚, 𝑌𝑑 ) − F (𝑎,𝑌𝑑 ), (26)

In this way, we can eliminate the bad effect of duration bias during
the stage of inference.

5 EXPERIMENT
5.1 Dataset
1) Wechat: This dataset was adopted in WeChat Big Data Chal-
lenge4, which records the behavior of users on short videos in two
weeks. We discretize duration into 𝐿 = 6 levels. The user id, device
id, video id, author id, and multimodal content feature vectors are
used as other feature inputs.
2) ByteDance5: We collect the interaction data of feed streams
from the server logs of ByteDance’s video platform, which contains
200,000 highly active users for a total of 30 days from April 1, 2022
to April 30, 2022. We discretize duration into 𝐿 = 90 levels. The
pretrained ID embeddings and side information are used as other
feature inputs for all methods.
4https://algo.weixin.qq.com/2021/problem-description
5https://www.bytedance.com/en/products
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To split the dataset, we sort each user’s data chronologically, and
divide the training set, validation set, and test set by 6:2:2 per user.
We consider two training labels: Finish Playing (FP) and binary
PCR. To evaluate the effectiveness of different debiasing schemes,
we follow previous works [12, 35] to construct unbiased test data
w.r.t. Duration using post-feedback (comments and likes) as Test
Labels (TL) which can reflect true user interests. In summary, each
interaction has two different training labels and one test label, all
of which are binary. Table 1 shows the statistics of two datasets.

Table 1: Statistical Information. 𝑋+/𝑋 − denotes the ratio of
positive and negative samples of label 𝑋 .

Data #user #video #interaction 𝐹𝑃+/𝐹𝑃− 𝑃𝐶𝑅+/𝑃𝐶𝑅− 𝑇𝐿+/𝑇𝐿−

WeChat 20,000 96,428 7,210,290 0.83 1.15 0.05

ByteDance 200,000 9,633,578 183,800,612 0.39 0.94 0.01

5.2 Experimental Setup
5.2.1 Metrics. To evaluate the performance of different methods,
we adopt three widely-used Top-K recommendation metrics: Re-
call@K, MAP@K, and NDCG@K. We report the results for 𝐾 = 3
and 𝐾 = 5 on WeChat and 𝐾 = 10 and 𝐾 = 20 on ByteDance. In
addition, since user watch time is of great importance for video
providers, we design a metric: Average User Time Coverage
(AUTC@K) as follows:

𝐴𝑈𝑇𝐶@𝐾 =
1
|𝑈 |

|𝑈 |∑︁
𝑖=1

∑𝐾
𝑗=1 𝑅

#𝑡𝑖𝑚𝑒
𝑖 𝑗∑𝑀

𝑘=1𝑇
#𝑡𝑖𝑚𝑒
𝑖𝑘

,

where |𝑈 | is the number of users in test set, 𝑅 and 𝑇 represent
the recommended video sequence and the true interactive video
sequence, respectively. 𝐾 and 𝑀 denote the sizes of 𝑅 and 𝑇 , re-
spectively, and 𝑅#𝑡𝑖𝑚𝑒

𝑖 𝑗
or𝑇 #𝑡𝑖𝑚𝑒

𝑖 𝑗
represents the lengths of time that

user 𝑖 watched video 𝑗 .

5.2.2 Baselines. We implement CVRDD with multi-layer percep-
tron (MLP) neural networks to explore how it boosts recommenda-
tion performance and compare it with the following baselines:

• MLP. This method uses MLP without duration feature to
model 𝑃 (𝑌 |𝑈 ,𝑉 ) to estimate user-item matching score.

• MLP-D [4]. This method uses MLP with duration feature to
model 𝑃 (𝑌 |𝑈 ,𝑉 , 𝐷) to estimate user-item matching score.

• IPW [30]. This method adjusts the training distribution by
re-weighting training samples with propensity scores. We
implement IPW with MLP.

• DCR-MoE [12] This method removes backdoor paths of du-
ration by performing causal interventions with do-calculus,
while modeling different duration levels with a mixture-of-
experts (MoE) architecture. We implement it based on MLP
for a fair comparison. MoE’s hidden dimensions are searched
in the range of {50, 100}.

• Res-D2Q [41]. This method follows the principle of back-
door adjustment and proposes a Duration-Deconfounded
Quantile-based watch-time prediction framework for du-
ration debias. We implement Res-D2Q based on MLP and
discretize Wechat and ByteDance data into 𝐿 = 6 and 𝐿 = 90
equal-sized groups, respectively.

5.2.3 Hyper-parameters and training details. We implement
the video recommendation model on WeChat using a three-layer
MLP with hidden dimensions of 300, 200, and 100, respectively, and
the activation function is ReLU. We optimize all models with Adam
[16] optimizerwith batch sizes of {1024, 2048}.We use grid search to
find the optimal hyperparameters. In the CVRDD framework, 𝛼 and
𝛽 , which balances multi-task losses and makes the learning process
of 𝑌𝑚∗ controllable, respectively, are both searched in the range of
{0.0, 0.1, ..., 1.0}. The learning rate is searched in {1𝑒−3, 1𝑒−4, 1𝑒−5}.
To avoid overfitting, we set the dropout [32] to 0.2 and the patience
of earlystop to 10 epochs. The reproduction code and data can be
found at https://github.com/tss-ml/cvrdd.

5.3 Comparison
In this section, we report the recommendation performance of
binary PCR and our CVRDD framework, while investigating the
inference time of different models.

5.3.1 Different training labels. By analyzing the results shown
in Table 2, we draw the following conclusions:

• We can obverse that almost all models perform better in
binary PCR than finish playing, especially on bytedance data
that contains more long videos. This can be attributed to
the fact that finish playing is overly biased towards short
videos at the data level. As such, models trained on such
data suffer from exacerbated duration bias during training
process, which makes it more difficult to debias.

• However, MLP-D is unable to achieve optimal performance
in binary PCR compared to other models. We believe that
MLP-D learns total causal effects of 𝐷 on 𝑌 (i.e., path 𝐷 → 𝑌

and 𝐷 → 𝑀 → 𝑌 ), rendering it highly biased towards short
videos. However, binary PCR changes the label distribution
of finish playing, and the label reversal for long videos in-
creases the difficulty of MLP-D training, making it unable to
control the recommendation for long videos well.

5.3.2 Different debias schemes. Further, we compare the results
of different models in Table 2 and draw the following conclusions:

• Our proposed CVRDD scheme with binary PCR achieves
the best performance in both Wechat and ByteDance. This
demonstrates the effectiveness of our scheme and its good
trade-off between Top-K metrics and watch time. Such im-
provement can be attributed to the fact that CVRDD removes
the shortcut from 𝐷 to 𝑌 (i.e., path 𝐷 → 𝑌 ) in the inference
phase and leverages the indirect effect of 𝐷 to 𝑌 (i.e., path
𝐷 → 𝑀 → 𝑌 ) well.

• The poor performance of both MLP and MLP-D is because
both establish spurious correlation between D and Y by the
direct effect of D to Y during the training process. The reason
why MLP-D outperforms MLP is that MLP-D captures the
indirect effect of D on Y by modeling 𝑃 (𝑌 |𝑈 ,𝑉 , 𝐷), i.e., short
videos are more likely to complete play.

• The reason that IPW does not show strong effectiveness is
that its performance is highly dependent on the correctness
of the propensity score estimates, and it suffers from high
variance, leading to non-optimal results [1, 40].
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Table 2: Overall top-K performance of different methods on Wechat and ByteDance. Metric@K denotes the corresponding
top-K recommendation performance on this metric. FP and PCR denote finish playing and binary PCR, respectively. For each
dataset, bold scores indicate the best in each column, underlined scores indicate the best baseline, and * represents the different
train label for which the same model obtained the best results. For all metrics, the higher the result, the better.

Wechat

Model Label Recall@3 MAP@3 NDCG@3 AUTC@3 Recall@5 MAP@5 NDCG@5 AUTC@5

MLP FP 0.0626 0.0415 0.0456 0.0645* 0.1049 0.0554 0.0634 0.1099*
PCR 0.0636* 0.0423* 0.0465* 0.0631 0.1081* 0.0568* 0.0649* 0.1075

MLP-D FP 0.0636 0.0428 0.0463 0.0632* 0.1075 0.0574 0.0649 0.1084*
PCR 0.0666* 0.0441* 0.0477* 0.0610 0.1096* 0.0584* 0.0660* 0.1051

IPW FP 0.0629 0.0421 0.0461 0.0737* 0.1086 0.0569 0.0648 0.1232*
PCR 0.0647* 0.0427* 0.0468* 0.0717 0.1088* 0.0571* 0.0651* 0.1208

DCR-MoE FP 0.0631 0.0419 0.0461 0.0761 0.1095 0.0573 0.0652 0.1271
PCR 0.0665* 0.0439* 0.0478* 0.0786* 0.1099* 0.0582* 0.0659* 0.1291*

Res-D2Q - 0.0638 0.0433 0.0482 0.0769 0.1095 0.0583 0.0671 0.1280

CVRDD FP 0.0656 0.0444 0.0474 0.0777 0.1091 0.0592 0.0660 0.1269
PCR 0.0682* 0.0462* 0.0492* 0.0829* 0.1107* 0.0601* 0.0668* 0.1332*

ByteDance

Model Label Recall@10 MAP@10 NDCG@10 AUTC@10 Recall@20 MAP@20 NDCG@20 AUTC@20

MLP FP 0.0704 0.0232 0.0250 0.1820 0.1337 0.0290 0.0379 0.2799
PCR 0.0725* 0.0236* 0.0252* 0.1889* 0.1368* 0.0295* 0.0382* 0.2893*

MLP-D FP 0.0740* 0.0250* 0.0269* 0.1731 0.1370 0.0308* 0.0398* 0.2678
PCR 0.0734 0.0241 0.0260 0.1764* 0.1385* 0.0301 0.0393 0.2723*

IPW FP 0.0775 0.0254 0.0266 0.2291 0.1460 0.0316 0.0402 0.3386
PCR 0.0810* 0.0265* 0.0278* 0.2386* 0.1502* 0.0327* 0.0415* 0.3519*

DCR-MoE FP 0.0785 0.0258 0.0270 0.2407 0.1479 0.0321 0.0407 0.3564
PCR 0.0825* 0.0272* 0.0283* 0.2464* 0.1536* 0.0336* 0.0424* 0.3632*

Res-D2Q - 0.0785 0.0260 0.0279 0.2101 0.1473 0.0323 0.0416 0.3181

CVRDD FP 0.0812 0.0267 0.0279 0.2510 0.1518 0.0331 0.0420 0.3709
PCR 0.0899* 0.0307* 0.0320* 0.2684* 0.1631* 0.0373* 0.0467* 0.3871*

Table 3: Results of ablation experiments on CVRDD. The asterisk represents the best fusion strategy F .

WeChat

Strategy Recall@3 MAP@3 NDCG@3 AUTC@3 Recall@5 MAP@5 NDCG@5 AUTC@5
SUM* 0.0682 0.0462 0.0492 0.0829 0.1107 0.0601 0.0668 0.1332
HM 0.0676 0.0455 0.0486 0.0696 0.1117 0.0610 0.0667 0.1169
RUBI 0.0636 0.0422 0.0466 0.0727 0.1077 0.0568 0.0652 0.1220
w/o kl 0.0659 0.0435 0.0458 0.0920 0.1096 0.0581 0.0641 0.1424

ByteDance

Strategy Recall@10 MAP@10 NDCG@10 AUTC@10 Recall@20 MAP@20 NDCG@20 AUTC@20
SUM* 0.0899 0.0307 0.0320 0.2684 0.1631 0.0373 0.0467 0.3871
HM 0.0777 0.0271 0.0288 0.2301 0.1439 0.0333 0.0422 0.3269
RUBI 0.0769 0.0253 0.0265 0.2362 0.1443 0.0314 0.0400 0.3246
w/o kl 0.0824 0.0288 0.0291 0.2494 0.1514 0.0351 0.0437 0.3602

• Both Res-D2Q and DCR-MoE are causal intervention-based
methods. Res-D2Q predicts the watch time quantile. DCR-
MoE achieves the best results among the baselines. However,
their approximation of the scores of the intervention terms
lacks stability, resulting in the inability to obtain the best
results.

5.3.3 Inference time. Table 4 shows the inference time cost on
NVIDIA A100 GPU and the number of model parameters for MLP-
D, DCR-MoE and CVRDD. MLP-D is the backbone of the other
two schemes. The inference time cost of CVRDD is only slightly
higher than MLP-D because it only adds a Res-MLP network to the
backbone for modeling duration bias separately. DCR-MoE, which
is the best performing baseline, suffers from significantly increased
inference time cost. This is because DCR-MoE usesMoE structure to
model each duration level individually, whose parameters increase
with the increase of duration level 𝐿 in the dataset. As can be seen,
our proposed CVRDD is a light-weight and highly scalable debias
scheme that achieves better performance by only making slight
adjustments to the backbone.

Table 4: Comparison of model parameters and average infer-
ence time cost per batch.

Data Wechat ByteDance
Model Time(s) Params Time(s) Params
MLP-D 0.06 15.0M 0.12 255.9M

DCR-MoE 0.13 15.1M 0.38 256.8M
CVRDD 0.07 15.0M 0.15 255.9M

5.4 Ablation Study
5.4.1 Different fusion strategies. The ablation results in Table
3 reveal that different fusion strategies F capture different direct ef-
fects on the duration bias during the training process. This indicates
the summation fusion strategy outperforms the other strategies.
It also shows that fusion functions with appropriate bounds can
further improve the performance of CVRDD. Furthermore, the per-
formance of the best model decreases when the restriction of KL
loss is removed in training, which indicates that learning a proper
𝑌𝑚∗ is crucial for CVRDD.
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Table 5: Comparison of different methods for processing 𝑌𝑚∗

WeChat

𝑌𝑚∗ Recall@3 MAP@3 NDCG@3 AUTC@3 Recall@5 MAP@5 NDCG@5 AUTC@5
learning 0.0682 0.0462 0.0492 0.0829 0.1107 0.0601 0.0668 0.1332
u/v=0 0.0654 0.0432 0.0467 0.0887 0.1092 0.0574 0.0646 0.1319

- 0.0637 0.0415 0.0458 0.0732 0.1075 0.0554 0.0629 0.1288

ByteDance

𝑌𝑚∗ Recall@10 MAP@10 NDCG@10 AUTC@10 Recall@20 MAP@20 NDCG@20 AUTC@20
learning 0.0899 0.0307 0.0320 0.2684 0.1631 0.0373 0.0467 0.3871
u/v=0 0.0852 0.0268 0.0296 0.2559 0.1584 0.0340 0.0481 0.3647

- 0.0861 0.0242 0.0279 0.2571 0.1562 0.0307 0.0452 0.3754

5.4.2 Different learning strategies of 𝑌𝑚∗ . We explore three
different methods of learning𝑌𝑚∗ : 1) learning refers to the approach
used in our paper, where 𝑌𝑚∗ is set as a learnable parameter; 2)
u/v = 0 denotes the approach which sets the user and item as zero-
vectors input to 𝑓𝑀 , i.e., 𝑌𝑚∗ = 𝑓𝑀 (𝑢 = 0, 𝑣 = 0, 𝑑 = 𝑑). 3) "-"
refers to the approach which ignores 𝑌𝑚∗ when modeling 𝑌𝑚∗,𝑑 .
We report the experimental results of the three aforementioned
approaches on two real datasets in Table 5.

When using u/v = 0 or removing 𝑌𝑚∗ , we can see a non-trivial
performance drop on all metrics when compared with our learning
approach. This denotes that using a learnable parameter 𝑌𝑚∗ is a
better option. Among the three different approaches, we can see
that modeling 𝑌𝑚∗,𝑑 without 𝑌𝑚∗ underperforms the other two
approaches, which denotes that it is necessary to use 𝑌𝑚∗ .

Besides, by treating 𝑌𝑚∗ as a learnable parameter rather than
calculating 𝑌𝑚∗ by directly feeding (u = 0, v = 0, d = d) into the
recommendation model 𝑓𝑀 , we see a consistent improvement on
all metrics. One possible reason is that in u/v = 0 setting, training
𝑌𝑚∗ entangled with the original recommendation model 𝑓𝑀 might
make it difficult to converge to the optimal value. However, our
learning strategy, which restricts 𝑌𝑚∗ to the range of (0, 1), is more
consistent with the process of human reasoning, as stated in Section
4.4.2: "In the real world, humans always tend to guess with a certain
probability when it is undetermined with many treatments."

5.5 Prediction Study
In this section, we analyze the working mechanism of CVRDD in
terms of prediction scores and recommendation frequencies.

5.5.1 Model Prediction. In this subsection, we analyze the mech-
anisms of different models in terms of their prediction scores. Specif-
ically, we divide the test set into 𝐿 groups based on duration and
calculate the average prediction scores for each group for each
model. Figure 5, 6 show the average prediction scores of the mod-
els in FP and binary PCR as training labels, respectively. Figure 7
compares the average prediction scores of CVRDD under the two
training labels. We have the following conclusions:

• For personalized video recommendation, the prediction score
of the model is expected to change as little as possible on
each duration. CVRDD has the lowest fluctuation among
all curves, which means that CVRDD removes the shortcut
brought by duration to the model and the prediction score
obtained is a true user-item match. Also, we find that the
prediction scores of CVRDD-PCR are more stable compared
to CVRDD-FP, which demonstrates that our proposed binary
PCR will be beneficial for model training.
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Figure 5: Model prediction scores for different durations
when training label is FP.
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Figure 6: Model prediction scores for different durations
when training label is binary PCR.
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Figure 7: CVRDD prediction scores for different durations
with different training labels.

• The prediction scores of MLP and MLP-D are highly corre-
lated with duration (their curves have a significant negative
correlation with duration). That is, they are heavily biased
toward short videos, giving them higher scores. MLP-D ex-
plicitly models the indirect effect of 𝐷 to 𝑌 while being
influenced by the short connection from 𝐷 to 𝑌 , so it will
have higher scores in short videos compared to MLP.

• The IPW curve is flatter compared to MLP and MLP-D, but
has larger fluctuations on ByteDance, suggesting that IPW
can only slightly mitigate bias, which can be attributed to
the fact that propensity weights are not easily estimated.

4901



Counterfactual Video Recommendation for Duration Debiasing KDD ’23, August 6–10, 2023, Long Beach, CA, USA

0 1 2 3 4 5
Duration level

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Vi
de

o 
ra

tio

0.0

1.0

2.0

3.0

4.0

5.0

Av
g.

 fr
eq

ue
nc

y

MLP
MLP-D
IPW
CVRDD
DCR-MoE
Res-D2Q

(a) Top@5 on Wechat.

0 20 40 60 80
Duration level

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Vi
de

o 
ra

tio

0

5

10

15

20

25

Av
g.

 fr
eq

ue
nc

y

MLP
MLP-D
IPW

CVRDD
DCR-MoE
Res-D2Q

(b) Top@20 on ByteDance.

Figure 8: Model average recommendation frequency for dif-
ferent durations when training label is FP.
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Figure 9: Model average recommendation frequency for dif-
ferent durations when training label is binary PCR.
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Figure 10: CVRDD average recommendation frequency for
different durations with different training labels.

• Res-D2Q uses watch duration quantile as the prediction
target, and it still has a high prediction score for short videos
on ByteDance, indicating that it can not eliminate duration
bias well.

• The DCR-MoE is relatively flat on the curve of WeChat, how-
ever, it shows more significant fluctuations in the prediction
scores of short videos on ByteDance. This indicates that
DCR-MoE has a large instability in elimination bias.

5.5.2 Reommendation Frequency. In this subsection, we ana-
lyze the average recommendation frequencies of different models
to further explore how CVRDD performs duration debasing. Specif-
ically, the average recommendation frequency is the ratio of the
recommendation frequency of a duration level to the number of
videos in that level. Figure 8, 9 show the average recommenda-
tion frequency of the models in FP and binary PCR as training
labels, respectively. Figure 10 compares the average recommenda-
tion frequency of CVRDD under the two training labels. We have
the following conclusions:

• CVRDD clearly reduces the frequency of short video rec-
ommendations and increases the frequency of long video
recommendations, as does DCR-MoE. In particular, Figure

10 shows us that CVRDD-PCR shows further improvement
in the long and short video recommendation frequencies
compared to CVRDD-FP. In contrast to FP, PCR is a loose
and not significantly tendentious training label, which plays
an important role in eliminating duration bias.

• Aswe can see, the average recommendation frequency curves
of MLP and MLP-D show a long tail, indicating that they
are heavily influenced by duration bias, which is not in line
with the concept of personalized recommendation.

• The curve of IPW on Wechat is almost identical to that of
MLP andMLP-D, which shows once again that the estimation
of propensity scores is extremely unstable to the extent that
it fails to achieve expectations.

6 CONCLUSION
In this paper, we study the duration bias in video recommendation.
Firstly, we exploit the distributional properties of play completion
rate to construct threshold division algorithms to obtain new train-
ing labels for alleviating the drawback of finish playing labels overly
biased towards short videos. Algorithmically, we propose a model-
agnostic CVRDD framework and inspect the causal relationship of
video recommendation. CVRDD identifies the bad effect of dura-
tion on model prediction and eliminates it in the inference stage. It
requires only a few lines of code adjustment and can be applied to
any video recommendation model to achieve duration debiasing.
Experiments validate that CVRDD improves top-k recommendation
metrics and the average user time coverage, which is one of the
metrics valued by video providers.
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