
Mousika: Enable General In-Network Intelligence in
Programmable Switches by Knowledge Distillation

Guorui Xie∗†, Qing Li†, Yutao Dong∗†, Guanglin Duan∗†, Yong Jiang∗†, Jingpu Duan‡†
∗ International Graduate School, Tsinghua University, Shenzhen, China

† Peng Cheng Laboratory, Shenzhen, China
‡ Southern University of Science and Technology, Shenzhen, China

Abstract—Given the power efficiency and Tbps throughput
of packet processing, several works are proposed to offload the
decision tree (DT) to programmable switches, i.e., in-network
intelligence. Though the DT is suitable for the switches’ match-
action paradigm, it has several limitations. E.g., its range match
rules may not be supported well due to the hardware diversity;
and its implementation also consumes lots of switch resources
(e.g., stages and memory). Moreover, as learning algorithms
(particularly deep learning) have shown their superior perfor-
mance, some more complicated learning models are emerging
for networking. However, their high computational complexity
and large storage requirement are cause challenges in the
deployment on switches. Therefore, we propose Mousika, an in-
network intelligence framework that addresses these drawbacks
successfully. First, we modify the DT to the Binary Decision Tree
(BDT). Compared with the DT, our BDT supports faster training,
generates fewer rules, and satisfies switch constraints better.
Second, we introduce the teacher-student knowledge distillation
in Mousika, which enables the general translation from other
learning models to the BDT. Through the translation, we can
not only utilize the super learning capabilities of complicated
models, but also avoid the computation/memory constraints when
deploying them on switches directly for line-speed processing.

Index Terms—In-network Intelligence; Decision Tree; Pro-
grammable Switch.

I. INTRODUCTION

Recent years have witnessed an emerging trend of applying
learning algorithms to many networking scenarios [1]. For
instance, to improve the routing performance, in [2], the
authors present a scheme of using machine learning models
(e.g., Gaussian Process Regression and Neural Network) for
flow size prediction. In [3]–[5], different deep learning models
(e.g., Convolutional Neural Network, CNN and Recurrent
Neural Network, RNN) are proposed for traffic classification
to improve the network management and QoS provisioning.
In [6], the authors also propose a neural network to detect
malware traffic and guarantee network security. The current so-
lution of implementing the learning model as a virtual network
function (VNF) on X86 servers cannot provide satisfactory
processing latency and capacity. However, deploying these
learning models on the network devices directly for high-speed
processing is a significant challenge to be addressed.

Compared with the traditional network devices, the mod-
ern programmable switches (e.g., P4 switches [7] of Tbps)

Corresponding author: Qing Li (liq@pcl.ac.cn)

enable the programmable logic. Therefore, some works are
proposed to completely deploy the learning algorithms on
switches’ data plane for line-speed processing, i.e., in-network
intelligence [8], [9]. In order to guarantee the high-speed
processing, only simple instructions like integer additions and
bit shifts are allowed. This limitation hinders the deployment
of complicated models except for the decision tree (DT), a
rule-based learning classifier [10]. In [11], the authors propose
IIsy, which utilizes several programmable stages and lots of
range match rules to offload a DT on the switch. Although
the DT seems to fit the switches’ match-action paradigm, it
still has three challenges: 1) The range match used in the
DT is not widely supported. 2) The implementation in [11]
consumes multiple stages and contains thousands of rules,
which may delay the packet processing and take up lots of
the hardware resources. 3) The learning capability of the DT
is not as powerful as other models, e.g., RNN and CNN.

Based on these, in this paper, we propose Mousika 1, a well-
designed in-network intelligence framework for programmable
switches that can successfully address the aforementioned
drawbacks:

• The device compatibility. There are diverse soft-
ware/hardware programmable switches that support dif-
ferent standards. Thus, the range match (e.g., defined in
v1model.p4 [12]) used in the DT may not be widely
supported by other switches [13]. In Mousika, we modify
the DT to a new rule-based model, the Binary Decision
Tree, whose classification rules are bits and thus can
be effectively encoded into the widely-supported ternary
match (defined in the standard core.p4 library).

• The model translation. Except for the DT, other learning-
based models can hardly be deployed on the switches
due to their complexity of computation and storage [14].
But their designs maintain lots of domain knowledge and
usually have superior performance. Thus, in Mousika, we
adopt a teacher-student knowledge distillation architec-
ture to teach the BDT [15]. In other words, the knowledge
of teachers (e.g., deep learning or ensemble machine
learning models) is translated into the BDT through this
architecture. As a result, the teacher models are deployed
on switches indirectly, which avoids the computation and

1Mousika is a Greek deity of learning.

978-1-6654-5822-1/22/$31.00 ©2022 IEEE 1938

IE
EE

 IN
FO

C
O

M
 2

02
2

- I
EE

E
C

on
fe

re
nc

e
on

 C
om

pu
te

r C
om

m
un

ic
at

io
ns

 |
97

8-
1-

66
54

-5
82

2-
1/

22
/$

31
.0

0
©

20
22

 IE
EE

 |
D

O
I:

10
.1

10
9/

IN
FO

C
O

M
48

88
0.

20
22

.9
79

69
36

Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on January 08,2024 at 03:13:29 UTC from IEEE Xplore. Restrictions apply.

memory constraints of switches. Furthermore, knowledge
distillation can help to reduce the BDT training time,
reduce the number of rules, and sometimes get a more
accurate BDT.

• The resource limitations. Usually, programmable
switches are compact and have critical limitations on
computation and memory [11]. To share these resources
with other network management tasks (e.g., access
control list and routing), the program that implements
the offloaded model should be lightweight. To tackle
this, we delicately design a P4 program to use the
classification rules of the BDT. This program only takes
up two tables and two stages of the switch, which is
lightweight enough for the cooperation with other tasks.

To sum up, in Mousika, we first leverage a teacher-student
architecture to help the knowledge transfer from other models
to a BDT; then we convert the BDT classification rules into
ternary match table entries; these entries are finally installed
on a P4 program for packet processing on the switch. Ide-
ally, Mousika is compatible with diverse switches, and its
implementation only takes up a small amount of hardware
resources. Furthermore, Mousika is a general framework that
supports the translation of multiple complex but powerful
models. Through this translation, we can not only utilize the
super learning capabilities of complicated models, but also
avoid the computation/memory constraints when deploying
them on switches.

We conduct thorough experiments on three scenarios (flow
size prediction, traffic type classification, and malware detec-
tion) to evaluate the performance of Mousika, according to the
experimental results:

• The BDT after knowledge distillation usually has a better
performance. For the flow size prediction task, the dis-
tilled BDT improves the accuracy of the DT by ∼ 3%
(94.95% vs. 92.23%), reduces the training time by ∼ 156
times than the DT (276.6s vs. 43170.6s), and reduces the
number of rules by ∼ 4.9 times than the ordinary BDT
(1216 vs. 5948).

• Due to the efficient processing performance of the hard-
ware switch, loading Mousika has little impact on the
packet forwarding. For traffic speeds of 40Gbps and
100Gbps, the traffic can still be transmitted at line rate
with zero packet loss.

• Compared with IIsy proposed in [11], Mousika only
occupies a small amount of resources on the hardware
switch. For the traffic type classification task, Mousika
takes up 2 tables, 2 stages, and 1.7% of the TCAM,
but IIsy occupies 11 tables, 10 stages, and 63.5% of
TCAM. In addition, for high-speed traffic (100Gbps), the
packet processing of IIsy is slower than Mousika by 9
nanoseconds averagely.

II. BACKGROUND AND MOTIVATION

A. P4 Switch and Its Constraints
As illustrated in Fig. 1, the data plane on the P4 switch has

a Protocol Independent Switch Architecture (PISA). For an

Fig. 1: The Protocol Independent Switch Architecture (PISA).
PISA consists of a parser, a deparser, and a series of stages.
A stage contains several match-action units to perform match
(M) and action (A).

arriving packet, it is first mapped into a Packet Header Vector
(PHV) by the parser. Then the PHV is passed to a pipeline.
The pipeline consists of match-action units (MAUs) arranged
in several stages. If a header field (e.g., the destination port)
in the PHV matches (M) a given table, further processes
in the action unit (A) associated with the matching table’s
entry are triggered. Finally, the processed PHV is reorganized
into a packet by the deparser. In summary, PISA allows
administrators to define customized processes (e.g., tables
and actions) in P4 language and then instantiate them inside
MAUs.

Matching constraints. For P4 language, the standard li-
brary (core.p4 [16]) defines three standard match kinds: 1)
Exact match. The key has to match exactly with the field
in the rule. 2) Ternary match. The key is AND with the
mask associated with each rule, and then compared with
the value for exact match. 3) Longest prefix match (LPM).
Compared with ternary match, this case guarantees that the
mask is a series of consecutive bits 1 followed by a series of
consecutive bits 0 [13]. These are the standard match kinds that
are supported widely by diverse devices. Other libraries (e.g.,
v1model.p4 [12]) may define additional match kinds such as
range match, fuzzy match. But those are not available on many
hardware targets [11].

Memory constraints. Each stage is evenly equipped with
two high-speed types of memory. One is TCAM, which is
a content-addressable memory suitable for fast table lookups.
TCAM is used to store table entries with match kinds including
ternary, LPM, and range match [17]. The other is SRAM
which is used to store exact match table entries and stateful
registers. Unfortunately, the total amount of memory in the
switch is small. The amount of SRAM is in the order of
100MB, while TCAM is far less than it [18]. Generally, this
compact memory is shared by multiple advanced network
management tasks such as access control list and routing.
Hence, this constraint reminds us to design P4 programs with
as few table entries as possible.

Processing constraints. To guarantee the high-speed pro-
cessing, complex instructions such as multiplications, divi-
sions, and floating-point operations (e.g., polynomials or loga-

1939
Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on January 08,2024 at 03:13:29 UTC from IEEE Xplore. Restrictions apply.

rithms) are not allowed. Packet processing in MAUs is limited
to very simple instructions like integer additions and bit shifts.
For these allowed instructions, their number in a specific action
is also constrained. In addition, the entire pipeline should
occupy as few stages as possible, otherwise, the packet will be
delayed (or even stalled) when it passes through the switch.

B. Learning on Programmable Switches

The main problem for in-network intelligence on pro-
grammable switches is the implementation complexity of the
mathematical operations. Naturally, packet processing on the
programmable switch is based on a series of predefined flow
tables, i.e., the match-action paradigm, which may hinder
multiple learning-based schemes [2]–[6]. To tackle this, the
authors in [11] propose a framework, IIsy, which is used
to map a rule-based classifier, the decision tree (DT), into
table entries in the switch table. In IIsy, the number of stages
implemented in the switch is equal to the number of features
used as the DT input plus one. At each stage, it matches a
feature with all its potential values. The matching result is
encoded into the metadata field and indicates the branch taken
in the tree. The last stage gets all the coded fields from the
metadata and maps (matches) the values to the result leaf
nodes. Except for IIsy, there also exist several works that
deploy the DT on switches. In [8], the authors give a try to
transfer deep learning models to a DT and then load the DT on
the switch. In brief, they first reproduce a dataset that contains
instances labeled by the deep models. Next, this dataset is
resampled according to an advantage function [19]. Finally,
the DT is trained on the reproduced dataset and deployed
on the switch. But due to the complicated procedures, the
authors leave the deployment on hardware switches to the
future. In [9], the authors propose a two-phase learning scheme
for flow size prediction. The model in the first phase is a DT
that can be encoded to a set of rules executable by switches
for identifying potential elephant flows. Then, in the second
phase, the controller uses a more sophisticated stream mining
model to detect true elephant flows from those candidates.

Although the DT seems to be a good fit for the match-action
paradigm used by programmable switches, there remain some
limitations: 1) The DT is implemented by range match which
is not widely supported, given the diversity of switch hardware.
Though range match can be translated into ternary match, the
translated table entries will increase multiple times of resource
consumption [13]. 2) Implementing the DT on switches takes
up multiple stages which may delay the packet forwarding.
3) The unoptimized DT may generate thousands of rules, and
these rules will take up a lot of memory on the compact switch.
Thus, in Mousika, we redesign the DT algorithm, getting a
new rule-based model, the Binary Decision Tree (BDT), which
satisfies all mentioned limitations of switches.

C. Learning on Networking

Except for the DT, other learning algorithms (especially
deep learning) have been employed in every possible field
to leverage their amazing power, e.g., computer vision and

natural language process [20]–[23]. Networking has not es-
caped this trend, and several schemes are proposed to use
learning algorithms for optimization and decision making [1].
In [2], the authors concern the problem of predicting the size
of a flow and detecting elephant flows (very large flows).
They describe the problem as a learning-based classification
task and employ machine learning models like Gaussian
Process Regression (GPR) and Neural Network (NN) for flow
size prediction. In [3], the authors focus on the problem of
Internet traffic classification. They designed a deep learning-
based system that can handle both the traffic characterization
task and the application identification task. The system uses
deep learning models such as Convolutional Neural Network
(CNN) and Stacked Auto-Encoder (SAE). The works in [4],
[5] also focus on employing the power of deep learning for
traffic classification, the employed deep models are Recurrent
Neural Network (RNN) and One-dimensional CNN respec-
tively. In [6], the authors focus on malware detection by
using an ensemble of neural networks called Auto-Encoders to
collectively differentiate between normal and abnormal traffic
patterns.

Now many learning-based works reach better accuracy
and defeat their predecessors. However, as the switches only
support match-action paradigm and some simple instructions,
deploying them directly for in-network applications may be
infeasible [14], [24]. Thus, in Mousika, we leverage the
knowledge distillation architecture to transfer the knowledge
from a complicated model to the BDT, and then deploy the
BDT to the switch, avoiding the computational and memory
constraints of directly deploying complicated models.

D. Knowledge Distillation

As known, due to the limited computation capacity and
memory of the mobile devices, deploying deep models in these
devices encounters great challenges. To address this problem,
the idea of learning a small student model from a large teacher
model is formally popularized as knowledge distillation [14].
In [15], the authors define the class probabilities output by
the teacher model as the “knowledge” (i.e., soft label). Then
the teacher model directly guides the training of the student
model on a transfer dataset through the objective function:

L = −
∑

yi log(pi) (1)

where for a training sample i, the soft label of the teacher is
yi, the student prediction output is pi. Based on this, in [25],
the authors present a tree-structure neural network, i.e., the
Soft Decision Tree (SDT), as the student model. After the
guided training, one can track the classification path of the
SDT to understand its decision making. In [26], the authors
propose the Rectified Decision Tree (ReDT), a knowledge
distillation based decision tree rectification. In ReDT, the
teacher knowledge participates the impurity calculation to
determine the feature selection and node splitting. The great
success in practice shows that the student model can mimic
the teacher model and obtain a competitive or even a superior
performance [27]–[29].

1940
Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on January 08,2024 at 03:13:29 UTC from IEEE Xplore. Restrictions apply.

Fig. 2: The Mousika Framework. Mousika utilizes the teacher-student architecture to transfer the knowledge from other models
to BDT. Next, the BDT rules are encoded into ternary-match table entries, according to Section III-C, a ternary match entry
contains the mask (M), value (V), and class (C). Finally, these entries are installed on the P4 program for packet processing.

III. METHODOLOGY

A. Framework Overview

Our whole in-network intelligence framework, Mousika, is
shown in Fig. 2. For a packet classification/prediction task,
one could give a trained teacher model and a transfer dataset.
Next, we utilize the teacher-student knowledge distillation
architecture to translate the teacher model into the BDT.
After the translation, we obtain a trained BDT with teacher
knowledge embedded. Then, we encode the classification rules
of the BDT into ternary match table entries, and finally install
these entries on the P4 program of the switch. Now, for an
arriving packet on the switch, the whole classification task
is model-free, and the P4 program will look up the packet’s
header fields and find its matched table entry and the related
class label.

Compared with the existing in-network schemes [8], [9],
[11], Mousika can perfectly fit all P4 switch constraints.
First, the rules of the BDT can be directly encoded into
ternary match table entries. Ternary match is defined in the
standard core.p4 library and supported by diverse switches
(matching constraints). Second, compared with the DT, the
BDT generates fewer rules, thus there are also fewer entries
after the conversion (memory constraints). Third, in Mousika,
we develop a P4 program that only requires two switch
stages and uses the (ternary) match-action operation for packet
classification/prediction (processing constraints). Moreover, in
Mousika, existing deep learning or ensemble machine learning
models can be the teacher of the BDT for knowledge distil-
lation. The distilled BDT requires less training time, fewer
rules, and sometimes may have a better accuracy. In the next
Section III-B and III-C, we will introduce the algorithm and
implementation of Mousika in detail.

B. BDT and Its Knowledge Distillation

BDT. Based on DT algorithm, we design Algorithm 1 that
demonstrates the details of the BDT growth on the packet
dataset D. For a packet (xi, yi) ∈ D, xi is the selected part of
the PHV in the form of bits (an instance of A), and yi denotes
the one-hot representation of the packet class (K-dimensional
vector, where the value of the corresponding dimension of the

Algorithm 1 Binary Decision Tree Training

Input: Training set D = {(x1, y1), (x2, y2), ..., (xn, yn)},
Bit set A = {a1, a2, ..., am} is the selected part of the
packet header vector in the switch parser.

1: function BDTGENERATE(D, A)
2: Generate node N ;
3: if ∀y ∈ D,Cls(y) ≡ C then
4: N.cls← C; return
5: end if
6: if A = ∅ OR ∀x1, x2 ∈ D,Ax1 ≡ Ax2 then
7: N.cls← CntMaxCls(∀y ∈ D); return
8: end if
9: Select the optimal bit a∗ from A;

10: for v ∈ {0, 1} do
11: Create a branch of node N as N.brc;
12: Dv ← {(x, y) | a∗ = v, x ∈ D};
13: if | Dv |≤ min samples leaf then
14: N.brc.cls← CntMaxCls(∀y ∈ D); return
15: else
16: N.brc← BDTGENERATE(Dv, A \ {a∗});
17: end if
18: end for
19: end function
Output: The binary decision tree N.

category is 1, and the remaining are 0). The main codes of
the BDT training are:

Lines 3 ∼ 5 indicate that if all samples in D belong to the
same category, the BDT generation process stops. Here Cls(.)
is a function to calculate the corresponding class of yi:

C = argmax
j
{y1i , y2i , ..., yKi } (2)

where j ∈ [0,K] is the index that has the maximum value
(i.e., 1) in the one-hot vector yi.

Lines 6 ∼ 8 are the second stop condition: if the current bit
set A is empty (the bits in A are removed one by one during
the generation process, see line 16) or all samples have the
same value (0 or 1) on all bits, the class label of node N

1941
Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on January 08,2024 at 03:13:29 UTC from IEEE Xplore. Restrictions apply.

is assigned by the return of CntMaxCls(.). CntMaxCls(.) is
a function to generate a class label from all one-hot vectors
y ∈ D:

P = (p1,p2, ..., pK) =
1

| D |
∑
y∈D

y, (3)

C = argmax
j

P (4)

where P is the vector maintaining the probability of each class,
and the index j of the class with the maximum probability is
returned.

Line 9 selects the optimal branch bit by the Gini index
criterion [10]:

Gini(D, a) =
∑

v∈{0,1}

| Dv |
| D |

(1− PDv
· PDv

), (5)

a∗ = argmin
a∈A

Gini(D, a) (6)

where Dv contains all samples whose value of bit a is v
(line 12), PDv is calculated by Equation 3 denoting the class
probability vector of subset Dv , and the optimal branch bit a∗
is the one that has the minimum Gini index.

Lines 10 ∼ 18 are the loop for tree branching. For each
value v ∈ {0, 1} of the optimal a∗, if the corresponding subset
| Dv | contains samples less than a predefined threshold (e.g.,
min samples leaf = 5), the tree generation stops (lines 13
∼ 14). Otherwise, the tree will grow on the new subset Dv

(line 16).
Compared with the DT, there are several advantages of the

BDT. First, the input of the BDT is bits, which reduces the
search space of a∗, makes the Gini index calculation quite
efficient, and therefore saves training time. For example, if an
attribute has m bits, the complexity of Gini calculation in the
DT is O(2m), while it is O(m) in the BDT (see Equation 5).
Second, according to line 10 in Algorithm 1, the BDT uses
zeros and ones as branch conditions. Hence, from the root to
each leaf, there is a classification rule consisting of zeros and
ones, which is a good fit for ternary match entries on the switch
(see Section III-C for the table entry encoding). Furthermore,
we will see below that using one-hot vector to represent the
packet class is compatible with knowledge distillation, and
only a minor alteration is required to participate in the teacher-
student knowledge distillation architecture, while the DT can
not be distilled.

Distilled BDT. As there have been several more complicated
learning-based schemes for networking, in Mousika, we also
consider a teacher-student architecture to help translating their
knowledge into the BDT. Generally, for a neural network,
it performs a series of complex operations (e.g., float point
multiplication, pooling, and activation) on the input, getting a
class probability vector. Then the input is assigned with the
class label having the maximum probability in that vector.
The class probability vector is also known as the soft label.
Soft labels carry a lot of information summarized by the
neural network. For instance, during the teacher inference,
some incorrect classes may also be assigned low probabilities,

which indicates that the teacher thinks they are a little similar
to the correct class. This information (i.e., knowledge) has
been proved to be useful in training the student model [15],
[25], [26].

Thus, for a K-class classification problem, we define the
class probabilities output of the teacher model as the soft label
(knowledge). For all samples xi in the transfer dataset, it is
first fed to the trained teacher model to output the soft label
ŷi ∈ RK , then these pairs {(x1, ŷ1), ..., (xn, ŷn)} are used to
generate the distilled BDT according to Algorithm 1. Though
the alteration is straightforward, the soft label deeply affects
the growth of BDT. Formally, the class probability distribution
in a dataset is changed from Equation 3 to

P̂ = (p̂1, p̂2, ..., p̂K) =
1

| D |
∑
ŷ∈D

ŷ. (7)

Accordingly, the calculation of Equation 4 ∼ 6 is changed.
In other words, the knowledge from the teacher can teach the
BDT where to stop branching (Line 6 ∼ 8 in Algorithm 1
with changed Equation 3 and 4) and which is the optimal
branch bit (Line 9 with changed Equation 5 and 6). This
model translation helps the BDT to mimic the teacher model
and obtain a competitive performance. In addition, Mousika
supports a variety of models as the teacher, provided that they
have good performance and can output class probabilities.

C. Hardware Implementation

Ternary match encoding. According to Algorithm 1, for
a trained/distilled BDT, its classification rules consist of zeros
and ones. Each rule represents a path from the root node to
the leaf node in the BDT. Starting from the root, a bit feature
is checked to be one or zero and the corresponding branch is
selected. This procedure is repeated until a final leaf is reached,
which represents the classification target. For any path in a
BDT, the number of nodes does not exceed the dimension of
the input bit features. In other words, we only need to check
the feature’s value in specific positions according to the nodes,
which is similar to the ternary match and makes it possible
to transfer a BDT rule to a ternary match entry. For example,
let x = x0x1 · · ·x7 denotes the input feature which is an 8-bit
number. A rule output by the BDT is:

If x0 = 1 and x3 = 0 and x6 = 0 Then class← 1.

As feature values in positions 0, 3, and 6 need to be
considered, the ternary mask (M) is 0b10010010 and the
corresponding ternary value (V) is 0b10000000. Given an
input feature x, we just need to check if x AND mask equals
the ternary value to valid rule matching. If it does match, the
class label (C) will be used as a parameter in the table action.
Therefore, we fit the sequential decision process of a BDT
into the ternary match and action of switches.

P4 program. As shown in Fig. 2, after encoding the BDT
classification rules as ternary match table entries, we develop
a P4 program on the switch to utilize these entries for packet
classification/prediction. The P4 program follows the PISA in
Fig. 1, using about 100 lines of P416 code. Its main parts are:

1942
Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on January 08,2024 at 03:13:29 UTC from IEEE Xplore. Restrictions apply.

Parser. In the parser, we first select a set of features such
as IP protocol, time to live, and packet length from the
packet and store them in the PHV. As suggested by [5], [30],
some bias features (e.g., IP/MAC address) and meaningless
features (e.g., checksum) are not considered here. Then we
denote a fixed-length key bin feature to later store the above
features in the form of bits. It would be desirable to initialize
bin feature with the bits in PHV, but this can not be achieved
on the hardware switch. We find that concatenating multiple
features is so complex and causes compile errors in the Parser.
To resolve the operation restriction in Parser, we move the
initialization to one pipeline stage.

Table for bin feature initialization in the first pipeline
stage. As shown in Listing 1, table tb concat feature uses
default action ac concat feature to initialize bin feature.
We declare bin feature in the metadata which can be carried
over across the pipeline stages. Since the data is stored in
the form of bits in PHV, a feature can be assigned to the
corresponding position of meta.bin feature. For example,
the IP protocol field of one IPv4 packet can be assigned to
meta.bin feature’s lower 8 bits directly (line 3 in Listing 1).
To speed up the pipeline operations, programmable switches
allow separate tables in the same stage have simultaneity. But
we find that bin feature initialization and packet classifi-
cation can not be finished in parallel at the same stage, as
these operations have a dependence on the bin feature, i.e.,
bin feature should be first initialized and then used as the
key for classification input. To resolve the data dependency of
sequential operations, we place packet classification in a new
table tb packet cls at the second pipeline stage.

Listing 1: P4 code fragment that initializes bin feature

1 // assign specific field to bin_feature
2 action ac_concat_feature() {
3 meta.bin_feature[7:0] = hdr.ipv4.protocol;
4 /* similar code is omitted */
5 }
6 // stage 1: feature concatenation
7 table tb_concat_feature{
8 actions = {
9 ac_parse_bin_feature;

10 }
11 default_action = ac_parse_bin_feature;
12 }

Table for packet classification. With the table entries
encoded from a BDT, the classification process is trans-
formed into the ternary match-action of tb packet cls (line
8 in Listing 2). If there is a hit, the corresponding action
ac packet forward (line 2∼4 in Listing 2) will be trig-
gered: We map classes to forwarding ports of the switch,
and packets of different classes will be forwarded to different
ports by the switch. For example, for a coming packet, if
its bin feature = 0x0000 0022 0210 0000 0000, it will
match (i.e., bin feature AND mask = value) the entry
shown in Table I. Then the port = 1 of the matched entry
is passed to ac packet forward to label the forwarding
port (ucast egress port) of this packet. Actually, we only
provide an example of operations for packet classification

Table I: Example of matched entry in tb packet cls

Mask Value Class (Port)

0x0001 0022 0250 0000 0000 0x0000 0022 0210 0000 0000 1

here, and other operations can be easily adjusted according
to the specific scenario (e.g., forwarding packets of different
classes according to the predefined QoS). As for the deparser,
we retain its default function defined in PISA, which is to
assemble output packets according to changes in the pipeline.

Listing 2: P4 code fragment that implements packet classifi-
cation
1 // forward packets to different ports
2 action ac_packet_forward(PortId_t port){
3 ig_tm_md.ucast_egress_port = port;
4 }
5 // stage 2: BDT-based packet classification
6 table tb_packet_cls {
7 key = {
8 meta.bin_feature: ternary;
9 }

10 actions = {
11 ac_packet_forward;
12 }
13 size = TABLE_SIZE;
14 }

IV. EVALUATION

A. Networking Scenarios

To demonstrate the performance of Mousika, we build it
to identify specific target classes within the context of three
networking scenarios:

• Flow size prediction. This task involves the problem
of predicting the size of a flow and detecting elephant
flows (very large flows whose bytes exceed a predefined
threshold). Here we utilize the UNIV1 dataset made
available in [31]. UNIV1 dataset is collected in one
university campus data center. During the classification
in this work, we classify the packets that belong to the
top 20% flows in UNIV1 as elephants, while the other
packets are mice.

• Traffic type classification. This task classifies the traffic
according to the types, e.g., VoIP (Voice over Internet
Protocol) and file transferring (uploading or download-
ing). We leverage the ISCX dataset [32] in this work
and classify the packets into six types (Email, Chat,
Streaming, File Transfer, VoIP, P2P).

• Malware detection. It aims to distinguish legitimate traffic
from various malware attacks (such as DDoS and service
scanning). In this work, we use the Bot-IoT dataset [33]
and detect the packets are legitimate or malicious.

Among all the datasets, we split the traffic for training and
testing according to the different dates and five-tuples, and
make sure that there is no overlap between training and testing.

B. BDT Performance

As the BDT is a core component of Mousika, we first
evaluate its performance after traditional training and distil-

1943
Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on January 08,2024 at 03:13:29 UTC from IEEE Xplore. Restrictions apply.

DT BDT GRU LSTM RF80

85

90

95

100

105

Ac
cu

ra
cy

 (%
)

Teacher Student

(a) Flow Size Prediction

DT BDT GRU LSTM RF80

85

90

95

100

105

Ac
cu

ra
cy

 (%
)

Teacher Student

(b) Traffic Type Classification

DT BDT GRU LSTM RF80

85

90

95

100

105

Ac
cu
ra
cy

Teacher Student

(c) Malware Detection

Fig. 3: The classification accuracy of different tree-based models on the three tasks. For knowledge distillation, we hire GRU,
LSTM, and RF as the teacher and guide the BDT student training respectively.

DT BDT

BDT(GRU Distilled)

BDT(LSTM Distilled)
BDT(RF Distilled)

103

104

Ti
m

e
of

 T
re

e
Sp

an
ni

ng
 (s

)

(a) Flow Size Prediction

DT BDT

BDT(GRU Distilled)

BDT(LSTM Distilled)
BDT(RF Distilled)

104

105

Ti
m

e
of

 T
re

e
Sp

an
ni

ng
 (s

)

(b) Traffic Type Classification

DT BDT

BDT(GRU Distilled)

BDT(LSTM Distilled)
BDT(RF Distilled)

103

104

Ti
m

e
of

 T
re

e
Sp

an
ni

ng
 (s

)

(c) Malware Detection

Fig. 4: The training time of different tree-based models on the three tasks. Content in the brackets is the name of the teacher
used in the knowledge distillation architecture. For example, BDT (GRU distilled) denotes the BDT distilled from GRU.

BDT

BDT(GRU Distilled)

BDT(LSTM Distilled)
BDT(RF Distilled)

0

2000

4000

6000

#R
ul

es

(a) Flow Size Prediction

BDT

BDT(GRU Distilled)

BDT(LSTM Distilled)
BDT(RF Distilled)

0

1000

2000

3000

#R
ul

es

(b) Traffic Type Classification

BDT

BDT(GRU Distilled)

BDT(LSTM Distilled)
BDT(RF Distilled)

100

120

140

160

180

200

#R
ul

es

(c) Malware Detection

Fig. 5: The classification rules of different tree-based models on the three tasks. Content in the brackets is the name of the
teacher used in the knowledge distillation architecture. For example, BDT (GRU distilled) denotes the BDT distilled from
GRU.

Flow Size Pred

Traffic Type Classify
Malware Detect0

20

40

Th
ro

ug
hp

ut
 (G

bp
s)

Tx Rx

(a) 40Gbps

Flow Size Pred

Traffic Type Classify
Malware Detect

50

100

Th
ro

ug
hp

ut
 (G

bp
s)

Tx Rx

(b) 100Gbps

Fig. 6: The receive throughput (Rx) and transmit throughput
(Tx) of the switch after loading the P4 program of Mousika
under the traffic speeds of 40Gbps and 100Gbps.

lation respectively. During the distillation, we mainly hire
three models as the teacher respectively, including LSTM [34],
GRU [35] (two deep learning models) and RF [36] (an

ensemble machine learning model). Both LSTM and GRU
are implemented by PyTorch2 and run on a graphic card of
GeForce RTX 2080 Ti, RF is implemented by scikit-learn3. We
assess the quality of the DT and the BDT using the following
set of metrics: 1) Accuracy, i.e., the percentage of test samples
that are correctly classified in their class; 2) Training time, i.e.,
the time it takes for trees to grow on the training dataset; 3)
Rules, i.e., the number of classification rules of the trees (not
switch table entries). To be fair, both the DT and the BDT are
written by ourselves in Python3 and run on a server with a
CPU of Intel(R) Xeon(R) Gold 5218 CPU @ 2.30GHz.

The accuracy results are depicted in Fig. 3. Among the three
tasks, the DT is slightly better than the BDT on flow size
prediction (92% vs. 91% in Fig. 3a) and malware detection

2https://pytorch.org/
3https://scikit-learn.org/stable/

1944
Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on January 08,2024 at 03:13:29 UTC from IEEE Xplore. Restrictions apply.

Flow Size Pred

Traffic Type Classify
Malware Detect0

5

10
St

ag
es

IIsy Mousika

(a) Number of Stages

Flow Size Pred

Traffic Type Classify
Malware Detect

5

10

15

Ta
bl

es

IIsy Mousika

(b) Number of Tables

Flow Size Pred

Traffic Type Classify
Malware Detect

102

103

104

Ta
bl

e
En

tri
es

IIsy Mousika

(c) Number of Table Entries

Fig. 7: The program resource usage of IIsy [11] and Mousika on the same hardware switch.

(99% vs. 98% in Fig. 3c). The main reason is that the integer
input of the DT is more informative than the bit input used in
the BDT. But this drawback is made up by the teacher-student
knowledge distillation architecture. In other words, after the
knowledge is transferred from the superior teacher models
to the BDT, the BDT outperforms the DT. For example, in
Fig. 3a, the BDT distilled from RF improves the accuracy by
3% (from 91% to 94.95%). The same results are also revealed
in Fig. 3b and 3c.

The training time 4 is shown in Fig. 4. According to Sec-
tion III-B, the BDT dramatically reduces the Gini calculation
complexity of the DT (from O(2m) to O(m)), so the BDT
spends very little time on training. For example, in Fig. 4a,
the training time of the BDT is 482.7s which is 89x faster
than that of the DT (43170.6s). Moreover, the BDT distilled
from LSTM is even fast (276.6s).The training time in Fig. 4b
and 4c shows the same result, i.e., training/distilling a BDT is
more efficient than a DT.

Fig. 5 shows the number of classification rules of the
ordinary BDT and its knowledge distillation variant. Both
Fig. 5a and 5b show that knowledge distillation helps to
dramatically reduce the number of rules by several times
(e.g., the BDT distilled from GRU reduces rules by ∼ 4.9x
in flow size prediction). Since the ordinary BDT in Fig. 5c
already has the least rules, the rules of the distilled BDT
do not show such a significant reduction. The main reason
behind this reduction is that knowledge distillation transfers
the information of existing models to the BDT, which can
teach the BDT to effectively find the optimal classification
boundary and reduce the unnecessary rules.

C. Hardware Performance

Once the BDT is trained or distilled, Mousika will encode
this whole tree into several ternary match table entries. In
this section, we install the table entries and the P4 program
on the hardware switch (EdgeCore wedge 100BF-65X) and
evaluate the efficiency by several metrics: 1) Throughput, i.e.,
the receive throughput (Rx) and transmit throughput (Tx) of
the switch after loading the program; 2) Packet loss, i.e.,
the packet loss rate of the switch under a high-speed traffic

4For model translation, the teacher is usually pre-trained, so we mainly
focus on the DT and BDT training time.

(e.g., 40Gbps or 100Gbps). Here we use a traffic generator
(KEYSIGHT XGS12-SDL) for high-speed traffic simulation.

Fig. 6 shows the switch throughput under the traffic speeds
of 40Gbps and 100Gbps. As shown, after loading the P4
program for the three in-network tasks, the switch through-
put changes little. As for the packet loss, we find that no
matter how we change the traffic speed (e.g., from 40Gbps
to 100Gbps), the loss is always zero. These phenomenons
are mainly due to the excellent hardware characteristics of
the programmable switch (e.g., the PISA in Section II-A and
the ASIC Tofino chip [37]), which show the rationality and
prospects of in-network intelligence.

Flow Size Pred

Traffic Type Classify
Malware Detect0

25

50

75

100

TC
AM

 (%
) IIsy Mousika

(a) TCAM Usage

Flow Size Pred

Traffic Type Classify
Malware Detect0

1

2

3

4

SR
AM

 (%
) IIsy Mousika

(b) SRAM Usage

Fig. 8: The memory resource usage of different frameworks
on the hardware switch.

Flow Size Pred

Traffic Type Classify
Malware Detect0

10

20

30

tM
at

ch
 x

Ba
r (

%
) IIsy Mousika

(a) tMatch xBar Usage

Flow Size Pred

Traffic Type Classify
Malware Detect0

5

10

VL
IW

 (%
)

IIsy Mousika

(b) VLIW Usage

Fig. 9: The computational resource usage of IIsy [11] and
Mousika on the same hardware switch. tMatch xBar denotes
the ternary match crossbar, VLIW denotes the very long
instruction word.

D. Compare With IIsy

To further demonstrate the performance of Mousika, we
now consider the hardware resource consumption and packet

1945
Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on January 08,2024 at 03:13:29 UTC from IEEE Xplore. Restrictions apply.

Flow Size Pred

Traffic Type Classify
Malware Detect425

430

435

440

445
Pa

ck
et

 L
at

en
cy

 (n
s)

IIsy Mousika

(a) 40Gbps

Flow Size Pred

Traffic Type Classify
Malware Detect465

470

475

480

Pa
ck

et
 L

at
en

cy
 (n

s)

IIsy Mousika

(b) 100Gbps

Fig. 10: The time that packets are processed by IIsy [11] and
Mousika on the same switch under traffic speeds of 40Gbps
and 100Gbps.

processing latency between the P4 programs of Mousika and
IIsy 5 (a framework that installs the DT on switches, see
Section II-B). For the resource consumption, we mainly focus
on the following three aspects: 1) Program resources, i.e.,
the number of stages, tables, and table entries; 2) Memory
resources, i.e., the percentage of used TCAM and SRAM; 3)
Computational resources, i.e., the percentage of used tMatch
xBar and VLIW. As for packet processing latency, it refers to
the time that packets are processed by the switch.

The program resource consumption is depicted in Fig. 7.
Here we consider three commonly used resources, i.e., the
stages (Fig. 7a), the tables (Fig. 7b), and the table entries
(Fig. 7c). As shown, for each task, Mousika only takes up
two stages. But IIsy occupies different numbers of stages:
for the flow size prediction task, it uses eight stages; for
the traffic type classification task, it uses 10 stages; for the
malware detection task, it uses three stages. For the table
resource, Mousika uses two tables, but IIsy uses 11 tables.
For table entries, IIsy also takes up them significantly more
than Mousika. For example, in Fig. 7c, the number of entries in
the traffic type classification of IIsy is 6093, while the number
of entries in Mousika is only 720.

The memory resource consumption is shown in Fig. 8. Since
the match conditions are mainly stored in TCAM, we see
that the usage of TCAM of IIsy and Mousika far exceeds
the usage of SRAM. But the same kind of memory usage is
completely different between IIsy and Mousika. For instance,
in the traffic type classification task, the TCAM usage of
IIsy and Mousika is respectively 63.5% and 1.7%; the SRAM
usage of IIsy and Mousika is respectively 2.7% and 0.2%.
The significant difference in memory usage between IIsy and
Mousika is caused by the following two reasons: First, IIsy
uses range match that is more TCAM consuming than ternary
match; Second, IIsy trains the DT alone without considering
the experience of the existing superior models, which results
in a DT of thousands of rules.

As for the computational resources, here we consider the
tMatch xBar and VLIW. tMatch xBar denotes the ternary
match crossbar, VLIW denotes the very long instruction word.
tMatch xBar is used to perform ternary or range match, and

5As the development of in-network intelligence is at an early age, we find
that IIsy is the only solution with open-source hardware implementation.

VLIW is used for actions. The consumption is demonstrated
in Fig. 9. As shown, compared with Mousika, IIsy occupies
much percentage of both tMatch xBar and VLIW. This reveals
that range match used in IIsy not only consumes much TCAM
but also takes up a lot of computational resources. In summary,
IIsy consumes lots of hardware resources, but Mousika is more
lightweight which makes it feasible to cooperate with other
network management tasks (e.g., routing) on a compact switch.

The packet processing latency is depicted in Fig. 10. The
packet processing latency indicates the time it takes for differ-
ent frameworks to output the classification/prediction result for
each packet on average. As shown, the packet processing of
IIsy is slower than Mousika. For instance, at the traffic speed
of 100Gbps, IIsy spends 475ns on traffic type classification
per packet, but Mousika spends 466ns (faster by 9ns).

V. CONCLUSION AND FURTHER DISCUSSION

In this paper, we propose Mousika, a novel in-network
intelligence framework. Mousika aims to tackle the drawbacks
of offloading the learning models to the switch. First, we
redesign the DT algorithm, getting the Binary Decision Tree
(BDT). The classification rules of the BDT are in the form
of bits, which can be effectively encoded into the widely-
supported ternary match. Second, we design a P4 program
to use the classification rules of the BDT. This program
only uses a small amount of the program resources, which is
lightweight enough on the compact switch. Moreover, given
the complexity of existing superior models, in Mousika, we
adopt a teacher-student knowledge distillation architecture to
transfer the knowledge from other models to the BDT. By
doing so, we can not only utilize their knowledge for better
performance, but also avoid their complicated deployments on
switches.

Though Mousika shows superior performance on the exper-
iments, it also has several limitations. First, its input features
are simply the bits of the PHV from the parser. To support
other flow-level features like packet size and inter-packet fre-
quency distributions [2], [38], several complex modifications
are required, such as allocating and maintaining registers in
the P4 program. In addition, knowledge distillation may not
always achieve a competitive performance from the teacher
model. As different models are proposed for different tasks,
it is necessary to exam several models for specific tasks to
ensure that teacher knowledge can have a positive impact on
BDT. We leave the optimization of these limitations to future
work. The authors have provided public access to their code
and/or data at https://github.com/xgr19/Mousika.

VI. ACKNOWLEDGMENT

This work is supported by National Key Research and De-
velopment Program of China under Grant 2020YFB1804704,
National Natural Science Foundation of China under grant
No. 61972189 and No. 61902171, and the Shenzhen Key
Lab of Software Defined Networking under grant No.
ZDSYS20140509172959989.

1946
Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on January 08,2024 at 03:13:29 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] M. Wang, Y. Cui, G. Wang, S. Xiao, and J. Jiang, “Machine learning
for networking: Workflow, advances and opportunities,” IEEE Network,
vol. 32, no. 2, pp. 92–99, 2017.

[2] P. Poupart, Z. Chen, P. Jaini, F. Fung, H. Susanto, Y. Geng, L. Chen,
K. Chen, and H. Jin, “Online flow size prediction for improved network
routing,” in Proceedings of the 24th IEEE International Conference on
Network Protocols. IEEE Computer Society, 2016, pp. 1–6.

[3] M. Lotfollahi, M. J. Siavoshani, R. S. H. Zade, and M. Saberian, “Deep
packet: a novel approach for encrypted traffic classification using deep
learning,” Soft Computing, vol. 24, no. 3, pp. 1999–2012, 2020.

[4] R. Li, X. Xiao, S. Ni, H. Zheng, and S. Xia, “Byte segment neural
network for network traffic classification,” in Proceedings of the Twenty-
Sixth International Symposium on Quality of Service. New York, USA:
ACM, 2018, pp. 1–10.

[5] G. Xie, Q. Li, and Y. Jiang, “Self-attentive deep learning method for
online traffic classification and its interpretability,” Computer Networks,
p. 108267, 2021.

[6] Y. Mirsky, T. Doitshman, Y. Elovici, and A. Shabtai, “Kitsune: An
ensemble of autoencoders for online network intrusion detection,” in
Proceedings of the 25th Annual Network and Distributed System Security
Symposium, 2018. The Internet Society, 2018.

[7] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese et al., “P4: Pro-
gramming protocol-independent packet processors,” Computer Commu-
nication Review, vol. 44, no. 3, pp. 87–95, 2014.

[8] Z. Meng, M. Wang, J. Bai, M. Xu, H. Mao, and H. Hu, “Interpreting
deep learning-based networking systems,” in Proceedings of the 2020
Annual conference of the ACM Special Interest Group on Data Commu-
nication on the applications, technologies, architectures, and protocols
for computer communication, H. Schulzrinne and V. Misra, Eds. ACM,
2020, pp. 154–171.

[9] S. Chao, K. C. Lin, and M. Chen, “Flow classification for software-
defined data centers using stream mining,” IEEE Transactions on Ser-
vices Computing, vol. 12, no. 1, pp. 105–116, 2019.

[10] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, Classification
and Regression Trees. Wadsworth, 1984.

[11] Z. Xiong and N. Zilberman, “Do switches dream of machine learning?:
Toward in-network classification,” in Proceedings of the 18th ACM
Workshop on Hot Topics in Networks. ACM, 2019, pp. 25–33.

[12] P4 Language Consortium, “v1model.p4,” Website, https://github.com/
p4lang/p4c/blob/main/p4include/v1model.p4, accessed: 2021-07-13.

[13] H. Liu, “Efficient mapping of range classifier into ternary-cam,” in
Proceedings of the 10th Annual IEEE Symposium on High Performance
Interconnects. IEEE Computer Society, 2002, pp. 95–100.

[14] J. Gou, B. Yu, S. J. Maybank, and D. Tao, “Knowledge distillation: A
survey,” International Journal of Computer Vision, vol. 129, no. 6, pp.
1789–1819, 2021.

[15] G. E. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a
neural network,” arXiv preprint arXiv:1503.02531, 2015.

[16] P4 Language Consortium, “core.p4,” Website, https://github.com/p4lang/
p4c/blob/main/p4include/core.p4, accessed: 2021-07-13.

[17] G. J. Narlikar, A. Basu, and F. Zane, “Coolcams: Power-efficient tcams
for forwarding engines,” in Proceedings of the 22nd Annual Joint
Conference of the IEEE Computer and Communications Societies. IEEE
Computer Society, 2003, pp. 42–52.

[18] R. Miao, H. Zeng, C. Kim, J. Lee, and M. Yu, “Silkroad: Making
stateful layer-4 load balancing fast and cheap using switching asics,”
in Proceedings of the Conference of the 2017 ACM Special Interest
Group on Data Communication. ACM, 2017, pp. 15–28.

[19] O. Bastani, Y. Pu, and A. Solar-Lezama, “Verifiable reinforcement
learning via policy extraction,” in Proceedings of the Annual Conference
on Neural Information Processing Systems 2018, S. Bengio, H. M.
Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett,
Eds., 2018, pp. 2499–2509.

[20] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” in Proceedings of the 3rd International
Conference on Learning Representations, 2015, Y. Bengio and Y. LeCun,
Eds., 2015.

[21] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Proceedings of the 26th
Annual Conference on Neural Information Processing Systems, P. L.

Bartlett, F. C. N. Pereira, C. J. C. Burges, L. Bottou, and K. Q.
Weinberger, Eds., 2012, pp. 1106–1114.

[22] J. Devlin, M. Chang, K. Lee, and K. Toutanova, “BERT: pre-training
of deep bidirectional transformers for language understanding,” in
Proceedings of the 2019 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language
Technologies, J. Burstein, C. Doran, and T. Solorio, Eds. Association
for Computational Linguistics, 2019, pp. 4171–4186.

[23] H. Peng, J. Li, Y. He, Y. Liu, M. Bao, L. Wang, Y. Song, and
Q. Yang, “Large-scale hierarchical text classification with recursively
regularized deep graph-cnn,” in Proceedings of the 2018 World Wide
Web Conference on World Wide Web, WWW 2018, Lyon, France, April
23-27, 2018. ACM, 2018, pp. 1063–1072.

[24] S. Pouyanfar, S. Sadiq, Y. Yan, H. Tian, Y. Tao, M. E. P. Reyes, M. Shyu,
S. Chen, and S. S. Iyengar, “A survey on deep learning: Algorithms,
techniques, and applications,” ACM Computing Surveys, vol. 51, no. 5,
pp. 92:1–92:36, 2019.

[25] N. Frosst and G. E. Hinton, “Distilling a neural network into a soft
decision tree,” in Proceedings of the First International Workshop on
Comprehensibility and Explanation in AI and ML 2017 co-located with
16th International Conference of the Italian Association for Artificial
Intelligence (AI*IA 2017), ser. CEUR Workshop Proceedings, T. R.
Besold and O. Kutz, Eds., vol. 2071. CEUR-WS.org, 2017.

[26] J. Bai, Y. Li, J. Li, Y. Jiang, and S. Xia, “Rectified decision trees:
Towards interpretability, compression and empirical soundness,” arXiv
preprint arXiv:1903.05965, 2019.

[27] J. Ba and R. Caruana, “Do deep nets really need to be deep?” in
Proceedings of the 2014 Annual Conference on Neural Information
Processing Systems, Z. Ghahramani, M. Welling, C. Cortes, N. D.
Lawrence, and K. Q. Weinberger, Eds., 2014, pp. 2654–2662.

[28] G. Urban, K. J. Geras, S. E. Kahou, Ö. Aslan, S. Wang, A. Mohamed,
M. Philipose, M. Richardson, and R. Caruana, “Do deep convolutional
nets really need to be deep and convolutional?” in Proceedings of the
5th International Conference on Learning Representations. OpenRe-
view.net, 2017.

[29] J. Bai, Y. Li, J. Li, X. Yang, Y. Jiang, and S.-T. Xia, “Multinomial
random forest,” Pattern Recognition, vol. 122, p. 108331, 2022.

[30] G. Aceto, D. Ciuonzo, A. Montieri, and A. Pescapè, “Toward effective
mobile encrypted traffic classification through deep learning,” Neuro-
computing, vol. 409, pp. 306–315, 2020.

[31] T. Benson, A. Akella, and D. A. Maltz, “Network traffic characteristics
of data centers in the wild,” in Proceedings of the Tenth conference on
Internet measurement. ACM, 2010, pp. 267–280.

[32] G. Draper-Gil, A. H. Lashkari, M. S. I. Mamun, and A. A. Ghorbani,
“Characterization of encrypted and vpn traffic using time-related fea-
tures,” in Proceedings of the 2nd International Conference on Informa-
tion Systems Security and Privacy. SciTePress, 2016, pp. 407–414.

[33] N. Koroniotis, N. Moustafa, E. Sitnikova, and B. P. Turnbull, “Towards
the development of realistic botnet dataset in the internet of things
for network forensic analytics: Bot-iot dataset,” Future Generation
Computer Systems, vol. 100, pp. 779–796, 2019.

[34] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[35] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation of
gated recurrent neural networks on sequence modeling,” arXiv preprint
arXiv:1412.3555, 2014.

[36] L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1, pp.
5–32, 2001.

[37] Barefoot Networks, “Tofino switch,” Website, https://www.
barefootnetworks.com/products/brief-tofino/, accessed: 2021-07-13.

[38] D. Barradas, N. Santos, L. Rodrigues, S. Signorello, F. M. V. Ramos,
and A. Madeira, “Flowlens: Enabling efficient flow classification for ml-
based network security applications,” in Proceedings of the 28th Annual
Network and Distributed System Security Symposium. The Internet
Society, 2021.

1947
Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on January 08,2024 at 03:13:29 UTC from IEEE Xplore. Restrictions apply.

