
Efficient Attack Detection with Multi-Latency
Neural Models on Heterogeneous Network Devices

Guorui Xie1,2, Qing Li2, Haolin Yan1,3, Dan Zhao2, Gianni Antichi4,5, Yong Jiang1,2
1 International Graduate School, Tsinghua University, Shenzhen, China 2 Peng Cheng Laboratory, Shenzhen, China
3 Xidian University, Xi’an, China 4 Politecnico di Milano, Milan, Italy 5 Queen Mary University of London, UK

Abstract—To achieve fast and accurate attack detection, some
works manually tailor neural networks (NNs) for deployment
on CPUs of gateways, routers, or even programmable switches.
However, with such solutions, NNs must be custom-tailored across
different devices to meet the heterogeneous settings (e.g., OS
and CPU types). Even worse, a model may require frequent
adjustments to adapt to the same device’s varying traffic rates. In
this paper, we present SOTERIA, an automated multi-latency NN
generation and scheduling system for fast and accurate detection
against fluctuating traffic rates across heterogeneous hardware.
SOTERIA first uses an evolutionary training algorithm to evolve
the Pareto front, i.e., the set of NNs with a good spread on
accuracy and model size. Then, for each device, SOTERIA filters
the optimal multi-latency NNs by non-dominating sorting on
the NNs’ test latency on the device. Finally, to cope with the
dynamic traffic rate, we design a heuristic scheduling scheme
that adaptively selects NNs to maintain a balance between the
detection accuracy and latency.

I. INTRODUCTION

Defending the network against attacks is a fundamental
topic [1], [2]. Currently, a prevalent way is to regard attack
detection as a classification task and use powerful neural
networks (NNs) to identify the malicious traffic [3]–[6]. For
example, [4] takes the statistical features of each flow as input
and proposes a feed-forward NN to accurately find attack flows
(e.g., DoS) in the traffic. However, a drawback of NNs is
that their intensive and sophisticated computation should be
accelerated by strong GPUs. Many simple gateways/routers
that conduct attack detection to secure the network only host
inexpensive CPUs, which hinder the practical applications of
NNs. To help NNs run on simple devices with acceptable
latencies, researchers have manually adapted NNs to meet
the device characteristics [7], [8]. The authors in [7] design
an ensemble model of lightweight autoencoders for low-
latency detection on a Raspberry PI-based router. In [8], the
widely used convolution neural operation is changed to a more
efficient branch way for CPUs of programmable switches.
Notably, programmable switches usually handle traffic of Tbps
with ASICs [9]. Thus, only a small fraction of the traffic (e.g.,
the suspicious one) is filtered by rules in the ASIC and then
processed by the switch CPU in [8].

Nonetheless, we argue that tailoring a specific NN through
artificial expertise is not robust, nor scalable. First, the network

Corresponding author: Qing Li (liq@pcl.ac.cn)

consists of heterogeneous network devices that differ in set-
tings like operating systems and CPU types. It is impractical
to run a single NN with a consistent and satisfactory latency
on all devices. Though one can manually design a customized
NN for each device for aligned low latency, such a human-
involved process is time-consuming and labor-intensive [10].
Second, even for the same device, the fluctuation in traffic
rate over time can also lead to changes in NN’s latency. For
example, when the traffic rate becomes bursty [11], the NN
may fail to process the traffic in time, causing delayed attack
detection, reaction, and consequently financial loss.

In this paper, we present SOTERIA1 to tackle these prob-
lems. SOTERIA automatically generates NNs by Neural Ar-
chitecture Search (NAS) [12], [13], which requires little
human involvement. Given heterogeneous devices, SOTERIA
recommends NNs of suitable latencies for the deployment
and enables elastic scheduling among the deployed NNs,
guaranteeing timely and accurate detection against the fluc-
tuating traffic rate. To achieve the above design system, the
following challenges need to be addressed: 1) The NAS effi-
ciency needs to be improved. Previous NAS solutions involve
repeatedly training and evaluating NNs for each device [14],
[15], consuming huge resources (e.g., 3150 GPU days in [16]).
Although the current weight-sharing (i.e., sharing and em-
bedding parameters of NNs into a supernet for training [13],
[15]) accelerates the training, it still lacks efficiency: With
an exponential search space (aka the set of candidate NNs),
only a small fraction of trained NNs are chosen after the
evaluation, while most NNs are trained in vain, wasting
expensive GPU memory and hours. Besides, training many
low-performance NNs together can affect the accuracy of the
chosen NNs due to their heavily shared parameters [17]. 2)
A dedicated recommendation scheme is required to choose
NNs that suit the latency requirement of each particular device
from the trained NNs by NAS. 3) To schedule NNs within a
device, an adaptive detection process is desired, which should
intelligently measure the detection overhead caused by the
changing traffic rate and then selects a proper NN to maintain
a balance between detection latency and accuracy.

We address these challenges by the following key ideas:
• We propose an Evolutionary Training Algorithm (ETA)

to progressively train sub-NNs (i.e., NNs in the weight-

1In Greek mythology, Soteria is the goddess of preservation and safety.979-8-3503-0322-3/23/$31.00 ©2023 IEEE

20
23

 IE
EE

 3
1s

t I
nt

er
na

tio
na

l C
on

fe
re

nc
e

on
 N

et
w

or
k

Pr
ot

oc
ol

s (
IC

N
P)

 |
 9

79
-8

-3
50

3-
03

22
-3

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
 D

O
I:

10
.1

10
9/

IC
N

P5
92

55
.2

02
3.

10
35

55
79

Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on January 02,2024 at 07:05:54 UTC from IEEE Xplore. Restrictions apply.

shared supernet) in the Pareto front [18], [19]. The Pareto
front is the set of optimized sub-NNs that has a good
spread on both accuracy and model size. Since it is im-
practical to measure per-device latency in time during the
training, we use the latency-related model size instead.
In each training iteration, sub-NNs of high accuracy
and diverse model sizes are selected. Then, evolutionary
crossover and mutation are applied to them, deriving a
new generation of sub-NNs for the next evolutionary
training. In this way, ETA eliminates the weight-sharing
of redundant sub-NNs outside the accuracy-size Pareto
front and thus improves the training efficiency.

• We re-sort the trained NNs in ETA to obtain the actual
accuracy-latency Pareto front for the device. As the model
size can roughly but not exactly reflects the running
latency on different devices [20], for a deployment device,
we first run tests of latency on it. Then, guided by
the objectives of detection accuracy and running latency,
the non-dominated sorting filters a new accuracy-latency
Pareto front for the device from the tested NNs. The
accuracy-latency Pareto front maintains the NNs of best
spread on both accuracy and latency for this device, and
thus is recommended for the device’s deployment.

• We design a heuristic NN scheduling scheme to adap-
tively select NNs to suit the changing traffic rate during
the detection process on a device. As flows are queued
for detection, we use the past records of queue sizes to
approximate the trend of the flow queue, i.e., increasing
or decreasing. By jointly considering the queue trend
and length, which implicitly illustrate the current traffic
rate, the scheduler selects NNs per flow detection by the
following principle: if the previously selected NN results
in a growing long queue, it will choose a faster NN
to accelerate the detection; Otherwise, it will select a
slightly slower NN for higher accuracy.

Thorough experiments on three public datasets [21]–[23]
and three commodity devices reveal that: 1) The detection
performance of SOTERIA is higher compared to eight NN
solutions [4]–[6], [12], [13], [24]–[26], e.g., accuracy and
F1-score are improved by 2.56% and 1.34%, respectively.
2) When compared with other NAS solutions [13], [24], the
required GPU memory and time to train each NN is reduced
by 9.49× and 5.20×. 3) By the heuristic scheduling, the
prototyped SOTERIA2 accelerates the detection time by 9.50×
when the traffic rate changes from 15Kpps to 300Kpps (pps
indicates the packet per second).

II. BACKGROUND AND MOTIVATION

A. Neural Networks in Attack Detection
Due to their superior performance, NNs have been widely

applied to network attack detection [3]–[6]. Generally, NN-
based detection can be regarded as a classification task. For
collected flows3, researchers first extract desired features (e.g.,

2The code is in https://github.com/xgr19/SOTERIA.
3A flow refers to a set of packets from the same 5-tuple (i.e., source/dest.

IP, source/dest. ports, and transmission protocol).

packet sizes, IP flag counts) and label classes (e.g., DoS, probe,
or benign). Then, these feature-label pairs are fed to train an
NN customized from standard NN modules like Convolutional
Neural Network (CNN) [27] and Recurrent Neural Network
(RNN) [28]. The trained NN is able to infer the categories of
new flows with provided features.

Nonetheless, NNs are computation-intensive and require
powerful hardware (e.g., GPU-equipped x86 servers) for accel-
eration, which hinders their further applications in networks,
as most inexpensive devices (e.g., routers, or switches) for
attack detection may only contain CPUs. As such, several
solutions are proposed to lighten the NN for network devices.
The authors in [7] propose KitNet, which modifies the neural
architecture by incorporating several lightweight autoencoders.
By performing experiments on a Raspberry PI, the authors
demonstrate KitNet’s efficiency and ability to run on a simple
router with low latency. In [8], the authors propose Branch
Convolution Net (BCN), which divides the convolution op-
eration into several sub-operations (i.e., branches) to reduce
the computational complexity. To handle high-speed traffic,
the authors offload the BCN to a programmable switch and
cooperate with a rule-based decision tree (DT), i.e., the two-
phase detection. The DT (represented by a P4 program) works
on the switch ASIC [9], handling traffic of hundreds of Gbps
to filter the suspicious packets. Then, the filtered packets (only
a small fraction, e.g., 5% in their experiments) are redirected
to the switch CPU for the BCN-based in-depth detection.

These expert-designed NNs, however, are too expensive in
time and human resources [10], [29]. In practical networks,
the manual design process has to be repeated from one
device to another according to heterogeneous configurations
of operating systems and CPUs. Moreover, one handcraft NN
deployed on the device is of constant running time and may
fail to adapt to changing network rates, e.g., delaying the
detection due to the network burst [11].

B. Neural Architecture Search

To free the exhaustive labor in expert-designed NNs, [14],
[15] proposes to generate NNs by automated NAS. In NAS,
researchers first define a search space that specifies the feasible
neural operations. An NN in the search space is regarded as
two parts: 1) An architecture vector containing the specific
operations; 2) Trainable parameters in contained operations.

Then, different automated schemes [14], [15] are employed
to search the NN architecture and optimize the corresponding
NN parameters. In [14], the authors use a Reinforcement
Learning (RL)-based agent to automatically generates candi-
date architecture vectors. Then, each architecture-associated
NN is assigned parameters and trained from scratch. The
performance of all evaluated NNs is used as the reward to train
the RL agent. After the training of the agent is converged,
an optimized NN is returned. While human resources are
reduced, these solutions train all NNs individually and cause
huge computation burdens (e.g., GPU memory and hours). To
reduce the computation cost, recent works propose to train
NNs in a weight-sharing manner [13], [15]. In the weight-

Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on January 02,2024 at 07:05:54 UTC from IEEE Xplore. Restrictions apply.

sharing schemes, a supernet is constructed, whose parameters
can be flexibly shared across NNs to form candidate sub-NNs
according to the architecture vectors. In order to train the
shared parameters efficiently, researchers may equally sample
and train sub-NNs from large-size to small-size, i.e., progres-
sively shrinking [13]. Other NAS approaches for automated
NN generation are [12], [25], [26], [30].

Nevertheless, given the numerous sub-NNs (typically ex-
ponential) in the supernet, uniformly sampling sub-NNs to
train is inefficient. The training of many sub-NNs is futile
as only a small number of optimal sub-NNs are returned to
the user. Though new schemes [24], [31] are proposed to
reduce the sampling of sub-NNs during the training, their NN
sampling schemes are empirical, and thus hard to identify the
optimal sub-NNs exactly. Therefore, they may sample low-
performance sub-NNs during the weight-sharing training and
thus degrade the final accuracy of returned sub-NNs [17].

C. Evolutionary Algorithm

Unlike empirical sampling, [19] shows that the evolutionary
algorithm can automatically select optimal individuals from a
population, which may open up new sampling opportunities
for weight-sharing training. When using the evolutionary al-
gorithm to solve problems, a key concept is “domination”.
Solution A is said to dominate solution B, if

∀i ∈ {1, . . . , k}, fi(A) ≤ fi(B), (1)
∃i ∈ {1, . . . , k}, fi(A) < fi(B), (2)

where f1, . . . , fk are specified minimization objectives. If an
objective is to be maximized, we can leverage its negative or
inverse instead.

Fig. 1: An example of domination and Pareto front.

As an example, A is shown to dominate B in Fig. 1 as the
objective values of A are smaller than those of B on f1 and f2.
Unlike B, A is a non-dominated solution, i.e., not dominated
by any other solution. In multi-objective problems (k ≥ 2), it is
infeasible to select one best solution to minimize all objectives
simultaneously. Hence, the effort is devoted to finding all non-
dominated solutions through the non-dominated sorting [18].
That is, each solution is compared with every other solution to
record its count C of being dominated. Finally, the set of opti-
mal (non-dominated) solutions is composed of solutions whose
C = 0. This set is also known as the Pareto front (see Fig. 1).
To continue the optimization, the Pareto front is sampled to be

the parents, producing a new and better generation of offspring
population by evolutionary crossover and mutation [32]. If the
number of solutions in the Pareto front at hand is not sufficient
to produce the offspring, researchers can jointly consider the
second Pareto front (solutions of C = 0 after removing the
original Pareto front), third Pareto front (solutions of C = 0
after removing the original and second Pareto front), etc. Then,
the non-dominated sorting and the offspring reproducing are
conducted iteratively to optimize the solutions.

We argue that, by exploiting specified objectives, the evolu-
tionary algorithm can be introduced to sample the sub-NNs in
weight-sharing training and thus boost the NAS performance.
Based on this, we propose SOTERIA, which adapts the evo-
lutionary algorithm to the weight-sharing training to generate
a set of optimal NNs (Pareto front) with varying latency and
accuracy. Compared with solutions [7], [8] to manually tune
NN architecture for network devices, SOTERIA is a NAS-based
system that automatically generates multiple NNs at once,
saving expensive human resources. Also, unlike previous NAS
solutions [13], [15], [24] to equally train numerous sub-NNs in
the weight-sharing, the evolutionary algorithm helps SOTERIA
to focus on the optimal sub-NNs in the Pareto front, reducing
the training costs (GPU memory and hours) while boosting
the accuracy. Finally, with our NN scheduling on the device,
SOTERIA can output accurate detection results in time even if
the deployed device is faced with traffic rate changes, which
is not considered in NN-based detection like [4]–[8].

III. SOTERIA OVERVIEW

The framework overview of SOTERIA, which consists of
two main processes: NAS Training and Detection Process, is
depicted in Fig. 2. Similar to NAS approaches like [13], [15],
[25], our NAS training also needs to be executed on the GPU
server because the training of sub-NNs on the massive dataset
is still computationally expensive and requires the acceleration
of GPUs. However, our NAS training is one-shot, and we can
redeploy the trained sub-NNs on different network devices.

NAS Training (Section IV). We first specialize the search
space and encode its possible NNs’ architectures into vectors
(detailed in Section IV-A). Each architecture vector consists of
2N+1 integers, where N is the predefined maximum number
of layers. The first integer in the green square represents the
valid number of layers ℓ in an NN (ℓ ≤ N). The following
integers in the yellow and orange squares respectively maintain
the specific setting of kernels and channels for each layer.
Similar to other NAS schemes [13], the architecture repre-
senting our supernet has N layers, and each layer has the
predefined maximum kernel sizes and channels. According to
an architecture vector, we can select partial parameters in the
supernet to form sub-NNs, i.e., weight-sharing.

With random sub-NNs’ architectures as the origin popu-
lation, we start to run the evolutionary training (detailed in
Section IV-B). In the evolution, we utilize two objectives,
accuracy and model size, to sample (i.e., non-dominated
sorting [18]) and evolve (i.e., crossover and mutation [32])
architectures for the weight-sharing training. As accuracy is to

Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on January 02,2024 at 07:05:54 UTC from IEEE Xplore. Restrictions apply.

Fig. 2: The framework of SOTERIA.

be maximized, we actually use its negative: 100%−accuracy
instead according to Equations (1) and (2). Generally, the accu-
racy is only obtained after training sub-NNs associated with
the whole architecture population, which is computationally
expensive. To efficiently estimate the accuracy, we leverage an
accuracy predictor [33], which takes in sub-NNs’ architecture
vectors and returns their accuracy. Besides, as interrupting the
training to test latency on each individual device per NN is
slow and impractical, the model size is used instead, which can
be quickly computed through the architecture vector. Once the
optimal architectures are obtained in an iteration by the non-
dominated sorting, we construct their corresponding sub-NNs
for weight-sharing training and validation. Then, the (accuracy,
architecture) pairs of these sub-NNs are used to update the
lightweight accuracy predictor for the next evolution.

After the training, a set of sub-NNs that has a good spread
on the accuracy and model size, i.e., the accuracy-size Pareto
front, is obtained. However, [20] reveals that the model size
is not strictly correlated with the running latency on different
devices. Thus, we recommend re-sorting the NNs according to
their accuracy and tested latency on the target device, getting
the accuracy-latency Pareto front (detailed in Section IV-C).

Detection Process (Section V). Each deployment device
is equipped with the NNs along with three data structures:
bloom filter, feature array, and flow queue (data structures are
detailed in Section V-A). As headers maintain information like
packet size and 5-tuple for feature computation [34], [35], we
only clone the packet headers to save memory, while sending
the original packets for asynchronous network functionalities.

The headers are first sent to the bloom filter for membership
queries [36]. That is, the 5-tuple is hashed (h1, . . . , hk) to
quickly determine if its corresponding flow has been detected.
If so (i.e., all hashed positions are “1”), the following processes
are skipped to mitigate the detection overhead. Otherwise,
the 5-tuple is hashed (i.e., g1, g2) into the feature array for
updating the corresponding features (e.g., packet sizes, IP/TCP
flag counts). Notably, we use chaining to solve hash collision
in the feature array. We collect M packets for each 5-tuple
defined flow. Once a flow is ready (i.e., its M packets have
been collected), its hashed positions in the bloom filter are set
to 1 and its features are dequeued.

The ready flow (actually its features) is again lined in the
flow queue, waiting for the scheduler to run a suitable NN
(detailed in Section V-B). The green squares of different sizes
indicate sub-NNs of varying running latencies and accuracies.
Through a heuristic scheme, the scheduler jointly considers
the current length and the growing trend of the flow queue to
decide a suitable sub-NN for each flow detection, mitigating
the overall detection pressure. During the detection, the se-
lected sub-NN outputs the class (benign or a specific attack)
of a flow. Last, the 5-tuple along with its detected class is
written to the access control list to instruct further reactions
(forwarding/blocking) for the asynchronously passing packets.

IV. NAS TRAINING

A. Architecture Encoding

We consider building NNs based on a series of 1D convolu-
tions that yield high accuracy in the network literature [5], [8],

Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on January 02,2024 at 07:05:54 UTC from IEEE Xplore. Restrictions apply.

[37], [38]. In a 1D convolution layer, two important settings
are the kernel size and the number of channels. The kernel size
decides how many trainable parameters are in a convolution
kernel. The number of channels is in fact the number of kernels
in a layer. Hence, by setting the number of convolution layers,
along with kernel sizes and channels per layer, we can obtain
an NN for the detection task.

Fig. 3: The architecture encoding.

As such, we propose the architecture encoding in Fig. 3
to obtain NNs of variable settings. The architecture maintains
fixed layers and variable layers. The fixed layer right near
the input is also a 1D convolution. The other two fixed layers
(i.e., average pooling, fully connected layer (FC) with softmax)
are placed after the variable layers to output the classification
results [37], [39]. Apart from the fixed layers, there are ℓ
variable 1D convolution layers, where 3 ≤ ℓ ≤ N = 9. These
variable layers are encoded in a fixed-length integer vector
(i.e., the architecture vector of colored squares). Each of the
variable layers can be changed in the kernel size and number
of channels. Similar to [14], [40], the candidate kernel sizes
are 3, 5, and 7; the number of channels can be 3×, 4×, or 6×
of the input channels. Finally, these varying settings reach a
search space with

N∑
ℓ=3

(
|KernelSizes| × |Channels|

)ℓ

≈ 4.35× 108 (3)

NNs of different model sizes, which is sufficient for the diverse
performance of devices.

Among these NNs, the one with the largest number of
layers and the largest number of kernels and channels in each
layer is the supernet. The rest NNs (i.e., sub-NNs) can be
derived from the supernet by their encoded architecture vectors
and sharing techniques like the parameter transformation [13].
For example, the central five parameters of a convolution
(KernelSize = 7) in a supernet can be referenced by a sub-
NN whose architecture vector has KernelSize = 5 through
the parameter transformation.

B. Evolutionary Training Algorithm

To optimize parameters in the weight-sharing, previous
researchers (e.g., [13], [15]) minimize the expected loss L on
the training data Dtrn, i.e.,

min
w

Eα∼p(A) [L(wα;Dtrn)] , (4)

where w is the weights (parameters) in the supernet and wα is
the shared weights sampled from the supernet by architecture
α ∈ A. p(A) refers to the uniform sampling distribution over
all possible architectures in A. Therefore,

p(α) =
1

|A|
. (5)

As NAS only returns the optimal sub-NNs, a large number
of irrelevant architectures, especially the ones of low learning
capabilities, are trained in vain, not only costing expensive
resources but also disturbing the accuracy of returned NNs as
their weights are heavily shared [17].

Intuitively, we want to block the irrelevant architectures
before the training, i.e.,

p(α) =
1

|APareto|
1APareto

(α), (6)

where 1APareto
(α) =

{
1, α ∈ APareto,
0, otherwise,

is an indicator

function, and APareto is the Pareto front. However, APareto

is obtained after the non-dominated sorting of the trained sub-
NNs with respect to accuracy and model sizes. It is impossible
to know the accuracy before training. Hence, we propose
Algorithm 1 to progressively approximate APareto.

Algorithm 1 Evolutionary Training Algorithm (ETA)
Input: Data Dtrn, Dval, and model size metric S.
Output: Trained sub-NNs.

1: Let architecture population child = ∅.
2: for space in Crossover & Mutation Space do
3: for training epoch ≤ MAX do
4: if child is ∅ then
5: child = RandomSample(space). # Initialize
6: end if
7: sub-NNs = supernet(child). # Weight-sharing
8: acc = TrainAndEval(sub-NNs,Dtrn,Dval).
9: Update predictor CART by acc and child.

10: state = Expect(acc) + Variance(S(child)).
11: if state is NOT improved then
12: Break the training in space. # Early stopping
13: else
14: child = Evolute(child, space,CART,S).
15: end if
16: end for
17: APareto = APareto ∪ child.
18: end for
19: APareto = NoDominateSort(APareto, acc,S).
20: sub-NNs = supernet(APareto). # Trained sub-NNs

In Line 2, we iterate the crossover & mutation space
progressively. In light of Fig. 3, we first allow the evolution
happens in the kernel sizes, while the channels and layers are
at their maximum values (6× and 9, respectively). Next, the
space expands to kernel sizes and channels, but the number of
layers still remains at 9. Last, the layers are also varied from 3
to 9. This is because randomly training NNs of different sizes

Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on January 02,2024 at 07:05:54 UTC from IEEE Xplore. Restrictions apply.

can result in lower accuracy. Our space expansion roughly
arranges the training order of NNs from large to small, which
avoids the interference between small and large NNs, and
boosts the weight-sharing effectiveness [13].

In Lines 4∼6, we initialize the empty architecture popula-
tion child by uniformly sampling architecture vectors in the
beginning crossover & mutation space.

In Lines 7∼9, we first train and evaluate the sub-NNs.
By utilizing the weight-sharing, sub-NNs associated with
architectures in child are assigned shared parameters from
supernet via a transformation in [13]. Then, the validation
accuracies acc and corresponding architecture vectors child
of trained sub-NNs are used to update the accuracy predictor,
CART, the Classification And Regression Tree model [33].
After the training, CART is expected to establish the mapping
from architectures to accuracies. It is common to employ
lightweight tree models as predictors [40], [41], as their
training is swift and well-implemented in the off-the-shelf
scikit-learn library [42].

In Lines 10∼15, we decide whether to early stop the evolu-
tion in the current crossover & mutation space before reaching
the MAX training epoch. First, we compute the accuracy
expectation and the model size variance of the population
child. The variance measures the NN dispersion on model size
(i.e., indicating the possible richness of NNs under different
latency requirements). If state is not improved with respect to
the previous epochs, we stop the training in the current space.
Otherwise, Evolute(.) conducts crossover and mutation on
the architecture vectors child to generate new architectures,
and then the optimal architectures are returned as new child
by the sorting with objectives of predicted accuracy (CART)
and model size (S). The crossover and mutation derive
new architectures by inputting the architectures in child. We
leverage the simulated binary crossover (SBX) operator [32]
to compute the probability density of offspring and randomly
sample the new architectures, which has been implemented in
pymoo library [43]. The sorting is detailed by Algorithm 2 in
Section IV-C.

In Lines 19∼20, we return the trained sub-NNs. First, we
apply the non-dominated sorting on the collected architectures
APareto, and select the architectures in the Pareto front.
Note that the current objectives are trained accuracy acc and
model sizes S of architectures. Finally, we assign the trained
parameters in the supernet to each sub-NN in sorted APareto,
according to the sub-NN’s architecture and the parameter
transformation.

C. Device Latency Re-Sorting

The NAS training is on GPUs due to the computational
optimization of multiple sub-NNs. Thus, it is time-consuming
to frequently perform cross-hardware (between GPUs and
network devices) latency measurements [44]. Following the
previous success [24], [31], it is feasible to replace the latency
with the more convenient model size in the training. Generally,
models of big sizes are more complex and thus slower. But
the model size may not be representative of all devices due

to the various hardware factors [20]. As such, we recommend
an extra non-dominated sorting to re-sort the trained sub-NNs
by their test latencies on the target device. In Algorithm 1
Line 20, we generate a set of NNs instead of only one, so it
is highly likely to filter out a new Pareto front according to
the latency again.

To record running latencies, we implement an automated
script to load and run sub-NNs on devices. Then, for each
device with collected latencies, we run Algorithm 2 with
f1 = 100% − accuracy and f2 = latency to obtain its new
accuracy-latency Pareto front. We iterate through each sub-
NN and check whether it is dominated by any other sub-NNs
(Lines 3∼7). Then, the non-dominated sub-NNs are collected
as the new Pareto front (Lines 8∼10). Finally, only sub-NNs
in this new Pareto front are recommended for the device. One
may replace the model size metric in ETA with latency to
omit Algorithm 2. However, due to different device settings,
an NN may run with varying latencies on devices [20] and
thus results in repeated ETA, which is more expensive than
repeating Algorithm 2.

Algorithm 2 Non-Dominated Sorting
Input: The sub-NNs sub-NNs, and objectives f1, f2.
Output: Pareto front F .

1: for NN ∈ sub-NNs do
2: cNN = 0. # Count of being dominated for NN
3: for NN ′ ∈ sub-NNs do
4: if NN ′ dominates NN then
5: cNN+ = 1. # Equation (1) and (2) with f1, f2
6: end if
7: end for
8: if cNN = 0 then
9: F ∪NN .

10: end if
11: end for

V. DETECTION PROCESS

A. Data Structures

In Fig. 2, we use three data structures: a bloom filter, a
feature array, and a flow queue, in the detection process.

The bloom filter [36] is a space-efficient data structure
consisting of k hash functions and an m-bit array. In the
detection process, the bloom filter filters the packets by their
5-tuples. Initially, the m bits are zeros. After a flow has
enough packets for feature computation and detection, its
5-tuple is hashed in the bloom filter by k hash functions,
and the located k bits are set to ones. Then, future packets
whose hashed bits are ones in the bloom filter will skip the
subsequent processes and directly obtain their class labels in
the access control list to further reduce the detection pressure.
Although the bloom filter accelerates the packet filter to a time
complexity of constant k, its hash-based query may result in
false positives. That is, packets of an undetected flow could be
regarded as “detected” if a hash collision happens. Fortunately,
a sufficiently small false positive rate (i.e., 10−6 in SOTERIA)

Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on January 02,2024 at 07:05:54 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Features derived from M packets of a flow.

Name Description

Packet sizes
The max, min, average, variance, and

sum of 𝑀 packets

IP flag counts MF and DF of 𝑀 packets

TCP flag counts
SYN, ACK, PSH, FIN, RST, and ECN

of 𝑀 packets
TCP window

sizes The max, min, average of 𝑀 packets

The 𝑀th packet
Header length, TTL, transmission

protocol, source and destination ports

can be mathematically guaranteed by adjusting the k and m
of the bloom filter according to [36].

The feature array consists of hash arrays for storing the
flow features. Following [34], [35], we use features derived
from packet headers (Table I). As such, the feature array
does not need to hold packet payload, which significantly
reduces the memory requirement. To insert a packet, two hash
functions g1, g2 are applied on the packet’s 5-tuple, locating
the positions that potentially hold the flow defined by the
hashed 5-tuple. If no specific flow is found in the hashed
positions, we use the chaining technique to insert the packet.
That is, a new cell is allocated in the array to store packet
headers from the hashed 5-tuple.

The flow queue dynamically allocates memory to store
the flows waiting for detection. If a flow with a specific 5-
tuple is ready (i.e., M packets are collected), we dequeue this
flow from the feature array, compute its features according to
Table I, and then enqueue it into the flow queue. This flow
queue is First-In-First-Out (FIFO), i.e., the flows located in the
queue head will be first dequeued to the scheduler to select a
proper sub-NN for the detection.

B. Heuristic Scheduling

After receiving a flow’s features, the scheduler is to select
a suitable sub-NN for the detection inference, meeting the
current traffic rate. To this end, the scheduler first considers
the growing trend of the flow queue. Given observation points
{(x1, y1), . . . , (xk, yk)} of the flow queue where xi and yi are
the observed time and queue length, respectively, the growing
trend T is approximated by the least-squares estimation [45]:

T =

∑k
i=1(xi − x)(yi − y)∑k

i=1(xi − x)2
, (7)

where x and y are the average values of xi and yi, respectively.
The trend T approximately reflects whether the queue length
is increasing (T > 0) or decreasing (T < 0). If the previously
selected sub-NN results in an increased (decreased) trend,
the scheduler may now select a sub-NN of a lower (higher)
latency.

However, scheduling sub-NNs merely based on T is not suf-
ficient. While T < 0 indicates the queue length is decreasing,
the queue could also be very long at the same time, resulting
in a high waiting time of tailed flows. As such, we consider

Algorithm 3 Heuristic Scheduling
Input: Sub-NNs in the accuracy-latency Pareto front, obser-
vations {(x1, y1), . . . , (xk, yk)}, and queue length L.
Output: The selected NN .

1: Let i denote the index of the last selected NN.
2: T = TrendCompute((x1, y1), . . . , (xk, yk)).
3: if T < 0 then
4: allowed = max(0, |sub-NNs| − L

100).
5: i = min(i+ 1, allowed). # Latency↑, accuracy↑
6: else if T > 0 then
7: i = max(0, i− 1). # Latency↓, accuracy↓
8: else
9: i = i.

10: end if
11: NN = sub-NNs[i]

both the trend and the queue length in Algorithm 3 when
scheduling sub-NNs. In Line 2, we compute the growing trend
T by Equation (7). Then, we select an NN according to the
following conditions:
T < 0 (Lines 3∼5) indicates the flow queue is decreasing

and thus the detection pressure is reduced. Hence, we select
an NN with a higher latency (i.e., increment the index i by
one) to improve the accuracy. To consider the wait time of
flows in the queue tail, we further limit the index increment
by the queue length L. That is, the maximum allowed index
is reduced by one when L increases by one hundred.
T > 0 (Lines 6∼7) indicates the flow queue is increasing.

As more flows are queued for the detection, we speed up the
inference process by selecting an NN with a lower latency
(i.e. index of i − 1). Of course, this speedup is achieved by
sacrificing the detection accuracy.
T = 0 (Lines 8∼9) means the length of the flow queue is

stable, indicating that the last selected NN is suitable for the
current network state. So we keep the selected NN unchanged.

TABLE II: Deployed devices.

System
CPU RA

M Type Clock Cores

PI
(Raspberry

PI 4B)

Raspbian
GNU/

Linux 11

Broadcom
BCM2711

1.5
GHz

4
4

GB

EdgeCore
(Wedge

100BF-65X)

Open
Network

4.14

Intel
D-1517

1.6
GHz

8
8

GB

H3C (S9850-
32H)

Open
Network

4.14

Intel
D-1527

2.2
GHz

8
8

GB

VI. EVALUATION

A. Experimental Settings

We utilize three public datasets: UNSW-NB15 [22], Bot-
IoT [21], and CICIDS [23]. Each of these datasets is randomly
divided into three parts, with 80% of the data used for training,
10% for validation, and 10% for testing. SOTERIA is compared

Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on January 02,2024 at 07:05:54 UTC from IEEE Xplore. Restrictions apply.

2000 4000 6000 8000 10000
Normalized model size(M)

2000

4000

6000

8000

10000

A
cc

ur
ac

y(
%

)

FLOPs MACs Params

0.2 0.4 0.6 0.8 1.0
Model size(Normalized)

96

98

A
cc

ur
ac

y(
%

)

(a) BoT-IoT

0.2 0.4 0.6 0.8 1.0
Model size(Normalized)

94

95

96

97

A
cc

ur
ac

y(
%

)

(b) UNSW-NB15

0.25 0.50 0.75 1.00
Model size(Normalized)

94

96

98

100

A
cc

ur
ac

y(
%

)

(c) CICIDS

Fig. 4: The Pareto fronts on objectives of detection accuracy (f1) and different model size metrics (f2) on three datasets.

with eights NAS and manually configured NNs: Attentive-
NAS [24], OFA [13], ProxylessNAS [25], ENAS [26], and
DARTS [12] are NAS solutions; LuNet [5], DeepLSTM [6],
FFDNN [4] are handcrafted NNs. All NAS schemes use the
search space similar to ours in Section IV-A. All model
training, validation, and comparison are on a server with CPU
of Intel(R) Xeon(R) E5-2643 v4 @3.40GHz, GPU of Tesla
M60 (8GB×2), Python 3.9, and PyTorch 1.12.0.

We also prototype SOTERIA on three devices (Table II):
PI, EdgeCore, and H3C with C++ and MNN [46]. Like [7],
PI is used to act as a low-performance router. EdgeCore and
H3C are programmable switches with CPUs and ASICs. Here
we assume that the traffic goes through the CPU directly,
and further discussion about the ASIC-based enhancement is
included in Section VII. The main settings of SOTERIA are:
the epochs for each evolution space MAX = 20, the collected
packets per flow M = 4, and the number of observation
points in the scheduling is 3. The evolutionary techniques
in SOTERIA (i.e., crossover, mutation, and non-dominated
sorting) are based on the pymoo library [43], [47].

B. Model Size Metric Selection

In Algorithm 1, a model size metric S should be spec-
ified. Typically, there are three metrics, i.e., the number of
floating-point operations (FLOPs), multiply-accumulate oper-
ations (MACs), and trainable parameters (Params), that can be
used to evaluate the size of an NN [24], [48]. Fig. 4 shows
the Pareto fronts on detection accuracy with these metrics. To
make metrics comparable to each other, we normalize them by
the min-max normalization [49]. As shown, while the Pareto
fronts of the three metrics all have good spreads on the size,
the Pareto front of Params has the best accuracy. Thus, we set
S = Params in the following experiments.

C. Comparison with Existing Schemes

Classification performance. As stated in Section II-A, NN-
based detection is usually treated as a classification problem.
Thus, we utilize four classification metrics: accuracy, preci-
sion, recall, and F1-score, to evaluate all compared NNs in
Fig. 5. If there are several generated NNs (e.g., Pareto fronts
of NAS solutions), we only report the results of the best

$FFXUDF\ 3UHFLVLRQ 5HFDOO)��VFRUH

Sote
ria

Atte
nti

ve
NAS

OFA

Prox
yle

ssN
AS

ENAS

DARTS
LuN

et

Deep
LSTM

FFDNN
97

98

99

100

M
et

ric
(%

)

NAS Handcraft

(a) Bot-IoT

Sote
ria

Atte
nti

ve
NAS

OFA

Prox
yle

ssN
AS

ENAS

DARTS
LuN

et

Deep
LSTM

FFDNN

92

94

96

98

M
et

ric
(%

)

NAS Handcraft

(b) UNSW-NB15

99.95

100.00

Sote
ria

Atte
nti

ve
NAS

OFA

Prox
yle

ssN
AS

ENAS

DARTS
LuN

et

Deep
LSTM

FFDNN
96.00

98.00

NAS Handcraft

M
et

ric
(%

)

(c) CICIDS

Fig. 5: The classification performance on three datasets.

Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on January 02,2024 at 07:05:54 UTC from IEEE Xplore. Restrictions apply.

NN. As depicted, SOTERIA has a competitive performance on
all datasets. For example, in the CICIDS dataset of Fig. 5c,
SOTERIA improves the F1-score by 1.34% (compared with
AttentiveNAS, 99.99% vs. 98.65%) and the accuracy by 2.56%
(compared with DeepLSTM, 99.99% vs. 97.43%).

Training costs. The costs of different approaches are de-
picted in Fig. 6. As NAS solutions can train several NNs, we
here consider the average cost C of generating one NN, where

C =
total cost(memory/hours)

NNs
. (8)

As shown in Fig. 6, SOTERIA is more efficient in training
than other schemes. On average, SOTERIA reduces the time
of AttentiveNAS by 5.20× (1.00h vs. 5.20h), and the GPU
memory of DARTS by 9.49× (126.69MiB vs. 1203.00MiB).
It seems that SOTERIA only has limited improvement over
OFA and AttentiveNAS, e.g., only saving hundreds of MiB
and several hours. But Fig. 6 is the average cost per NN.
Such improvement will scale linearly as the number of NNs
increases, which is the true case in these NAS solutions that
consider numerous NNs during the training.

D. Latency Re-Sorting

After we obtain sub-NNs that have a good spread on
the accuracy and Params, we should re-sort these sub-NNs
according to their test latencies on devices. Fig. 7 shows
the resorting. We note that some sub-NNs originally in the

Soteria OFA

AttentiveNAS
DARTS

ProxylessN
AS

ENAS
LuNet

DeepLSTM
FFDNN

0

500

1000

G
PU

 m
em

or
y

us
ag

e(
M

iB
)

0

2

4

6

Ti
m

e(
H

ou
r)

NAS Handcraft

Fig. 6: The average costs of GPU memory and time per NN.

accuracy-param Pareto front are outside of the accuracy-
latency front. As mentioned earlier, it is hard for model size
to represent different device factors well [20]. After the re-
sorting in Fig. 7, we finally obtain optimal NNs whose running
latencies range from 0.06ms to 1.20ms.

E. Prototype Analysis

We now compare SOTERIA (Algorithm 3) with two simple
scheduling schemes: only using the slowest sub-NN of highest
accuracy (“fixed max NN”), and only using the fastest NN

0.18ms

1.20ms

0.62ms

(a) PI

0.09ms

0.27ms

0.16ms

(b) Edge

0.06ms

0.20ms

0.13ms

(c) H3C

Fig. 7: The re-sorted Pareto front of UNSW-NB15 according to detection accuracy and running latency on the three devices.

15
K

20
K

25
K

30
K

Packet rate(pps)

94

96

98

A
cc

ur
ac

y(
%

)

(a) PI

15
0K

20
0K

25
0K

30
0K

Packet rate(pps)

94

96

98

A
cc

ur
ac

y(
%

)

(b) Edge

15
0K

20
0K

25
0K

30
0K

Packet rate(pps)

94

96

98

A
cc

ur
ac

y(
%

)

(c) H3C

Fig. 8: The average accuracy of test flows from UNSW-NB15 under different packet rates (packet per second, pps).

Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on January 02,2024 at 07:05:54 UTC from IEEE Xplore. Restrictions apply.

15
K

20
K

25
K

30
K

Packet rate(pps)

0.00

200.00

400.00
Ti

m
e(

m
s)

(a) PI

15
0K

20
0K

25
0K

30
0K

Packet rate(pps)

0.00

50.00

Ti
m

e(
m

s)

(b) Edge

15
0K

20
0K

25
0K

30
0K

Packet rate(pps)

0.00

25.00

50.00

Ti
m

e(
m

s)

(c) H3C

Fig. 9: The average detection time of test flows from UNSW-NB15 under different packet rates (packet per second, pps).

7

Fig. 10: Selection counts on H3C. The bottom x-axis shows
the latency and accuracy of each NN (NNs indexed 0 ∼ 7 in
the top x-axis).

of lowest accuracy (“fixed min NN”). Notably, all sub-NNs
considered here are generated by our NAS training.

Fig. 8 and 9 show the detection accuracy and time under
different packet rates. As depicted, SOTERIA has a competi-
tively high accuracy compared to the fixed max NN while only
incurring detection time as low as that of the fixed min NN. For
example, in Fig. 8a when pps = 15K, the accuracy of SOTERIA
and the fixed max NN are 96.99% vs. 97.27%. In Fig. 9c
when pps = 300K, SOTERIA reduces the detection latency
by 9.50× when compared with the fixed max NN (6.55ms
vs. 62.13ms). In our opinion, reducing the detection latency
by tens of microseconds is vital as it allows the detection
system more swift to stop the malicious traffic and control
the damage as little as possible. Though SOTERIA shows
a small improvement (around 1 ∼ 2% on accuracy) over
the fixed min NN in Fig. 8, we believe that any improved
accuracy in defense against attacks is worthy, especially for
large enterprises, 1% of undetected attacks can cause severe
financial loss [50].

Fig. 10 shows the selected counts of each NN in SOTERIA.
When the traffic rate is slow (150Kpps), SOTERIA tends to
select NNs of higher latency to produce higher accuracy. For
example, the NN of 0.20ms (index 7) is chosen 12.43K times.

In contrast, when the traffic rate is high (300Kpps), SOTERIA
prefers low-latency NNs to reduce the detection time, e.g., NN
of index 1 (0.07ms) is selected 14.41K times. In other words,
Fig. 10 is the reason for Fig. 8 and 9, which helps SOTERIA
to adapt to changing traffic rates.

VII. CONCLUSION AND FURTHER DISCUSSION

This paper presents SOTERIA to efficiently train and sched-
ule NNs for attack detection on heterogeneous network de-
vices. We first use the evolutionary training and non-dominated
sorting to obtain a set of optimal NNs with high accuracy and
latency diversity. Finally, the optimal NNs on the device, are
heuristically scheduled according to the traffic rates, making
a trade-off between detection latency and accuracy.

Though extensive experiments demonstrate the superiority
of SOTERIA, its detection time is still a main concern. Fig. 7
shows that the latency of the fastest NN can be 0.06ms.
But with the traffic rate increases, multiple flows will be
queued and lead to a longer detection time (e.g., 6.55ms when
300Kpps in Fig. 9c). In other words, SOTERIA may be more
suitable for simple home routers or small LANs with low
traffic rates. To accelerate SOTERIA, a feasible solution is
the two-phase detection on programmable switches [8], [51]
(Section II-A). We can first train a rule-based decision tree
and then install it on the switch ASIC as match-action P4
tables for high-speed packet classification. Packets classified
as malicious will then trigger a redirect action in the P4 table
and be forwarded to the NN-based secondary detection on the
switch CPU. Experiments in [8] show that only 5% of the
traffic requires a secondary detection, which is expected to
significantly speed up SOTERIA (even to line rate).

VIII. ACKNOWLEDGMENT

We thank our shepherd Prof. Marco Brocanelli and anony-
mous reviewers. This work is supported in part by the
National Key R&D Program of China under Grant No.
2022YFB3105000, the National Natural Science Founda-
tion of China under Grant No. 61972189, the Major Key
Project of PCL under Grant No. PCL2023AS5-1, the Shen-
zhen Key Lab of Software Defined Networking under Grant
No. ZDSYS20140509172959989, and the China Scholarship
Council (CSC202306210169).

Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on January 02,2024 at 07:05:54 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] J. Raiyn et al., “A survey of cyber attack detection strategies,” Inter-
national Journal of Security and Its Applications, vol. 8, no. 1, pp.
247–256, 2014.

[2] S. Tan, J. M. Guerrero, P. Xie, R. Han, and J. C. Vasquez, “Brief survey
on attack detection methods for cyber-physical systems,” IEEE Systems
Journal, vol. 14, no. 4, pp. 5329–5339, 2020.

[3] J. Zhang, L. Pan, Q. Han, C. Chen, S. Wen, and Y. Xiang, “Deep
learning based attack detection for cyber-physical system cybersecurity:
A survey,” IEEE CAA Journal of Automatica Sinica, vol. 9, no. 3, pp.
377–391, 2022.

[4] S. M. Kasongo and Y. Sun, “A deep learning method with wrapper based
feature extraction for wireless intrusion detection system,” Computers &
Security, vol. 92, p. 101752, 2020.

[5] P. Wu and H. Guo, “Lunet: A deep neural network for network intrusion
detection,” in Proceedings of the Symposium Series on Computational
Intelligence. IEEE, 2019, pp. 617–624.

[6] J. Ashraf, A. D. Bakhshi, N. Moustafa, H. Khurshid, A. Javed, and
A. Beheshti, “Novel deep learning-enabled LSTM autoencoder archi-
tecture for discovering anomalous events from intelligent transportation
systems,” Transactions on Intelligent Transportation Systems, vol. 22,
no. 7, pp. 4507–4518, 2021.

[7] Y. Mirsky, T. Doitshman, Y. Elovici, and A. Shabtai, “Kitsune: An
ensemble of autoencoders for online network intrusion detection,” in
Proceedings of the 25th Annual Network and Distributed System Security
Symposium. The Internet Society, 2018.

[8] G. Xie, Q. Li, C. Cui, P. Zhu, D. Zhao, W. Shi, Z. Qi, Y. Jiang, and
X. Xiao, “Soter: Deep learning enhanced in-network attack detection
based on programmable switches,” in Proceedings of the 41st Interna-
tional Symposium on Reliable Distributed Systems. IEEE, 2022, pp.
225–236.

[9] I. Corporation, “Intel Tofino: P4-programmable Ethernet switch
ASIC that delivers better performance at lower power,”
https://www.intel.com/content/www/us/en/products/network-io/
programmable-ethernet-switch.html, 2019, [Online; accessed 3-
May-2023].

[10] B. Arzani, K. Hsieh, and H. Chen, “Interpretable feedback for automl
and a proposal for domain-customized automl for networking,” in
Proceedings of the 20th Workshop on Hot Topics in Networks. ACM,
2021, pp. 53–60.

[11] Z. Zhong, S. Yan, Z. Li, D. Tan, T. Yang, and B. Cui, “Burstsketch:
Finding bursts in data streams,” in Proceedings of the International
Conference on Management of Data. ACM, 2021, pp. 2375–2383.

[12] H. Liu, K. Simonyan, and Y. Yang, “DARTS: differentiable architecture
search,” in Proceedings of the 7th International Conference on Learning
Representations. OpenReview.net, 2019.

[13] H. Cai, C. Gan, T. Wang, Z. Zhang, and S. Han, “Once-for-all: Train one
network and specialize it for efficient deployment,” in Proceedings of
the 8th International Conference on Learning Representations. Open-
Review.net, 2020.

[14] B. Zoph and Q. V. Le, “Neural architecture search with reinforcement
learning,” in Proceedings of the 5th International Conference on Learn-
ing Representations. OpenReview.net, 2017.

[15] Z. Guo, X. Zhang, H. Mu, W. Heng, Z. Liu, Y. Wei, and J. Sun, “Single
path one-shot neural architecture search with uniform sampling,” in
Proceedings of the 16th European Conference on Computer Vision, vol.
12361. Springer, 2020, pp. 544–560.

[16] E. Real, A. Aggarwal, Y. Huang, and Q. V. Le, “Regularized evolution
for image classifier architecture search,” in Proceedings of the 33rd AAAI
Conference on Artificial Intelligence. AAAI Press, 2019, pp. 4780–
4789.

[17] S. You, T. Huang, M. Yang, F. Wang, C. Qian, and C. Zhang, “Greedy-
nas: Towards fast one-shot NAS with greedy supernet,” in Proceedings of
the Conference on Computer Vision and Pattern Recognition. Computer
Vision Foundation / IEEE, 2020, pp. 1996–2005.

[18] C. Bao, L. Xu, E. D. Goodman, and L. Cao, “A novel non-dominated
sorting algorithm for evolutionary multi-objective optimization,” Journal
of Computational Science, vol. 23, pp. 31–43, 2017.

[19] K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: NSGA-II,” IEEE Transactions on
Evolutionary Computation, vol. 6, no. 2, pp. 182–197, 2002.

[20] N. Ma, X. Zhang, H. Zheng, and J. Sun, “Shufflenet V2: practical
guidelines for efficient CNN architecture design,” in Proceedings of the
15th European Conference on Computer Vision. Springer, 2018, pp.
122–138.

[21] N. Koroniotis, N. Moustafa, E. Sitnikova, and B. P. Turnbull, “Towards
the development of realistic botnet dataset in the internet of things
for network forensic analytics: Bot-iot dataset,” Future Generation
Computer Systems, vol. 100, pp. 779–796, 2019.

[22] N. Moustafa and J. Slay, “UNSW-NB15: a comprehensive data set for
network intrusion detection systems (UNSW-NB15 network data set),”
in Proceedings of the 2015 Military Communications and Information
Systems Conference. IEEE, 2015, pp. 1–6.

[23] I. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani, “Toward generating a
new intrusion detection dataset and intrusion traffic characterization,” in
Proceedings of the 4th International Conference on Information Systems
Security and Privacy. SciTePress, 2018, pp. 108–116.

[24] D. Wang, M. Li, C. Gong, and V. Chandra, “Attentivenas: Improving
neural architecture search via attentive sampling,” in Proceedings of the
Conference on Computer Vision and Pattern Recognition. Computer
Vision Foundation / IEEE, 2021, pp. 6418–6427.

[25] H. Cai, L. Zhu, and S. Han, “Proxylessnas: Direct neural architecture
search on target task and hardware,” in Proceedings of the 7th Inter-
national Conference on Learning Representations. OpenReview.net,
2019.

[26] H. Pham, M. Y. Guan, B. Zoph, Q. V. Le, and J. Dean, “Efficient
neural architecture search via parameter sharing,” in Proceedings of the
35th International Conference on Machine Learning, ser. Proceedings
of Machine Learning Research, vol. 80. PMLR, 2018, pp. 4092–4101.

[27] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86, pp.
2278–2324, 1998.

[28] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Computation, vol. 9, pp. 1735–1780, 1997.

[29] J. Holland, P. Schmitt, N. Feamster, and P. Mittal, “New directions
in automated traffic analysis,” in Proceedings of the Conference on
Computer and Communications Security. ACM, 2021, pp. 3366–3383.

[30] E. Real, S. Moore, A. Selle, S. Saxena, Y. I. Leon-Suematsu, J. Tan,
Q. V. Le, and A. Kurakin, “Large-scale evolution of image classifiers,” in
Proceedings of the 34th International Conference on Machine Learning,
vol. 70. PMLR, 2017, pp. 2902–2911.

[31] J. Yu, P. Jin, H. Liu, G. Bender, P. Kindermans, M. Tan, T. S.
Huang, X. Song, R. Pang, and Q. Le, “Bignas: Scaling up neural
architecture search with big single-stage models,” in Proceedings of the
16th European Conference on Computer Vision, vol. 12352. Springer,
2020, pp. 702–717.

[32] K. Deb, K. Sindhya, and T. Okabe, “Self-adaptive simulated binary
crossover for real-parameter optimization,” in Proceedings of the Genetic
and Evolutionary Computation Conference. ACM, 2007, pp. 1187–
1194.

[33] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, Classification
and Regression Trees. Wadsworth, 1984.

[34] Y. Lim, H. Kim, J. Jeong, C. Kim, T. T. Kwon, and Y. Choi, “Internet
traffic classification demystified: on the sources of the discriminative
power,” in Proceedings of the 2010 Conference on Emerging Networking
Experiments and Technology. ACM, 2010, p. 9.

[35] C. Busse-Grawitz, R. Meier, A. Dietmüller, T. Bühler, and L. Van-
bever, “pforest: In-network inference with random forests,” CoRR, vol.
abs/1909.05680, 2019.

[36] A. Z. Broder and M. Mitzenmacher, “Survey: Network applications of
bloom filters: A survey,” Internet Mathematics, vol. 1, pp. 485–509,
2003.

[37] X. Wang, S. Chen, and J. Su, “App-net: A hybrid neural network
for encrypted mobile traffic classification,” in Proceedings of the 39th
Conference on Computer Communications, Workshops. IEEE, 2020,
pp. 424–429.

[38] M. Lotfollahi, M. J. Siavoshani, R. S. H. Zade, and M. Saberian, “Deep
packet: a novel approach for encrypted traffic classification using deep
learning,” Soft Computing, vol. 24, no. 3, pp. 1999–2012, 2020.

[39] C. Liu, L. He, G. Xiong, Z. Cao, and Z. Li, “Fs-net: A flow sequence
network for encrypted traffic classification,” in Proceedings of the 2019
Conference on Computer Communications. IEEE, 2019, pp. 1171–
1179.

[40] Z. Lu, K. Deb, E. D. Goodman, W. Banzhaf, and V. N. Boddeti,
“Nsganetv2: Evolutionary multi-objective surrogate-assisted neural ar-

Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on January 02,2024 at 07:05:54 UTC from IEEE Xplore. Restrictions apply.

chitecture search,” in Proceedings of the 16th European Conference on
Computer Vision, vol. 12346. Springer, 2020, pp. 35–51.

[41] Y. Sun, H. Wang, B. Xue, Y. Jin, G. G. Yen, and M. Zhang, “Surrogate-
assisted evolutionary deep learning using an end-to-end random forest-
based performance predictor,” IEEE Transactions on Evolutionary Com-
putation, vol. 24, no. 2, pp. 350–364, 2020.

[42] scikit learn, Decision Trees, 2007 (accessed August 3, 2023). [Online].
Available: https://scikit-learn.org/stable/modules/tree.html#regression

[43] Anyoptimization, pymoo, 2018 (accessed August 3, 2023). [Online].
Available: https://github.com/anyoptimization/pymoo

[44] X. Luo, D. Liu, H. Kong, S. Huai, H. Chen, and W. Liu, “Lightnas:
On lightweight and scalable neural architecture search for embedded
platforms,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 42, no. 6, pp. 1784–1797, 2023.

[45] Wikipedia contributors, “Least squares,” https://en.wikipedia.org/wiki/
Least squares, 2023, [Online; accessed 10-May-2023].

[46] X. Jiang, H. Wang, Y. Chen, Z. Wu, L. Wang, B. Zou, Y. Yang, Z. Cui,
Y. Cai, T. Yu, C. Lyu, and Z. Wu, “MNN: A universal and efficient
inference engine,” in Proceedings of Machine Learning and Systems.
mlsys.org, 2020, pp. 1–13.

[47] J. Blank and K. Deb, “pymoo: Multi-objective optimization in python,”
IEEE Access, vol. 8, pp. 89 497–89 509, 2020.

[48] B. Wu, X. Dai, P. Zhang, Y. Wang, F. Sun, Y. Wu, Y. Tian, P. Vajda,
Y. Jia, and K. Keutzer, “Fbnet: Hardware-aware efficient convnet design
via differentiable neural architecture search,” in Proceedings of the
Conference on Computer Vision and Pattern Recognition. Computer
Vision Foundation / IEEE, 2019, pp. 10 734–10 742.

[49] Wikipedia contributors, “Feature scaling — Wikipedia, the free ency-
clopedia,” https://en.wikipedia.org/w/index.php?title=Feature scaling&
oldid=1145780045, 2023, [Online; accessed 10-April-2023].

[50] M. H. U. Sharif and M. A. Mohammed, “A literature review of financial
losses statistics for cyber security and future trend,” World Journal of
Advanced Research and Reviews, vol. 15, no. 1, pp. 138–156, 2022.

[51] C. Zheng, Z. Xiong, T. T. Bui, S. Kaupmees, R. Bensoussane, A. Bern-
abeu, S. Vargaftik, Y. Ben-Itzhak, and N. Zilberman, “Iisy: Practical
in-network classification,” arXiv preprint arXiv:2205.08243, 2022.

Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on January 02,2024 at 07:05:54 UTC from IEEE Xplore. Restrictions apply.

