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ABSTRACT 
The user experience of mobile web video streaming is often im-
pacted by insufcient and dynamic network bandwidth. In this pa-
per, we design Bidirectionally Optimized Super-Resolution (BiSR) 
to improve the quality of experience (QoE) for mobile web users 
under limited bandwidth. BiSR exploits a deep neural network 
(DNN)-based model to super-resolve key frames efciently without 
changing the inter-frame spatial-temporal information. We then 
propose a downscaling DNN and a mobile-specifc optimized light-
weight super-resolution DNN to enhance the performance. Finally, 
a novel reinforcement learning-based adaptive bitrate (ABR) algo-
rithm is proposed to verify the performance of BiSR on real network 
traces. Our evaluation, using a full system implementation, shows 
that BiSR saves 26% of bitrate compared to the traditional H.264 
codec and improves the SSIM of video by 3.7% compared to the 
prior state-of-the-art. Overall, BiSR enhances the user-perceived 
quality of experience by up to 30.6%. 

CCS CONCEPTS 
• Information systems → Multimedia streaming; • Networks 
→ Mobile networks. 
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1 INTRODUCTION 
A recent survey revealed that there are over 4.6 billion active in-
ternet users in 2021, 92.6% of whom are mobile [21]. Meanwhile, 
according to the latest report from Ericsson [10], monthly video 
streaming takes up 66.8% (i.e., 5.99 GB) of the total data consumption 
of an individual mobile user. However, many mobile web users still 
sufer from unsatisfactory video streaming due to insufcient net-
work bandwidth [31]. To improve the quality of experience (QoE), 
content delivery networks (CDNs) and mobile carriers have striven 
to increase their footprint and available network bandwidth [6, 11]. 
Furthermore, optimized adaptive bitrate algorithms [25, 26, 34, 48] 
have been developed to improve the QoE across a diverse range of 
users. However, the majority of existing works focus on optimiz-
ing network use without considering mobile devices’ computing 
resources. 

Recently, many works [4, 16, 22, 45–47, 49] have attempted to 
improve video streaming quality using client-side computation. 
Our work takes inspiration from NAS [46]. This technique uses 
deep neural networks (DNNs) to enhance video streaming quality. 
In NAS, clients upscale the quality of every frame during video 
streaming based on a pre-trained DNN. This reduces data trans-
mission requirements, but requires a large amount of computing 
resources on the client, thereby making it unsuitable for mobile de-
vices. To reduce the required resources, a recent extension, NEMO 
[45], tries to upscale only some of the frames using a pre-trained 
super-resolution (SR) DNN. This reduces the computational load 
on the client, yet at the cost of video quality. 

This degradation occurs because NEMO’s pre-trained SR DNN 
(deployed on mobile devices) must be sufciently lightweight to 
allow real-time rendering of frames. Thus, the image quality of the 
SR video frames is reduced [45]. Moreover, the subsequent quality 
of the remaining upscaled frames is lower due to the decoding 
inaccuracies introduced during the upscaling process. Hence, in 
practice, NEMO brings limited quality improvement. In fact, our 
experiments show that the video quality of using NEMO to super-
resolve low-resolution video is worse than directly using a video 
codec to encode high-resolution video (see Section 3.3 and 5.4). 
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To overcome the limitations of NEMO, we propose a new mobile 
web video streaming delivery system: BiSR. The key contribution 
of BiSR is a novel video codec integrated with a SR DNN that 
enhances the quality of mobile web video streaming. It does this 
by intelligently super-resolving only key frames (i.e., I frames or 
the frst frame of a video chunk) and reallocating bitrate to other 
frames (i.e., non-key frames), such that they are encoded at a higher 
resolution. This avoids upscaling non-key frames on the client side. 
Specifcally, on the server-side encoder, the chosen high-resolution 
(HR) key frame within a video chunk is frst downscaled to a low-
resolution (LR) by using a pre-trained DNN. Then the LR key frame 
is not only encoded for streaming but also super-resolved for the 
reference of the remaining HR non-key frames (i.e., P and B frames). 
On the mobile-side decoder, the received LR key frame is restored 
to the original high resolution using the pre-trained SR DNN. The 
other received HR non-key frames are then decoded referring to 
the former SR key frame. 

This approach raises two interesting constraints. First, due to 
the limited resources on mobile devices, it is vital that the SR DNN 
model is lightweight. This, however, is difcult as it is simultane-
ously important to achieve good SR performance. For example, if 
the quality of the SR key frame is low, the inter-frame temporal 
redundancy between the key frame and the remaining ones will 
downgrade the coding efciency for the fnal stream. This will 
substantially degrade the viewers’ quality of experience. 

Second, due to the diversity of mobile hardware and video con-
tent, it is vital that BiSR can adapt to both diferent video types and 
mobile device types. This is motivated by our observations that 
the SR DNN can experience varying performance when executed 
on diferent videos and device types (Section 5.4). For example, 
entry-level mobile devices with low computing resources cannot 
use complex DNNs to super-resolve video frames in real time. Yet, 
lightweight DNNs cannot achieve good SR performance on some 
videos. Thus, BiSR must be able to adaptively select the optimal 
confguration across a range of diferent mobile devices and video 
types for high-quality real-time video streaming. 

To address the above two needs, BiSR introduces two important 
design innovations. First, BiSR designs a mobile-specifc opti-
mized SR DNN and content-aware downscaling DNN. The SR DNN 
is optimized for the hardware characteristics of mobile devices to 
speed up the SR process. Meanwhile, a downscaling DNN jointly 
trained with the SR DNN based on an auto-encoder structure is 
used to downscale key frames, to enhance the quality of SR key 
frames. Following this, BiSR trains overftting DNN models for each 
individual video (similar to NAS and NEMO). However, to refect 
diverse conditions, we also propose a novel video analyzer module 
that determines whether to use an existing trained model or to train 
a new video-specifc (i.e., overftting) model for new video based 
on the current computing resources. By reusing existing models 
for similar videos, we substantially decrease the computational 
load on the server. The second design innovation is a novel adap-
tive video streaming algorithm. Traditional adaptive bit rate (ABR) 
algorithms only select between video bitrates. However, BiSR intro-
duces further per-stream decisions that must be taken into account. 
Specifcally, our algorithm also adapts the choice of pre-trained SR 
DNN models to refect the mobile device’s computing resources, 
network bandwidth, and SR performance. 

We implement the prototype of BiSR on multiple commodity mo-
bile devices and then conduct comprehensive experiments on real 
network traces. The results show that BiSR saves 26% of video cod-
ing bitrate compared to the traditional H.264 codec [17], achieves a 
3.7% SSIM of video improvement compared to NEMO, and brings a 
17–30.6% quality of experience improvement to mobile web users. 

The main contributions of our proposed BiSR are: 

• We propose a novel video codec framework. The encoder 
downscales the key frame using a SR-oriented DNN, and 
super-resolves this downscaled key frame by a SR DNN for 
the reference of the other non-key frames’ encoding. On the 
mobile-side decoder, the downscaled key frame is restored 
to a high resolution using the SR DNN, while the non-key 
ones are decoded based on the SR key frame. 

• We propose a DNN downscaling strategy to retain better 
spatial information for the SR processing. The performance 
of the SR DNN is improved without increasing the compu-
tational complexity. Furthermore, our mobile-optimized SR 
DNN reduces the SR processing time by up to 55.7%. 

• We propose a reinforcement learning-based adaptive video 
streaming scheme to intelligently select size-suitable SR 
DNN models and video chunks for mobile clients accord-
ing to the mobile computational capacity, dynamic network 
bandwidth, and SR performance levels. 

2 BACKGROUND & RELATED WORK 

Adaptive streaming: Adaptive streaming divides the video stream 
into diferent chunks across time and encodes each chunk with mul-
tiple bitrates. An adaptive bitrate algorithm (ABR) determines the 
streaming bitrates of the video chunks based on the client’s historic 
playback information and bandwidth predictions (e.g., DASH [36]). 
Due to variable network bandwidth, achieving the optimal video 
chunk bitrate is difcult. MPC [48] uses an optimization strategy to 
predict the QoE of several video chunks in the future and then calcu-
lates the best bitrate for the current chunk. Of particular relevance 
to our work is Pensieve [26]. This proposes a deep reinforcement 
learning-based ABR algorithm, which makes the next video chunk 
bitrate decision by observing the performance of the past decisions. 
Despite these eforts, current ABR algorithms only rely on available 
network bandwidth, ignoring the video quality improvement based 
on clients’ computing resources. Our work extends that of Pensieve 
to consider this important factor. 
Super-resolution: Super-resolution is a computer vision technique 
that recovers high-resolution images from low-resolution images. 
SRCNN [8] is a seminal work, which uses a DNN to super-resolve 
low-resolution images. Since, many further DNN-based SR methods 
have brought improved performance, e.g., VDSR [20]. Recently, 
works such as RFDN [24] and FALSR [5] have proposed efcient SR 
DNNs using information distillation and neural architecture search, 
which balance the computational cost and the SR performance. 
However, due to the limited computing resources of mobile devices, 
DNN-based SR still is a challenge for real-time video. Because of 
this, BiSR only uses SR DNN for key frames. 
Super-resolution enhanced video delivery: NAS [46] is the frst 
work to integrate a SR DNN into an on-demand video delivery 
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system. In NAS, client locally upscales every single frame using a
SR DNN. Thus, the client must have powerful computational re-
sources. In live streaming, broadcasters in LiveSRVC [4] encode
low-resolution key frames, and the server uses a powerful SR DNN
(which requires a lot of computing resources) to upscale the low-
resolution key frames. To refect mobile on-demand video streaming
requirements (considering the limited computing resources of mo-
bile devices), NEMO [45] only super-resolves a subset of video
frames. Then, NEMO jointly uses the super-resolved video frames
and encoded streaming information of the low-resolution video to
upscale the remaining frames. This reduces the required comput-
ing resources. However, the video quality of NEMO is poor due
to decoding and upscaling inaccuracies introduced. According to
our experiments, the video quality of using NEMO to super-resolve
low-resolution video is worse than directly using a video codec to
encode high-resolution video (see Section 3.3 and 5.4).
Neural network downscaling: Downscaling images using a DNN
has been applied to improve the performance of SRDNNs. TAD&TAU
[19] is the frst work that uses a DNN to downscale images to im-
prove the performance of the SR process. CAR [37] uses a content-
aware resampling kernel to downscale the image. IRN [44] applies
an invertible DNN to downscale and super-resolve images, which
signifcantly improves the performance of the SR DNN. However,
the above works only strive to downscale and super-resolve im-
ages, and do not consider video delivery constraints such as limited
mobile bandwidth and computational resources. To the best of our
knowledge, we are the frst to apply DNN downscaling to improve a
practical video delivery system and verify its feasibility in a mobile
video transmission application.

3 MOTIVATION
3.1 Impact of computing resources
To ensure real-time playback of SR video stream, the client needs to
super-resolve 24-30 frames within one second [45]. In NAS, clients
with a powerful GPU could complete the above tasks. Figure 1(a)
presents the speed of the SR DNN with three diferent complexities
on three mobile devices (with diferent computing resources). The
specifc mobile phone confgurations and SR DNN structures are
introduced in Table 2 and Table 3, respectively.

In Figure 1(a), we see that the high-performance device can
only super-resolve 6 frames per second, even with the lowest com-
plexity DNN. Figure 1(b) also shows the battery power consumed
by the processing of each frame on the high-performance device
with the high-complexity SR DNN. We see that even for the high-
performance device (with a large battery capacity), the battery is
drained quickly when every frame is super-resolved (blue line).
Compared to decoding the video frames using H.264 codec, super-
resolving every single frame in the video consumes 14x the power,
which dramatically reduces battery life. Therefore, super-resolving
every frame in the video is not suitable for mobile devices. That
said, we fnd that any commodity mobile device can super-resolve
one frame within two seconds (the length of a video chunk with 48
frames). Importantly, Figure 1(b) confrms that super-resolving just
one (key) frame in a video chunk would improve the battery life by
12x compared to super-resolving all frames.

(a) SR speed (fps) (b) Power consumption across frames

Figure 1: The SR results on mobile devices

(a) 1s video chunk (b) 2s video chunk

Figure 2: Key frames size vs non-key frames size

This shows that super-resolving video stream is unsuitable for
mobile devices, but super-resolving one frame in a chunk is feasible.

3.2 Impact of the codec
Traditional video codecs compress video using the spatial and tem-
poral dependency of frames (based on intra- and inter-frame pre-
diction). Intra-frame compression tends to have lower compression
rates than inter-frame compression. However, the frst frame of
a video chunk (i.e., the key frame or I frame) has no reference
frame. Thus, all pixel blocks in the key frame must use intra-frame
compression, leading to a lower compression ratio of key frames.

To demonstrate this, Figure 2 shows the size ratio of key frames
vs. non-key frames on diferent videos. The results are shown for
videos encoded using 1s and 2s video chunks at 24 frames per
second (fps) and 1080p resolution using the H.264 codec [40]. We
use six videos with three diferent types: Game [32, 39], Interview
[1, 2], and Chat [9, 30]. We see that the compression efciency
of inter-frame compression is 10.2–37.6 times that of intra-frame
compression. Although the key frames only take up 4.2% and 2.1%
of the playback time in the videos of one or two seconds (i.e., one
key frame per chunk), they constitute 31%–62% and 18%–44% of
the video size, respectively.

Therefore, downscaling key frames can substantially improve the
compression ratio of the video. Meanwhile, it is cost-efcient that
mobile devices with scarce computing resources can support super-
resolving these downscaled key frames.

3.3 Limitations of NEMO
NEMO [45] is a SR video streaming system for mobile devices.
In NEMO, some frames in the video are selected to apply super-
resolution DNN for maximizing the quality gains, and other frames
are upscaled with reference to these SR frames. Here, upscaling
is based on traditional interpolation methods (e.g., bilinear) and
predicted motion vectors in the encoded stream. When the content
of the video changes slightly, the upscaling process will naturally
introduce more errors. This is because the motion vector between
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frames and the residual of the inter-encoded block will become
larger. Therefore, the predicted motion vector and the upscaled
residual block would become more inaccurate. This causes the
upscaled frames to have lower quality.

With super-resolving one frame on low-resolution video, even
using a high-complexity SR DNN, after other frames of the video
that is slightly diferent from the SR one, the PSNR of NEMO is
lower than using a traditional video codec [42] to encode the high-
resolution video with the same bitrate, detailed in Appendix A.

We argue that this creates an opportunity. Specifcally, we ob-
serve that, except for the key frame, the video stream has a very high
compression rate. This means the non-key frames can be encoded
at a higher resolution without introducing excessive encoding over-
head and avoiding the inaccurate upscaling process. Therefore, we
conclude that non-key frames which are encoded with reference to
the SR key frames should adopt high-resolution encoding to ensure
high video quality.

4 BISR: SYSTEM DESIGN
Based on the above three observations, BiSR only downscales and
super-resolves the key frames to reduce the transmission load with
limited computing resources. BiSR then reallocates the bitrate to
non-key frames, encoding them at a higher resolution to ensure
video quality. BiSR aims to improve the QoE of mobile users under
limited and dynamic network bandwidth.

4.1 Architectural Overview
Figure 3 introduces the system architecture, which includes three
main parts: the server side, CDN side, and mobile side.

Figure 3: Overview of the BiSR Framework

Server side : The server encodes videos into multiple representa-
tions with (four) diferent bitrates (400, 800, 1200, and 2400kbps)
using the SR-Integrated Encoder module (see Section 4.2). These
videos also are encoded at multiple (fve) bitrates (400, 800, 1200,
2400, and 4800kbps) using the traditional H.264 video codec. When
using the SR-Integrated Encoder, BiSR downscales the key frames
(which have a larger size than the non-key frames). The remaining
non-key frames are encoded at a high resolution.

To improve the performance of the SR-Integrated Encoder and
adapt to mobile devices with difering computational capacities,
BiSR uses aDNNTrainermodule (see Section 4.3.1) to train specifc
overftting DNN models with multiple complexities (sizes) for each
video. The DNN Trainer adopts a DNN approach to downscale the
key frames (which is superior to traditional techniques, e.g., bicubic
and bilinear). Note, DNN Trainer also proposes mobile-specifc SR
DNN to speed up the SR process on mobile devices.

Training an overftting model for each individual video creates
notable computational overheads. To adapt to the variable resources
on the server side, the Video Analyzer module (see Section 4.3.2)
determines whether to reuse an existing trained model for new
videos (or to train a new one). The former can be done if the new
video is similar to an already trained one. In this way, we avoid the
cost of training new specifc models for each video.

Finally, the server generates multiple video representations (e.g.,
bitrates) and multiple-complexity (size) video-specifc DNN models.
It also creates a manifest fle with the size information of all video
chunks. These fles, including videos, DNN models, and manifest
fles, will be delivered to Content Delivery Network (CDN) nodes.
CDN side: The CDN receives these fles and caches them. When
the mobile client issues a video request, the CDN frst delivers the
video confguration fle (manifest fle). It then serves any subsequent
requests by clients for video chunks and DNN models.
Mobile side : To watch a video, mobile users download an appropri-
ate SR DNN model based on the computational resources available.
Meanwhile, mobile users request video chunks using the size infor-
mation within the manifest fle. The mobile users then decode and
play the video chunks.

Recall, that the server trains multiple DNN models of varying
complexity for each video. Because the computing power of each
mobile user is diferent, the mobile user must therefore select the
most suitable DNN model. Specifcally, after installing our video
player, the client tests the runtime of each model using random
model parameters ofine according to the structural confgurations
of diferent models. These confgurations (see Table 3) have been
integrated into our video player beforehand. This helps mobile
users choose a model of the appropriate complexity.

When mobile users request videos, the user frst downloads
video chunks encoded using the H.264 video encoder. Once the
video player has bufered sufcient chunks, the ABR Controller
module (see Section 4.4) requests the appropriate DNN model (i.e.,
model parameters). The DNN model needs to have the highest
feasible complexity, yet still be able to super-resolve one frame
within one video chunk duration (two seconds). Note, this decision
is done according to the prior ofine testing runtime of models on
our video player. Once the DNN model is fully downloaded, the
mobile user can download and decode video chunks encoded by
the SR-integrated encoder. Meanwhile, the bufer occupancy in the
video player will be used as feedback to help the ABR Controller
adaptively choose the video chunk encoding rate.

Choose
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4.2 SR-integrated Encoder and Decoder 
Figure 4 presents the pipeline of our SR-integrated encoder and 
decoder. In Figure 4, The encoder and decoder of key frames and 
non-key frames are the traditional H.264 encoder and decoder re-
spectively, and the SR DNN is used to up-scale key frames. Take a 
single video chunk as an example. On the video encoder side, the 
encoder frst extracts the key frame (��� ) from the video chunk. 
The key frame is then downscaled by the DNN to get the low-
resolution version (���). It is encoded to an MP4 fle to reduce the 
video encoding rate. Non-key frames (���� ) will be encoded in 
a separate MP4 fle with reference to the key frame (���� ) that 
is decoded frst and then upscaled using SR DNN. The reason for 
encoding key and non-key frames in two separate MP4 fles is to 
reduce the video processing time (detailed in Section 4.4). 

Upon decoding, the MP4 fle that contains the key frame is frst 
decoded and upscaled to a high resolution using SR DNN. Another 
MP4 fle containing the non-key frames (��� ) is then decoded 
with reference to the SR key frame (���� ). Because the computing 
resources of mobile devices are limited, BiSR only downscales and 
super-resolves the key frame (as it occupies a large fraction of the 
video chunk size). Meanwhile, it ensures high video quality by 
encoding and decoding high-resolution non-key frames. 

4.3 DNN Trainer and Video Analyzer 
In this section, we frst introduce the design of DNNs (i.e., DNN 
Trainer). We then present the video analyzer that decides which 
videos share the same models based on the videos’ similarities. 

4.3.1 DNN Trainer. In this part, the design details of the SR DNN 
and downscaling DNN are introduced. The SR DNN is optimized 
for mobile devices, which can speed up the SR inference speed. 
Furthermore, the downscaling DNN improves the SR frame quality 
by more efciently downscaling video frames without increasing 
the computational burden on mobile devices. 

For the SR DNN, BiSR uses a Residual Feature Distillation Net-
work (RFDN) [24] as its backbone. It achieves a better SR perfor-
mance with fewer parameters using information distillation. De-
spite this, it is too heavyweight to operate on a mobile device 
(because of the channel attention module in RFDN). It also does 
not support half-precision foating-point (i.e., 16-bit foating point) 
inference during the DNN inference process, yet the half-precision 
foating-point inference can vastly reduce DNN inference time. To 
overcome this, we design a novel channel attention module. 

Figure 5 outlines the channel attention module in BiSR. The mod-
ule reduces the size of the feature map and improves the inference 
speed on mobile devices by using average pooling with a kernel size 
of 5x5 and a stride of 3, which also supports all precision types of 
DNN inference. As shown in Figure 5, these reduced feature maps 
pass through two convolutional layers with a kernel size of 1x1. It 
is fnally restored to its original size by an interpolation layer. 

Furthermore, BiSR adopts two methods to reduce the size of 
the DNN models sent by the CDN to mobile users. First, inspired 
by EDSR[23], the SR DNN models for diferently encoded bitrate 
videos will share the same DNN model parameters except for the 
upsample layer. This reduces the size of the DNN models compared 
to having a separate DNN model for each encoded bitrate video. 
Second, BiSR uses the half-precision foating point to store and 

Figure 5: Our channel attention module on mobile devices 
compress the parameters of DNN models. This is compared to 
using a full-precision foating point (i.e., 32-bit foating point). 

Instead of traditional downscaling algorithms (such as bicubic), 
BiSR adopts the DNN to downscale key frames to improve the 
quality of SR key frames. For the downscaling DNN, we use the 
SR DNN without upsampling layer in BiSR as the backbone. We 
add a convolution layer whose kernel size is 4x4 and stride is 2 to 
downscale the feature maps. In addition, we also add the image of 
bicubic downscaling for residual learning and use the soft quanti-
zation function[13] to quantize the downscaled low-resolution (LR) 
output images. To reduce the streaming bitrate of LR images (i.e., 
key frames), unlike the most commonly used YUV420 format for a 
better LR visual experience, BiSR compresses these images using 
the YUV444 format to improve the quality of SR frames further. 
Appendix B details the benefts of downscaling DNN and encoding 
format by using an example. 

4.3.2 Video Analyzer. The video analyzer reduces the server-side 
computational load for training video-specifc models, by sharing 
the same model across multiple similar videos. 

Traditionally, to improve the performance, a video-specifc (e.g., 
overftting) SR DNN model is trained for each video. This, however, 
is prohibitively expensive if a server hosts many popular videos. 
The video analyzer module is proposed to selectively train � models 
for the total � videos based on hierarchical clustering and video 
similarity when the server computing resources are insufcient. 
The value of � is determined by the current computing resources. 
The idea is that similar videos may be able to use the same model 
(e.g., diferent episodes of the same news show). 

BiSR leverages hierarchical clustering to divide � videos into � 
clusters. The � videos that are closest to all videos of each cluster 
are used as training videos to train � SR models. The other � − � 
videos then use the above � SR models. To calculate the distance 
between two videos, BiSR frst extracts the key frames of each 
video, and clusters them according to the Phash [35] value between 
adjacent frames. Then, the distance (i.e., similarity) between two 
videos is calculated by the EMD [27–29] algorithm of their key 
frame clusters. Algorithm 1 in Appendix C introduces the above 
process of video clustering in detail. 

4.4 ABR Controller on the Mobile Side 
The ABR Controller adaptively requests video chunks and DNN 
models to obtain high QoE for mobile users. 

In BiSR, the videos are encoded into video chunks with diferent 
bitrates. In addition, each video has its own DNN models of diferent 
sizes (i.e., complexities). This is to cope with the variable network 
bandwidth and mobile devices. To help mobile users get higher 
QoE under real network bandwidth, BiSR uses a reinforcement 
learning (RL) network (on the client) to select the appropriate size 
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Table 1: States used in our ABR 

Type State 
Pensieve’s status Network and video status specifed in Pensieve [26] 

Past chunks avergae SR process time (��� ) 

BiSR’s exclusive status 
Next chunk key frame sizes (�� ) 
Next chunk efective sizes (�efective) 
Average gain of the video quality due to SR (�) 
Leftover DNN model size (�) 

of video chunks and DNN models. It does this based on the available 
bandwidth and computing resources. BiSR builds on Pensieve’s 
Asynchronous Advantage Actor-critic (A3C) architecture [26] by 
changing the input states, output actions, and RL network structures 
to choose suitable video chunks and DNN models. 

Although NAS [46] has previously proposed adaptive bitrate 
algorithms for SR video stream on powerful clients, by default, it 
super-resolves all video chunks without considering the rebufering 
caused by the SR process. This does not ft our scenario because 
of the limited computing power of mobile devices. This means SR 
video may cause additional rebufering and trigger worse video 
quality compared to traditional video streaming. 

Our ABR controller module works as follows. The mobile client 
observes input states, �� , at each iteration, � , and makes an action 
�� . The client then calculates the reward, �� , and updates the input 
states to �� +1. There are two available actions, �� : to download a 
DNN model (at a particular complexity) or to download a video 
chunk (at a particulate bitrate). 

BiSR considers the features of SR video delivery as the input 
state, �� , listed in Table 1. (i) It takes the SR time as the input state 
to help calculate the rebufering time. (ii) BiSR also takes the key 
frame size as the input state to reduce the rebufering time due to 
the SR process (shown in Equation 3). (iii) BiSR takes the quality 
improvement of each SR video chunk into the input state. It does 
this to avoid requesting SR video chunks that have worse quality 
than chunks produced by traditional encoders. (iv) BiSR takes the 
average gain in video quality due to super-resolving as the input 
state to guide the delivery of DNN models. (v) It takes the remaining 
bytes to download for the model. (vi) Finally, it also includes the 
network and video status features from Pensieve [26]. 

The above process details the input state. The next thing to defne 
is the reward function. The reward of A3C is the target QoE [26, 46]: 

� � ∑ ∑ �∑−1 

��� = � (�� ) − � �� − � | � (��+1) − � (�� ) | (1) 
�=1 �=1 �=1 

where � is the video chunk number; �� refers to the bitrate of 
video chunk �; �(�� ) is the received quality of �� (�(�� ) = �� 
in our experiment); �� is the rebufering time in the video player; 
�(��+1) − �(�� ) represents the degree of video smoothness; � and 
� are non-negative weighting parameters corresponding to the 
rebufering time and the degree of video smoothness, respectively. 

To represent the video quality enhancement based on the DNN 
in BiSR, we create a mapping function from quality to bitrate. Thus, 
we obtain the bitrate (�efective) that corresponds to the enhanced 
quality in BiSR similar to NAS [46], and we use �efective instead of 
the �� in Equation 1. Further, the rebufering time in the reward 
function (Equation 1), calculated as: 

�� = ��� (�� − �� , 0) (2) 

where �� , refers to the bufer length; �� refers to the total video 
processing time (which is the time diference from when the CDN 
sends the video to when the video can be rendered). To calculate 
the above processing time (�� ), we use the following equation: 

�� �� − �� 
�� = , ��� = 

�� �� 
�� 1 = �� + ��� (3) 
�� 2 = �� + ��� + ��� 

�� 3 = ��� (�� + ��� , ��� ) 

where �� , �� , �� , and ��� , respectively, are the size of the current 
video chunk, the size of the key frame in the video chunk, the net-
work bandwidth, and the time of SR processing. �� , ��� are the 
network transmission delays of the key frame and non-key frames, 
respectively. Note, when a mobile user requests video chunks that 
are produced using a traditional codec, the video processing time 
(�� 1) equals the video transmission delay. In contrast, when a mo-
bile user requests SR video chunks, they can only be rendered after 
their key frame is super-resolved. Therefore, the video processing 
time (�� 2) is the sum of the video transmission delay and the time 
of the SR process. 

However, as aforementioned, in BiSR, key frame and non-key 
frames are divided into two fles for transmission. After the key 
frame transmission is completed, super-resolving the key frame 
and transmission of non-key frames are carried out simultaneously. 
Therefore, the video processing time shifts from �� 2 to �� 3 in 
Equations 3. Combining the above, BiSR iteratively strives to opti-
mize the reward function (Equation 1) to select the optimal video 
chunks and DNN models. 

5 EVALUATION 
Our evaluation seeks to answer the following questions: 

(1) Does BiSR improve (i.e., decrease) the video coding bitrate? 
(2) Does BiSR improve QoE in dynamic network bandwidth? 
(3) What is the performance contribution of each module in 

BiSR? 

5.1 Datasets and Metrics 
Dataset: We use three types of 4K videos from YouTube [14] 
to evaluate BiSR: Interview, Game, and Chat. For each category, 
we select two popular videos with frame rates of more than 24 
fps and lasting at least 5 minutes long. Since most commodity 
mobile devices come with a display resolution of 1080p, a video 
with a smaller resolution will be upscaled to 1080p by a traditional 
upscaling algorithm (e.g., bicubic) during the rendering process. 
This will cause a loss of video quality. Therefore, we transcode raw 
videos to diferent bitrates at 1080p resolution. Referring to [43]’s 
setup for video streaming, we transcode videos to fve bitrates {400, 
800, 1200, 2400, 4800}kbps at 1080p resolution using the traditional 
H.264 video codec. Furthermore, we also transcode each video into 
(i) videos with 270p key frames and 1080p non-key frames at two 
bitrates of 400, 800kbps, and (ii) videos with 540p key frames and 
1080p non-key frames at two bitrates of 1200, 2400kbps using the 
SR-integrated encoder. The video chunks’ length and frame rate 
are 2 s and 24 fps, respectively. We select video clips of 5 minutes in 
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length for each video. Raw 1080p videos are used as the reference
for computing PSNR and structural similarity (SSIM) [41].
QoE metrics: BiSR uses the QoE metric defned in Equation 1.
Note, this is the same as the reward function of our ABR Controller.
In this equation, � and � are defned as 2.3 and 0.5 to encourage
downloading high bitrate video chunks.
Network traces: To train and evaluate BiSR for real-time video
streaming, BiSR uses network throughput measurements taken
from real broadband [7] and HSDPA mobile network datasets [33].
Note, like NAS [46], in our evaluation, we only use samples whose
bandwidth is under 3.5 Mbps. This is to trigger the need for adaptive
video streaming. (Because high bandwidth network will be able to
accommodate the highest rate of encoding.)

5.2 Implementation
Super-resolution hybrid codec: We implement the SR hybrid
codec module using FFmpeg’s API [12] based on H.264 video codec
[40] that is the most popular codec [3]. BiSR uses the H.264 video
codec to encode two MP4 fles to represent the low-resolution key
frame encoding fle and the non-key frames encoding fle, respec-
tively.

Upon decoding, BiSR frst decodes the key frame and upscales it
using the SR DNN, and then decodes the non-key frames encoding
fle by referring to the SR key frame. Our above codec process can
also be integrated into other video codecs (e.g., H.265 [18], VP9
[42]), but we will not discuss this in the paper. For the inference
framework on mobile devices, we use the open-source NCNN [38]
framework to accelerate the inference process of DNNs on mobile
devices. We develop our own mobile video player using FFmpeg.
Mobile devices: To verify whether BiSR can be deployed on a
variety of devices, we use an entry-level smartphone (OPPO R9), a
medium-level smartphone (Redmi K30 5G), and a high-level smart-
phone (Galaxy A90 5G) for the experiment. Their specifcations are
shown in Table 2.
SR DNN confguration: For each input resolution, BiSR has three
DNN models of diferent complexities for the above three mobile
devices. Table 3 in appendix D shows the diferent SR DNN confg-
urations in detail.
Training content-aware DNNs: The training process of our
content-aware DNNs is divided into three stages: (i) The downscal-
ing DNN and the SR DNN are cascaded into an auto-encoder struc-
ture for end-to-end training. Specifcally, the downscaling DNN
downscales the high-resolution key frames into low-resolution key
frames. Then the SR DNN super-resolves the output of the down-
scaling DNN into a high resolution. (ii) The low-resolution key
frames downscaled by DNN are compressed in YUV 444 format
using the H.264 encoder, to reduce the streaming bitrate. (iii) The
compressed low-resolution key frames in the second stage and
raw high-resolution key frames are used as the dataset for again
training the SR DNN. This enables the SR DNN to perceive the
impact of compression, improving the performance of SR DNN on
compressed low-resolution key frames.
Training ABR based on RL: We implement BiSR’s integrated
ABR by modifying Pensieve’s implementation [15]. To simulate the
computing power of diferent devices in diferent states, we use a

uniform distribution function from 800 to 1200 microseconds to
generate the SR process time. The training process of BiSR’s ABR is
the same as Pensieve, except that the weight of the entropy function
in Pensieve is set to 0.4 to speed up the convergence process.

5.3 Baselines
We compare our solution against three baselines:
1) Traditional Codec:We use x264 [40], which is a classical H.264
codec implementation, as a baseline.
2) NEMO: In NEMO [45], some frames are upscaled by a SR DNN,
and other frames are upscaled referring to these SR frames and the
upscaled encoded streaming information. NEMO is implemented on
VP9 [42], which has a diferent encoding performance from H.264.
For a fairer comparison, the quality of NEMO is normalized with
reference to the ratio of H.264 to VP9 quality. NEMO uses the same
SR DNN and only super-resolves key frames as BiSR. In NEMO,
240p, 360p, and 480p videos with bitrates of 400 kbps, 800 kbps, and
1200 kbps are upscaled to 1080p. Due to the limited space, we only
show the video quality of NEMO on the high-level device.
3) Pensieve: Pensieve [26] is an adaptive bitrate algorithm based
on reinforcement learning. In our experiments, Pensieve can choose
all video chunks encoded by traditional video codec [40].

5.4 Results
Quality across bitrates: Figure 6 compares the attained video
quality (SSIM) of diferent encoding bitrates. We contrast the perfor-
mance of BiSR with that of the H.264 codec and NEMO. Across all
bitrates, the attained video quality of NEMO is always worse than
using a video codec to encode high-resolution video. Compared to
NEMO at the same bitrate, BiSR improves the SSIM video quality by
3.7%. Compared to the traditional H.264 codec, BiSR averagely im-
proves the SSIM video quality by 0.0044, 0.0063 and 0.0075 across all
bitrates and video types on entry-, medium-, and high-level mobile
devices, respectively. BiSR improves the video quality by more at
low video bitrates. It brings 0.012–0.018 of the SSIM improvement
at 400kbps. Although there are only minor quality gains here, BiSR
saves an average of 12%, 22%, and 26% video coding bitrate across all
the same quality levels on entry-, medium-, and high-level mobile
devices, respectively. However, compared to the traditional H.264
codec, BiSR brings worse video quality at 2400kbps of game videos
on an entry-level mobile device. This is because the low-complexity
DNN has worse SR quality, and the performance of DNN is limited
at higher encoding bitrates. Further, the SR DNNmay deliver worse
video quality even if using a high-complexity DNN. To this end, our
ABR algorithm can adaptively choose appropriate SR video chunks
and traditional video chunks according to the quality performance
of SR DNN in video chunks.

Figure 6: SSIM with diferent bitrates on three type videos
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QoE improvement: Figure 7(a) shows the average QoE achieved
across all network traces. Compared to Pensieve, BiSR generates a
higher QoE on all devices. Specifcally, BiSR delivers 17% better QoE
for the entry-level device, 26.6% for the medium-level device, and
30.6% for the high-level device across all videos and network traces.
Figure 7(b) presents the CDF of QoE scores of all videos achieved
across network traces; closer to the bottom right means better QoE.
BiSR on the entry-level mobile device can bring better video quality
improvement at a lower video bitrate, but cannot bring video quality
improvement at a higher video bitrate. Therefore, in Figure 7(b),
the QoE of the entry-level mobile device is better than Pensieve
when the network bandwidth is low, and it is similar to Pensieve
when the network bandwidth is higher. Meanwhile, the QoE of the
medium- and high-level mobile devices are always better than the
Pensieve because they can bring quality improvement at low and
high video bitrates.

Better

(a) Average QoE (b) Distribution of QoE (c) Average SR proportion
Figure 7: Comparisons of the ABR approaches

To demonstrate how the ABR algorithm adaptively selects SR
chunks according to the performance of SR DNNs, we measure the
fraction of SR video chunks delivered (out of all video chunks). Fig-
ure 7(c) indicates that the medium- and the high-level device always
deliver more SR video chunks than the entry-level device. This is
because SR DNNs have a better performance on both medium- and
high-level mobile devices than on the entry-level device. Thus, the
entry-level device relies more heavily on the video chunks encod-
ing via traditional codec. The fgure confrms that BiSR can adapt
between these options on a per-device basis.

Table 2: DNN inference time on mobiles

Mobile device Processor BiSR(F) BiSR(H) RFDN
OPPO R9 SDM 660 4461ms / 4653ms
Redmi k30 5G SDM 765 1584ms 754ms 1702ms
Galaxy A90 5G SDM 855 2031ms 1050ms 2172ms
∗ SDM: Qualcomm Snapdragon Mobile; H: Half precision; F:
Full precision

Mobile-specifc optimized SR DNN and content-aware
downscaling DNN: RFDN is not designed with mobile comput-
ing characteristics in mind, and it does not support half-precision
foating-point inference. We next evaluate the efcacy of our opti-
mizations for the SR DNN inference time. Table 2 shows the single
thread (for fair comparison) inference time of the SR DNN on three
mobile devices. Because the architecture of SDM 660 in OPPO R9
uses ARMv8.0a without the support of half-precision foating-point
inference, the time of half-precision foating-point DNN inference
time in OPPO R9 is not presented. We see that the SR DNN in
BiSR reduces the inference time by 4.1%–6.5% when using the full-
precision inference, and 51.7%–55.7% when the model uses the

half-precision inference. We also measure the SR performance of
RFDN and BiSR. In BiSR, OPPO R9 (entry-level device) uses full-
precision DNN inference, Redmi k30 5G (medium-level device), and
Galaxy A90 5G (high-level device) use half-precision DNN infer-
ence. Figure 8 shows the average PSNR of the above three types
of video on three mobile devices for diferent DNNs. In Figure 8,
although the BiSR without DNN downscaling is slightly weaker
than RFDN, the SR performance of BiSR is 0.36–0.54 dB better than
RFDN. In general, the SR performance of BiSR is always better than
RFDN and saves up to 55.7% in inference time.

Figure 8: SR performance
(DNND means DNN

downscale)

Figure 9: Average PSNR of
20 videos using the
diferent # of models

Video Analyzer: Finally, we evaluate the efcacy of the Video
Analyzer module. For this, we select 20 test videos from YouTube
and train a video-specifc model for each one. To study the impact
of the Video Analyzer, we vary the number of available models to
super-resolve these 20 videos. Any video that has its own available
video-specifc model uses the model. The remaining videos select
one of the available models using two strategies: (i) For our Video
Analyzer, the remaining videos select themodel based on the videos’
similarity; and (ii) As a baseline, the remaining videos randomly
select the SR model. Figure 9 presents the average PSNR of 20
videos on the diferent number of available models (using these two
strategies). The X-axis represents the number of models available,
whereas the Y-axis represents the average PSNR for all 20 videos.
For example, 5 on the X-axis means that there are 5 per-video
models trained. If the X-axis is 20, this indicates all videos use their
own pre-trained model. Figure 9 shows that our video analyzer
always outperforms the random baseline (average results of 10000
times).

6 CONCLUSION
This paper has presented BiSR, a new mobile web video streaming
delivery system, which strives to improve perceived video quality.
BiSR includes a novel video codec integrated with the downscaling
and super-resolution of key frames. Further, BiSR adopts down-
scaling DNN and proposes a mobile-specifc optimized SR DNN
to improve the performance of SR DNN. Finally, BiSR designs an
RL-based adaptive bitrate streaming mechanism and evaluates its
performance on real network traces. With our full-system imple-
mentation, we have shown that BiSR reduces the video coding
bitrate by 26% compared to the traditional H.264 codec, and im-
proves the SSIM of video by 3.7% compared to NEMO. In general,
BiSR improves user quality experience by 17–30.6% on the real
network traces compared with Pensieve [26].
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A RESULTS OF NEMO

Figure 10: An example with minor motion (arms moving)

(a) PSNR between codec and NEMO in the (b) PSNR between codec and NEMO in all
video of Figure 10 videos

Figure 11: The PSNR results using the high-complexity SR
DNN

Figure 10 shows the example of several frames in this scene, high-
lighting the arm motion. Figure 11(a) shows the PSNR quality of
each frame in the video chunk (Figure 10). Meanwhile, Figure 11(b)
further shows NEMO’s PSNR across the three video types using a
high-complexity SR DNN (note, each type of video includes two
videos). When super-resolving the frst frame of each video chunk,
the performance of using NEMO to upscale low-resolution videos
is always worse than using a traditional video codec to encode
high-resolution video (with the same bitrate).

B AN EXAMPLE OF SUPER-RESOLUTION
FRAME

(a) Bicubic (b) SR DNN (YUV420)

(c) SR DNN (YUV444) (d) BiSR (SR DNN + YUV444 + downscal-
ing DNN)

Figure 12: Super-resolution performance of BiSR in PSNR

To highlight the benefts of our approach, Figure 12 ofers an ex-
ample of a super-resolution frame using four diferent techniques:

(i) Bicubic means bicubic upscale with YUV 420 format; (ii) SR
DNN(YUV 420) means DNN upscale with YUV 420 format; (iii) SR
DNN(YUV 444) means DNN upscale with YUV 444 format; and
(iv) BiSR (SR DNN + YUV444 + downscaling DNN) means DNN
downscale and upscale with YUV 444 format.

Using bicubic (Figure 12(a)), the PSNR of the frame is only 29.8
dB. When the frame format is from YUV420 to YUV 444, the PSNR
of the frame that is upscaled by SR DNN from 32.4 dB (i.e., Figure
12(b)) increases to 32.9 dB (i.e., Figure 12(c)). As can be seen in Figure
12, this still results in poor image quality. In contrast, BiSR uses a
DNN to downscale the frame and encode the frame at the YUV444
format. The PSNR of the upscaled frame using SR DNN increases
to 36.0 dB (i.e., Figure 12(d)), demonstrating the efectiveness of
downscaling DNN and SR DNN based on YUV444 format.

C THE ALGORITHM OF VIDEO ANALYZER
Algorithm 1 shows howVideo Analyzer divides videos into diferent
clusters.

Algorithm 1: Video Analyzer
input : Input � Videos: ���� (�1, �2, ..., �� );

Number of clusters: � ;
Threshold that clusters key frames: �ℎ���ℎ���1

output :� videos cluster: ���� (�1,�2, ...,�� );
���� = Hierarchical-Clustering(���� , � , Distance-Calculator)
return ����
Function Distance-Calculator(�� , �� , threshold1):

�
� ← Get-Reference-Frame(��, �ℎ���ℎ���1);
�
� ← Get-Reference-Frame(��, �ℎ���ℎ���1);
�����
	� ← Earth-Mover’s-Distance(�
�, �
�);
return �����
	�

Function Get-Reference-Frame(V, threshold):
�
 ← Get-Key-Frame{� };
�
 [1] ← �
 [1];
����_� ���� ← �
 [1];
for � ← 2 to ��
��ℎ(�
 ) do

if Phash(����_� ����, �
 � ) > �ℎ���ℎ��� then
�
 .����
� (�
 [� ;

[ ]
])

����_� ���� �
 � ;
return �


← [ ]

• Hierarchical-Clustering: return � video clusters based on
Distance-Calculator

• Distance-Calculator: return the similarity between two videos
• Get-Reference-Frame: return the clusters of key frames of a
video

• Earth-Mover’s-Distance: return the distance of the key frame
clusters between two videos

• Get-Key-Frame: return all key frames of an input video
• Phash: return phash value of two input frames
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D SR DNN CONFIGURATION 

Table 3: DNN-model confgurations 
(#Block, #Channel, #Size) 

Input 
resolution 

DNN quality level 
Low Medium High 

270p 
1, 48 2, 48 4, 48 

291 KB 456 KB 788 KB 

540p 
1, 16 1, 32 1, 48 
31 KB 108 KB 229 KB 

Table 3 shows the confgurations of diferent SR DNNs for mobile 
devices. This includes the number of RFDB blocks [24] (with our 
channel attention module), channel dimensions, and the size of 
DNN models. 
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