
Antelope: A Framework for Dynamic Selection of
Congestion Control Algorithms

Jianer Zhou∗†, Xinyi Qiu†, Zhenyu Li‡†, Gareth Tyson§, Qing Li†, Jingpu Duan∗†, Yi Wang∗†
∗Southern University of Science and Technology, Shenzhen, China †Peng Cheng Laboratory, Shenzhen, China

‡ ICT, CAS, China §Queen Mary University of London
{zhouje, duanjp, wangy37}@sustech.edu.cn, {qiuxy, liq}@pcl.ac.cn, zyli@ict.ac.cn, g.tyson@qmul.ac.uk

Abstract—Most congestion control mechanisms are designed
for specific network environments. Hence, there is no known
algorithm that achieves uniformly good performance in all
scenarios for all flows. Rather than devising such a one-size-fits-
all algorithm, we propose a system to dynamically switch between
the most suitable congestion control mechanisms for specific flows
in specific environments. This raises a number of challenges,
which we address through the design and implementation of
Antelope, a system that can dynamically reconfigure to use the
most suitable congestion control mechanism for an individual
flow. We build a machine learning approach to learn which
algorithm works best for individual conditions and implement
kernel-level support for dynamically adjusting congestion control
algorithms. We have implemented Antelope in Linux, and eval-
uated it in both emulated and production networks. We show
that in WAN, DCN, and cellular networks, Antelope achieves
an average 16% improvement in throughput compared with
BBR; compared with Cubic, Antelope achieves an average 19%
improvement in throughput and 10% reduction in delay.

I. INTRODUCTION

Since the birth of TCP, many congestion control (CC)
mechanisms have been proposed [28] [14] [10] [15] [30] [8].
However, none of these individual mechanisms can achieve
high network performance across all environments and user
requirements. Two reasons account for this. First, each al-
gorithm is generally designed for a particular environment.
For example, Sprout [33], C2TCP [3] [2] and Verus [36] are
designed for cellular networks; DCTCP [6], pFabric [7] and
Swift [18] are designed for datacenter networks; TACK [19],
HACK [31] and Westwood [20] are designed for wireless
local area networks (WLANs). Second, network environments
and application requirements have evolved over decades. For
example, when Cubic [14] (the default Linux TCP mechanism)
was proposed, improving bandwidth utilization was the most
important goal. However, for modern gaming or live streaming
applications, latency is much more critical. Our goal is there-
fore to devise a congestion control framework that can achieve
good performance across all environments and requirements,
with sufficient flexibility to evolve over time.

In pursuit of this goal, machine learning based CC mech-
anisms have been proposed. These strive to autonomously
learn the optimal CC policy for any given scenario. For
example, RemyCC [32] uses the network parameters, user

Jianer Zhou and Xinyi Qiu are co-first authors.

behavior, flow model and target function as an input, then
derives an appropriate sending rate as an output. Similarly,
PCC-Vivace [12] uses online learning, while DeepCC [4] and
Orca [5] use deep reinforcement learning (DRL) to adjust
their sending rates based on network feedback. However,
deploying such machine learning based CC mechanisms in a
production network has proven complicated, as it is necessary
to continually learn for each environment. Thus, applying such
models in unseen networks decreases their performance [16].
Our goal is to devise a congestion control framework (based on
the CC mechanisms available in Linux kernel) that can achieve
good performance across all networks and application re-
quirements, while avoiding the complicated deployment issues
introduced by other machine learning mechanisms. To achieve
this target, we propose a simple yet effective framework called
Antelope.

Antelope adjusts the congestion control algorithm for in-
dividual flows according to network and flow state observed.
It collects TCP flow information from the kernel data-path
and delivers the data to user space, where we can exploit pre-
existing machine learning libraries. Using supervised classi-
fication, Antelope then predicts which congestion control al-
gorithm could achieve the best performance for that particular
flow. Antelope then continues to monitor the flow and changes
the CC algorithm dynamically if the network environment or
flow state changes. To coordinate this, Antelope uses eBPF (a
new kernel function which support more control in kernel from
user space) [22] [9] to deliver information between the user
space and kernel. Through extensive experiments on emulated
and real networks, we demonstrate that Antelope can nearly
always choose the most suitable mechanism for each flow. Our
key contributions are:
• We design and implement Antelope, an adaptive CC

framework which dynamically reconfigures between the
most suitable CC algorithm on a per-flow basis. Antelope
only needs the change at TCP senders without changing
the TCP socket. As such, Antelope can easily be deployed
in a production environment and the source code is
available for the community.1

• As part of Antelope, we build and train a supervised
classification algorithm (in user space) that can select
suitable CC mechanisms for flows that have similar

1https://github.com/antelopeproject/antelope978-1-6654-4131-5/21/$31.00 ©2021 IEEE

patterns with the training data, but also on novel flows
that have not appeared before. We show that eBPF, as
part of Antelope, is an effective choice to manage CC
algorithms in the kernel, even after a TCP flow has been
established.

• Extensive experiments in WAN, DCN, and cellular net-
work show that Antelope achieves an average 16% im-
provement in throughput compared with BBR; compared
with Cubic, Antelope improves the throughput by 19% on
average, and reduces delay by 10%. Further, Antelope
shows better performance than the state-of-the-art ML-
based mechanisms (Orca and PCC-Vivace).

II. MOTIVATION

A. Why switch CC mechanisms?

Network environments impact TCP flows. Servers that per-
form data transfer services (e.g. web servers) will usually
deal with TCP flows from diverse network environments. This
may be due to a diversity of clients or because a server
has multiple responsibilities. For example, a front-end server
may receive client requests (e.g. from a 4G network), yet
retrieve content from a back-end server situated in the same
data center (e.g. via Ethernet). Whereas the Ethernet path
will support high bandwidth and low delay delivery, the 4G
path will likely suffer from much higher levels of delay and
bandwidth fluctuations. Using a single network stack with a
shared CC algorithm therefore forces administrators to select
which environment to optimize for.

To highlight this, Figure 1 shows a toy example of the
TCP throughput for different CC mechanisms over datacenter,
cellular and wide area (wired) networks. This is done using
the Mahimahi emulator [25], parameterized as follows. The
cellular network is configured using the public trace data
from [5]; the WAN is setup with an RTT, packet loss and
bandwidth of 100ms, 2% and 2MB/s, respectively; the DCN is
setup with 1ms, 0.1% and 1GB/s, respectively. We see that for
the DCN network, both the short and long TCP flows have the
highest throughput when using BBR. For the cellular network,
when using C2TCP, the long flows’ throughput is the best; in
contrast, for short flows, Westwood is the best. For long flows
over the WAN, using Cubic is the best, but for short flows
BBR has the highest throughput. Despite this, most front-end
servers use Cubic or BBR to serve all TCP flows [10]. In other
words, there is no one-size-fits-all algorithm.

Network environments are dynamic. Complicating matters
further, network environments may change on the fly. For
example, in the public cloud, it is common for flows to change
paths at ten-second intervals or even faster [29]. Alternatively,
when more cellular users pair with a base station, the buffer
provided to one user becomes smaller. This will impact
performance, e.g. BBR obtains higher throughput with small
buffers [10]. Alternatively, ISPs may adjust their network paths
(e.g. via MPLS or SDN), changing existing flows’ RTTs and
buffer sizes. Under such conditions, switching the TCP flows’
CC may improve performance.

BBR Cubic Vegas
Illinois

Westwood
 C2TCP

0.25

0.50

0.75

1.00

Th
ro

ug
hp

ut

DC_short DC_long

BBR Cubic Vegas
Illinois

Westwood
 C2TCP

0.25

0.50

0.75

1.00
Cellular_short Cellular_long

BBR Cubic Vegas Illinois Westwood C2TCP
0.25

0.50

0.75

1.00

Th
ro

ug
hp

ut

WAN_short WAN_long

Fig. 1: Performance of different CC mechanisms over 3
different networks.

Machine learning CC mechanisms are limited. Rather than
adjusting the congestion window or pacing rate using ML,
we build a model to select the CC algorithms on a per-flow
basis. We do this for two reasons. First, as pointed out by
both Orca [5] and Rein [11], learning-based approaches (e.g.
Indigo [35], Aurora [16]) suffer from performance degradation
and slow convergence when used in unseen conditions. In
contrast, hand-written classic CC algorithms do not have these
two issues. Second, classic CC algorithms that have been
widely used in practice, often achieve very good performance
in the network environments for which they are designed (e.g.
Westwood [20] for wireless networks).

B. Challenges

Selection of CC algorithm. Antelope must design an ap-
propriate reward function to select the optimal CC algorithm
for a given scenario. However, the TCP parameters alone
(e.g. RTT, CWND, in flight and lost packets) are inherently
limited in their ability to predict throughput, fairness, delay
etc. Solely relying on these parameters to decide the optimal
CC algorithm is therefore not wise. Furthermore, manually
selecting CC algorithms, even with machine learning support,
is difficult for network operators and domain specialists [21].
This is exacerbated by dynamic network conditions, which
may invalidate historical data used to make such decisions.

Short flows. If a machine learning approach is taken, as the
duration of many flows is short, they may finish before it is
possible to learn which CC algorithm would have been most
suitable. Antelope must be able to rapidly select the most
suitable CC algorithm.

Kernel vs. user space. The kernel lacks machine learning
libraries. Thus, we argue it is necessary for Antelope to
implement any machine learning technology in user space, and
enable flexible interaction between user space and the kernel.
Limiting the overhead and delay for such communications is
challenging.

III. ANTELOPE OVERVIEW

Overview. The duration of a TCP flow can be divided into
three phases: connection setup, data transmission and con-

nection closure. Different actions will be performed in these
three phases by Antelope. After the connection setup, the
Information Collection component (in the kernel) will collect
TCP flow information and deliver it to the Mechanism Match
component (in user space). Then during the data transmission
phase, the Mechanism Match component (periodically) selects
the most suitable CC mechanism according to the flow’s
characterisics. The most suitable CC mechanism will then be
passed to the Mechanism Switch component (in the kernel)
which will switch to that CC mechanism in the network stack.
When a connection closes, both the Mechanism Match and
Mechanism Switch components will delete this flow’s records.
The overall architecture is shown in Figure 2.

Kernel

User
Space

Socket

Data Process

Data Collection CC Switch

Online Prediction

Offline Training

Match Data

bpf_map

Mechanism MatchInformation Collection Mechanism Switch

Fig. 2: High-level components of Antelope.

Information Collection. The Information Collection compo-
nent consists of two sub-modules: the Data Collection module
and the Data Process module. The Data Collection module
runs in the kernel. It collects all TCP flow information and
then delivers it via eBPF to the Data Process module, which
is in user space. The Data Process module aggregates and
formats the data before passing it to the Mechanism Match
component. In Section V we will show how we collect the
information.

Mechanism Match. The Mechanism Match component con-
sists of two sub-modules: Online Prediction and Offline Train-
ing modules, both of which are implemented in user space.
When TCP information is delivered to the Mechanism Match
component, it will dynamically select the most appropriate
CC algorithm to use. This will then be recorded to the
bpf map structure and made accessible in the kernel. The
Online Prediction module relies on several trained models
for selecting different mechanisms, and will return the most
suitable one according to the scores generated by each models.
To inform this process, the Offline Training module will train
the matching model using a reward function. Specifically, we
build a decision-tree model using XGBoost. The details of this
component are shown in Section IV.

Mechanism Switch. When the Mechanism Match component
selects the most suitable mechanism, it will record the flow
identifier (by IP and port) and the corresponding CC mecha-
nism. Using eBPF, the information is delivered to the kernel.
Then the Mechanism Switch component (in the kernel) will

switch to the selected CC algorithm. This process is hooked
into three Linux kernel functions: tcp setup, tcp sendmsg
and tcp close. In the tcp setup and tcp sendmsg func-
tions, the hook monitors the bpf map and will switch the
CC mechanism if instructed. In tcp close, the hook function
just sends flow closing signals to the Mechanism Match and
Mechanism Switch components.

IV. PREDICTION AND TRAINING

A. Prediction Module

Overview. The Online Prediction module is the heart of
matching process. It selects a suitable CC mechanism based
on the TCP flow features. Figure 3 shows the overview of the
Online Prediction module. It consists of three main modules,
which we describe below: the Statistics Module, Reward
Module and Selection Module. As an input, Antelope takes

Selection Module

Statistics Module

Reward Module

BBR

Cubic
 C2TCP

CC mechanism

statistics
packet features

CC Mechanism Selector

Information
Collection Training Data

reward

Fig. 3: Online Prediction module overview.
.

a set of N contiguous ACK packets (in the order that the
ACK packets arrive). We refer to this set of packets as a
data unit. The CC mechanism selection is then performed
on the granularity of each data unit. Once N packets are
recorded, the information is passed to the Selection Module
and Reward Module. The Selection Module is composed of
multiple prediction models for different CC mechanisms. By
comparing the reward predictions made by each model, the
best CC mechanism is selected. When the next data unit
is generated, the Reward Module analyzes its statistics to
evaluate the effect of the last switching CC mechanism (later
used for re-training).

Statistics Module. The Statistics Module is responsible for
gathering flow information. It does this by reading packets’
information from the Information Collection component. Let
dt denote the tth data unit in a stream, and st refer to
the statistics of dt. For every data unit (every 20 packets
by default) we calculate the statistics based on the features
that the ACK packet carried. We set the default parameters
via experimental experience. We set the data unit size as a
tradeoff between computational overhead and effectiveness.
The statistics are shown in Table I.

TABLE I: Statistics generated by the Statistics Module

Category Meaning
sRTT avg The average smoothed RTT.
number The number of ACK packets.
lost The number of lost packets.
time The time to construct data block.
pacing rate max The maximum pacing rate so far.
throughput The average sending rate.
delay min The minimum packet delay so far.

The Statistics Module continuously calculates the statistics
for each data unit and stores them in memory. When the
Selection Module receives the statistics of dt, it predicts the
CC mechanism that dt+1 needs to use. The reward calculated
by the Reward Module is then used to provide feedback on
the effect of dt’s prediction. In this paper, we define rt as
the reward calculated using the statistics of dt. So, the final
state (i.e. the training data for the prediction model) at step t
becomes the vector traint = (st, rt+1).

Reward Module. This module is responsible for calculating
the effectiveness of a given CC algorithm, and returning a
predicted reward. As previously mentioned, this is stored in
the Statistics Module and later used by the Selection Module
to choose the CC algorithm for the next period.

In order to quantify the performance of each CC mecha-
nism, we define the normalized reward function as Eq 1:

R̂ = R/Rmax = (
throughput− η ∗ loss

delay′
)/(

pacing ratemax

delaymin
)

(1)

Giessler [13] showed that the effectiveness of a CC mech-
anism can be measured by a metric called Power, defined as

Power =
throughput

delay
. It has been shown that when the power

reaches the maximum value, not only the network but also the
individual flows are in their best state. Our reward function
(as shown in Eq 1) is therefore based on the definition of
Power. We also incorporate loss as a parameter to adjust the
reward function, in order to minimize the packet loss. When
computing the reward function, we set the unit of throughput
as Kbps, the delay as ms, and the loss as number of lost packets
(in one data block interval). η is a parameter that determines
the weight of packet loss to reward function. In our current
implementation, we empirically set it as 1.

Although Power captures the ultimate goal of the congestion
control algorithm (maximizing throughput while minimizing
the delay), in practice it is hard to obtain the maximum
throughput and the minimum delay at the same time. Further-
more, the sensitivity of streams of different sizes to throughput
and delay varies greatly. For example, large flows are usually
throughput sensitive, but small flows are more concerned about
delay. To address this, we add the coefficient δ(≥ 1) into Eq
2 (which defines delay′ used in Eq. 1):

delay′ = {
delaymin (delaymin ≤ delay ≤ δ × delaymin)

delay o.w.
(2)

After the TCP connection setup completes, δ will be ini-
tialized to 2. As packets are received by the Information
Collection component, δ will increase exponentially with the
number of data units. For example, δ is 2 for the first data
unit, 4 after the second data unit etc. This means that the
reward function will change from delay sensitive to throughput
sensitive when more packets are sent in the flow. Orca [5] uses
a similar approach.

Selection Module. This module is responsible for retrieving
the reward predictions across the set of available CC mecha-
nisms (for a given flow) and then selecting the optimal one.
However, short TCP flows may finish before it is possible for
the Reward Module to calculate the prediction. Thus, we use
two types of predictions: (1) A stream-level prediction which
predicts the most suitable CC mechanism for this flow by
analyzing realtime information (suitable for long flows); and
(2) An IP-level prediction which uses historical information
about prior stream from that IP address (suitable for short
flows). We describe these below.

Algorithm 1 Stream-Level Prediction Algorithm

1: function STREAMPREDICT(statistics)
2: maxReward← 0
3: predict cc← NULL
4: // cc model map stores prediction models of each CC
5: for cc in cc model map.keys do
6: predict model← cc model map[cc]
7: reward < −predict model.predict(statistics)
8: if reward > maxReward then
9: maxReward← reward

10: predict cc← cc
11: end if
12: end for
13: return predict cc
14: end function

Stream-level prediction. The stream-level prediction’s pseu-
docode is shown in Algorithm 1. In Antelope, we train a
model for each algorithm independently so that we can easily
extend the system to new CC algorithms. At each step t,
the Selection Module observes the statistics (st), and then
selects the CC mechanism with the highest predicted reward.
The calculation of predictions is described in Section IV-B,
where we rely on XGBoost decision trees. Figure 4 shows the
architecture of the decision tree. The number of layers in the
decision tree depends on the complexity of the training data.
Put simply, when, for example, we want to predict BBR’s
reward for one stream, we input the flow information to the
BBR prediction model (which contains some regression trees).
For each regression tree, we get the predicted reward, and then
we add up all the rewards to get the final result. The reward

can be obtained both after a CC algorithm is deployed and
prior using offline training.

throughput

lost reward_1

reward_2...

delay_min

lost reward_n

reward_n+1 ...

predict_reward = reward_2 reward_n+...+

prediction model
<n >n

<m >m

<n1 >n1

<m1 >m1
......

Fig. 4: Architecture of the decision tree for prediction.
.

IP-level prediction. In IP-level prediction, Antelope selects
the CC mechanism based on the historical results of the
streams belonging to the same IP or a /24 segment. This allows
Antelope to select an appropriate CC mechanism before a flow
has been initiated. Algorithm 2 presents the IP-level prediction
pseudo code. For each IP range, Antelope records the number
of times that each CC mechanism has been chosen in the flows
to that IP space. In order to adapt to changes in the network,
each time a new stream level prediction is obtained, the IP
prediction result will be merged with the current prediction
results. The historical data is multiplied by the coefficient
α(0 < α < 1). Finally, the CC mechanism that has been
chosen most frequently with the highest reward is selected.

Algorithm 2 IP-Level Prediction Algorithm

1: function IP PREDICT(ip, cc mechanism)
2: cc count map← ip CCs map[ip]
3: //Reduce the weight of all historical data.
4: for cc in cc count map.keys do
5: cc count map[cc]← cc count map[cc] ∗ α
6: end for;
7: cc count map[cc mechanism]+ = 1
8: //Choose the cc mechanism with the largest count.
9: cc predict← getMaxCountCC(cc count map)

10: //Update the IP and cc mechanism in bpf map.
11: updateBpfMap(ip, cc predict))
12: end function

B. Training Module

The above relies on a trained model that can predict the
reward for a given flow using each CC algorithm available.
For training the XGBoost model, we perform both offline and
online training.

Offline training. We initiate training in an offline fashion,
where we trigger clients to connect to the server, which
then randomly selects different CC algorithms to use. This
can be done in an emulated environment, as we show in
Section VI. The servers collect statistical information (s) and
the corresponding ground-truth reward (r). The reward result
(rt+1) represents the reward of the mechanism for the t + 1
data unit. This provides the training instance for data unit t in

a tuple (st, rt+1). We then use this to train a XGBoost model
to predict the correct reward based on the observed statistical
information in the previous data unit.

Online training. The previous step creates a pre-trained
model for each CC algorithm. We then continue the training
in an online fashion by continually computing the real reward
to measure the accuracy of the predictions in-the-wild. The
reward result and the TCP stats (st, rt+1) for the chosen
CC mechanism are appended to the training data and are
used for periodic re-training. The above training is per-CC
not per client-server pair. That said, the trained models are
independent to clients and servers and can be reused by other
servers.

V. IMPLEMENTATION

We have implemented Antelope in both user space and the
Linux kernel (CentOS 8 with kernel version 4.18). We collect
TCP flow information from the kernel and then share it with
user space (via eBPF), where Antelope uses it to select the
most suitable CC mechanism. The suitable CC mechanism for
this flow is then delivered back to the kernel using bpf map.
Antelope then switches the CC algorithm in the kernel. An
overview of the implementation is shown in Figure 5.

Cubic BBR VEGAS ILLINOIS WESTWOODC2TCP

Linux Network Stack

Ebpf
ProgramBCC tcp_ack

tcp_init_trans

tcp_sendmsg

tcp_close_state

hook hooks

switchbpf_setsockopt

bpf_hash bpf_map

load

Model Training and Prediction

data collect data transfer

bpf_getsockopt

Fig. 5: Overview of the Antelope implementation.

A. Collecting flow information

We use the BPF Compiler Collection (BCC) probe function
to get the TCP flow information [1]. We extract the informa-
tion from struct sock in the kernel. BCC sets different hook
functions in the Linux network stack, which means we can
get information from different hook points. In our system, we
set a hook in the tcp ack function.

The basic unit we collect is the TCP flow and we distinguish
different flows by the saddr, daddr, lport and dport. In
every flow, we collect srtt, mdev, min rtt, packets out,
lost, total retrans, pacing rate and TCP state, which are
all recorded in the struct sock for this flow. For every ACK
that arrives, the hook will be triggered and the information
will be delivered to user space via eBPF.

B. Exchanging Information by ebpf map
To transmit flow information from the kernel to user space,

we use the ebpf hash. To deliver the suitable congestion
mechanism from user space to the CC Switch module in
the kernel, we use the bpf map. The suitable congestion

mechanism delivered by ebpf map is formatted as a key-
value pair: IP+flow ID→ CC mechanism. As at the beginning
of a flow, there is not enough information to predict the best
mechanism, we select the default mechanism or the one based
on the historical information associated with that IP.

C. Switching TCP in the kernel

We use eBPF to switch TCP mechanisms in the kernel. To
run Antelope, the compiled eBPF program is loaded into the
kernel first. In the eBPF program we use the bpf getsockopt
and bpf setsockopt in the tcp ebpf library to switch to the
corresponding mechanism [9]. We set three hook points in
the kernel to trigger the switching process: tcp init transfer,
tcp sendmsg, tcp close state. For the tcp init transfer
hook, the eBPF program will set the new mechanism according
the flow’s IP or the default one as we explained in Section V-B.

For the tcp sendmsg hook, we set the new congestion
control mechanism according to the prediction. At the end of
the flow, the hook point in tcp close state will delete the
key-value item for this flow. Since we use an eBPF program,
when we run Antelope and add a new ability to the kernel, it
is unnecessary to rebuild the kernel or to reboot the system.

In the Online Prediction module, once N ACK packets
are received, the prediction process is triggered (by default,
N = 20). If the prediction process finds another suitable
mechanism for this flow, it updates the ebpf map, adding
the IP+flow ID → congestion mechanism item in the map.
If the new mechanism is the same as the old one, the item
will be set as empty. At the tcp sendmsg hook point, the
eBPF program will check the map. If it gets the name of a
new congestion mechanism in the map, the eBFP program will
set this flow’s congestion control algorithm to the new one. To
avoid switching the mechanism too frequently, we only switch
upon seeing M (default 2) consecutive recommended changes.

Antelope can switch between CC mechanisms that are
implemented in mainstream Linux kernel, currently including
BBR, Cubic, C2TCP, Vegas, Illinois and Westwood. Regard-
less of whether competing TCP flows use Antelope, individual
flows may use different CCs. Thus, Antelope inherits the fair-
ness of the chosen CC algorithm(s). For example, if Antelope
chooses BBR, then it will take a larger share of the bottleneck
bandwidth than Cubic in shallow-buffered network.

VI. TRAINING AND EXPERIMENTATION

In this section we describe the training process of Antelope
and then show the effectiveness of Antelope. Training and
evaluation are based on both an emulated environment and
production networks.

A. Testbeds

For both training and evaluation, we rely on a network
emulator and a real world deployment. We first describe their
setups here and delineate the specifics later when presenting
the results.

Emulated testbed. We use Mahimahi, a network emulation
tool which can evaluate different network environments either

(1) by configuring the delay, bandwidth and queue parameters;
or (2) by replaying packet behaviour from a real network [25].

We setup two client processes connected to two servers,
and direct all of their flows via Mahimahi. One client sends
requests to one server and then the server sends files back. To
produce background traffic, the other client sends requests to
the other server. All of the requests use TCP and go through
the same Mahimahi network. The file sizes are randomly
chosen (see later). We change the size of request to emulate
different background traffic effects.
Real network testbed. To test Antelope in a more realistic
context, we also run it over a production network. We install
Antelope on a public cloud (at several locations). We place
server instances in Asia, North America, Europe and the
Middle East. Each instance runs the same file server software
used in the emulated testbed. We then issue requests from our
campus in Shenzhen, China.

B. Training
To evaluate Antelope, we must first train its prediction

model. The training data obtained through the emulated envi-
ronment helps us construct the initial prediction model, and
then the feedback from the real-world experiments supports
the optimization of the model.

1) Emulated Training: We test more than 30 network
environments using Mahimahi (their characteristics are shown
in Table II). We emulate a WAN with low bandwidth and a
large RTT; and a DCN using high bandwidth and a small RTT.
We also use 6 cellular LTE traces provided in Mahimahi to
test cellular network environments.

We use BDP (Bandwidth*RTT) to describe the size of the
queue buffer. In our emulated network environment, we set the
5*BDP in WAN and 0.1*BDP in DCN, following the setting
in [7]. In the cellular network we do not set its BDP as it is
emulated by the traces [25].

We generate request flows of different sizes (flow size
between 1KB and 50MB). The training procedures for each
parameter combination are repeated 3 times. As this is for
training purposes, we test all CC algorithms for each setup.
Specifically, for every network environment, we set the sender
to a fixed CC mechanism then randomly switch to other
mechanisms to observe their performance. We then use this
data to train Antelope’s initial XGBoost model. It should be
noted that the environment we use to train is different from the
environment for the performance evaluation (in Section VI-C).

TABLE II: Range of evaluated environments during the train-
ing.

BW (MB/s) RTT(ms) BDP Back. traffic
1.4-1000 1-100 0.1-6 1KB-50MB

2) Real World Training: After the initial training performed
within the emulated environment, we further train Antelope
in our real network testbed. We envisage this to be the de
facto approach: each server will start with a generic pre-trained
model, and then iteratively improve it in an online fashion.

We train using both inter- and intra-continental scenarios
by locating clients and servers in two continents and in the
same continent, respectively. Clients (located in our campus)
use a wired network to access these servers by default. RTT
and bandwidth for intra-continental setups are approximately
30ms, 800kB/s; and for inter-continental cases, are approxi-
mately 200ms, 800kB/s respectively. In order to measure the
effectiveness of the CC mechanisms in different time periods,
every 6 hours, clients send requests to servers (at 09:00, 15:00
and 21:00). We first randomly pick any CC mechanisms and
then select the mechanism using Antelope. For each request,
the server sends back different randomly sized files (1KB-
50MB) just as with the emulated testbed. Each request and the
corresponding reply form a new TCP flow. Each experiment
lasts for half an hour. In total, we run experimentation over
one week and train over 50K TCP flows (7K each day). For
the rest of this section, we use the combination of emulated
and real world training data for evaluation.

C. Performance Evaluation

We first show how Antelope switches between CC mech-
anisms (including BBR, Cubic, C2TCP, Vegas, Illinois and
Westwood) and how the TCP parameters change. We then
describe the performance of Antelope in both evaluation and
production environments.

1) Validating Switching Mechanism: We first validate that
when network condition changes, (e.g. novel congestion is
encountered) Antelope can switch mechanisms in the kernel
without causing issues. To test this, in the emulated network
environment, we initiate a flow from the client to the server.
We then, after a period of time, add background traffic between
the second client and server to trigger congestion (using
Cubic). We then monitor which CC algorithms are selected and
validate Antelope’s capacity to dynamically switch without
degrading performance. As a baseline, we compare against
vanilla BBR.

In Figure 6a, the top plot shows the rate of background
traffic, the middle plot shows the throughput of Antelope
vs. BBR, and the bottom plot shows the CC algorithms
that Antelope switches between. Unsurprisingly, we see that
the throughput of both Antelope and BBR decreases as the
background traffic grows. However, the throughput of BBR
decreases much more than Antelope. This occurs because
Antelope dynamically switches between algorithms to reflect
the new operating conditions. This is demonstrated in the
bottom plot of Figure 6a, which depicts the CC algorithms
selected by Antelope during the experiment. At the beginning,
Antleope selects BBR; when the background traffic arrives,
it switches between Cubic, Illinois and C2TCP. After this
exploratory phase (appox. 5 seconds), Antelope switches to
C2TCP stably. This occurs because C2TCP learns (correctly)
that when competing with Cubic, C2TCP achieves the best
performance.

We next wish to validate that Antelope can perform these
switches without undermining the pre-existing TCP parame-
ters used by the previous CC algorithm. Figure 6b presents

0 5 10 15 20 25 30
0

1000

T(
KB

/s
) The change of the background traffic.

BBR Antelope

0 5 10 15 20 25 30
500

1000

T(
KB

/s
) The throughput of BBR and Antelope.

BBR Antelope

0 5 10 15 20 25 30
Time(s)

BBR
Cubic

Illinois
C2TCP

The process when Antelope switches mechanisms.

(a) Antelope vs. other CC mechanisms

0 500 1000 1500
0

250

SR
TT

(m
s) Cubic BBR Illinois

0 500 1000 1500

100
200

CW
ND

Cubic BBR Illinois

0 500 1000 1500
Packets

1
2

Pa
cin

g
ra

te 1e6 Cubic BBR Illinois

(b) Continuity of TCP parameters

Fig. 6: Validation when Antelope switches different CC mech-
anisms.

the change of srtt, CWND and pacing rate when Antelope
switches between different CC mechanisms. When Antelope
changes from Cubic to BBR, srtt changes smoothly, but
CWND and pacing rate increase immediately; this is because
BBR probes a higher bottleneck bandwidth. The delay of
the flow changes slowly so the srtt changes smoothly. This
validates that Antelope can maintain the continuity of TCP
parameters when switching CC mechanisms.

2) Performance Evaluation in Emulated Networks: We next
compare the performance of Antelope in an emulated network
(using Mahimahi) against BBR, Cubic, C2TCP, Vegas, Illinois
and Westwood, as well as two ML-based CC mechanisms
that provide kernel implementations: PCC-Vivace and Orca.
PCC-Viavce uses online learning to adjust the sending rate;
for Orca, we use the trained model that is provided by
Orca’s authors. Finally, we also compare against another CC
switching mechanism, Rein [11], which uses a rule-based
algorithm to select the CC algorithm. As Rein’s source code
is not open, we implement Rein according to the algorithm
it provides in the paper: using Cubic by default, switching to
BBR in a small buffer network and switching to Westwood
for WiFi connections.

The emulated network is similar to the setup described
earlier. However, to differ from the training environment, we
use different traces and parameters in Mahimahi (as described
below). All the throughput and delay results are the averages
taken from 30 runs.

WAN. To evaluate a WAN environment, we set the link’s
delay and bandwidth to 100ms and 1.4MB/s in MahiMahi.
The queue length is 5*BDP and the queue is tail drop first.
We introduce background traffic via requests to another server,
which is also connected via MahiMahi. As we introduce
background traffic, the resulting packets loss rate is between
1% to 2%. We run three groups of experiments, consisting of
long, short and mixed flow sizes. For long flows, the size of
the requested files is randomly selected from between 3MB
to 50MB. For short flows, the size is randomly selected from
between 1KB to 3MB. To generate a mixture of flows, we
also run experiments where we randomly select sizes between
1KB to 50MB.

Figure 7 compares the performance of different CC mech-

400 600 800
Delay(ms)

200

400

600

800

A
ve

ra
ge

 T
hr

ou
gh

pu
t(K

B
/s

) BBR
Cubic
C2TCP
Vegas
Illinois
Westwood
Antelope
Pcc-Vivace
Orca
Rein

(a) wan long

100 125 150 175 200
Delay(ms)

250

300

350

400

A
ve

ra
ge

 T
hr

ou
gh

pu
t(K

B
/s

)

BBR
Cubic
C2TCP
Vegas
Illinois
Westwood
Antelope
Pcc-Vivace
Orca
Rein

(b) wan short

300 400 500 600
Delay(ms)

200

300

400

500

A
ve

ra
ge

 T
hr

ou
gh

pu
t(K

B
/s

) BBR
Cubic
C2TCP
Vegas
Illinois
Westwood
Antelope
Pcc-Vivace
Orca
Rein

(c) wan mix

Fig. 7: Comparison of throughput and delay for different CC mechanisms in an emulated WAN environment. For delay, the
icons are the average value and end of line is the 95% value.

1.5 2.0 2.5 3.0
Delay(ms)

20

40

60

80

A
ve

ra
ge

 T
hr

ou
gh

pu
t(M

B
/s

) BBR
Cubic
C2TCP
Vegas
Illinois
Westwood
Antelope
Pcc-Vivace
Orca
Rein

(a) datacenter long

2 3 4
Delay(ms)

0

5

10
A

ve
ra

ge
 T

hr
ou

gh
pu

t(M
B

/s
) BBR

Cubic
C2TCP
Vegas
Illinois
Westwood
Antelope
Pcc-Vivace
Orca
Rein

(b) datacenter short

1.5 2.0 2.5 3.0
Delay(ms)

20

40

A
ve

ra
ge

 T
hr

ou
gh

pu
t(M

B
/s

) BBR
Cubic
C2TCP
Vegas
Illinois
Westwood
Antelope
Pcc-Vivace
Orca
Rein

(c) datacenter mix

Fig. 8: Comparison of throughput and delay for different CC mechanism in an emulated data center environment. For delay,
the icons are the average value and end of line is the 95% value.

0 250 500 750
Delay(ms)

1500

2000

2500

A
ve

ra
ge

 T
hr

ou
gh

pu
t(K

B
/s

) BBR
Cubic
C2TCP
Vegas
Illinois
Westwood
Antelope
Pcc-Vivace
Orca
Rein

(a) cellular long

10 20 30 40
Delay(ms)

500

1000

1500

2000

A
ve

ra
ge

 T
hr

ou
gh

pu
t(K

B
/s

) BBR
Cubic
C2TCP
Vegas
Illinois
Westwood
Antelope
Pcc-Vivace
Orca
Rein

(b) cellular short

0 100 200 300 400
Delay(ms)

1000

1500

2000

A
ve

ra
ge

 T
hr

ou
gh

pu
t(K

B
/s

) BBR
Cubic
C2TCP
Vegas
Illinois
Westwood
Antelope
Pcc-Vivace
Orca
Rein

(c) cellular mix

Fig. 9: Comparison of throughput and delay for different CC mechanism in an emulated cellular network environment. For
delay, the icons are the average value and end of line is the 95% value.

anisms in this environment. The x-axis is the delay and
the y-axis is throughput. For delay, each icon represents the
average value, and the right end of line is the 95% value.
For throughput, the value of the line is the average value.
The mechanism which is on the top left corner is the best.
The figures show that, in a WAN environment, Antelope
achieves the highest or second highest throughput compared
with other CC mechanisms when requesting long, short and
mixed-size files. The average delay of Antelope is in the
middle compared with other CC mechanisms. We find that
for most of the time, Antelope chooses Cubic or C2TCP, not
BBR. Antelope achieves an average of 30% more throughput
than BBR in total. Rein’s performance is close to Cubic as
WAN has a large buffer (Rein switches to Cubic in large buffer

environments). PCC-Vivace performs poor when transferring
short files, possibly because it has not converged to its optimal
before the end of the transfer. Orca’s performance also varies
greatly. Recall that Antelope is also much more lightweight
than Orca or PCC-Vivace, as it is built on the CC mechanisms
available in main-stream Linux kernels.

DCN. We evaluate the DCN environment in a similar fashion
to WANs using MahiMahi. We set the bandwidth as 1GB/s.
The length of the router queue is 0.1*BDP with tail drop first.
The packet loss rate introduced by the background traffic is
about 0.1%-0.2%. The size of requested files is the same as
in the WAN experiment.

Figure 8 shows the performance of different CC mech-
anisms in the DCN environment. The meaning of the x-

axis and y-axis are the same as Figure 7. From the figure,
we see that C2TCP and Cubic have very high delay and
low throughput in the DCN environment. Antelope and BBR
achieve the best performance. BBR has good performance for
small BDP networks [10], which is why BBR’s performance
in a WAN (which has a large BDP) is not as good. In
the DCN environment, Antelope chooses BBR for most of
the time, so its performance is close to the best. Rein’s
performance is very close to Cubic in DCN. This is because in
a DCN, the flows are too short to perform switching according
network feedback. Antelope overcomes this by using IP-level
prediction, which selects based on historical observations. We
also note that the performance of PCC-Vivace and Orca drops
greatly in the DCN setup. We conjecture that this is because
ML-based mechanisms fail to achieve their optimal as flows
are completed before they get sufficient training data. Again,
Antelope addresses this by using historical observations.

Cellular network. We use the traces provided by MahiMahi
to emulate cellular networks. The traces are collected from T-
Mobile, ATT and Verizon’s LTE network in walking, driving
and stationary conditions [25]. Importantly, this differs from
those traces used in the training (see Section VI-B1).

Figure 9 compares the performance of different CC mech-
anisms in this setup, where we can see that C2TCP achieves
the highest throughput as it is specifically designed for cellular
networks. Although BBR has very short delay, its throughput
is low. As Antelope chooses the most suitable mechanism,
its performance is one of the highest. As Rein does not have
a switching rule specifically for cellular networks, its perfor-
mance is not stable (sometimes close to Cubic, sometimes
close to BBR). PCC-Vivace also performs poorly, possibly be-
cause of its poor adaptability in highly dynamic networks [5];
Orca again is not stable in terms of performance.

Summary. In each environment, we see that different mecha-
nisms achieve the optimal performance. For example, C2TCP
achieves high performance in WAN and cellular networks
but perform poorly in DCNs; BBR’s throughput is very high
in DCNs, but very low in cellular networks. As Antelope
selects the most suitable mechanisms, its performance is
consistently one of the best in all the environments. Overall,
in the 3 network environments, Antelope achieves an average
of 16% improvement in throughput and 3.5% reduction in
delay (for short flows) compared with BBR. Compared with
Cubic, Antelope achieves an average of 19% improvement
in throughput, and 10% reduction in delay. Rein, another
CC switching mechanism, cannot adjust to variable network
conditions and its performance is poorer than Antelope. The
ML-based mechanisms (PCC-Vivace and Orca), while being
more heavyweight, require a long time to converge, and thus
are less stable in terms of performance.

3) Performance In-the-Wild: To evaluate Antelope’s effec-
tiveness in production networks, we use our testbed on the
public cloud (see Section VI-B2). We setup servers in 5 cities
located in 4 continents. Every 6 hours, we send requests from
our campus to each of those servers. The clients connects to

the Internet either from wired networks or via LTE. The sizes
of the requested files are randomly selected between 3MB to
50MB, similar to Section VI-B. For each selection, we repeat
the experiments 30 times and average the results.

Wired network. Figure 10a presents the results when clients
use wired networks, where the x-axis shows the delay and
the y-axis shows the throughput. The icon in the middle
of each ellipse shows the mean average value of delay and
throughput. The ellipses show the standard deviations from the
average results. Antelope, BBR and Orca achieve the largest
throughput. However, whereas the throughput’s standard de-
viation is lower for BBR, its delay range is much higher
compared to Antelope. We find, for over 85% of the time,
Antelope chooses BBR in this setup. This is unsurprising as
it has been proven that BBR achieves the best performance
in inter-continental environments [10]. Antelope also utilizes
C2TCP for 10% of the time and Cubic for 5%, resulting in
the differing performance compared to BBR. As Rein’s fixed
threshold for distinguishing large or small buffers cannot adapt
to the production network, it switches between Cubic and BBR
irregularly. This means its final performance is between BBR
and Cubic.

LTE network. Figure 10b reports results from the LTE
network. Antelope and BBR achieve the highest throughput,
but BBR has worse delay. Most of time Antelope chooses
BBR. However when the the delay becomes large, other CC
mechanisms (e.g. C2TCP) are chosen. As we observed in the
emulated networks, the two ML-based mechanisms (Orca and
PCC-Vivace) fail to achieve as high throughput as Antelope.

150 200
Delay(ms)

0

200

400

600

A
ve

ra
ge

 T
hr

ou
gh

pu
t(K

B
/s

) BBR
Cubic
Pcc-Vivace
Orca
C2TCP
Vegas
Illinois
Westwood
Antelope
Rein

(a) wired network

150 200 250
Delay(ms)

200

300

400

500

600
A

ve
ra

ge
 T

hr
ou

gh
pu

t(K
B

/s
) BBR

Cubic
Pcc-Vivace
Orca
C2TCP
Vegas
Illinois
Westwood
Antelope
Rein

(b) cellular network

Fig. 10: The results of different CC mechanisms in the inter-
continental production environment.

D. Overhead

The overhead for Antelope includes three parts: (1) the
learning overhead in user space; (2) the information exchange
via eBPF; and (3) the CC mechanism switching in the kernel.

To evaluate the overhead, we setup a testbed using 4 servers
with two Intel(R) Xeon(R) Silver 4208 CPUs, 16 CPU cores,
128GB memory and 100Gb/s NIC. The servers connect to a
switch with 32 100Gb/s ports. Three servers act as clients to
generate TCP requests to the fourth server which acts as a
TCP sender. We change the traffic volume using the clients’
requests and then calculate the overhead at the sender.

TABLE III: Evaluating the overhead of Antelope.

Traffic rate 5Gb/s 15Gb/s 25Gb/s 35Gb/s 45Gb/s 55Gb/s
Overh. Type CPU T(ms) CPU T(ms) CPU T(ms) CPU T(ms) CPU T(ms) CPU T(ms)

Mechanism Learning 2% 135 3.6% 138 4.4% 140 4.6% 139 4.6% 138 4.8% 140
Mechanism Switching 0.1% 0.001 0.1% 0.001 0.1% 0.001 0.1% 0.001 0.2% 0.001 0.2% 0.001

Exchange To Data Module 0.16% 0.4 0.49% 0.4 0.68% 0.4 0.91% 0.4 0.95% 0.4 1.0% 0.4
To eBPF Map 0.1% 0.1 0.1% 0.1 0.1% 0.1 0.15% 0.1 0.2% 0.1 0.2% 0.1

We calculate the overhead of each constituent of overhead
by keeping other two unchanged. For example, when we
calculate the overhead of switching CC algorithms, we first
record the overhead of running the whole process. We then
repeat the same process but without the switching. We define
the computation overhead as the difference of CPU utilisation
(%) between these two measurements. The time overhead
is simply calculated by recording the time spent in each
function. Table III presents the results taken as an average
across 10 runs. It is worth noting the CPU overhead is the
computation overhead introduced by all TCP traffic, while the
time consumed (T) is computed on per flow basis.

We see that the overhead introduced by the mechanism
switching (using eBPF in the kernel) is only 0.1%-0.2%, taking
0.001ms even when the traffic rate is 55Gb/s. The interaction
between kernel and user space for TCP stats and control
messages also incurs negligible overhead (the last two rows)
thanks to eBPF. This confirms previous findings that eBPF is
suitable for handling TCP-related operations in the kernel [9].

Unsurprisingly, the learning process incurs the largest com-
putational overhead: about 2-4.8% of CPU usage, where the
prediction time is about 140ms. Note that some flows may
be shorter than the time taken for learning. This is the
primary reason for why we set a default CC mechanism at the
beginning of a flow and apply new CC mechanisms to flows
after some time (see Section III). That said, we note that the
CPU overhead is potentially a little heavy for those servers
which have a large number of concurrent clients. Moving our
prediction module to a central controller could reduce the
overhead.

VII. RELATED WORK

TCP varieties. We are not the first to observe that CC
algorithms can be optimized for different environments. For
instance, Sprout [33], C2TCP [3], ExLL [27] and PBE-
CC [34] are specifically designed for cellular networks. Simi-
larly, DCTCP [6], pFabric [7], Timely [23] and Swift [18] are
designed for datacenter networks by using Explicit Congestion
Notification [17]. In our work, we do not attempt to devise
new CC algorithms but, rather, we exploit this observation to
dynamically select the best algorithm for observed network
conditions on demand.

Selection of optimal CC mechanisms. Most related to Ante-
lope is Rein [11], which also tries to select the most suitable
TCP algorithm for different networks. Rein relies on rule-
based selection. It first classifies the network environment

(e.g. WiFi or wired) and uses the CC mechanism that is
manually designated to this environment. In contrast, Ante-
lope predicts TCP mechanism more accurately via machine
learning. Furthermore, Rein uses pipe to exchange information
between user space and kernel while Antelope relies on
eBPF. This makes it easier to extend Antelope with new CC
algorithms and learning mechanisms. TCP-RL [26] is another
work that selects suitable CC mechanisms using reinforcement
learning. However, TCP-RL implements the selection entirely
in user space based on Pantheon [35], which means individual
applications need to implement support.

TCP implementation in the kernel. Others have focused on
streamlining updated TCP implementations in kernel space.
This has partly been achieved via eBPF. For example, it is
possible to read TCP flow information from the kernel using
BCC [1], and tcp ebpf [9] has implemented TCP socket
operations (e.g. setting TCP socket parameters) using eBPF.
Such eBPF based operations can let users control TCP imple-
mentations from user space. CCP [24] designs an architecture
which divides the control of TCP from the datapath. We do
not make contributions to this space but, rather, rely on eBPF
to implement Antelope in a flexible and extensible fashion.

VIII. CONCLUSION

In this paper we have designed, implemented and evaluated
Antelope, a system for learning suitable CC algorithms on a
per-flow basis. We have shown that Antelope can successfully
apply the optimal or near-optimal CC algorithms across a
diverse range of network types. Through this, we can improve
performance without the need for administrators to manually
configure their stacks. Antelope paves the way for dynamic
selection of CC algorithms. In the future, we plan to deploy it
in a wider array of environments. We also note that certain
applications integrate their own control loops for handling
congestion (e.g. video streaming). We are therefore curious
to understand how Antelope may interoperate with such ap-
plications.

ACKNOWLEDGMENT

We thank our shepherd Jinsong Han and the anonymous
reviewers for their insightful feedback. This work is sup-
ported in part by National Key RD Program of China
No.2019YFB1802800, the National Natural Science Founda-
tion of China(62002149, 61902171). Corresponding author:
Zhenyu Li.

REFERENCES
[1] https://github.com/iovisor/bcc.
[2] Soheil Abbasloo, Tong Li, Yang Xu, and H Jonathan Chao. Cellular

controlled delay tcp (c2tcp). In 2018 IFIP Networking Conference (IFIP
Networking) and Workshops, pages 118–126. IEEE, 2018.

[3] Soheil Abbasloo, Yang Xu, and H Jonathan Chao. C2tcp: A flexible
cellular tcp to meet stringent delay requirements. IEEE Journal on
Selected Areas in Communications, 37(4):918–932, 2019.

[4] Soheil Abbasloo, Chen-Yu Yen, and H Jonathan Chao. Make tcp great
(again?!) in cellular networks: A deep reinforcement learning approach.
arXiv preprint arXiv:1912.11735, 2019.

[5] Soheil Abbasloo, ChenYu Yen, and H Jonathan Chao. Classic meets
modern: A pragmatic learning-based congestion control for the internet.
In Proceedings of the Annual conference of the ACM Special Interest
Group on Data Communication on the applications, technologies, ar-
chitectures, and protocols for computer communication, pages 632–647,
2020.

[6] Mohammad Alizadeh, Albert Greenberg, David A Maltz, Jitendra Pad-
hye, Parveen Patel, Balaji Prabhakar, Sudipta Sengupta, and Murari
Sridharan. Data center tcp (dctcp). In Proceedings of the ACM
SIGCOMM 2010 conference, pages 63–74, 2010.

[7] Mohammad Alizadeh, Shuang Yang, Milad Sharif, Sachin Katti, Nick
McKeown, Balaji Prabhakar, and Scott Shenker. pfabric: Minimal near-
optimal datacenter transport. ACM SIGCOMM Computer Communica-
tion Review, 43(4):435–446, 2013.

[8] Venkat Arun and Hari Balakrishnan. Copa: Practical delay-based
congestion control for the internet. In 15th {USENIX} Symposium
on Networked Systems Design and Implementation ({NSDI} 18), pages
329–342, 2018.

[9] Lawrence Brakmo. Tcp-bpf: Programmatically tuning tcp behavior
through bpf. NetDev 2.2, 2017.

[10] Neal Cardwell, Yuchung Cheng, C Stephen Gunn, Soheil Hassas
Yeganeh, and Van Jacobson. Bbr: Congestion-based congestion control.
Queue, 14(5):20–53, 2016.

[11] Kefan Chen, Danfeng Shan, Xiaohui Luo, Tong Zhang, Yajun Yang, and
Fengyuan Ren. One rein to rule them all: A framework for datacenter-
to-user congestion control. In 4th Asia-Pacific Workshop on Networking,
pages 44–51, 2020.

[12] Mo Dong, Tong Meng, Doron Zarchy, Engin Arslan, Yossi Gilad,
Brighten Godfrey, and Michael Schapira. {PCC} vivace: Online-
learning congestion control. In 15th {USENIX} Symposium on Net-
worked Systems Design and Implementation ({NSDI} 18), pages 343–
356, 2018.

[13] Alfred Giessler, J Haenle, Andreas König, and E Pade. Free buffer
allocation—an investigation by simulation. Computer Networks (1976),
2(3):191–208, 1978.

[14] Sangtae Ha, Injong Rhee, and Lisong Xu. Cubic: a new tcp-friendly
high-speed tcp variant. ACM SIGOPS operating systems review,
42(5):64–74, 2008.

[15] Janey C Hoe. Improving the start-up behavior of a congestion control
scheme for tcp. ACM SIGCOMM Computer Communication Review,
26(4):270–280, 1996.

[16] Nathan Jay, Noga Rotman, Brighten Godfrey, Michael Schapira, and
Aviv Tamar. A deep reinforcement learning perspective on internet
congestion control. In International Conference on Machine Learning,
pages 3050–3059, 2019.

[17] Dina Katabi, Mark Handley, and Charlie Rohrs. Congestion control for
high bandwidth-delay product networks. In Proceedings of the 2002
conference on Applications, technologies, architectures, and protocols
for computer communications, pages 89–102, 2002.

[18] Gautam Kumar, Nandita Dukkipati, Keon Jang, Hassan MG Was-
sel, Xian Wu, Behnam Montazeri, Yaogong Wang, Kevin Springborn,
Christopher Alfeld, Michael Ryan, et al. Swift: Delay is simple and
effective for congestion control in the datacenter. In Proceedings of
the Annual conference of the ACM Special Interest Group on Data
Communication on the applications, technologies, architectures, and
protocols for computer communication, pages 514–528, 2020.

[19] Tong Li, Kai Zheng, Ke Xu, Rahul Arvind Jadhav, Tao Xiong, Keith
Winstein, and Kun Tan. Tack: Improving wireless transport performance
by taming acknowledgments. In Proceedings of the Annual conference
of the ACM Special Interest Group on Data Communication on the
applications, technologies, architectures, and protocols for computer
communication, pages 15–30, 2020.

[20] Saverio Mascolo, Claudio Casetti, Mario Gerla, Medy Y Sanadidi, and

Ren Wang. Tcp westwood: Bandwidth estimation for enhanced transport
over wireless links. In Proceedings of the 7th annual international
conference on Mobile computing and networking, pages 287–297, 2001.

[21] Zili Meng, Minhu Wang, Jiasong Bai, Mingwei Xu, Hongzi Mao, and
Hongxin Hu. Interpreting deep learning-based networking systems. In
Proceedings of the Annual conference of the ACM Special Interest Group
on Data Communication on the applications, technologies, architectures,
and protocols for computer communication, pages 154–171, 2020.

[22] Sebastiano Miano, Matteo Bertrone, Fulvio Risso, Massimo Tumolo,
and Mauricio Vásquez Bernal. Creating complex network services with
ebpf: Experience and lessons learned. In 2018 IEEE 19th International
Conference on High Performance Switching and Routing (HPSR), pages
1–8. IEEE, 2018.

[23] Radhika Mittal, Vinh The Lam, Nandita Dukkipati, Emily Blem, Hassan
Wassel, Monia Ghobadi, Amin Vahdat, Yaogong Wang, David Wetherall,
and David Zats. Timely: Rtt-based congestion control for the datacenter.
ACM SIGCOMM Computer Communication Review, 45(4):537–550,
2015.

[24] Akshay Narayan, Frank Cangialosi, Deepti Raghavan, Prateesh Goyal,
Srinivas Narayana, Radhika Mittal, Mohammad Alizadeh, and Hari
Balakrishnan. Restructuring endpoint congestion control. In Proceedings
of the 2018 Conference of the ACM Special Interest Group on Data
Communication, pages 30–43, 2018.

[25] Ravi Netravali, Anirudh Sivaraman, Somak Das, Ameesh Goyal, Keith
Winstein, James Mickens, and Hari Balakrishnan. Mahimahi: Accurate
record-and-replay for {HTTP}. In 2015 {USENIX} Annual Technical
Conference ({USENIX}{ATC} 15), pages 417–429, 2015.

[26] Xiaohui Nie, Youjian Zhao, Zhihan Li, Guo Chen, Kaixin Sui, Jiyang
Zhang, Zijie Ye, and Dan Pei. Dynamic tcp initial windows and
congestion control schemes through reinforcement learning. IEEE
Journal on Selected Areas in Communications, 37(6):1231–1247, 2019.

[27] Shinik Park, Jinsung Lee, Junseon Kim, Jihoon Lee, Sangtae Ha, and
Kyunghan Lee. Exll: an extremely low-latency congestion control for
mobile cellular networks. In Proceedings of the 14th International
Conference on emerging Networking EXperiments and Technologies,
pages 307–319, 2018.

[28] Jon Postel et al. Transmission control protocol. 1981.
[29] Waleed Reda, Kirill Bogdanov, Alexandros Milolidakis, Hamid

Ghasemirahni, Marco Chiesa, Gerald Q Maguire Jr, and Dejan Kostić.
Path persistence in the cloud: A study of the effects of inter-region
traffic engineering in a large cloud provider’s network. ACM SIGCOMM
Computer Communication Review, 50(2):11–23, 2020.

[30] Dario Rossi, Claudio Testa, Silvio Valenti, and Luca Muscariello. Led-
bat: the new bittorrent congestion control protocol. In 2010 Proceedings
of 19th International Conference on Computer Communications and
Networks, pages 1–6. IEEE, 2010.

[31] Lynne Salameh, Astrit Zhushi, Mark Handley, Kyle Jamieson, and
Brad Karp. {HACK}: Hierarchical acks for efficient wireless
medium utilization. In 2014 {USENIX} Annual Technical Conference
({USENIX}{ATC} 14), pages 359–370, 2014.

[32] Keith Winstein and Hari Balakrishnan. Tcp ex machina: Computer-
generated congestion control. ACM SIGCOMM Computer Communica-
tion Review, 43(4):123–134, 2013.

[33] Keith Winstein, Anirudh Sivaraman, and Hari Balakrishnan. Stochastic
forecasts achieve high throughput and low delay over cellular networks.
In Presented as part of the 10th {USENIX} Symposium on Networked
Systems Design and Implementation ({NSDI} 13), pages 459–471, 2013.

[34] Yaxiong Xie, Fan Yi, and Kyle Jamieson. Pbe-cc: Congestion control
via endpoint-centric, physical-layer bandwidth measurements. arXiv
preprint arXiv:2002.03475, 2020.

[35] Francis Y Yan, Jestin Ma, Greg D Hill, Deepti Raghavan, Riad S
Wahby, Philip Levis, and Keith Winstein. Pantheon: the training ground
for internet congestion-control research. In 2018 {USENIX} Annual
Technical Conference ({USENIX}{ATC} 18), pages 731–743, 2018.

[36] Yasir Zaki, Thomas Pötsch, Jay Chen, Lakshminarayanan Subramanian,
and Carmelita Görg. Adaptive congestion control for unpredictable
cellular networks. In Proceedings of the 2015 ACM Conference on
Special Interest Group on Data Communication, pages 509–522, 2015.

