
TFE-GNN: A Temporal Fusion Encoder Using Graph Neural 
Networks for Fine-grained Encrypted Trafic Classification 

Haozhen Zhang 
Shenzhen International Graduate 

School, Tsinghua University 
China 

zhang-hz21@mails.tsinghua.edu.cn 

Qing Li∗ 
Peng Cheng Laboratory 

China 
liq@pcl.ac.cn 

Le Yu 
Department of Computing, The Hong 

Kong Polytechnic University 
Hong Kong, China 
yulele08@gmail.com 

Francesco Mercaldo 
University of Molise 

IIT-CNR 
Italy 

francesco.mercaldo@unimol.it 

Qixu Liu 
Institute of Information Engineering, 

Chinese Academy of Sciences 
China 

liuqixu@iie.ac.cn 

Xi Xiao∗ 
Shenzhen International Graduate 

School, Tsinghua University 
China 

xiaox@sz.tsinghua.edu.cn 

Xiapu Luo 
Department of Computing, The Hong 

Kong Polytechnic University 
Hong Kong, China 

csxluo@comp.polyu.edu.hk 

ABSTRACT 
Encrypted trafc classifcation is receiving widespread attention 
from researchers and industrial companies. However, the existing 
methods only extract fow-level features, failing to handle short 
fows because of unreliable statistical properties, or treat the header 
and payload equally, failing to mine the potential correlation be-
tween bytes. Therefore, in this paper, we propose a byte-level trafc 
graph construction approach based on point-wise mutual informa-
tion (PMI), and a model named Temporal Fusion Encoder using 
Graph Neural Networks (TFE-GNN) for feature extraction. In par-
ticular, we design a dual embedding layer, a GNN-based trafc 
graph encoder as well as a cross-gated feature fusion mechanism, 
which can frst embed the header and payload bytes separately and 
then fuses them together to obtain a stronger feature representa-
tion. The experimental results on two real datasets demonstrate 
that TFE-GNN outperforms multiple state-of-the-art methods in 
fne-grained encrypted trafc classifcation tasks. 

CCS CONCEPTS 
• Security and privacy → Network security; • Information 
systems → Data mining. 
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1 INTRODUCTION 
To protect user privacy and anonymity, various encryption tech-
niques are used to encrypt the transmission of network trafc [28]. 
Although Internet security is improved for a regular user, encryp-
tion technologies also provide a convenient disguise for some mali-
cious attackers. Moreover, some privacy-enhanced tools like VPN 
and Tor [26] may be utilized to achieve illegal network transac-
tions, such as weapon trading and drug sales, where it is difcult to 
trace the trafc source [13]. Traditional data packet inspection (DPI) 
methods concentrate on mining the potential patterns or keywords 
in data packets, which is time-consuming and loses its accuracy 
when facing encrypted trafc [24]. Consequently, how to efectively 
represent encrypted network trafc for more accurate detection 
and identifcation is a signifcant challenge. 

To solve the above problems, many approaches have been pro-
posed. The earliest port-based works are no longer efective due to 
the application of dynamic ports. Subsequently, a series of statistic-
based methods emerged [8, 31, 37, 40, 43], which rely on statistical 
features from trafc fows (e.g., mean of packet length). Then, a 
machine learning classifer (e.g., random forest) is adopted to get 
the fnal prediction results. Unfortunately, these methods need 
hand-crafted feature engineering and may fail due to the unreli-
able/unstable fow-level statistical information in some cases [36]. 
Most statistical features of relatively short fows have higher de-
viations compared with long fows. For example, the fow length 
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generally obeys the long-tailed distribution [45], implying the uni-
versal existence of unreliable statistical features. Therefore, we use 
packet bytes instead of those statistical features. 

Recently, graph neural networks (GNNs) [14] have been widely 
used in lots of applications of processing unstructured data. Due to 
the powerful expressiveness, GNNs can recognize specifc topolog-
ical patterns implied in graphs so that we can classify each graph 
with a predicted label. For the trafc classifcation task, most current 
GNN-based methods [1, 11, 21, 25, 29] construct graphs according 
to the correlation between packets, which actually is another usage 
form of statistical features and also sufers from the issue men-
tioned above. While the others do utilize packet bytes but have two 
major faws: 1) Mix usage of the header and payload. Existing 
methods simply treat the header and payload of a packet equally 
but ignore the diference in meaning between them. 2) Inadequate 
utilization of raw bytes. Although the packet bytes are utilized, 
most methods regard packets as nodes and just take their raw bytes 
as node features, which does not make the most of them [11]. 

Based on the above observations, in this paper, we propose a 
byte-level trafc graph construction approach based on point-wise 
mutual information (PMI) and a novel model named Temporal 
Fusion Encoder using Graph Neural Networks (TFE-GNN) for 
encrypted trafc classifcation. The byte-level trafc graphs are 
constructed by mining the correlation between bytes and served 
as inputs for TFE-GNN. TFE-GNN consists of three major sub-
modules (i.e., dual embedding, trafc graph encoder, and cross-
gated feature fusion mechanism). The dual embedding treats the 
header and payload of a packet separately and embeds them using 
two independent embedding layers. As for the trafc graph encoder 
which consists of multilayer GNNs, it encodes each graph into 
a high-dimensional graph vector. Finally, we use the cross-gated 
feature fusion mechanism to integrate header graph vectors and 
payload graph vectors, obtaining an overall representation vector of 
a packet. For end-to-end training, we employ a time series model to 
get fnal prediction results for downstream tasks. In the experiment 
section, we adopt a self-collected WWT dataset (including the data 
from WeChat, WhatsApp and Telegram) as well as the public ISCX 
dataset to compare TFE-GNN with more than a dozen baselines. 
The experimental results show that TFE-GNN surpasses almost 
all the baselines and comprehensively achieves the most excellent 
performance on the adopted datasets (e.g., 10.82% ↑ on the Telegram 
dataset, 4.58% ↑ on the ISCX-Tor dataset). 

In summary, the main contributions of this paper include: 

• We frst construct the byte-level trafc graph by converting 
a sequence of packet bytes into a graph, supporting trafc 
classifcation from a diferent perspective. 

• We propose TFE-GNN, which treats the packet header and 
payload separately and encodes each byte-level trafc graph 
into an overall representation vector for each packet. Thus, 
TFE-GNN utilizes a packet-level representation vector rather 
than a fow-level one. 

• To evaluate the performance of the proposed TFE-GNN, 
we compare it with several existing methods on the self-
collected WWT dataset and public ISCX dataset [5, 15]. The 
result shows that, for user behaviour classifcation, TFE-GNN 
outperforms these methods in efectiveness. 

2 PRELIMINARIES 

2.1 Notations 
In this paper, a graph is denoted by G = {V, E, X}, where V is 
the node set, E is the edge set, and X ∈ R |V |×�� is the initial 
feature matrix of nodes whereby the initial feature of node � can 
be represented by �� . We use A ∈ {0, 1}|V |× |V | to represent the 
adjacency matrix of G, which satisfes that the entry (�, �) of A, i.e., 
�� � , equals 1 if there is an edge between nodes � and � , otherwise it is 
0. We use � (�) to represent the neighborhood of node � . Moreover, 
we use �� to represent the embedding dimension in the �-th layer. 

For brevity and convenience, we extend the concept of trafc 
fows by introducing time-induced Trafc Segments (TS), which 
are collectively referred to as trafc samples in the rest of the paper. 

TS = [��1 , ��2 , · · · , ��� ], �1 ≤ �2 ≤ · · · ≤ �� (1) 

where ��� denotes a single packet with its time stamp �� , � is the 
sequence length of a trafc segment, �1, �� are the start and end 
times of a trafc segment, respectively. From the defnition above, 
the trafc segment has a broader scope than the trafc fow, i.e., 
each trafc fow can be seen as a trafc segment, but the reverse 
does not necessarily hold. In this way, we can directly take trafc 
segments as training samples and do inference using either trafc 
fows or trafc segments, which helps to improve fexibility and 
unleash the expressiveness of an end-to-end model. 

2.2 Encrypted Trafc Classifcation 
The encrypted trafc classifcation task aims to diferentiate the 
trafc generated from various sources (e.g., applications, web pages 
or services) by using the information of trafc packets captured by 
professional software or programs. In this paper, we concentrate 
on in-app user behaviour classifcation which diferentiates fne-
grained user actions such as sending texts and sending pictures. 

Assume that there are � training samples and � categories in 
total, let the �-th trafc sample be a sequence �� = [��1 

� , ��� · · · , ���� ],2, 
where � is the sequence length and ��� is the �-th byte sequence 

� 
� � � � � � of the �-th trafc sample denoted by ��� = [�1 , �2 , · · · , ��] where 

� 
� � 

� is the byte sequence length and � denotes the �-th byte value 
� 

in the �-th byte sequence of the �-th trafc sample. According to 
the defnition above, the (segment-level) encrypted classifcation 
task can be described formally as predicting the category �� of an 
unseen test sample �� with a designed and well-trained end-to-end 
model � (�� ) on � training samples, where �� = 0, 1, · · · , � − 1. 

2.3 Message Passing Graph Neural Networks 
Graph Neural Networks (GNNs) [14] are powerful models for han-
dling unstructured data. With the application of the message pass-
ing paradigm (MP) [6] to GNNs (MP-GNNs), the node embedding 
vectors can be updated iteratively by integrating nodes’ embedding 
vectors in neighborhood through a specifc aggregation strategy. 
Generally, the �-th layer MP-GNNs can be formalized as two proce-
dures (i.e., the message computation and aggregation): 

(� ) 
� 
h(� −1) ; �� 

� 
m = MSG(� )� � � � n o � (2) 
h(� ) h(� −1) (� )
� � � � = AGG(� ) , m , � ∈ � (�) ; �� 
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, h(� )where h(� ) ∈ R�� are the embedding vectors of nodes � and� � 
(� )

� in layer � . m is the computed message from node � in layer � .� 
MSG(� ) (·) is a message computation function parameterized by �� � 
and AGG(� ) (·) is a message aggregation function parameterized by 
��
� in layer � . Notably, ��� is optional and the inputs of MP-GNNs 
are given by initial node feature vectors (i.e., h(0) = x� ).� 

Due to the high scalability of our proposed model, various GNN 
architectures can be easily adapted. Section 3.3 discusses the con-
crete choice of message aggregation strategies and our designed 
GNN architecture according to the design space of GNNs [42]. 

3 METHODOLOGY 

3.1 Byte-level Trafc Graph Construction 
We attempt to convert a sequence of bytes into a graph G = 
{V, E, X} by mining the potential correlation between bytes, where 
each element in V denotes a byte (i.e., a byte corresponds to a node 
in G). Note that all the bytes with the identical value share the 
same nodes so that there are no more than 256 nodes in G, which 
ensures a relatively small scale of trafc graphs. 

Correlation representation between bytes. For edges, we can 
easily connect all bytes chronologically, which means creating an 
edge from byte � to � if byte � comes before byte � in a byte sequence. 
But we do not adopt this method since it will lead to a very dense 
graph and the topological structure will lack distinguishability. 
Therefore, inspired by [22] which uses cosine similarity to measure 
the correlation between two bytes, we adopt point-wise mutual 
information (PMI) [41], which is a prevalent measure for word 
association computation in natural language processing (NLP), to 
model the correlation between two bytes. In this paper, we represent 
the PMI value of bytes � and � as PMI(�, �). 

Edge creation. The PMI value makes a comprehensive measure-
ment of two co-occurrence bytes from the perspective of semantic 
associativity of bytes. We utilize it to create an edge between two 
bytes. A positive PMI value implies a high semantic correlation of 
bytes while a zero or a negative one implies little or no semantic 
correlation of bytes. Consequently, we only create an edge between 
two bytes whose PMI value is positive. 

Graph construction. Below, we give the formal description of 
edges through the entries of adjacency matrix A of nodes � and � : � 

1, PMI(�, �) > 0 
�� � = (3)0, Otherwise 

The initial features of each node in graph G are given by the cor-
responding byte value, which ranges from 0 to 255. Notably, since 
PMI(�, �) = PMI( �, �), the byte-level trafc graphs are undirected. 

3.2 Dual Embedding 
The byte value is commonly utilized to serve as initial features for 
further vector embedding. Two bytes with diferent values corre-
spond to two distinct embedding vectors. However, the meaning of 
a byte varies not only with the byte value itself, but also with the 
part of the byte sequence in which it is located. In other words, the 
representation meaning of two bytes with the identical value within 
the header and payload of a packet respectively may be completely 
diferent. The reason is that the payload carries the transmission 
contents of a packet while the header is the frst part of a packet 

that describes its contents. If we make two bytes with the identical 
value in the header and payload correspond to a same embedding 
vector, it is difcult for a model to converge to the optimum on 
these embedding parameters because of the obfuscated meaning. 

For the rationale mentioned above, we treat the header and pay-
load of a packet separately and construct byte-level trafc graphs 
for the two parts, respectively (i.e., byte-level trafc header graphs 
and byte-level trafc payload graphs). We adopt dual embedding 
with two embedding layers that do not share parameters to embed 
initial byte value features into high-dimensional embedding vectors 
for the two kinds of graphs, respectively. 

Dual embedding layer. Assume that �0 denotes the embed-
ding dimension and � is the number of embedding elements (i.e., 
byte value). The dual embedding matrices, which consist of two 

R� ×�0embedding matrices, can be viewed as �ℎ����� ∈ and 
�������� ∈ R� ×�0 , where each row-wise entry represents the em-
bedding vector of each byte value. 

3.3 Trafc Graph Encoder with Cross-gated 
Feature Fusion 

Since we construct byte-level trafc graphs based on the header and 
payload of packets, respectively, the following modules of TFE-GNN 
in this section are also dual, do not share parameters (architecture 
is the same) and can process in parallel. 

Trafc graph encoder. To encode each trafc graph into a 
graph feature vector, we elaborately design a trafc graph encoder 
using stacked GraphSAGE [7], which is a powerful graph neural 
network. For every node � in graph G, GraphSAGE computes the 
message from each neighboring node � ∈ � (�) by normalizing 
its embedding vector using the degree of node � . Then, Graph-
SAGE computes the overall message of all neighboring nodes � (�)
through element-wise mean operation and aggregates the overall 
message as well as the embedding vector of node � through con-
catenation operation. Finally, a nonlinear transformation is applied 
to the embedding vector of node � , fnishing the forward procedure 
of one GraphSAGE layer. Formally, the message computation and 
aggregation of GraphSAGE can be described by: 

∑ h(� −1)(� ) � m = 
� (�) |� (�) | 

� ∈� (�) (4)� � �� 
h(� ) (� ) h(� −1) (� )
� � = � w · CONCAT , m

� (�) 

where |� (�) | is the neighbor number of node � , w(� ) ∈ R�� −1 ×�� 

is the parameter in layer � , CONCAT(·) denotes the concatenation 
operation and � (·) denotes the activation function. Specially, we 
employ parametric ReLU (PReLU) [9] as an activation function. 
PReLU scales each negative element value by a factor, which not 
only plays the efect of nonlinear transformation but also plays a 
role similar to that of the attention mechanism by diferent scale 
factors for each channel in the negative axis. Lastly, we normalize 

the updated feature vector h(� ) by batch normalization (BN) [12]. � 
Due to the over-smoothing issue [2] in the deep GNN model, we 

only stack GraphSAGE up to 4 layers and concatenate the output 
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Figure 1: TFE-GNN Model Architecture 

feature vectors of each layer for each node � to alleviate this prob-
lem, which is similar to Jumping Knowledge Network (JKN) [39]: 

hfnal = CONCAT(h(1) , h(2) , h(3) , h(4) ) (5)� � � � � 

where hfnal is the fnal feature vector of node � . Finally, we apply � 
mean pooling on all nodes to get a graph feature vector g: 

hfnal ⊕ . . . ⊕ hfnal 1 |V | g = (6)|V| 
where ⊕ denotes element-wise addition. For simplicity, we use gℎ 
and g� to represent graph feature vectors extracted from trafc 
header graphs and trafc payload graphs, respectively. 

Cross-gated feature fusion. Since we extract features from 
trafc header graphs and trafc payload graphs respectively men-
tioned in Section 3.2, we aim to create a reasonable relationship 
between gℎ and g� to get an overall representation of packet bytes. 
To this end, we carefully design a feature fusion mechanism named 
cross-gated feature fusion, to fuse gℎ and g� into a fnal encoded 
feature vector for each packet. 

As shown in Figure 1, we adopt two flters, each of which consists 
of two linear layers with a PReLU activation function between them. 
First the two flters, which do not share parameters, are applied to 
gℎ and g� , respectively and then an element-wise sigmoid function 
is used to scale each element to [0, 1]. We consider the scaled vectors 
as gated vectors (sℎ and s� for the header and the payload) and 
use them to crosswise flter the corresponding gℎ and g� . Such a 
mechanism allows the model to flter out unimportant information 
and reserve the signifcant one for the two feature vectors. As the 
frst part of the packet, the header describes its important features. 
Thus, it is reasonable to use header gated vector sℎ to flter payload 
graph feature vector g� and conversely use payload gated vector 
s� to flter header graph feature vector gℎ . 

The cross-gated feature fusion can be formally represented by: 
� � sℎ = Sigmoid(w
ℎ2 PReLU(wℎ1gℎ + bℎ1) + bℎ2) (7) 
� � s� = Sigmoid(w�2 PReLU(w�1g� + b�1) + b�2) (8) 

z = CONCAT(sℎ ⊙ g� , s� ⊙ gℎ) (9) 

where wℎ1, wℎ2, w�1, w�2 ∈ R�� ×�� and bℎ1, bℎ2, b�1, b�2 ∈ R�� 

are the weights and biases of linear layers. The symbol ⊙ denotes 
element-wise product and z is the overall representation vector of 
the packet bytes, which can be used for the downstream tasks. 

3.4 End-to-End Training on Downstream Tasks 
Based on the overall representation vector z for each packet, a 
packet-level or a segment-level classifcation task can be easily 
solved using a downstream classifer. We primarily focus on the 
segment-level task in this paper. 

Temporal information extraction. Since we have already 
encoded raw bytes of each packet in a trafc segment into a rep-
resentation vector z, the segment-level classifcation task can be 
considered as a time series prediction task. Here, we just adopt long 
short-term memory (LSTM) [10], which is a classical and famous 
time series model, as our baseline downstream model. LSTM is 
bidirectional with two layers and its output vectors are fed into a 
two-layer linear classifer with PReLU as its activation function to 
get the fnal prediction results. Seeing that we need to compute the 
diference between prediction results and the ground truth, we just 
adopt the cross entropy function as the loss function: 

L� ��−�� � = CE(Classifer(LSTM(z1, z2, · · · , z� )), �) (10) 

where � is the segment length, � is the ground truth and CE(·) 
denotes the cross entropy function. 

Specially, we also attempt to employ a transformer layer [33] as 
a downstream model, which is also an efective time series model 
based on the self-attention mechanism. The experimental results 
for transformers are also presented in the experiment section. 

4 EXPERIMENTS 
In this section, we frst present experimental settings. Then, we con-
duct experiments on multiple datasets and baselines and analyze the 
results. We also conduct an ablation study to show the efectiveness 
of each component in TFE-GNN. For comprehensive analysis, we 
design some model variants to evaluate the scalability of TFE-GNN 
and compare several baselines w.r.t. their model complexity. Finally, 
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we analyse the model sensitivity of TFE-GNN. In detail, we conduct 
the experiments to answer the following questions: 
RQ1: How is the usefulness of each component (Section 4.3)? 
RQ2: Which GNN architecture performs best (Section 4.4)? 
RQ3: How is the complexity of the TFE-GNN model (Section 4.5)? 
RQ4: To what extent can changes in hyper-parameters afect the 
efectiveness of TFE-GNN (Section 4.6)? 

4.1 Experimental Settings 
4.1.1 Dataset. In order to comprehensively evaluate the efective-
ness of TFE-GNN, we adopt multiple datasets, i.e., ISCX VPN-
nonVPN [5], ISCX Tor-nonTor [15], and self-collected WWT 
datasets. 

ISCX VPN-nonVPN is a public trafc dataset which contains 
ISCX-VPN and ISCX-nonVPN datasets. The ISCX-VPN dataset is 
collected over virtual private networks (VPNs) which are used 
for accessing some blocked websites or services and difcult to 
be recognized due to the obfuscation technology. Conversely, the 
trafc in ISCX-nonVPN is regular and not collected over VPNs. 

Similarly, ISCX Tor-nonTor is a public dataset and ISCX-Tor 
dataset is collected over the onion router (Tor) whose trafc can 
be difcult to trace. Besides, ISCX-nonTor is also regular and not 
collected over Tor. For comparison, we use the ISCX VPN-nonVPN 
and ISCX Tor-nonTor datasets with six and eight user behaviour 
categories, respectively. We use SplitCap to obtain bidirectional 
fows from public datasets. Specially, due to the scarcity of fows in 
the ISCX-Tor dataset, we increase the training samples by dividing 
each fow into 60-second non-overlapping blocks in our experi-
ments [27]. Finally, we utilize stratifed sampling to sequentially 
partition the training and testing dataset into 9:1 for all datasets. 

The WWT dataset includes fne-grained user behaviour trafc 
data from three social media apps (i.e., WhatsApp, WeChat and 
Telegram), which have twelve, nine and six user behaviour cate-
gories, respectively. Unlike the public ISCX dataset, we additionally 
record the start and end timestamps of each user behaviour sample 
for trafc segmentation. 

4.1.2 Pre-processing. For each dataset, we defne and flter out 
two kinds of "anomalous" samples: (1) Empty fows or segments: 
the trafc fows or segments where all packets have no payload. 
(2) Overlong fows or segments: the trafc fows or segments 
whose length (i.e., the number of packets) is larger than 10000. An 
empty fow or segment does not contain any payload, thus we can 
not construct the corresponding graph. In fact, such samples are 
generally used to establish connections between clients and servers, 
having little discriminating information that helps to classify. An 
overlong fow or segment contains too many packets and a large 
number of bad packets or retransmission packets may appear in 
it due to temporarily bad network environment or other potential 
reasons. In most cases, such samples introduce too much noise, so 
we also consider overlong fows or segments as anomalous samples 
and remove them. Additionally, as for each rest sample of datasets, 
we remove bad packets and retransmission packets within. 

For each packet in a fow or segment, we frst remove the ones 
without payload. Then we remove the Ethernet header, which only 
provides some irrelevant information for classifcation. The source 
and destination IP addresses, and the port numbers are all removed 

for the purpose of eliminating interference with sensitive informa-
tion deriving from these IP addresses and port numbers. 

4.1.3 Implementation Details and Baselines. In the stage of trafc 
graph construction, we set the max packet number of one sample 
to 50. The max payload byte length and the max header byte length 
are set to 150 and 40, respectively. The PMI window size is set to 5 
by default. In the stage of training, we set the max training epoch 
to 120. The initial learning rate is set to 1e-2 and we use the Adam 
optimizer with a learning rate scheduler, which gradually decays 
the learning rate from 1e-2 to 1e-4. The batch size is 512, the ratio of 
warmup is 0.1 and the dropout rate is 0.2. We implement all models 
with PyTorch and run each experiment 10 times independently to 
take average on a single NVIDIA RTX 3080 GPU. 

To give a fair comparison, we use four metrics, i.e., Overall Ac-
curacy (AC), Precision (PR), Recall (RC) and Macro F1-score (F1), 
to evaluate TFE-GNN with following state-of-the-art baselines, in-
cluding Traditional Feature Engineering Based Methods (i.e., 
AppScanner [31], CUMUL [23], K-FP (K-Fingerprinting) [8], Flow-
Print [32], GRAIN [43], FAAR [19], ETC-PS [40]), Deep Learning 
Based Methods (i.e., FS-Net [18], EDC [16], FFB [44], MVML [4], 
DF [30], ET-BERT [17]), and Graph Neural Network Based Meth-
ods (i.e., GraphDApp [29], ECD-GNN [11]). 

4.2 Comparison Experiments 
The comparison results on WWT and ISCX datasets are shown 
in Tables 1 and 2. According to Tables 1 and 2, we can draw the 
following conclusions: (1) TFE-GNN reaches the best performance 
compared with several baselines on the WWT dataset. Additionally, 
TFE-GNN also achieves the best results on four metrics, which fur-
ther comprehensively demonstrates the efectiveness of our method. 
(2) Notably we can fnd that almost all the baselines perform poor 
on the Telegram dataset, it is due to the fact that the usage of 
VPNs increases the classifcation difculty and introduces some 
background noise in case of provisionally bad network conditions 
caused by VPNs. However, TFE-GNN also has an outstanding result 
on the Telegram dataset (10.82% f1-score improvement over the 
second highest), which benefts from the powerful byte encoding 
capability of TFE-GNN. (3) Compared with the two GNN-based 
methods similar to ours, i.e., GraphDApp and ECD-GNN, TFE-GNN 
outperforms both in all aspects. As for GraphDApp, its scheme of 
trafc interaction graph construction limits the expressiveness of 
the model. Although graphs from diferent trafc fows are slightly 
distinct in the aspect of trafc bursts, the edges between diferent 
bursts are unreasonable, which hinders feature extraction. Further-
more, an earlier burst can not "interact" with the later one using 
shallow GNNs because of the long and continuous connections 
between bursts. However, ECD-GNN is very unstable on diferent 
datasets. The reason is that the constructed graphs are lack of graph 
topology specifcity and have highly similar structures, which sig-
nifcantly decreases its performance stability. With our elaborated 
byte-level graph construction approach, TFE-GNN can encode raw 
bytes well and has greater distinguishability among diferent trafc 
categories. (4) The extensive experiments on public datasets, i.e., 
the ISCX VPN-nonVPN and the ISCX Tor-nonTor, show that TFE-
GNN can also perform well on more complicated datasets. From the 
Table 2, TFE-GNN is superior to almost all the baselines on public 
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Table 1: Experimental Results on Self-collected WeChat, WhatsApp and Telegram Datasets 

Dataset WeChat WhatsApp Telegram 

Model AC PR RC F1 AC PR RC F1 AC PR RC F1 

AppScanner [31] 0.9927 0.9908 0.9904 0.9905 0.9790 0.9688 0.9601 0.9628 0.8379 0.8154 0.8653 0.8304 
K-FP [8] 0.9741 0.9665 0.9630 0.9645 0.9710 0.9589 0.9515 0.9526 0.8797 0.8378 0.8990 0.8567 

FlowPrint [32] 0.7429 0.5302 0.6380 0.5532 0.6197 0.3820 0.4934 0.3880 0.4833 0.4025 0.5000 0.4311 
CUMUL [23] 0.9472 0.9497 0.9412 0.9390 0.9855 0.9835 0.9699 0.9756 0.8330 0.7980 0.8471 0.8053 
GRAIN [43] 0.9404 0.9366 0.9369 0.9251 0.9724 0.9685 0.9475 0.9550 0.8003 0.7615 0.7903 0.7407 
FAAR [19] 0.9873 0.9863 0.9847 0.9854 0.9790 0.9683 0.9566 0.9597 0.8184 0.7884 0.8507 0.8018 
ETC-PS [40] 0.9863 0.9864 0.9831 0.9846 0.9833 0.9743 0.9685 0.9703 0.8477 0.8295 0.8710 0.8382 

FS-Net [18] 0.9223 0.9446 0.9196 0.8964 0.9942 0.9949 0.9919 0.9933 0.8469 0.8161 0.8744 0.8272 
DF [30] 0.9800 0.9757 0.9751 0.9751 0.8978 0.7954 0.8406 0.8143 0.8251 0.8206 0.8542 0.7960 
EDC [16] 0.9746 0.9653 0.9625 0.9620 0.9732 0.9589 0.9526 0.9546 0.8153 0.8118 0.8372 0.7896 
FFB [44] 0.9675 0.9691 0.9661 0.9644 0.9350 0.8957 0.8767 0.8708 0.7990 0.7630 0.8169 0.7802 
MVML [4] 0.9643 0.9519 0.9540 0.9526 0.9456 0.9302 0.9009 0.8971 0.7943 0.7413 0.7636 0.7340 

ET-BERT [17] 0.9505 0.9368 0.9285 0.9266 0.9107 0.8934 0.8697 0.8439 0.7679 0.8712 0.7989 0.7858 

GraphDApp [29] 
ECD-GNN [11] 

0.8763 
0.9863 

0.8368 
0.9847 

0.8378 
0.9830 

0.8330 
0.9835 

0.8753 
0.9811 

0.7615 
0.9722 

0.8060 
0.9647 

0.7791 
0.9672 

0.7766 
0.1810 

0.7575 
0.0353 

0.7627 
0.1641 

0.7227 
0.0528 

TFE-GNN 

Table 2: Experimental Results on Public ISCX VPN-nonVPN and ISCX Tor-nonTor Datasets 

Dataset ISCX-VPN ISCX-nonVPN ISCX-Tor ISCX-nonTor 

Model AC PR RC F1 AC PR RC F1 AC PR RC F1 AC PR RC F1 

AppScanner [31] 0.8889 0.8679 0.8815 0.8722 0.7576 0.7594 7465 0.7486 0.7543 0.6629 0.6042 0.6163 0.9153 0.8435 0.8140 0.8273 
K-FP [8] 0.8713 0.8750 0.8748 0.8747 0.7551 0.7478 0.7354 0.7387 0.7771 0.7417 0.6209 0.6313 0.8741 0.8653 0.7792 0.8167 

FlowPrint [32] 0.8538 0.7451 0.7917 0.7566 0.6944 0.7073 0.7310 0.7131 0.2400 0.0300 0.1250 0.0484 0.5243 0.7590 0.6074 0.6153 
CUMUL [23] 0.7661 0.7531 0.7852 0.7644 0.6187 0.5941 0.5971 0.5897 0.6686 0.5349 0.4899 0.4997 0.8605 0.8143 0.7393 0.7627 
GRAIN [43] 0.8129 0.8077 0.8109 0.8027 0.6667 0.6532 0.6664 0.6567 0.6914 0.5253 0.5346 0.5234 0.7895 0.6714 0.6615 0.6613 
FAAR [19] 0.8363 0.8224 0.8404 0.8291 0.7374 0.7509 0.7121 0.7252 0.6971 0.5915 0.4876 0.4814 0.9103 0.8253 0.7755 0.7959 
ETC-PS [40] 0.8889 0.8803 0.8937 0.8851 0.7273 0.7414 0.7133 0.7208 0.7486 0.6811 0.5929 0.6033 0.9365 0.8700 0.8311 0.8486 

FS-Net [18] 0.9298 0.9263 0.9211 0.9234 0.7626 0.7685 0.7534 0.7555 0.8286 0.7487 0.7197 0.7242 0.9278 0.8368 0.8254 0.8285 
DF [30] 0.8012 0.7799 0.8152 0.7921 0.6742 0.6857 0.6717 0.6701 0.6514 0.4803 0.4767 0.4719 0.8568 0.8003 0.7415 0.7590 
EDC [16] 0.7836 0.7747 0.8108 0.7888 0.6970 0.7153 0.7000 0.6978 0.6400 0.4980 0.4528 0.4504 0.8692 0.7994 0.7411 0.7451 
FFB [44] 0.8304 0.8714 0.8149 0.8335 0.7020 0.7274 0.6945 0.7050 0.6343 0.4870 0.5203 0.4952 0.8954 0.7545 0.7430 0.7430 
MVML [4] 0.6491 0.7231 0.6198 0.6151 0.5126 0.5751 0.4707 0.4806 0.6343 0.3914 0.4104 0.3752 0.7235 0.5488 0.5512 0.5457 

ET-BERT [17] 0.9532 0.9436 0.9507 0.9463 0.9245 0.9235 0.9543 0.9242 0.9606 0.9397 0.9029 0.8560 0.8217 0.8332 

GraphDApp [29] 0.6491 0.5668 0.6103 0.5740 0.4495 0.4230 0.3647 0.3614 0.4286 0.2557 0.2509 0.2281 0.6936 0.5447 0.5398 0.5352 
ECD-GNN [11] 0.1111 0.0185 0.1667 0.0333 0.0606 0.0101 0.1667 0.0190 0.0571 0.0071 0.1250 0.0135 0.9078 0.8015 0.8168 0.7977 

TFE-GNN 0.9040 

datasets except for the ISCX-nonVPN dataset, on which TFE-GNN 
and ET-BERT all reach similar results. However, ET-BERT is a large 
model with very complex model architecture while TFE-GNN is a 
slighter model which achieves the steadiest and best results on all 
datasets. We will analyse the model complexity in Section 4.5 later. 

4.3 Ablation Study (RQ1) 
In this section, we conduct an ablation study of TFE-GNN on the 
ISCX-VPN and the ISCX-Tor datasets and show experimental results 
in Table 3. To facilitate the presentation of results, we denote header, 
payload, dual embedding module, jumping knowledge network-like 
concatenation, cross-gated feature fusion and activation function 
and batch normalization as ’H’, ’P’, ’DUAL’, ’JKN’, ’CGFF’ and ’A&N’, 
respectively. Specially, we not only verify the efectiveness of each 
component in TFE-GNN, but also test the impact of some alternative 
modules or operations, including ’SUM’ and ’MAX’ operation on 
node features to get graph representation vectors instead of the 

default ’MEAN’, and ’GRU’ or ’TRANSFORMER’ modules to serve 
as downstream models instead of LSTM. 

From the component ablation study of Table 3, we can draw the 
following conclusions: (1) The packet headers play a more impor-
tant role in classifcation than the packet payloads and diferent 
datasets have diferent levels of the header and payload impor-
tance (the f1-score decreases by 2.5% when switching the header to 
payload on the ISCX-VPN dataset and by 21.06% on the ISCX-Tor 
dataset). (2) The usage of dual embedding increases the f1-score by 
3.63% and 0.95%, which indicates its general efectiveness. JKN-like 
concatenation and cross-gated feature fusion both enhance the per-
formance of TFE-GNN by a similar margin on two datasets. (3) We 
further verify the impact of the activation function and batch nor-
malization and a signifcant performance drop can be seen on both 
datasets, which demonstrates the necessity of this two operations. 

While on the rest part of Table 3, we can also obtain the following 
several points: (1) The element-wise summation on node features 
performs worse than the mean operation by a margin of 11.1% and 

0.9956 0.9953 0.9939 0.9946 0.9971 0.9957 0.9966 0.9961 0.9586 0.9584 0.9742 0.9649 

0.9229 

0.9591 0.9526 0.9593 0.9536 0.9316 0.9190 0.9240 0.9886 0.9792 0.9939 0.9855 0.9390 0.8742 0.8335 0.8507 

0.9167 
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Table 3: Ablation Study of TFE-GNN on ISCX-VPN and ISCX-Tor Datasets 

Method H P DUAL JKN CGFF A&N AC PR RC F1 

w/o P ✓ × × ✓ × ✓ 0.8713 | 0.9874 0.8261 | 0.9788 0.8228 | 0.9934 0.8230 | 0.9806 
w/o H × ✓ × ✓ × ✓ 0.8051 | 0.8726 0.8232 | 0.7780 0.7957 | 0.7809 0.7980 | 0.7700 

w/o DUAL ✓ ✓ × ✓ ✓ ✓ 0.9310 | 0.9829 0.9149 | 0.9747 0.9209 | 0.9801 0.9173 | 0.9760 
w/o JKN ✓ ✓ ✓ × ✓ ✓ 0.9474 | 0.9790 0.9365 | 0.9736 0.9397 | 0.9879 0.9374 | 0.9795 
w/o CGFF ✓ ✓ ✓ ✓ × ✓ 0.9445 | 0.9800 0.9329 | 0.9717 0.9371 | 0.9847 0.9339 | 0.9770 
w/o A&N ✓ ✓ ✓ ✓ ✓ × 0.6105 | 0.2212 0.5576 | 0.0555 0.5487 | 0.1180 0.5289 | 0.0548 

w/ SUM ✓ ✓ ✓ ✓ ✓ ✓ 0.8497 | 0.8194 0.8549 | 0.7287 0.8380 | 0.6986 0.8426 | 0.6891 
w/ MAX ✓ ✓ ✓ ✓ ✓ ✓ 0.8480 | 0.9870 0.8328 | 0.9752 0.8115 | 0.9778 0.8094 | 0.9751 
w/ GRU ✓ ✓ ✓ ✓ ✓ ✓ 0.8550 | 0.8932 0.8489 | 0.8702 0.8287 | 0.8664 0.8294 | 0.8610 

w/ TRANSFORMER ✓ ✓ ✓ ✓ ✓ ✓ 0.6754 | 0.9777 0.5706 | 0.9753 0.5992 | 0.9820 0.5658 | 0.9828 

TFE-GNN (default) ✓ ✓ ✓ ✓ ✓ ✓ 

context into account simultaneously. It can be easily realized by 
performing concatenation, element-wise addition or other similar 
operations due to the strong scalability of TFE-GNN. 

4.5 Model Complexity Analysis (RQ3) 
To comprehensively evaluate the trade-of between model perfor-
mance and model complexity, we present the foating point oper-
ations (FLOPs) and the model size of all baselines except for the 
traditional models in Table 4. 

From Tables 4 and 2, we can draw a conclusion that TFE-GNN 
achieves the most signifcant improvement on public datasets with 
relatively slight model complexity increasing. Although ET-BERT 
reaches comparable results on the ISCX-nonVPN dataset, the FLOPs 
of ET-BERT are approximately fve times as large as that of TFE-
GNN and the number of model parameters are also doubled, which 
generally indicates longer model inference time and requires more 
computation resources. Furthermore, the pre-training stage of ET-
BERT is very time-consuming and costs a lot due to the large 
amount of extra data during pre-training and the high model com-
plexity. In comparison, TFE-GNN can achieve higher accuracy while 
reducing the training or inference costs. 

Table 4: Model FLOPs and Parameters 

Model FLOPs(M) Parameters(M) 

FS-Net[18] 1.0e+2 3.2e+0 
DF[30] 2.8e+0 9.3e-1 
EDC[16] 2.2e+1 2.2e+1 
FFB[44] 2.6e+2 1.7e+0 
MVML[4] 7.2e-4 3.7e-4 

ET-BERT[17] 1.1e+4 8.6e+1 
GraphDApp[29] 3.8e-2 1.1e-2 
ECD-GNN[11] 2.9e+1 1.4e+0 

TFE-GNN 2.2e+3 4.4e+1 

4.6 Model Sensitivity Analysis (RQ4) 
(1) The Impact of Dual Embedding Dimension. To investigate
the infuence of hidden dimension of the dual embedding layer, we
conduct sensitivity experiments and show results in Figure 3a. As
we can see, f1-score is increasing rapidly when embedding dimen-
sion is lower than 100. After that point, the model performance
tends to be stable as the dimension changes. For reducing compu-
tation consuming, we just take embedding dimension 50 as our

29.64%, respectively on two datasets w.r.t. f1-score. However, the 
element-wise maximum decreases the f1-score to worse results 
on the ISCX-VPN dataset while only decreases f1-score a little 
on the ISCX-Tor dataset. (2) We change the default downstream 
model LSTM to GRU, which worsens all metrics about ~10% on both 
datasets because of the simpler architecture of GRU. Furthermore, 
we employ a transformer as a downstream model for comprehensive 
experiments. The results show that transformer performs well on 
the ISCX-Tor dataset (drops f1-score within ~1%) while receives 
almost ~40% drop on the ISCX-VPN dataset. 

4.4 GNN Architecture Variants Study (RQ2) 
To illustrate the scalability of GNN-based temporal fusion en-
coder, we select some classical GNN architectures as variants (e.g., 
GAT [34], GIN [38], GCN [14] and SGC [35]) for comparison on 
Telegram, ISCX-VPN and ISCX-Tor datasets. 

From Figure 2, we can fnd that GraphSAGE [7] achieves the 
best f1-score on three datasets. As for the rest variants, a noticeable 
drop in performance can be discovered, especially for GAT [34]. 
The rationale behind the results is that GNN models are easy to 
overft on small-scale graphs like ours (number of nodes is up to 
256). As for GAT [34], the application of the attention mechanism 
in neighborhood feature aggregation exacerbates overftting, which 
leads to a signifcant decline in f1-score. Among the three datasets, 
the relatively small fuctuation of the results on the Telegram dataset 
further validates the analysis above, which benefts from its larger 
number of training samples. 

GAT GCN GIN SGC GraphSAGE
GNN Architecture Variants
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re

Telegram ISCX-VPN ISCX-Tor

Figure 2: GNN Architecture Variants Study w.r.t. F1-score 

Also, a segment-level global feature can be added and shared 
with all nodes within one trafc graph using our model architecture 
if needed, which naturally takes local (packet) and global (segment) 

0.9591 | 0.9886 0.9526 | 0.9792 0.9593 | 0.9939 0.9536 | 0.9855 
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default setting. (2) The Impact of PMI Window Size. From Fig-
ure 3b, we can fnd that a smaller window size usually results in 
better f1-score. The larger the window size, the more edges will be 
added in the trafc graphs, and the model will be harder to discrim-
inate diferent trafc categories due to the too dense graphs. (3) 
The Impact of Segment Length. From Figure 3c, we can draw a 
conclusion that a short segment length for training usually makes 
the performance better. When the segment length becomes longer, 
more noise will be introduced and the downstream model LSTM has 
shortcomings in long sequence modeling, afecting the evaluation 
results. On the other hand, our method can achieve high accuracy 
when facing a short trafc fow or segment, reducing the amount 
of computation while improving performance. 
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(a) Embedding Dim (b) PMI Window Size (c) Segment Length 

Figure 3: Model Sensitivity Analysis w.r.t. Dual Embedding 
Dimension, PMI Window Size and Segment Length on ISCX-
VPN and ISCX-Tor Datasets (The shallow lines are attained 
by smoothing the dark plotted lines) 

5 RELATED WORK 
Traditional Feature Engineering Based Methods. Various meth-
ods leverage statistical features to depict the packet property and 
employ traditional machine learning models to conduct classifca-
tion. AppScanner uses bidirectional fow characteristics (i.e., outgo-
ing and incoming) to extract features from trafc fows w.r.t. packet 
length and interval time [31]. CUMUL uses the features of cumu-
lative packet length [23] and GRAIN [43] uses payload length as 
its features. ETC-PS utilizes the path signature theory to enhance 
the original packet length features [40], and Liu et al. exploited 
packet length sequences using wavelet decomposition [19]. Conti 
et al. [3] adopts hierarchical clustering for feature extraction. The 
fngerprinting matching is also used in the trafc classifcation task. 
FlowPrint [32] constructs correlation graphs as trafc fngerprint-
ing by computing activity value between destinations IP. K-FP [8] 
creates fngerprinting using random forest and matches unseen 
samples by k-nearest neighbor. All of these methods sufer from 
the unreliable features (mentioned in Section 1). 

Deep Learning Based Methods. With the popularity of deep 
learning models, many trafc classifcation approaches are devel-
oped based on them. EDC [16] uses some header information of 
packets (e.g., protocol types, packet length and time duration) to 
build features for multilayer perceptions (MLPs). MVML [4] de-
signs local and global features using packet length and time delay 
sequences, and simply employs a fully-connected layer for classif-
cation. Furthermore, FS-Net [18], DF [30] as well as RBRN [47] all 
utilize trafc fow sequences like packet length sequences to serve 
as the inputs of deep learning models. Additionally, DF and RBRN 
use convolutional neural networks (CNNs) while FS-Net utilizes 

gated recurrent units (GRUs) to extract temporal information of 
such sequences. For some other methods, packet bytes are used 
as model inputs to extract features. FFB [44] uses raw bytes and 
packet length sequences as features to feed into CNNs and RNNs. 
While Deep Packet [20] utilizes CNNs and autoencoders for feature 
extraction. Recently, pre-training models are utilized to pre-train 
on large-scale trafc data. To give an example, ET-BERT [17] de-
signs two novel pre-training tasks for trafc classifcation, which 
enhance the representation ability of raw bytes but are very time-
consuming and costly. In a word, these methods can not obtain the 
discriminative information which is contained in raw bytes very 
well in a relatively efcient way, while our approach solves this 
pain and difculty by introducing byte-level trafc graphs. 

Graph Neural Network Based Methods. Graph neural net-
works have strong potential in processing unstructured data and 
can be migrated to many felds. For encrypted trafc classifcation, 
GraphDApp [29] constructs trafc interaction graphs using traf-
fc bursts and employs graph isomorphism network [38] to learn 
representations. MAppGraph [25] constructs trafc graphs based 
on diferent fows and time slices within a trafc chunk, which is 
almost impossible to construct a complete graph in the face of a 
short trafc segment. GCN-ETA [46] is a malicious trafc detec-
tion method. To construct a graph, it will create an edge if two 
fows share common IP, which may result in a very dense graph. 
MEMG [1] utilizes markov chains to construct graphs from fows 
while GAP-WF [21] maps a fow as a node in graphs and con-
nects edges between fows which share the same identity of the 
clients. Besides, Huoh et al. [11] directly created edges based on the 
chronological relationship of packets among a fow, being lack of 
specifcity. These methods all construct graphs at the level of trafc 
fows, which are vulnerable if there is too much noise within fows. 

6 CONCLUSION AND FUTURE WORK 
We propose an approach to construct byte-level trafc graphs and 
a model named TFE-GNN for encrypted trafc classifcation. The 
byte-level trafc graph construction approach can mine the po-
tential correlation between raw bytes and generate discriminative 
trafc graphs. TFE-GNN is designed to extract high-dimensional 
features from constructed trafc graphs. Finally, TFE-GNN can en-
code each packet into an overall representation vector, which can be 
used for some downstream tasks like trafc classifcation. Several 
baselines are selected to evaluate the efectiveness of TFE-GNN. 
The experimental results show that our proposed model compre-
hensively surpasses all the baselines on the WWT and the ISCX 
datasets. Elaborately designed experiments further demonstrate 
that TFE-GNN has strong efectiveness. 

In the future, we will attempt to improve TFE-GNN in terms 
of the following limitations. (1) Limited graph construction 
approach. The graph topology of the proposed model is determined 
before the training procedure, which may result in non-optimal 
performance. Moreover, the TFE-GNN can not cope with the byte-
level noise implied in the raw bytes of each packet. (2) Unused 
temporal information implied in byte sequences. The byte-
level trafc graphs are constructed without introducing the explicit 
temporal characteristics of byte sequences. 
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Zhang et al. 

A THREAT MODEL AND ASSUMPTIONS 
In this section, we present the threat model and assumptions. Nor-
mal users employ mobile apps to communicate with remote servers. 
The attacker is a passive observer (i.e., he cannot decrypt or modify 
packets). The attacker captures the packets of the target apps by 
compromising the device or snifng the network link. Then, the 
attacker analyzes the captured packets to infer the behaviors of 
normal users. 

B LONG-TAILED DISTRIBUTION OF THE ISCX 
DATASET 

We count the fow length on three datasets, i.e., ISCX-VPN, ISCX-
NonVPN and ISCX-NonTor datasets and the fgure below shows 
that the fow length generally obeys the long-tailed distribution. 
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Figure 4: Long-tailed Distribution of the Flow Length on 
ISCX-VPN, ISCX-NonVPN and ISCX-NonTor Datasets (Con-
sidering the amount of data, only part of the sorted data is 
shown) 
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