
TFE-GNN: A Temporal Fusion Encoder Using Graph Neural
Networks for Fine-grained Encrypted Trafic Classification

Haozhen Zhang
Shenzhen International Graduate

School, Tsinghua University
China

zhang-hz21@mails.tsinghua.edu.cn

Qing Li∗
Peng Cheng Laboratory

China
liq@pcl.ac.cn

Le Yu
Department of Computing, The Hong

Kong Polytechnic University
Hong Kong, China
yulele08@gmail.com

Francesco Mercaldo
University of Molise

IIT-CNR
Italy

francesco.mercaldo@unimol.it

Qixu Liu
Institute of Information Engineering,

Chinese Academy of Sciences
China

liuqixu@iie.ac.cn

Xi Xiao∗
Shenzhen International Graduate

School, Tsinghua University
China

xiaox@sz.tsinghua.edu.cn

Xiapu Luo
Department of Computing, The Hong

Kong Polytechnic University
Hong Kong, China

csxluo@comp.polyu.edu.hk

ABSTRACT
Encrypted trafc classifcation is receiving widespread attention
from researchers and industrial companies. However, the existing
methods only extract fow-level features, failing to handle short
fows because of unreliable statistical properties, or treat the header
and payload equally, failing to mine the potential correlation be-
tween bytes. Therefore, in this paper, we propose a byte-level trafc
graph construction approach based on point-wise mutual informa-
tion (PMI), and a model named Temporal Fusion Encoder using
Graph Neural Networks (TFE-GNN) for feature extraction. In par-
ticular, we design a dual embedding layer, a GNN-based trafc
graph encoder as well as a cross-gated feature fusion mechanism,
which can frst embed the header and payload bytes separately and
then fuses them together to obtain a stronger feature representa-
tion. The experimental results on two real datasets demonstrate
that TFE-GNN outperforms multiple state-of-the-art methods in
fne-grained encrypted trafc classifcation tasks.

CCS CONCEPTS
• Security and privacy → Network security; • Information
systems → Data mining.

KEYWORDS
Trafc Classifcation, User Behaviour, Graph Neural Networks
∗Corresponding authors.

This work is licensed under a Creative Commons Attribution International
4.0 License.

WWW ’23, April 30–May 04, 2023, Austin, TX, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9416-1/23/04.
https://doi.org/10.1145/3543507.3583227

ACM Reference Format:
Haozhen Zhang, Le Yu, Xi Xiao, Qing Li, Francesco Mercaldo, Xiapu
Luo, and Qixu Liu. 2023. TFE-GNN: A Temporal Fusion Encoder Using
Graph Neural Networks for Fine-grained Encrypted Trafc Classifca-
tion. In Proceedings of the ACM Web Conference 2023 (WWW ’23), April
30–May 04, 2023, Austin, TX, USA. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3543507.3583227

1 INTRODUCTION
To protect user privacy and anonymity, various encryption tech-
niques are used to encrypt the transmission of network trafc [28].
Although Internet security is improved for a regular user, encryp-
tion technologies also provide a convenient disguise for some mali-
cious attackers. Moreover, some privacy-enhanced tools like VPN
and Tor [26] may be utilized to achieve illegal network transac-
tions, such as weapon trading and drug sales, where it is difcult to
trace the trafc source [13]. Traditional data packet inspection (DPI)
methods concentrate on mining the potential patterns or keywords
in data packets, which is time-consuming and loses its accuracy
when facing encrypted trafc [24]. Consequently, how to efectively
represent encrypted network trafc for more accurate detection
and identifcation is a signifcant challenge.

To solve the above problems, many approaches have been pro-
posed. The earliest port-based works are no longer efective due to
the application of dynamic ports. Subsequently, a series of statistic-
based methods emerged [8, 31, 37, 40, 43], which rely on statistical
features from trafc fows (e.g., mean of packet length). Then, a
machine learning classifer (e.g., random forest) is adopted to get
the fnal prediction results. Unfortunately, these methods need
hand-crafted feature engineering and may fail due to the unreli-
able/unstable fow-level statistical information in some cases [36].
Most statistical features of relatively short fows have higher de-
viations compared with long fows. For example, the fow length

2066

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3543507.3583227
https://doi.org/10.1145/3543507.3583227
mailto:liuqixu@iie.ac.cn
mailto:francesco.mercaldo@unimol.it
mailto:yulele08@gmail.com
mailto:liq@pcl.ac.cn
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3543507.3583227&domain=pdf&date_stamp=2023-04-30

WWW ’23, April 30–May 04, 2023, Austin, TX, USA Zhang et al.

generally obeys the long-tailed distribution [45], implying the uni-
versal existence of unreliable statistical features. Therefore, we use
packet bytes instead of those statistical features.

Recently, graph neural networks (GNNs) [14] have been widely
used in lots of applications of processing unstructured data. Due to
the powerful expressiveness, GNNs can recognize specifc topolog-
ical patterns implied in graphs so that we can classify each graph
with a predicted label. For the trafc classifcation task, most current
GNN-based methods [1, 11, 21, 25, 29] construct graphs according
to the correlation between packets, which actually is another usage
form of statistical features and also sufers from the issue men-
tioned above. While the others do utilize packet bytes but have two
major faws: 1) Mix usage of the header and payload. Existing
methods simply treat the header and payload of a packet equally
but ignore the diference in meaning between them. 2) Inadequate
utilization of raw bytes. Although the packet bytes are utilized,
most methods regard packets as nodes and just take their raw bytes
as node features, which does not make the most of them [11].

Based on the above observations, in this paper, we propose a
byte-level trafc graph construction approach based on point-wise
mutual information (PMI) and a novel model named Temporal
Fusion Encoder using Graph Neural Networks (TFE-GNN) for
encrypted trafc classifcation. The byte-level trafc graphs are
constructed by mining the correlation between bytes and served
as inputs for TFE-GNN. TFE-GNN consists of three major sub-
modules (i.e., dual embedding, trafc graph encoder, and cross-
gated feature fusion mechanism). The dual embedding treats the
header and payload of a packet separately and embeds them using
two independent embedding layers. As for the trafc graph encoder
which consists of multilayer GNNs, it encodes each graph into
a high-dimensional graph vector. Finally, we use the cross-gated
feature fusion mechanism to integrate header graph vectors and
payload graph vectors, obtaining an overall representation vector of
a packet. For end-to-end training, we employ a time series model to
get fnal prediction results for downstream tasks. In the experiment
section, we adopt a self-collected WWT dataset (including the data
from WeChat, WhatsApp and Telegram) as well as the public ISCX
dataset to compare TFE-GNN with more than a dozen baselines.
The experimental results show that TFE-GNN surpasses almost
all the baselines and comprehensively achieves the most excellent
performance on the adopted datasets (e.g., 10.82% ↑ on the Telegram
dataset, 4.58% ↑ on the ISCX-Tor dataset).

In summary, the main contributions of this paper include:

• We frst construct the byte-level trafc graph by converting
a sequence of packet bytes into a graph, supporting trafc
classifcation from a diferent perspective.

• We propose TFE-GNN, which treats the packet header and
payload separately and encodes each byte-level trafc graph
into an overall representation vector for each packet. Thus,
TFE-GNN utilizes a packet-level representation vector rather
than a fow-level one.

• To evaluate the performance of the proposed TFE-GNN,
we compare it with several existing methods on the self-
collected WWT dataset and public ISCX dataset [5, 15]. The
result shows that, for user behaviour classifcation, TFE-GNN
outperforms these methods in efectiveness.

2 PRELIMINARIES

2.1 Notations
In this paper, a graph is denoted by G = {V, E, X}, where V is
the node set, E is the edge set, and X ∈ R |V |×�� is the initial
feature matrix of nodes whereby the initial feature of node � can
be represented by �� . We use A ∈ {0, 1}|V |× |V | to represent the
adjacency matrix of G, which satisfes that the entry (�, �) of A, i.e.,
�� � , equals 1 if there is an edge between nodes � and � , otherwise it is
0. We use � (�) to represent the neighborhood of node � . Moreover,
we use �� to represent the embedding dimension in the �-th layer.

For brevity and convenience, we extend the concept of trafc
fows by introducing time-induced Trafc Segments (TS), which
are collectively referred to as trafc samples in the rest of the paper.

TS = [��1 , ��2 , · · · , ���], �1 ≤ �2 ≤ · · · ≤ �� (1)

where ��� denotes a single packet with its time stamp �� , � is the
sequence length of a trafc segment, �1, �� are the start and end
times of a trafc segment, respectively. From the defnition above,
the trafc segment has a broader scope than the trafc fow, i.e.,
each trafc fow can be seen as a trafc segment, but the reverse
does not necessarily hold. In this way, we can directly take trafc
segments as training samples and do inference using either trafc
fows or trafc segments, which helps to improve fexibility and
unleash the expressiveness of an end-to-end model.

2.2 Encrypted Trafc Classifcation
The encrypted trafc classifcation task aims to diferentiate the
trafc generated from various sources (e.g., applications, web pages
or services) by using the information of trafc packets captured by
professional software or programs. In this paper, we concentrate
on in-app user behaviour classifcation which diferentiates fne-
grained user actions such as sending texts and sending pictures.

Assume that there are � training samples and � categories in
total, let the �-th trafc sample be a sequence �� = [��1

� , ��� · · · , ����],2,
where � is the sequence length and ��� is the �-th byte sequence

�
� � � � � � of the �-th trafc sample denoted by ��� = [�1 , �2 , · · · , ��] where

�
� �

� is the byte sequence length and � denotes the �-th byte value
�

in the �-th byte sequence of the �-th trafc sample. According to
the defnition above, the (segment-level) encrypted classifcation
task can be described formally as predicting the category �� of an
unseen test sample �� with a designed and well-trained end-to-end
model � (��) on � training samples, where �� = 0, 1, · · · , � − 1.

2.3 Message Passing Graph Neural Networks
Graph Neural Networks (GNNs) [14] are powerful models for han-
dling unstructured data. With the application of the message pass-
ing paradigm (MP) [6] to GNNs (MP-GNNs), the node embedding
vectors can be updated iteratively by integrating nodes’ embedding
vectors in neighborhood through a specifc aggregation strategy.
Generally, the �-th layer MP-GNNs can be formalized as two proce-
dures (i.e., the message computation and aggregation):

(�)
�
h(� −1) ; ��

�
m = MSG(�)� � � � n o � (2)
h(�) h(� −1) (�)
� � � � = AGG(�) , m , � ∈ � (�) ; ��

2067

TFE-GNN: A Temporal Fusion Encoder Using Graph Neural Networks for Fine-grained Encrypted Trafic Classification WWW ’23, April 30–May 04, 2023, Austin, TX, USA

, h(�)where h(�) ∈ R�� are the embedding vectors of nodes � and� �
(�)

� in layer � . m is the computed message from node � in layer � .�
MSG(�) (·) is a message computation function parameterized by �� �
and AGG(�) (·) is a message aggregation function parameterized by
��
� in layer � . Notably, ��� is optional and the inputs of MP-GNNs
are given by initial node feature vectors (i.e., h(0) = x�).�

Due to the high scalability of our proposed model, various GNN
architectures can be easily adapted. Section 3.3 discusses the con-
crete choice of message aggregation strategies and our designed
GNN architecture according to the design space of GNNs [42].

3 METHODOLOGY

3.1 Byte-level Trafc Graph Construction
We attempt to convert a sequence of bytes into a graph G =
{V, E, X} by mining the potential correlation between bytes, where
each element in V denotes a byte (i.e., a byte corresponds to a node
in G). Note that all the bytes with the identical value share the
same nodes so that there are no more than 256 nodes in G, which
ensures a relatively small scale of trafc graphs.

Correlation representation between bytes. For edges, we can
easily connect all bytes chronologically, which means creating an
edge from byte � to � if byte � comes before byte � in a byte sequence.
But we do not adopt this method since it will lead to a very dense
graph and the topological structure will lack distinguishability.
Therefore, inspired by [22] which uses cosine similarity to measure
the correlation between two bytes, we adopt point-wise mutual
information (PMI) [41], which is a prevalent measure for word
association computation in natural language processing (NLP), to
model the correlation between two bytes. In this paper, we represent
the PMI value of bytes � and � as PMI(�, �).

Edge creation. The PMI value makes a comprehensive measure-
ment of two co-occurrence bytes from the perspective of semantic
associativity of bytes. We utilize it to create an edge between two
bytes. A positive PMI value implies a high semantic correlation of
bytes while a zero or a negative one implies little or no semantic
correlation of bytes. Consequently, we only create an edge between
two bytes whose PMI value is positive.

Graph construction. Below, we give the formal description of
edges through the entries of adjacency matrix A of nodes � and � : �

1, PMI(�, �) > 0
�� � = (3)0, Otherwise

The initial features of each node in graph G are given by the cor-
responding byte value, which ranges from 0 to 255. Notably, since
PMI(�, �) = PMI(�, �), the byte-level trafc graphs are undirected.

3.2 Dual Embedding
The byte value is commonly utilized to serve as initial features for
further vector embedding. Two bytes with diferent values corre-
spond to two distinct embedding vectors. However, the meaning of
a byte varies not only with the byte value itself, but also with the
part of the byte sequence in which it is located. In other words, the
representation meaning of two bytes with the identical value within
the header and payload of a packet respectively may be completely
diferent. The reason is that the payload carries the transmission
contents of a packet while the header is the frst part of a packet

that describes its contents. If we make two bytes with the identical
value in the header and payload correspond to a same embedding
vector, it is difcult for a model to converge to the optimum on
these embedding parameters because of the obfuscated meaning.

For the rationale mentioned above, we treat the header and pay-
load of a packet separately and construct byte-level trafc graphs
for the two parts, respectively (i.e., byte-level trafc header graphs
and byte-level trafc payload graphs). We adopt dual embedding
with two embedding layers that do not share parameters to embed
initial byte value features into high-dimensional embedding vectors
for the two kinds of graphs, respectively.

Dual embedding layer. Assume that �0 denotes the embed-
ding dimension and � is the number of embedding elements (i.e.,
byte value). The dual embedding matrices, which consist of two

R� ×�0embedding matrices, can be viewed as �ℎ����� ∈ and
�������� ∈ R� ×�0 , where each row-wise entry represents the em-
bedding vector of each byte value.

3.3 Trafc Graph Encoder with Cross-gated
Feature Fusion

Since we construct byte-level trafc graphs based on the header and
payload of packets, respectively, the following modules of TFE-GNN
in this section are also dual, do not share parameters (architecture
is the same) and can process in parallel.

Trafc graph encoder. To encode each trafc graph into a
graph feature vector, we elaborately design a trafc graph encoder
using stacked GraphSAGE [7], which is a powerful graph neural
network. For every node � in graph G, GraphSAGE computes the
message from each neighboring node � ∈ � (�) by normalizing
its embedding vector using the degree of node � . Then, Graph-
SAGE computes the overall message of all neighboring nodes � (�)
through element-wise mean operation and aggregates the overall
message as well as the embedding vector of node � through con-
catenation operation. Finally, a nonlinear transformation is applied
to the embedding vector of node � , fnishing the forward procedure
of one GraphSAGE layer. Formally, the message computation and
aggregation of GraphSAGE can be described by:

∑ h(� −1)(�) � m =
� (�) |� (�) |

� ∈� (�) (4)� � ��
h(�) (�) h(� −1) (�)
� � = � w · CONCAT , m

� (�)

where |� (�) | is the neighbor number of node � , w(�) ∈ R�� −1 ×��

is the parameter in layer � , CONCAT(·) denotes the concatenation
operation and � (·) denotes the activation function. Specially, we
employ parametric ReLU (PReLU) [9] as an activation function.
PReLU scales each negative element value by a factor, which not
only plays the efect of nonlinear transformation but also plays a
role similar to that of the attention mechanism by diferent scale
factors for each channel in the negative axis. Lastly, we normalize

the updated feature vector h(�) by batch normalization (BN) [12]. �
Due to the over-smoothing issue [2] in the deep GNN model, we

only stack GraphSAGE up to 4 layers and concatenate the output

2068

WWW ’23, April 30–May 04, 2023, Austin, TX, USA Zhang et al.

⊙

⊙

Traffic Flow

H
ea

de
r

Pa
yl

oa
d

45 00 02 4f ... 0a 0d 0a
60 02 45 0a 0d 6f ... 0a 5d 12 44

LSTM GRU Transformer...

Byte Node

............

Byte Node

H
ea

de
r B

yt
e

Em
be

dd
in

g
Pa

yl
oa

d
B

yt
e

Em
be

dd
in

g

45 00 02 4f ... 0d 0a

Sliding

60 02 45 0a ... 12 44

Sliding

N ×

GraphSAGE

PReLU

BatchNorm

JKN-like Concat

JKN-like Concat

N ×

GraphSAGE

PReLU

BatchNorm

READOUT

READOUT

Concat

...
...

...

Packet #1 Graph Vector

Packet #m Graph Vector

Packet #k Graph Vector

Downstream Models

Dual
Embedding

Traffic Graph
Encoder

Byte-level Traffic Graph
Construction

Cross-gated
Feature Fusion

Temporal Information
Extraction

Header & Payload#1 Header & Payload#m Header & Payload#k............

......
......

Linear

PReLU

Linear

Sigmoid

Header
Graph Vector

Linear

PReLU

Linear

Sigmoid

Payload
Graph Vector

Figure 1: TFE-GNN Model Architecture

feature vectors of each layer for each node � to alleviate this prob-
lem, which is similar to Jumping Knowledge Network (JKN) [39]:

hfnal = CONCAT(h(1) , h(2) , h(3) , h(4)) (5)� � � � �

where hfnal is the fnal feature vector of node � . Finally, we apply �
mean pooling on all nodes to get a graph feature vector g:

hfnal ⊕ . . . ⊕ hfnal 1 |V | g = (6)|V|
where ⊕ denotes element-wise addition. For simplicity, we use gℎ
and g� to represent graph feature vectors extracted from trafc
header graphs and trafc payload graphs, respectively.

Cross-gated feature fusion. Since we extract features from
trafc header graphs and trafc payload graphs respectively men-
tioned in Section 3.2, we aim to create a reasonable relationship
between gℎ and g� to get an overall representation of packet bytes.
To this end, we carefully design a feature fusion mechanism named
cross-gated feature fusion, to fuse gℎ and g� into a fnal encoded
feature vector for each packet.

As shown in Figure 1, we adopt two flters, each of which consists
of two linear layers with a PReLU activation function between them.
First the two flters, which do not share parameters, are applied to
gℎ and g� , respectively and then an element-wise sigmoid function
is used to scale each element to [0, 1]. We consider the scaled vectors
as gated vectors (sℎ and s� for the header and the payload) and
use them to crosswise flter the corresponding gℎ and g� . Such a
mechanism allows the model to flter out unimportant information
and reserve the signifcant one for the two feature vectors. As the
frst part of the packet, the header describes its important features.
Thus, it is reasonable to use header gated vector sℎ to flter payload
graph feature vector g� and conversely use payload gated vector
s� to flter header graph feature vector gℎ .

The cross-gated feature fusion can be formally represented by:
� � sℎ = Sigmoid(w
ℎ2 PReLU(wℎ1gℎ + bℎ1) + bℎ2) (7)
� � s� = Sigmoid(w�2 PReLU(w�1g� + b�1) + b�2) (8)

z = CONCAT(sℎ ⊙ g� , s� ⊙ gℎ) (9)

where wℎ1, wℎ2, w�1, w�2 ∈ R�� ×�� and bℎ1, bℎ2, b�1, b�2 ∈ R��

are the weights and biases of linear layers. The symbol ⊙ denotes
element-wise product and z is the overall representation vector of
the packet bytes, which can be used for the downstream tasks.

3.4 End-to-End Training on Downstream Tasks
Based on the overall representation vector z for each packet, a
packet-level or a segment-level classifcation task can be easily
solved using a downstream classifer. We primarily focus on the
segment-level task in this paper.

Temporal information extraction. Since we have already
encoded raw bytes of each packet in a trafc segment into a rep-
resentation vector z, the segment-level classifcation task can be
considered as a time series prediction task. Here, we just adopt long
short-term memory (LSTM) [10], which is a classical and famous
time series model, as our baseline downstream model. LSTM is
bidirectional with two layers and its output vectors are fed into a
two-layer linear classifer with PReLU as its activation function to
get the fnal prediction results. Seeing that we need to compute the
diference between prediction results and the ground truth, we just
adopt the cross entropy function as the loss function:

L� ��−�� � = CE(Classifer(LSTM(z1, z2, · · · , z�)), �) (10)

where � is the segment length, � is the ground truth and CE(·)
denotes the cross entropy function.

Specially, we also attempt to employ a transformer layer [33] as
a downstream model, which is also an efective time series model
based on the self-attention mechanism. The experimental results
for transformers are also presented in the experiment section.

4 EXPERIMENTS
In this section, we frst present experimental settings. Then, we con-
duct experiments on multiple datasets and baselines and analyze the
results. We also conduct an ablation study to show the efectiveness
of each component in TFE-GNN. For comprehensive analysis, we
design some model variants to evaluate the scalability of TFE-GNN
and compare several baselines w.r.t. their model complexity. Finally,

2069

TFE-GNN: A Temporal Fusion Encoder Using Graph Neural Networks for Fine-grained Encrypted Trafic Classification WWW ’23, April 30–May 04, 2023, Austin, TX, USA

we analyse the model sensitivity of TFE-GNN. In detail, we conduct
the experiments to answer the following questions:
RQ1: How is the usefulness of each component (Section 4.3)?
RQ2: Which GNN architecture performs best (Section 4.4)?
RQ3: How is the complexity of the TFE-GNN model (Section 4.5)?
RQ4: To what extent can changes in hyper-parameters afect the
efectiveness of TFE-GNN (Section 4.6)?

4.1 Experimental Settings
4.1.1 Dataset. In order to comprehensively evaluate the efective-
ness of TFE-GNN, we adopt multiple datasets, i.e., ISCX VPN-
nonVPN [5], ISCX Tor-nonTor [15], and self-collected WWT
datasets.

ISCX VPN-nonVPN is a public trafc dataset which contains
ISCX-VPN and ISCX-nonVPN datasets. The ISCX-VPN dataset is
collected over virtual private networks (VPNs) which are used
for accessing some blocked websites or services and difcult to
be recognized due to the obfuscation technology. Conversely, the
trafc in ISCX-nonVPN is regular and not collected over VPNs.

Similarly, ISCX Tor-nonTor is a public dataset and ISCX-Tor
dataset is collected over the onion router (Tor) whose trafc can
be difcult to trace. Besides, ISCX-nonTor is also regular and not
collected over Tor. For comparison, we use the ISCX VPN-nonVPN
and ISCX Tor-nonTor datasets with six and eight user behaviour
categories, respectively. We use SplitCap to obtain bidirectional
fows from public datasets. Specially, due to the scarcity of fows in
the ISCX-Tor dataset, we increase the training samples by dividing
each fow into 60-second non-overlapping blocks in our experi-
ments [27]. Finally, we utilize stratifed sampling to sequentially
partition the training and testing dataset into 9:1 for all datasets.

The WWT dataset includes fne-grained user behaviour trafc
data from three social media apps (i.e., WhatsApp, WeChat and
Telegram), which have twelve, nine and six user behaviour cate-
gories, respectively. Unlike the public ISCX dataset, we additionally
record the start and end timestamps of each user behaviour sample
for trafc segmentation.

4.1.2 Pre-processing. For each dataset, we defne and flter out
two kinds of "anomalous" samples: (1) Empty fows or segments:
the trafc fows or segments where all packets have no payload.
(2) Overlong fows or segments: the trafc fows or segments
whose length (i.e., the number of packets) is larger than 10000. An
empty fow or segment does not contain any payload, thus we can
not construct the corresponding graph. In fact, such samples are
generally used to establish connections between clients and servers,
having little discriminating information that helps to classify. An
overlong fow or segment contains too many packets and a large
number of bad packets or retransmission packets may appear in
it due to temporarily bad network environment or other potential
reasons. In most cases, such samples introduce too much noise, so
we also consider overlong fows or segments as anomalous samples
and remove them. Additionally, as for each rest sample of datasets,
we remove bad packets and retransmission packets within.

For each packet in a fow or segment, we frst remove the ones
without payload. Then we remove the Ethernet header, which only
provides some irrelevant information for classifcation. The source
and destination IP addresses, and the port numbers are all removed

for the purpose of eliminating interference with sensitive informa-
tion deriving from these IP addresses and port numbers.

4.1.3 Implementation Details and Baselines. In the stage of trafc
graph construction, we set the max packet number of one sample
to 50. The max payload byte length and the max header byte length
are set to 150 and 40, respectively. The PMI window size is set to 5
by default. In the stage of training, we set the max training epoch
to 120. The initial learning rate is set to 1e-2 and we use the Adam
optimizer with a learning rate scheduler, which gradually decays
the learning rate from 1e-2 to 1e-4. The batch size is 512, the ratio of
warmup is 0.1 and the dropout rate is 0.2. We implement all models
with PyTorch and run each experiment 10 times independently to
take average on a single NVIDIA RTX 3080 GPU.

To give a fair comparison, we use four metrics, i.e., Overall Ac-
curacy (AC), Precision (PR), Recall (RC) and Macro F1-score (F1),
to evaluate TFE-GNN with following state-of-the-art baselines, in-
cluding Traditional Feature Engineering Based Methods (i.e.,
AppScanner [31], CUMUL [23], K-FP (K-Fingerprinting) [8], Flow-
Print [32], GRAIN [43], FAAR [19], ETC-PS [40]), Deep Learning
Based Methods (i.e., FS-Net [18], EDC [16], FFB [44], MVML [4],
DF [30], ET-BERT [17]), and Graph Neural Network Based Meth-
ods (i.e., GraphDApp [29], ECD-GNN [11]).

4.2 Comparison Experiments
The comparison results on WWT and ISCX datasets are shown
in Tables 1 and 2. According to Tables 1 and 2, we can draw the
following conclusions: (1) TFE-GNN reaches the best performance
compared with several baselines on the WWT dataset. Additionally,
TFE-GNN also achieves the best results on four metrics, which fur-
ther comprehensively demonstrates the efectiveness of our method.
(2) Notably we can fnd that almost all the baselines perform poor
on the Telegram dataset, it is due to the fact that the usage of
VPNs increases the classifcation difculty and introduces some
background noise in case of provisionally bad network conditions
caused by VPNs. However, TFE-GNN also has an outstanding result
on the Telegram dataset (10.82% f1-score improvement over the
second highest), which benefts from the powerful byte encoding
capability of TFE-GNN. (3) Compared with the two GNN-based
methods similar to ours, i.e., GraphDApp and ECD-GNN, TFE-GNN
outperforms both in all aspects. As for GraphDApp, its scheme of
trafc interaction graph construction limits the expressiveness of
the model. Although graphs from diferent trafc fows are slightly
distinct in the aspect of trafc bursts, the edges between diferent
bursts are unreasonable, which hinders feature extraction. Further-
more, an earlier burst can not "interact" with the later one using
shallow GNNs because of the long and continuous connections
between bursts. However, ECD-GNN is very unstable on diferent
datasets. The reason is that the constructed graphs are lack of graph
topology specifcity and have highly similar structures, which sig-
nifcantly decreases its performance stability. With our elaborated
byte-level graph construction approach, TFE-GNN can encode raw
bytes well and has greater distinguishability among diferent trafc
categories. (4) The extensive experiments on public datasets, i.e.,
the ISCX VPN-nonVPN and the ISCX Tor-nonTor, show that TFE-
GNN can also perform well on more complicated datasets. From the
Table 2, TFE-GNN is superior to almost all the baselines on public

2070

WWW ’23, April 30–May 04, 2023, Austin, TX, USA Zhang et al.

Table 1: Experimental Results on Self-collected WeChat, WhatsApp and Telegram Datasets

Dataset WeChat WhatsApp Telegram

Model AC PR RC F1 AC PR RC F1 AC PR RC F1

AppScanner [31] 0.9927 0.9908 0.9904 0.9905 0.9790 0.9688 0.9601 0.9628 0.8379 0.8154 0.8653 0.8304
K-FP [8] 0.9741 0.9665 0.9630 0.9645 0.9710 0.9589 0.9515 0.9526 0.8797 0.8378 0.8990 0.8567

FlowPrint [32] 0.7429 0.5302 0.6380 0.5532 0.6197 0.3820 0.4934 0.3880 0.4833 0.4025 0.5000 0.4311
CUMUL [23] 0.9472 0.9497 0.9412 0.9390 0.9855 0.9835 0.9699 0.9756 0.8330 0.7980 0.8471 0.8053
GRAIN [43] 0.9404 0.9366 0.9369 0.9251 0.9724 0.9685 0.9475 0.9550 0.8003 0.7615 0.7903 0.7407
FAAR [19] 0.9873 0.9863 0.9847 0.9854 0.9790 0.9683 0.9566 0.9597 0.8184 0.7884 0.8507 0.8018
ETC-PS [40] 0.9863 0.9864 0.9831 0.9846 0.9833 0.9743 0.9685 0.9703 0.8477 0.8295 0.8710 0.8382

FS-Net [18] 0.9223 0.9446 0.9196 0.8964 0.9942 0.9949 0.9919 0.9933 0.8469 0.8161 0.8744 0.8272
DF [30] 0.9800 0.9757 0.9751 0.9751 0.8978 0.7954 0.8406 0.8143 0.8251 0.8206 0.8542 0.7960
EDC [16] 0.9746 0.9653 0.9625 0.9620 0.9732 0.9589 0.9526 0.9546 0.8153 0.8118 0.8372 0.7896
FFB [44] 0.9675 0.9691 0.9661 0.9644 0.9350 0.8957 0.8767 0.8708 0.7990 0.7630 0.8169 0.7802
MVML [4] 0.9643 0.9519 0.9540 0.9526 0.9456 0.9302 0.9009 0.8971 0.7943 0.7413 0.7636 0.7340

ET-BERT [17] 0.9505 0.9368 0.9285 0.9266 0.9107 0.8934 0.8697 0.8439 0.7679 0.8712 0.7989 0.7858

GraphDApp [29]
ECD-GNN [11]

0.8763
0.9863

0.8368
0.9847

0.8378
0.9830

0.8330
0.9835

0.8753
0.9811

0.7615
0.9722

0.8060
0.9647

0.7791
0.9672

0.7766
0.1810

0.7575
0.0353

0.7627
0.1641

0.7227
0.0528

TFE-GNN

Table 2: Experimental Results on Public ISCX VPN-nonVPN and ISCX Tor-nonTor Datasets

Dataset ISCX-VPN ISCX-nonVPN ISCX-Tor ISCX-nonTor

Model AC PR RC F1 AC PR RC F1 AC PR RC F1 AC PR RC F1

AppScanner [31] 0.8889 0.8679 0.8815 0.8722 0.7576 0.7594 7465 0.7486 0.7543 0.6629 0.6042 0.6163 0.9153 0.8435 0.8140 0.8273
K-FP [8] 0.8713 0.8750 0.8748 0.8747 0.7551 0.7478 0.7354 0.7387 0.7771 0.7417 0.6209 0.6313 0.8741 0.8653 0.7792 0.8167

FlowPrint [32] 0.8538 0.7451 0.7917 0.7566 0.6944 0.7073 0.7310 0.7131 0.2400 0.0300 0.1250 0.0484 0.5243 0.7590 0.6074 0.6153
CUMUL [23] 0.7661 0.7531 0.7852 0.7644 0.6187 0.5941 0.5971 0.5897 0.6686 0.5349 0.4899 0.4997 0.8605 0.8143 0.7393 0.7627
GRAIN [43] 0.8129 0.8077 0.8109 0.8027 0.6667 0.6532 0.6664 0.6567 0.6914 0.5253 0.5346 0.5234 0.7895 0.6714 0.6615 0.6613
FAAR [19] 0.8363 0.8224 0.8404 0.8291 0.7374 0.7509 0.7121 0.7252 0.6971 0.5915 0.4876 0.4814 0.9103 0.8253 0.7755 0.7959
ETC-PS [40] 0.8889 0.8803 0.8937 0.8851 0.7273 0.7414 0.7133 0.7208 0.7486 0.6811 0.5929 0.6033 0.9365 0.8700 0.8311 0.8486

FS-Net [18] 0.9298 0.9263 0.9211 0.9234 0.7626 0.7685 0.7534 0.7555 0.8286 0.7487 0.7197 0.7242 0.9278 0.8368 0.8254 0.8285
DF [30] 0.8012 0.7799 0.8152 0.7921 0.6742 0.6857 0.6717 0.6701 0.6514 0.4803 0.4767 0.4719 0.8568 0.8003 0.7415 0.7590
EDC [16] 0.7836 0.7747 0.8108 0.7888 0.6970 0.7153 0.7000 0.6978 0.6400 0.4980 0.4528 0.4504 0.8692 0.7994 0.7411 0.7451
FFB [44] 0.8304 0.8714 0.8149 0.8335 0.7020 0.7274 0.6945 0.7050 0.6343 0.4870 0.5203 0.4952 0.8954 0.7545 0.7430 0.7430
MVML [4] 0.6491 0.7231 0.6198 0.6151 0.5126 0.5751 0.4707 0.4806 0.6343 0.3914 0.4104 0.3752 0.7235 0.5488 0.5512 0.5457

ET-BERT [17] 0.9532 0.9436 0.9507 0.9463 0.9245 0.9235 0.9543 0.9242 0.9606 0.9397 0.9029 0.8560 0.8217 0.8332

GraphDApp [29] 0.6491 0.5668 0.6103 0.5740 0.4495 0.4230 0.3647 0.3614 0.4286 0.2557 0.2509 0.2281 0.6936 0.5447 0.5398 0.5352
ECD-GNN [11] 0.1111 0.0185 0.1667 0.0333 0.0606 0.0101 0.1667 0.0190 0.0571 0.0071 0.1250 0.0135 0.9078 0.8015 0.8168 0.7977

TFE-GNN 0.9040

datasets except for the ISCX-nonVPN dataset, on which TFE-GNN
and ET-BERT all reach similar results. However, ET-BERT is a large
model with very complex model architecture while TFE-GNN is a
slighter model which achieves the steadiest and best results on all
datasets. We will analyse the model complexity in Section 4.5 later.

4.3 Ablation Study (RQ1)
In this section, we conduct an ablation study of TFE-GNN on the
ISCX-VPN and the ISCX-Tor datasets and show experimental results
in Table 3. To facilitate the presentation of results, we denote header,
payload, dual embedding module, jumping knowledge network-like
concatenation, cross-gated feature fusion and activation function
and batch normalization as ’H’, ’P’, ’DUAL’, ’JKN’, ’CGFF’ and ’A&N’,
respectively. Specially, we not only verify the efectiveness of each
component in TFE-GNN, but also test the impact of some alternative
modules or operations, including ’SUM’ and ’MAX’ operation on
node features to get graph representation vectors instead of the

default ’MEAN’, and ’GRU’ or ’TRANSFORMER’ modules to serve
as downstream models instead of LSTM.

From the component ablation study of Table 3, we can draw the
following conclusions: (1) The packet headers play a more impor-
tant role in classifcation than the packet payloads and diferent
datasets have diferent levels of the header and payload impor-
tance (the f1-score decreases by 2.5% when switching the header to
payload on the ISCX-VPN dataset and by 21.06% on the ISCX-Tor
dataset). (2) The usage of dual embedding increases the f1-score by
3.63% and 0.95%, which indicates its general efectiveness. JKN-like
concatenation and cross-gated feature fusion both enhance the per-
formance of TFE-GNN by a similar margin on two datasets. (3) We
further verify the impact of the activation function and batch nor-
malization and a signifcant performance drop can be seen on both
datasets, which demonstrates the necessity of this two operations.

While on the rest part of Table 3, we can also obtain the following
several points: (1) The element-wise summation on node features
performs worse than the mean operation by a margin of 11.1% and

0.9956 0.9953 0.9939 0.9946 0.9971 0.9957 0.9966 0.9961 0.9586 0.9584 0.9742 0.9649

0.9229

0.9591 0.9526 0.9593 0.9536 0.9316 0.9190 0.9240 0.9886 0.9792 0.9939 0.9855 0.9390 0.8742 0.8335 0.8507

0.9167

2071

TFE-GNN: A Temporal Fusion Encoder Using Graph Neural Networks for Fine-grained Encrypted Trafic Classification WWW ’23, April 30–May 04, 2023, Austin, TX, USA

Table 3: Ablation Study of TFE-GNN on ISCX-VPN and ISCX-Tor Datasets

Method H P DUAL JKN CGFF A&N AC PR RC F1

w/o P ✓ × × ✓ × ✓ 0.8713 | 0.9874 0.8261 | 0.9788 0.8228 | 0.9934 0.8230 | 0.9806
w/o H × ✓ × ✓ × ✓ 0.8051 | 0.8726 0.8232 | 0.7780 0.7957 | 0.7809 0.7980 | 0.7700

w/o DUAL ✓ ✓ × ✓ ✓ ✓ 0.9310 | 0.9829 0.9149 | 0.9747 0.9209 | 0.9801 0.9173 | 0.9760
w/o JKN ✓ ✓ ✓ × ✓ ✓ 0.9474 | 0.9790 0.9365 | 0.9736 0.9397 | 0.9879 0.9374 | 0.9795
w/o CGFF ✓ ✓ ✓ ✓ × ✓ 0.9445 | 0.9800 0.9329 | 0.9717 0.9371 | 0.9847 0.9339 | 0.9770
w/o A&N ✓ ✓ ✓ ✓ ✓ × 0.6105 | 0.2212 0.5576 | 0.0555 0.5487 | 0.1180 0.5289 | 0.0548

w/ SUM ✓ ✓ ✓ ✓ ✓ ✓ 0.8497 | 0.8194 0.8549 | 0.7287 0.8380 | 0.6986 0.8426 | 0.6891
w/ MAX ✓ ✓ ✓ ✓ ✓ ✓ 0.8480 | 0.9870 0.8328 | 0.9752 0.8115 | 0.9778 0.8094 | 0.9751
w/ GRU ✓ ✓ ✓ ✓ ✓ ✓ 0.8550 | 0.8932 0.8489 | 0.8702 0.8287 | 0.8664 0.8294 | 0.8610

w/ TRANSFORMER ✓ ✓ ✓ ✓ ✓ ✓ 0.6754 | 0.9777 0.5706 | 0.9753 0.5992 | 0.9820 0.5658 | 0.9828

TFE-GNN (default) ✓ ✓ ✓ ✓ ✓ ✓

context into account simultaneously. It can be easily realized by
performing concatenation, element-wise addition or other similar
operations due to the strong scalability of TFE-GNN.

4.5 Model Complexity Analysis (RQ3)
To comprehensively evaluate the trade-of between model perfor-
mance and model complexity, we present the foating point oper-
ations (FLOPs) and the model size of all baselines except for the
traditional models in Table 4.

From Tables 4 and 2, we can draw a conclusion that TFE-GNN
achieves the most signifcant improvement on public datasets with
relatively slight model complexity increasing. Although ET-BERT
reaches comparable results on the ISCX-nonVPN dataset, the FLOPs
of ET-BERT are approximately fve times as large as that of TFE-
GNN and the number of model parameters are also doubled, which
generally indicates longer model inference time and requires more
computation resources. Furthermore, the pre-training stage of ET-
BERT is very time-consuming and costs a lot due to the large
amount of extra data during pre-training and the high model com-
plexity. In comparison, TFE-GNN can achieve higher accuracy while
reducing the training or inference costs.

Table 4: Model FLOPs and Parameters

Model FLOPs(M) Parameters(M)

FS-Net[18] 1.0e+2 3.2e+0
DF[30] 2.8e+0 9.3e-1
EDC[16] 2.2e+1 2.2e+1
FFB[44] 2.6e+2 1.7e+0
MVML[4] 7.2e-4 3.7e-4

ET-BERT[17] 1.1e+4 8.6e+1
GraphDApp[29] 3.8e-2 1.1e-2
ECD-GNN[11] 2.9e+1 1.4e+0

TFE-GNN 2.2e+3 4.4e+1

4.6 Model Sensitivity Analysis (RQ4)
(1) The Impact of Dual Embedding Dimension. To investigate
the infuence of hidden dimension of the dual embedding layer, we
conduct sensitivity experiments and show results in Figure 3a. As
we can see, f1-score is increasing rapidly when embedding dimen-
sion is lower than 100. After that point, the model performance
tends to be stable as the dimension changes. For reducing compu-
tation consuming, we just take embedding dimension 50 as our

29.64%, respectively on two datasets w.r.t. f1-score. However, the
element-wise maximum decreases the f1-score to worse results
on the ISCX-VPN dataset while only decreases f1-score a little
on the ISCX-Tor dataset. (2) We change the default downstream
model LSTM to GRU, which worsens all metrics about ~10% on both
datasets because of the simpler architecture of GRU. Furthermore,
we employ a transformer as a downstream model for comprehensive
experiments. The results show that transformer performs well on
the ISCX-Tor dataset (drops f1-score within ~1%) while receives
almost ~40% drop on the ISCX-VPN dataset.

4.4 GNN Architecture Variants Study (RQ2)
To illustrate the scalability of GNN-based temporal fusion en-
coder, we select some classical GNN architectures as variants (e.g.,
GAT [34], GIN [38], GCN [14] and SGC [35]) for comparison on
Telegram, ISCX-VPN and ISCX-Tor datasets.

From Figure 2, we can fnd that GraphSAGE [7] achieves the
best f1-score on three datasets. As for the rest variants, a noticeable
drop in performance can be discovered, especially for GAT [34].
The rationale behind the results is that GNN models are easy to
overft on small-scale graphs like ours (number of nodes is up to
256). As for GAT [34], the application of the attention mechanism
in neighborhood feature aggregation exacerbates overftting, which
leads to a signifcant decline in f1-score. Among the three datasets,
the relatively small fuctuation of the results on the Telegram dataset
further validates the analysis above, which benefts from its larger
number of training samples.

GAT GCN GIN SGC GraphSAGE
GNN Architecture Variants

0.70
0.75
0.80
0.85
0.90
0.95
1.00

F1
-S

co
re

Telegram ISCX-VPN ISCX-Tor

Figure 2: GNN Architecture Variants Study w.r.t. F1-score

Also, a segment-level global feature can be added and shared
with all nodes within one trafc graph using our model architecture
if needed, which naturally takes local (packet) and global (segment)

0.9591 | 0.9886 0.9526 | 0.9792 0.9593 | 0.9939 0.9536 | 0.9855

2072

WWW ’23, April 30–May 04, 2023, Austin, TX, USA Zhang et al.

default setting. (2) The Impact of PMI Window Size. From Fig-
ure 3b, we can fnd that a smaller window size usually results in
better f1-score. The larger the window size, the more edges will be
added in the trafc graphs, and the model will be harder to discrim-
inate diferent trafc categories due to the too dense graphs. (3)
The Impact of Segment Length. From Figure 3c, we can draw a
conclusion that a short segment length for training usually makes
the performance better. When the segment length becomes longer,
more noise will be introduced and the downstream model LSTM has
shortcomings in long sequence modeling, afecting the evaluation
results. On the other hand, our method can achieve high accuracy
when facing a short trafc fow or segment, reducing the amount
of computation while improving performance.

0 200 400 600 800 1000
Embedding Dimension

0.6
0.7
0.8
0.9
1.0

F1
-S

co
re

ISCX-VPN
ISCX-Tor

0 5 10 15 20 25 30
PMI Window Size

0.84
0.86
0.88
0.90
0.92
0.94
0.96
0.98

F1
-S

co
re

ISCX-VPN
ISCX-Tor

0 20 40 60 80 100
Segment Length

0.80
0.85
0.90
0.95
1.00

F1
-S

co
re

ISCX-VPN
ISCX-TOR

(a) Embedding Dim (b) PMI Window Size (c) Segment Length

Figure 3: Model Sensitivity Analysis w.r.t. Dual Embedding
Dimension, PMI Window Size and Segment Length on ISCX-
VPN and ISCX-Tor Datasets (The shallow lines are attained
by smoothing the dark plotted lines)

5 RELATED WORK
Traditional Feature Engineering Based Methods. Various meth-
ods leverage statistical features to depict the packet property and
employ traditional machine learning models to conduct classifca-
tion. AppScanner uses bidirectional fow characteristics (i.e., outgo-
ing and incoming) to extract features from trafc fows w.r.t. packet
length and interval time [31]. CUMUL uses the features of cumu-
lative packet length [23] and GRAIN [43] uses payload length as
its features. ETC-PS utilizes the path signature theory to enhance
the original packet length features [40], and Liu et al. exploited
packet length sequences using wavelet decomposition [19]. Conti
et al. [3] adopts hierarchical clustering for feature extraction. The
fngerprinting matching is also used in the trafc classifcation task.
FlowPrint [32] constructs correlation graphs as trafc fngerprint-
ing by computing activity value between destinations IP. K-FP [8]
creates fngerprinting using random forest and matches unseen
samples by k-nearest neighbor. All of these methods sufer from
the unreliable features (mentioned in Section 1).

Deep Learning Based Methods. With the popularity of deep
learning models, many trafc classifcation approaches are devel-
oped based on them. EDC [16] uses some header information of
packets (e.g., protocol types, packet length and time duration) to
build features for multilayer perceptions (MLPs). MVML [4] de-
signs local and global features using packet length and time delay
sequences, and simply employs a fully-connected layer for classif-
cation. Furthermore, FS-Net [18], DF [30] as well as RBRN [47] all
utilize trafc fow sequences like packet length sequences to serve
as the inputs of deep learning models. Additionally, DF and RBRN
use convolutional neural networks (CNNs) while FS-Net utilizes

gated recurrent units (GRUs) to extract temporal information of
such sequences. For some other methods, packet bytes are used
as model inputs to extract features. FFB [44] uses raw bytes and
packet length sequences as features to feed into CNNs and RNNs.
While Deep Packet [20] utilizes CNNs and autoencoders for feature
extraction. Recently, pre-training models are utilized to pre-train
on large-scale trafc data. To give an example, ET-BERT [17] de-
signs two novel pre-training tasks for trafc classifcation, which
enhance the representation ability of raw bytes but are very time-
consuming and costly. In a word, these methods can not obtain the
discriminative information which is contained in raw bytes very
well in a relatively efcient way, while our approach solves this
pain and difculty by introducing byte-level trafc graphs.

Graph Neural Network Based Methods. Graph neural net-
works have strong potential in processing unstructured data and
can be migrated to many felds. For encrypted trafc classifcation,
GraphDApp [29] constructs trafc interaction graphs using traf-
fc bursts and employs graph isomorphism network [38] to learn
representations. MAppGraph [25] constructs trafc graphs based
on diferent fows and time slices within a trafc chunk, which is
almost impossible to construct a complete graph in the face of a
short trafc segment. GCN-ETA [46] is a malicious trafc detec-
tion method. To construct a graph, it will create an edge if two
fows share common IP, which may result in a very dense graph.
MEMG [1] utilizes markov chains to construct graphs from fows
while GAP-WF [21] maps a fow as a node in graphs and con-
nects edges between fows which share the same identity of the
clients. Besides, Huoh et al. [11] directly created edges based on the
chronological relationship of packets among a fow, being lack of
specifcity. These methods all construct graphs at the level of trafc
fows, which are vulnerable if there is too much noise within fows.

6 CONCLUSION AND FUTURE WORK
We propose an approach to construct byte-level trafc graphs and
a model named TFE-GNN for encrypted trafc classifcation. The
byte-level trafc graph construction approach can mine the po-
tential correlation between raw bytes and generate discriminative
trafc graphs. TFE-GNN is designed to extract high-dimensional
features from constructed trafc graphs. Finally, TFE-GNN can en-
code each packet into an overall representation vector, which can be
used for some downstream tasks like trafc classifcation. Several
baselines are selected to evaluate the efectiveness of TFE-GNN.
The experimental results show that our proposed model compre-
hensively surpasses all the baselines on the WWT and the ISCX
datasets. Elaborately designed experiments further demonstrate
that TFE-GNN has strong efectiveness.

In the future, we will attempt to improve TFE-GNN in terms
of the following limitations. (1) Limited graph construction
approach. The graph topology of the proposed model is determined
before the training procedure, which may result in non-optimal
performance. Moreover, the TFE-GNN can not cope with the byte-
level noise implied in the raw bytes of each packet. (2) Unused
temporal information implied in byte sequences. The byte-
level trafc graphs are constructed without introducing the explicit
temporal characteristics of byte sequences.

2073

TFE-GNN: A Temporal Fusion Encoder Using Graph Neural Networks for Fine-grained Encrypted Trafic Classification WWW ’23, April 30–May 04, 2023, Austin, TX, USA

ACKNOWLEDGMENTS
This work was supported in part by the National Natural Science
Foundation of China (61972219,62202406,61972189), the Research
and Development Program of Shenzhen (JCYJ20190813174403598,
SGDX20190918101201696), the Overseas Research Cooperation
Fund of Tsinghua Shenzhen International Graduate School
(HW2021013), Shenzhen Science and Technology Innovation Com-
mission: Research Center for Computer Network (Shenzhen) Min-
istry of Education, HK ITF Project (GHP/052/19SZ), and the Key
Laboratory of Network Assessment Technology, Institute of Infor-
mation Engineering, Chinese Academy of Sciences, Beijing, China.

REFERENCES
[1] Wei Cai, Gaopeng Gou, Minghao Jiang, Chang Liu, Gang Xiong, and Zhen Li.

2021. MEMG: Mobile Encrypted Trafc Classifcation With Markov Chains and
Graph Neural Network. In IEEE International Conference on High Performance
Computing and Communications. 478–486.

[2] Weilin Cong, Morteza Ramezani, and Mehrdad Mahdavi. 2021. On Provable
Benefts of Depth in Training Graph Convolutional Networks. In Conference on
Neural Information Processing Systems. 9936–9949.

[3] Mauro Conti, Luigi Vincenzo Mancini, Riccardo Spolaor, and Nino Vincenzo
Verde. 2015. Analyzing Android Encrypted Network Trafc to Identify User
Actions. IEEE Transactions on Information Forensics and Security 11, 1 (2015),
114–125.

[4] Yanjie Fu, Junming Liu, Xiaolin Li, and Hui Xiong. 2018. A Multi-Label Multi-
View Learning Framework for In-App Service Usage Analysis. ACM Transactions
on Intelligent Systems and Technology 9, 4 (2018), 1–24.

[5] Gerard Drapper Gil, Arash Habibi Lashkari, Mohammad Mamun, and Ali A.
Ghorbani. 2016. Characterization of Encrypted and VPN Trafc Using Time-
Related Features. In International Conference on Information Systems Security and
Privacy. 407–414.

[6] Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E.
Dahl. 2017. Neural Message Passing for Quantum Chemistry. In International
Conference on Machine Learning. 1263–1272.

[7] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive Representa-
tion Learning on Large Graphs. In Conference on Neural Information Processing
Systems.

[8] Jamie Hayes and George Danezis. 2016. k-fngerprinting: a Robust Scalable
Website Fingerprinting Technique. In USENIX Security Symposium. 1187–1203.

[9] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2015. Delving Deep
into Rectifers: Surpassing Human-Level Performance on ImageNet Classifcation.
In IEEE International Conference on Computer Vision. 1026–1034.

[10] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long Short-Term Memory.
Neural Computation 9, 8 (1997), 1735–1780.

[11] Ting-Li Huoh, Yan Luo, and Tong Zhang. 2021. Encrypted Network Trafc
Classifcation Using a Geometric Learning Model. In IFIP/IEEE Symposium on
Integrated Network Management. 376–383.

[12] Sergey Iofe and Christian Szegedy. 2015. Batch Normalization: Accelerating
Deep Network Training by Reducing Internal Covariate Shift. In International
Conference on Machine Learning. 448–456.

[13] Julian Jang-Jaccard and Surya Nepal. 2014. A survey of emerging threats in
cybersecurity. J. Comput. System Sci. 80, 5 (2014), 973–993.

[14] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classifcation with
Graph Convolutional Networks. In International Conference on Learning Repre-
sentations.

[15] Arash Habibi Lashkari, Gerard Draper-Gil, Mohammad Saiful Islam Mamun, and
Ali A. Ghorbani. 2017. Characterization of Tor Trafc Using Time Based Features.
In International Conference on Information System Security and Privacy. 253–262.

[16] Wenbin Li and Gaspard Quenard. 2021. Towards a Multi-Label Dataset of Internet
Trafc for Digital Behavior Classifcation. In International Conference on Computer
Communication and the Internet. 38–46.

[17] Xinjie Lin, Gang Xiong, Gaopeng Gou, Zhen Li, Junzheng Shi, and Jing Yu.
2022. ET-BERT: A Contextualized Datagram Representation with Pre-training
Transformers for Encrypted Trafc Classifcation. In The Web Conference. 633–
642.

[18] Chang Liu, Longtao He, Gang Xiong, Zigang Cao, and Zhen Li. 2019. FS-Net: A
Flow Sequence Network For Encrypted Trafc Classifcation. In IEEE Conference
on Computer Communications. 1171–1179.

[19] Xue Liu, Shigeng Zhang, Huihui Li, and Weiping Wang. 2021. Fast Applica-
tion Activity Recognition with Encrypted Trafc. In International Conference on
Wireless Algorithms, Systems, and Applications. 314–325.

[20] Mohammad Lotfollahi, Mahdi Jafari Siavoshani, Ramin Shirali Hossein Zade, and
Mohammdsadegh Saberian. 2020. Deep packet: a novel approach for encrypted
trafc classifcation using deep learning. Soft Computing 24, 3 (2020), 1999–2012.

[21] Jie Lu, Gaopeng Gou, Majing Su, Dong Song, Chang Liu, Chen Yang, and
Yangyang Guan. 2021. GAP-WF: Graph Attention Pooling Network for Fine-
grained SSL/TLS Website Fingerprinting. In IEEE International Joint Conference
on Neural Network. 1–8.

[22] Kelong Mao, Xi Xiao, Guangwu Hu, Xiapu Luo, Bin Zhang, and Shutao Xia.
2021. Byte-Label Joint Attention Learning for Packet-grained Network Trafc
Classifcation. In International Workshop on Quality of Service. 1–10.

[23] Andriy Panchenko, Fabian Lanze, Andreas Zinnen, Martin Henze, Jan Pennekamp,
Klaus Wehrle, and Thomas Engel. 2016. Website Fingerprinting at Internet Scale.
In Annual Network and Distributed System Security Symposium.

[24] Eva Papadogiannaki and Sotiris Ioannidis. 2021. A Survey on Encrypted Net-
work Trafc Analysis Applications, Techniques, and Countermeasures. Comput.
Surveys 54, 6 (2021), 1–35.

[25] Thai-Dien Pham, Thien-Lac Ho, Tram Truong-Huu, Tien-Dung Cao, and Hong-
Linh Truong. 2021. MAppGraph: Mobile-App Classifcation on Encrypted Net-
work Trafc using Deep Graph Convolution Neural Networks. In Annual Com-
puter Security Applications Conference. 1025–1038.

[26] E Ramadhani. 2018. Anonymity communication VPN and Tor: a comparative
study. Journal of Physics: Conference Series 983, 1 (2018), 012060.

[27] Tal Shapira and Yuval Shavitt. 2021. FlowPic: A Generic Representation for
Encrypted Trafc Classifcation and Applications Identifcation. IEEE Transactions
on Network and Service Management 18, 2 (2021), 1218–1232.

[28] Ritik Sharma, Sarishma Dangi, and Preeti Mishra. 2021. A Comprehensive Review
on Encryption based Open Source Cyber Security Tools. In IEEE International
Conference on Signal Processing, Computing and Control. 614–619.

[29] Meng Shen, Jinpeng Zhang, Liehuang Zhu, Ke Xu, and Xiaojiang Du. 2021.
Accurate Decentralized Application Identifcation via Encrypted Trafc Analysis
Using Graph Neural Networks. IEEE Transactions on Information Forensics and
Security 16, 1 (2021), 2367–2380.

[30] Payap Sirinam, Mohsen Imani, Marc Juarez, and Matthew K Wright. 2018. Deep
Fingerprinting: Undermining Website Fingerprinting Defenses with Deep Learn-
ing. In Conference on Computer and Communications Security. 1928–1943.

[31] Vincent F. Taylor, Riccardo Spolaor, Mauro Conti, and Ivan Martinovic. 2016.
AppScanner: Automatic Fingerprinting of Smartphone Apps From Encrypted
Network Trafc. In IEEE European Symposium on Security and Privacy. 439–454.

[32] Thijs van Ede, Riccardo Bortolameotti, Andrea Continella, Jingjing Ren, Daniel J.
Dubois, and Martina Lindorfer. 2020. FlowPrint: Semi-Supervised Mobile-App
Fingerprinting on Encrypted Network Trafc. In Annual Network and Distributed
System Security Symposium.

[33] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is All
you Need. In Conference on Neural Information Processing Systems.

[34] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Liò, and Yoshua Bengio. 2018. Graph Attention Networks. In International Con-
ference on Learning Representations.

[35] Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian
Weinberger. 2019. Simplifying Graph Convolutional Networks. In International
Conference on Machine Learning. 6861–6871.

[36] Hua Wu, Qiuyan Wu, Guang Cheng, Shuyi Guo, Xiaoyan Hu, and Shen Yan. 2021.
SFIM: Identify user behavior based on stable features. Peer-to-Peer Networking
and Applications 14, 6 (2021), 3674–3687.

[37] Guorui Xie, Qing Li, and Yong Jiang. 2021. Self-attentive deep learning method
for online trafc classifcation and its interpretability. Computer Networks 196
(2021), 108267.

[38] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2019. How Powerful
are Graph Neural Networks?. In International Conference on Learning Representa-
tions.

[39] Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken ichi
Kawarabayashi, and Stefanie Jegelka. 2018. Representation Learning on Graphs
with Jumping Knowledge Networks. In International Conference on Machine
Learning. 5453–5462.

[40] Shi-Jie Xu, Guang-Gang Geng, and Xiao-Bo Jin. 2022. Seeing Trafc Paths:
Encrypted Trafc Classifcation With Path Signature Features. IEEE Transactions
on Information Forensics and Security 17, 1 (2022), 2166–2181.

[41] Liang Yao, Chengsheng Mao, and Yuan Luo. 2019. Graph Convolutional Networks
for Text Classifcation. In AAAI Conference on Artifcial Intelligence. 7370–7377.

[42] Jiaxuan You, Zhitao Ying, and Jure Leskovec. 2020. Design Space for Graph Neural
Networks. In Conference on Neural Information Processing Systems. 17009–17021.

[43] Faiz Zaki, Firdaus Aff, Shukor Abd Razak, Abdullah Gani, and Nor Badrul Anuar.
2022. GRAIN: Granular multi-label encrypted trafc classifcation using classifer
chain. Computer Networks 213, 1 (2022), 109084.

[44] Hui Zhang, Gaopeng Gou, Gang Xiong, Chang Liu, Yuewen Tan, and Ke Ye.
2021. Multi-granularity Mobile Encrypted Trafc Classifcation Based on Fusion
Features. In International Conference on Science of Cyber Security. 154–170.

2074

WWW ’23, April 30–May 04, 2023, Austin, TX, USA

[45] Songyang Zhang, Zeming Li, Shipeng Yan, Xuming He, and Jian Sun. 2021.
Distribution Alignment: A Unifed Framework for Long-Tail Visual Recognition.
In Computer Vision and Pattern Recognition. 2361–2370.

[46] Juan Zheng, Zhiyong Zeng, and Tao Feng. 2022. GCN-ETA: High-Efciency
Encrypted Malicious Trafc Detection. Security and Communication Networks
2022, 1 (2022), 11 pages.

[47] Wenbo Zheng, Chao Gou, Lan Yan, and Shaocong Mo. 2020. Learning to Classify:
A Flow-Based Relation Network for Encrypted Trafc Classifcation. In The Web
Conference. 13–22.

Zhang et al.

A THREAT MODEL AND ASSUMPTIONS
In this section, we present the threat model and assumptions. Nor-
mal users employ mobile apps to communicate with remote servers.
The attacker is a passive observer (i.e., he cannot decrypt or modify
packets). The attacker captures the packets of the target apps by
compromising the device or snifng the network link. Then, the
attacker analyzes the captured packets to infer the behaviors of
normal users.

B LONG-TAILED DISTRIBUTION OF THE ISCX
DATASET

We count the fow length on three datasets, i.e., ISCX-VPN, ISCX-
NonVPN and ISCX-NonTor datasets and the fgure below shows
that the fow length generally obeys the long-tailed distribution.

0 250 500 750 1000 1250 1500 1750 2000
Flow Length Rank

0

2000

4000

6000

8000

10000

Fl
ow

 L
en

gt
h

ISCX-VPN
ISCX-NonVPN
ISCX-NonTor

Figure 4: Long-tailed Distribution of the Flow Length on
ISCX-VPN, ISCX-NonVPN and ISCX-NonTor Datasets (Con-
sidering the amount of data, only part of the sorted data is
shown)

2075

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Notations
	2.2 Encrypted Traffic Classification
	2.3 Message Passing Graph Neural Networks

	3 Methodology
	3.1 Byte-level Traffic Graph Construction
	3.2 Dual Embedding
	3.3 Traffic Graph Encoder with Cross-gated Feature Fusion
	3.4 End-to-End Training on Downstream Tasks

	4 Experiments
	4.1 Experimental Settings
	4.2 Comparison Experiments
	4.3 Ablation Study (RQ1)
	4.4 GNN Architecture Variants Study (RQ2)
	4.5 Model Complexity Analysis (RQ3)
	4.6 Model Sensitivity Analysis (RQ4)

	5 Related Work
	6 Conclusion and Future Work
	Acknowledgments
	References
	A Threat Model and Assumptions
	B Long-tailed Distribution of the ISCX Dataset

