
106

Pontus: Finding Waves in Data Streams

ZHENGXIN ZHANG, Tsinghua University, and Peng Cheng Laboratory, China

QING LI∗, Peng Cheng Laboratory, China
GUANGLIN DUAN, Tsinghua University, and Peng Cheng Laboratory, China

DAN ZHAO, Peng Cheng Laboratory, China

JINGYU XIAO and GUORUI XIE, Tsinghua University, and Peng Cheng Laboratory, China

YONG JIANG, Tsinghua Shenzhen International Graduate School, and Pengcheng Laboratory, China

The bumps and dips in data streams are valuable patterns for data mining and networking scenarios such as

online advertising and botnet detection. In this paper, we define the wave, a data stream pattern with a serious

deviation from the stable arrival rate for a period of time. We then propose Pontus, an efficient framework

for wave detection and estimation. In Pontus, a lightweight data structure is utilized for the preliminary

processing of incoming packets in the data plane to take advantage of its high processing speed; then, the

powerful control plane carries out computationally intensive wave detection and estimation. In particular,

we propose the Multi-Stage Progressive Tracking strategy which detects waves in stages and removes any

disqualified items promptly to save memory. Hash collisions are addressed by a Stage Variance Maximization

technique to reduce estimation error. Moreover, we prove the theoretical error bound and establish upper

bounds of false positive and false negative. Experiment results show that the software version of Pontus can

achieve around 97% F1-Score even under scarce memory when baselines fail. Furthermore, the implemented

prototype of Pontus based on P4 achieves 842 × higher throughput than the baseline strawman solution.

CCS Concepts: • Theory of computation → Sketching and sampling; • Information systems → Data
stream mining.

Additional Key Words and Phrases: data stream, wave, sketch, programmable switch

ACM Reference Format:
Zhengxin Zhang, Qing Li, Guanglin Duan, Dan Zhao, Jingyu Xiao, Guorui Xie, and Yong Jiang. 2023. Pontus:

Finding Waves in Data Streams. Proc. ACM Manag. Data 1, 1, Article 106 (May 2023), 26 pages. https:

//doi.org/10.1145/3588960

1 INTRODUCTION
As communication technology advances, a massive amount of data is generated and delivered

to users through the high-speed Internet every second. The patterns of the data stream, such

∗
Corresponding author.

Authors’ addresses: Zhengxin Zhang, zhang-zx21@mails.tsinghua.edu.cn, Tsinghua University, and Peng Cheng Laboratory,

No. 2279 Lishui Road, Shenzhen, Guangdong, China, 518055; Qing Li, liq@pcl.ac.cn, Peng Cheng Laboratory, No. 1 Dashi

Road, Shenzhen, Guangdong, China, 518055; Guanglin Duan, dgl20@mails.tsinghua.edu.cn, Tsinghua University, and Peng

Cheng Laboratory, No. 2279 Lishui Road, Shenzhen, Guangdong, China, 518055; Dan Zhao, zhaod01@pcl.ac.cn, Peng Cheng

Laboratory, No. 1 Dashi Road, Shenzhen, Guangdong, China, 518055; Jingyu Xiao, jy-xiao21@mails.tsinghua.edu.cn; Guorui

Xie, xgr19@mails.tsinghua.edu.cn, Tsinghua University, and Peng Cheng Laboratory, No. 2279 Lishui Road, Shenzhen,

Guangdong, China, 518055; Yong Jiang, jiangy@sz.tsinghua.edu.cn, Tsinghua Shenzhen International Graduate School, and

Pengcheng Laboratory, No. 2279 Lishui Road, Shenzhen, Guangdong, China, 518055.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the

full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

2836-6573/2023/5-ART106 $15.00

https://doi.org/10.1145/3588960

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 106. Publication date: May 2023.

HTTPS://ORCID.ORG/0000-0003-1578-2597
HTTPS://ORCID.ORG/0000-0002-6071-473X
HTTPS://ORCID.ORG/0009-0005-4917-9536
HTTPS://ORCID.ORG/0000-0001-9016-5594
HTTPS://ORCID.ORG/0000-0002-2394-2995
HTTPS://ORCID.ORG/0000-0001-7532-9116
HTTPS://ORCID.ORG/0000-0002-4260-1395
https://doi.org/10.1145/3588960
https://doi.org/10.1145/3588960
https://orcid.org/0000-0003-1578-2597
https://orcid.org/0000-0002-6071-473X
https://orcid.org/0009-0005-4917-9536
https://orcid.org/0000-0001-9016-5594
https://orcid.org/0000-0002-2394-2995
https://orcid.org/0000-0001-7532-9116
https://orcid.org/0000-0001-7532-9116
https://orcid.org/0000-0002-4260-1395
https://doi.org/10.1145/3588960

106:2 Zhengxin Zhang et al.

as the bumps and dips, can be exploited to provide valuable insights into data and enable many

potential applications in both the networking domain and the data mining domain. However, with

the overwhelming size of data, accurately recording or querying the characteristics of data streams

in real-time becomes a huge challenge. To address this challenge, some flow stream processing

algorithms have been proposed [15, 12, 8, 40], which give approximate answers immediately

after processing the whole data stream once. These works support the queries of data stream

characteristics such as frequency [15, 12, 8], quantile [20, 22, 37] and cardinality [16, 14, 17], which

are significant for network management.

Recently, several works have been proposed to detect different types of burst [29, 38, 43]. Espe-

cially, BurstSketch [43] detects a data stream pattern named the burst, defined as a sudden increase

immediately followed by a sudden decrease in terms of arrival rate, which is of great significance

for network anomaly detection. However, this work lacks universality as the burst is only one

case of abnormal changes in network traffic. Besides, BurstSketch can only detect but not estimate

bursts. More importantly, its detection speed (i.e., around 1 MIPS) is far from sufficient in a real

high-throughput network (e.g., 100 Gbps).

In this paper, we first propose a more general data stream pattern, namely, the wave. A positive

wave is characterized by an increase in the frequency of a flow followed by a decrease, while a

negative wave is characterized by a decrease followed by an increase. The wave differs from the

burst in two aspects. First, the wave is a more comprehensive concept than the burst. In fact, a

burst is a special case of a wave, which has a small increase and decrease window. Second, the

wave considers both bumps and dips in data streams, while the burst only considers the former.

The above properties of wave allow a much broader range of application scenarios beyond burst

detection.

Scenario 1 - Botnet Detection (Network Community). Infected botnet devices are manipu-

lated by attackers to carry out various attacks, e.g., Distributed Denial of Service (DDoS) [2, 39].

In Meris botnet [11], an infected device gradually ramps up and then decreases the number of

attacking packets to bypass DDoS detection. Such an attack cannot be identified as a burst due to

the absence of sudden changes but can be effectively identified by waves.

Scenario 2 - DNS Queries (Network and Data Mining Community). Domain Name System

(DNS) queries can serve as key indicators of a website’s service demands [24, 13]. By identifying the

wave-like rises and falls in DNS queries, website administrators can improve resource utilization by

dynamically adjusting resources to accommodate changes in demands. Another example is online

advertising, which is estimated to be a $230 billion industry [9]. Users usually click on different

sites in different time periods. For example, users tend to click on news sites at noon and social

networks such as Twitter at night. As such, a higher Return on Investment can be achieved by

delivering advertisements to customers on different websites upon detecting positive wave patterns

in their DNS queries.

Scenario 3 - Burst Detection (Data Mining Community). Burst detection has been utilized

in various applications, such as trading volumes monitoring [44], bursty topic mining [38], and

text stream mining [25, 40]. As a more general concept than the burst, the wave can also be readily

applied in burst detection.

Scenario 4 - Network Failure Detection (Network Community). Optical fibers are widely
used on the Internet [18, 28]. However, the fiber may sometimes suffer from degradation or

interruption, which is difficult to find and locate. This causes the traffic to decrease and then

increase, similar to a negative wave. In this scenario, the optical fiber failure can be detected by

wave identification.

Scenario 5 - Financial Market (Data Mining Community). In the financial market, a wave of

trading volume may indicate possible financial fraud or illegal market manipulation. By monitoring

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 106. Publication date: May 2023.

Pontus: Finding Waves in Data Streams 106:3

waves, we will be able to find frequently appearing waves, which can be reported and dealt with

individually.

To facilitate these potential applications, 1) wave detection should be able to process high-speed

data streams with high accuracy; 2) meanwhile, for more accurate network management, we need

to not only detect waves but also shape them to evaluate their types and strengths. Thus, we

aim to design an efficient wave detection and estimation scheme supporting more comprehensive

capability and higher speed than BurstSketch [43], which is a significant challenge.

Therefore, we propose Pontus
1
, which detects and estimates waves accurately with high through-

put in real-time. To enable high-speed preliminary item (packet) processing, we design a memory-

efficient data plane, compatible with programmable switches (e.g., P4) [5]. The data plane guarantees

the software version of Pontus is faster than BurstSketch. The compatibility enables the deployment

of hardware programmable switches, further improving the processing speed hundreds of times.

Beyond the data plane’s preliminary processing of incoming data, complex but infrequent wave

detection and estimation are placed on the control plane. In particular, we propose a Multi-Stage
Progressive Tracking strategy to detect and estimate waves in Pontus, which consists of three

stages that record the initial items, the weak potential waves, and the potential waves, respectively.

To reduce the memory overhead, this strategy incorporates early removal of items, which removes

items as soon as they are illegal during wave detection. To solve hash collisions in the control plane,

we propose a Stage Variance Maximization technique to maintain waves with larger variances

and reduce the estimation error.

To demonstrate the feasibility of Pontus, we implement the prototypes of both software (i.e., the

X86 server) and hardware (i.e., the P4 switch) versions
2
. To evaluate the performance of Pontus, we

conduct comprehensive experiments based on the prototypes, with the real-world traffic traces

of CAIDA [7], Data Center [1], WIDE [23] and Synthetic dataset. The results confirm the high

efficiency (i.e., throughput and accuracy) of Pontus.

In summary, the advantages of Pontus are four-fold. First, Pontus is expressive, which can not

only detect the wave but also estimate the wave for efficient network management. Second, Pontus

is memory-efficient, which requires only 𝑂 (1) memory, small enough to fit in CPU caches or P4

switches. Third, Pontus is fast. Our implemented software and hardware (P4 switch) versions of

Pontus respectively show the 1.3 × and 572.6 × throughput compared to BurstSketch. Fourth,

Pontus is accurate. Our experiments show that it achieves 99% F1-Score using only 0.5 MB memory.

2 RELATEDWORK
Currently, there is no work focusing on the wave pattern. In this section, we introduce several

algorithms of sketch and burst detection which are related to the wave pattern. We also discuss the

opportunities provided by the programmable switches.

Sketch Algorithm. Sketch approaches are well-established for data stream measurement tasks.

Classical sketch solutions include the Count-Min (CM) sketch [12] and the Count (C) sketch [8]. For

example, the CM sketch consists of 𝑑 arrays, each with 𝑙 counters. The 𝑑 arrays are associated with

𝑑 pairwise independent hash functions. To insert an incoming item 𝑒 , the CM sketch calculates

𝑑 hash functions and inserts 𝑒 to the mapping counter in each array. To query an item 𝑒 , the CM

sketch returns the minimum estimated frequency in the 𝑑 mapping counters. The C sketch is similar

to the CM sketch. The difference lies in that the C sketch uses additional 𝑑 hash functions to get

an unbiased estimation of an item and return the medium estimated frequency in the 𝑑 mapping

counters.

1
Pontus is the primordial god (protogenos) of the sea.

2
The related codes are available at Github [42].

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 106. Publication date: May 2023.

106:4 Zhengxin Zhang et al.

Table 1. Important Notations.

Notation Meaning
𝑆𝑖 Stage 𝑖 , 𝑖 ∈ {1, 2, 3}
𝐾,𝑉 the key and the value field in each bucket

B𝑆𝑖 [𝑗] the 𝑗𝑡ℎ bucket in Stage 𝑖

𝑘 the wave shape threshold

T the wave amplitude threshold to filter tiny fluctuations

𝑇𝑖𝑛,𝑇𝑙 ,𝑇𝑑𝑒 the increase, steady, decrease window size threshold

_𝑖𝑛, _𝑑𝑒 the weak potential positive and negative wave threshold

𝑊𝑡 the 𝑡-th window

Burst Detection. In prior arts, detect bursts mainly focus onWavelet Tree (WT) and Aggregation

Tree (AT) [32, 10, 31], which will not be elaborated on due to limited space. Recently, several works

have proposed different definitions of the burst [29, 38, 43]. [29, 38] define the burst as an item

with a surge in arrival rate. [29] proposes CM-PBE, which detects bursts from history without

storing or querying the whole data stream. [38] proposes TopicSketch which uses a sketch to store

the velocities of an item and incrementally maintains velocities in two windows to obtain the

acceleration of an item. [43] defines the burst as a sudden increase of an item in terms of arrival

rate followed by a sudden decrease. [43] proposes BurstSketch, which uses a sketch to store the

frequency of an item in a window and filter out infrequent items. BurstSketch maintains frequent

items in a hash table. At the end of a window, BurstSketch looks up the hash table, filters out illegal

items, and reports bursts.

Compared with the burst, the wave is a more comprehensive definition of the fluctuation of

data streams. Therefore, tracking waves is more complicated than bursts, requiring more memory

and computing power. There are four reasons why existing algorithms cannot extend to wave

detection: 1) The structures in previous algorithms can not scale to track the increase or decrease

trends of frequencies over multiple windows, which is required for wave detection. For example,

BurstSketch only supports the comparison of an item’s frequencies in two adjacent windows to

determine whether the item is increasing. To track the frequency of an element in multiple windows,

BurstSketch has to add additional hash tables, which unavoidably cause major changes in algorithm

logic and render their theoretical proofs invalid. 2) Existing algorithms face throughput bottlenecks

and are unable to support high-speed processing. For example, BurstSketch traverses all buckets

in the second stage for each insertion, resulting in poor throughput. Moreover, TopicSketch and

BurstSketch couple their insertion and update together, and cannot be deployed on hardware

devices (e.g., programmable switches, smart network cards), hindering their potential in high-speed

data stream scenarios. 3) The designs of existing algorithms have some drawbacks, affecting their

performance. BurstSketch uses a fixed threshold to remove items with low frequency and records

items with high frequency in the second stage, which may cause false negatives. Experiments in

Section 9.7 will verify the limitations of existing solutions.

Programmable Switches. Programmable switches (e.g., Barefoot Tofino [3]) are an emerging

networking technology that provides hardware programmability and flexibility without compro-

mising performance. A representative programmable switch architecture is Protocol Independent

Switch Architecture (PISA) [6], where the ASIC chip consists of a programmable parser and a

number of reconfigurable match-action tables. Operators can implement custom programs in the

switch using domain-specific languages (e.g., P4 [5]), allowing the switch to process data traffic at

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 106. Publication date: May 2023.

Pontus: Finding Waves in Data Streams 106:5

terabits per second. With a high line-rate guarantee and flexibility, programmable switches are

ideal for wave detection and estimation.

3 THEWAVE
3.1 Wave Definition
For a time series data stream S = {𝑒1, 𝑒2, ...}, suppose that the data stream is divided into fixed

windows {𝑊1,𝑊2, ...} and the frequencies of item 𝑒 in the windows are {𝑓1, 𝑓2, ...}. Consider the
wave amplitude threshold T , and the increase, steady, decrease window size thresholds 𝑇𝑖𝑛,𝑇𝑙 ,𝑇𝑑𝑒 .

Some important notations are shown in Table 1.

𝑖

𝑓!

𝑗

𝑓"

𝑛 𝑚

𝑓#

𝑓$

𝑤!# 𝑤% 𝑤&'

𝒯

(a) A positive wave

𝑖

𝑓!

𝑗

𝑓"

𝑛 𝑚

𝑓#

𝑓$

𝑤!#𝑤%𝑤&'

𝒯

(b) A negative wave

Fig. 1. Wave illustration. The horizontal and vertical axes are frequency and window index, respectively.

Definition 1. For item 𝑒 , a positive wave, as Figure 1(a) shows, is identified if there exist four
non-overlapping windows𝑊𝑖 ,𝑊𝑗 ,𝑊𝑛,𝑊𝑚 , 𝑖 < 𝑗 < 𝑛 < 𝑚, such that the following conditions are met:

• Shape condition: 𝑓𝑗 ≥ 𝑘 · 𝑓𝑖 , 𝑓𝑚 ≤ 1

𝑘
· 𝑓𝑛 , 𝑘 ∈ {𝑍+ |𝑘 > 1}.

• Duration condition: 𝑗 − 𝑖 ≤ 𝑇𝑖𝑛, 𝑛 − 𝑗 ≤ 𝑇𝑙 ,𝑚 − 𝑛 ≤ 𝑇𝑑𝑒 .
• Amplitude condition: 𝑓𝑙 ≥ T ,∀𝑙 ∈ { 𝑗, 𝑗 + 1, ..., 𝑛}.

In the positive wave,𝑊𝑖→𝑗 is the increase phase, consisting of𝑤𝑖𝑛 = 𝑗 − 𝑖 windows;𝑊𝑗→𝑛 is the

steady phase, consisting of 𝑤𝑙 = 𝑛 − 𝑗 windows; and𝑊𝑛→𝑚 is the decrease phase, consisting of

𝑤𝑑𝑒 =𝑚 − 𝑛 windows.

Definition 2. For item 𝑒 , a negative wave, as Figure 1(b) shows, is identified if there exist four
non-overlapping windows𝑊𝑖 ,𝑊𝑗 ,𝑊𝑛 ,𝑊𝑚 , 𝑖 < 𝑗 < 𝑛 < 𝑚, such that the following conditions are met:

• Shape condition: 𝑓𝑗 ≤ 1

𝑘
· 𝑓𝑖 , 𝑓𝑚 ≥ 𝑘 · 𝑓𝑛 , 𝑘 ∈ {𝑍+ |𝑘 > 1}.

• Duration condition: 𝑗 − 𝑖 ≤ 𝑇𝑑𝑒 , 𝑛 − 𝑗 ≤ 𝑇𝑙 ,𝑚 − 𝑛 ≤ 𝑇𝑖𝑛 .
• Amplitude condition: 𝑓𝑖 ≥ T , 𝑓𝑚 ≥ T .

The decrease, steady, and increase phases of a negative wave can be defined similarly to a positive

wave.

The wave is a more comprehensive and prevailing concept in data streams, compared with the

burst in [43], which is a special case of a positive wave with small 𝑇𝑖𝑛 and 𝑇𝑑𝑒 .

3.2 Wave Detection and Estimation
Wave detection and estimation are needed for different applications.

Wave Detection.Wave detection, which detects all waves in data streams, is the fundamental

task. Specifically, given an item 𝑒 in data stream S, if 𝑒 is a wave, it is reported, along with its type

(i.e. positive or negative), its estimated time stamp 𝑡 , increase window size𝑤𝑖𝑛 , steady window size

𝑤𝑑𝑒 and decrease window size𝑤𝑑𝑒 .

Wave Estimation. For each detected wave, the wave curve is estimated by its frequencies during

{𝑡, 𝑡 + 1, ..., 𝑡 + (𝑤𝑖𝑛 +𝑤𝑙 +𝑤𝑑𝑒)} windows, which is hard to realize within limited memory. Thus,

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 106. Publication date: May 2023.

106:6 Zhengxin Zhang et al.

we use the curve points 𝑓𝑖 , 𝑓𝑗 , 𝑓𝑛 , and 𝑓𝑚 as shown in Figure 1 to approximate estimate a wave curve

instead. Note that wave estimation can be turned off if it is unnecessary for specific scenarios or if

the memory is insufficient.

4 SYSTEM OVERVIEW
In this section, we present the system overview of Pontus. We first provide a strawman solution

and then we propose Pontus to address the drawbacks of the strawman solution.

4.1 The Strawman Solution
To detect waves, a straightforward approach is based on multiple CM sketches. 𝑁 = 𝑇𝑖𝑛 +𝑇𝑙 +𝑇𝑑𝑒
CM sketches record the frequencies of the latest 𝑁 windows and a hash table stores the potential

waves for wave detection. We insert each incoming item 𝑒 into the CM sketch of the current

window. If the frequency of 𝑒 is larger than T , we put it in the hash table. In this way, the small

flows with fluctuating frequencies can be filtered to avoid meaningless wave detection. At the

end of each window, we update each bucket in the hash table. We examine whether the bucket

inserted in the current window is a wave by querying the latest𝑇𝑖𝑛 CM sketches. An item is set to a

positive wave candidate if its estimated frequency in the current window is 𝑘 times larger than the

estimated frequency in any of the latest 𝑇𝑖𝑛 windows, and to a negative wave candidate otherwise.

For other buckets in the hash table, we query their estimated frequencies to check if any of the

wave candidates fulfill the criteria of a positive or negative wave.

The strawman solution has four main drawbacks. 1) When the model parameters (e.g.,𝑇𝑖𝑛,𝑇𝑙 ,𝑇𝑑𝑒)

change, the number of sketches in the strawman needs to be changed, necessitating the rede-

ployment of the model. As such, the strawman has poor flexibility. 2) The throughput of the

strawman is very limited since each insertion of the strawman needs to traverse the entire hash

table. Meanwhile, the strawman couples its insertion and update together, and cannot be deployed

on hardware devices to improve its throughput. 3) The strawman is memory-intensive because it

requires 𝑇𝑖𝑛 +𝑇𝑙 +𝑇𝑑𝑒 sketches to store the frequencies. 4) The strawman stores a large amount of

useless item information in each window, which cannot efficiently utilize the memory, resulting in

excessive hash collisions and poor performance.

4.2 The Pontus Framework
To address the limitations of our strawman solution, we should first reduce the memory overhead.

We observe that most items do not have the wave pattern most of the time. Therefore, in Pontus,

we first only record the item’s frequencies of the current and previous windows. Based on the

comparison between them, we then sift out the items with fluctuating and start to record their

frequencies during the full wave cycle (i.e.,𝑇𝑖𝑛 +𝑇𝑙 +𝑇𝑑𝑒 windows). In this way, the excessive amount

of redundant information maintained in the strawman solution is avoided, thereby saving memory

space.

To this end, we propose aMulti-Stage Progressive Tracking strategy in Pontus, which consists

of three stages. The Multi-Stage Progressive Tracking is from the core idea of “filtering”, where

we filter out useless items, i.e., non-fluctuating items, as early as possible, and only maintain and

track useful items (fluctuating items) to save memory and improve throughput. We classify the

items in the data stream into three types: 1) useless items, which violate wave conditions already;

2) weak potential waves, items that have started to show the increase or decrease trends but have

not satisfied the left shape condition, that is, the change of frequency is not strong enough to meet

the left shape condition yet (𝑓𝑗 ≥ 𝑘 · 𝑓𝑖 or 𝑓𝑗 ≤ 1

𝑘
· 𝑓𝑖). These waves can be regarded as a possible

start of the left shape of a true wave. A weak potential wave is identified by the thresholds _𝑖𝑛 for a

positive wave, i.e., 𝑓𝑗 ≥ _𝑖𝑛 · 𝑓𝑖 , and _𝑑𝑒 for a negative wave, i.e., 𝑓𝑗 ≤ _𝑑𝑒 · 𝑓𝑖 , where 1 ≤ _𝑖𝑛 < 𝑘

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 106. Publication date: May 2023.

Pontus: Finding Waves in Data Streams 106:7

and 1/𝑘 < _𝑑𝑒 ≤ 1 (e.g., _𝑖𝑛 = 1.3, _𝑑𝑒 = 0.8); 3) potential waves that have already satisfied the left

shape condition.

Particularly, the Stage 1 (initial stage) is responsible for recording the frequencies of current

and previous windows for the useless items. The Stage 2 (weak potential stage) and the Stage 3
(potential stage) are responsible for recording the frequencies of the weak potential waves and

potential waves, respectively. The Stages 1 filters out useless items and sends weak potential waves

to the Stages 2 and potential waves to the Stages 3. The Stages 2 filters out illegal weak potential

waves among the recorded weak potential waves and sends potential waves to the Stages 3. The
Stages 3 filters out illegal potential waves and reports waves. The items in the Stages 2,3 are removed

immediately to save memory if they are identified as illegal ones, e.g., one of the wave conditions

is obviously violated. The Stages 1 uses approximate count. The Stages 2,3 use exact count. The
Multi-Stage Progressive Tracking strategy can significantly save memory overhead. As the

space complexity of Pontus is 𝑂 (1) << 𝑂 (𝑁), hash collisions are inevitable in Pontus. Though

Pontus cannot achieve absolute correctness, we prove the upper bounds on the probability of false

positives and false negatives for Pontus in Section 8 and experiments in Section 9.2 further verify

that these error bounds are guaranteed to be small with properly selected parameters.

Based on theMulti-Stage Progressive Tracking strategy, we further decouple the item-by-

item frequency recording of the current window and the window-by-window wave detection or

estimation (hundreds of thousands of times less frequent than the former) by separating Pontus

into the data and control planes. The data plane is only responsible for simply recording item

frequencies in the current window. The control plane is responsible for recording all the other
information and conducting more complex operations of the three stages, including identifying

waves, removing illegal ones, and moving items between stages (e.g., 𝑆1 → 𝑆2, 𝑆1 → 𝑆3 and

𝑆2 → 𝑆3). In this way, the data plane structure is simplified and shrunk to an extremely small

size, which can be cached by CPU multi-level caches (X86-based software version) or deployed to

programmable switches (P4-based hardware version) for an acceleration of the highly frequent

item-by-item recording.

Data plane: The data plane maintains minimal information required to support the control

plane in its three-stage structure. During each window, the data plane processes incoming data

with high speed and records relevant frequency information into corresponding stages. To solve

the hash collisions in the data plane, we use a probability replacement strategy. At the end of each

window, the data plane sends the data collected in the current window to the control plane. After

the control plane’s further processing of the data, the data plane updates its stages according to the

latest information sent back from the control plane.

Control plane: At the end of each window, the control plane processes the latest information

received from the data plane following the Multi-Stage Progressive Tracking strategy and reports

any detected waves. To solve hash collisions in the control plane, we use the Stage Variance
Maximization technique to maintain waves with larger variances and reduce the estimation error.

The purpose of Stage Variance Maximization is that the waves with large fluctuations are strong

indicators for anomalies of the items in the data streams. After updating, the control plane sends

the latest information back to the data plane.

Pontus can detect and estimate waves accurately with limited memory in real-time. The details

of the data and control planes of Pontus are presented next.

5 THE PONTUS DATA PLANE
The data plane consists of three stages, Stages 1-3 (𝑆1,2,3). 𝑆𝑖 consists of 𝑙𝑖 buckets. Each bucket

stores a K-V pair, where the item ID and its estimated frequency are stored as the key and the

value, respectively. There are 𝑑 hash functions ℎ1 (·), ℎ2 (·), ..., ℎ𝑑 (·) associated with 𝑆1. The same

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 106. Publication date: May 2023.

106:8 Zhengxin Zhang et al.

replace with
probability !

"

(𝑒!,5)

empty

(𝑒",0)

Stage 3

(𝑒#,4)

(𝑒"",3)

(𝑒!,9)

Stage 2

(𝑒$,2)

empty

(𝑒%,8)

Stage 1

𝑒!
g(𝑒!)

𝑒&
g(𝑒") g(𝑒")

h(𝑒"
)

empty

(𝑒&,9)

𝑒'
g(𝑒#) g(𝑒#)

(𝑒(,7)

(𝑒),1)

h(𝑒#
) (𝑒',1)

emptyempty
𝑒""

g(𝑒$$
) g(𝑒$$)

insert

empty

Fig. 2. The Pontus data plane.

set of
ˆ𝑑 hash functions, i.e., 𝑔1 (·), 𝑔2 (·), ..., 𝑔 ˆ𝑑

(·) are associated with both 𝑆2 and 𝑆3 to save memory

overhead. The data plane is responsible for insertion and update.

Algorithm 1: Insertion in the data plane

Input: item 𝑒; frequency 𝑓 ;

1 if Insert_MidStage(𝑆3, 𝑒, 𝑓) then
2 return ;

3 if Insert_MidStage(𝑆2, 𝑒, 𝑓) then
4 return ;

5 Insert_FirstStage(𝑒, 𝑓) ;
6 return ;

7 Function 𝐼𝑛𝑠𝑒𝑟𝑡_𝑀𝑖𝑑𝑆𝑡𝑎𝑔𝑒 (𝑆 𝑗 , 𝑒, 𝑓):
8 for 𝑖 ∈ [1, ˆ𝑑] do
9 if 𝑒 𝑖𝑠 𝑖𝑛 B𝑆 𝑗

[𝑔𝑖 (𝑒)] then
10 B𝑆 𝑗

[𝑔𝑖 (𝑒)] .𝑉+ = 𝑓 ;

11 return true ;

12 return false ;

13 Function 𝐼𝑛𝑠𝑒𝑟𝑡_𝐹𝑖𝑟𝑠𝑡𝑆𝑡𝑎𝑔𝑒 (𝑒, 𝑓):
14 for 𝑒𝑎𝑐ℎ 𝑖 ∈ [1, 𝑑] do
15 if 𝑒 𝑖𝑠 𝑖𝑛 B𝑆1 [ℎ𝑖 (𝑒)] then
16 B𝑆1 [ℎ𝑖 (𝑒)] .𝑉+ = 𝑓 ;

17 return ;

18 if 𝑡ℎ𝑒𝑟𝑒 𝑒𝑥𝑖𝑠𝑡𝑠 𝑒𝑚𝑝𝑡𝑦 𝑏𝑢𝑐𝑘𝑒𝑡 B𝑆1 [ℎ𝑖 (𝑒)] then
19 insert 𝑒 into B𝑆1 [ℎ𝑖 (𝑒)] ;
20 B𝑆1 [ℎ𝑖 (𝑒)] .𝑉+ = 𝑓 ;

21 return ;

// Hash Collision

22 use 𝑒 to replace the smallest bucket B𝑆1 [ℎ𝑖 (𝑒)] and B𝑆1 [ℎ𝑖 (𝑒)] .𝑉+ = 𝑓 w.p.
𝑓

B𝑆
1
[ℎ𝑖 (𝑒)] .𝑉+𝑓 ;

23 return ;

Insertion: Each incoming item is inserted into the data plane. The pseudo-code of insertion in

the data plane is shown in Algorithm 1. Given an incoming item 𝑒 with frequency 𝑓 , we first hash 𝑒

into
ˆ𝑑 mapping buckets B𝑆3 [𝑔1 (𝑒), ..., 𝑔 ˆ𝑑

(𝑒)] to check whether it is in 𝑆3. If 𝑒 is in 𝑆3, we increment

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 106. Publication date: May 2023.

Pontus: Finding Waves in Data Streams 106:9

its estimated frequency by 𝑓 . Otherwise, we examine
ˆ𝑑 mapping buckets B𝑆2 [𝑔1 (𝑒), ..., 𝑔 ˆ𝑑

(𝑒)] to
check whether it is in 𝑆2. If 𝑒 is in 𝑆2, we increment its estimated frequency by 𝑓 . Otherwise,

we insert it into 𝑆1 by hashing 𝑒 into 𝑑 mapping buckets B𝑆1 [ℎ1 (𝑒), ..., ℎ𝑑 (𝑒)], and consider the

following three cases.

Case 1: 𝑒 ∈ 𝑆1. We increment its estimated frequency by 𝑓 .

Case 2: 𝑒 ∉ 𝑆1, and there exists an empty bucket B𝑆1 [ℎ𝑖 (𝑒)] in the 𝑑 mapping buckets. In this case,

we insert 𝑒 in B𝑆1 [ℎ𝑖 (𝑒)] by setting 𝐾 = 𝑒 and 𝑉 = 𝑓 .

Case 3: 𝑒 is not in 𝑆1 and there is no empty bucket in the 𝑑 mapping buckets. In this case, we

try to replace the smallest bucket B𝑆1 [ℎ𝑖 (𝑒)] among the 𝑑 mapping buckets. To solve the hash

collisions, there are several strategies: probabilistic replacement [4, 41], probabilistic decay [19] and

frequency decay [43]. In Pontus, the probabilistic replacement is adopted to solve the hash collisions

in 𝑆1, since it achieves the best performance, as will be shown in the experiments in Section 9.5.

In particular, we replace the key 𝐾 by 𝑒 and increment the value 𝑉 by 𝑓 with the probability of

𝑓

𝑉+𝑓 . Note that our probabilistic replacement is different from [4, 41]. [41] increments 𝑉 by 𝑓 while

replacing 𝐾 by 𝑒 with a probability of
𝑓

𝑉
. [4] finds the smallest bucket 𝑏 among all buckets in 𝑆1.

Then, the key 𝐾 of 𝑏 is replaced by 𝑒 , and the value 𝑉 is incremented by 𝑓 with a probability of

𝑓

𝑏.𝑉+𝑓 .

Example: Figure 2 shows an example of insertion. We set 𝑑 = 1, ˆ𝑑 = 1,T = 10, 𝑘 = 2 and item

frequency 𝑓 = 1 for simplicity. 1) To insert 𝑒3, we use hash function 𝑔(·) to map it to bucket (𝑒3, 4)
in 𝑆3 and increment 𝑉 by 1 (from 4 to 5). 2) To insert 𝑒9, we map it to bucket (𝑒6, 1), (𝑒3, 9) in 𝑆3, 𝑆2,
sequentially. Both of the 𝐾 are not equal to 𝑒9. Then we map it to bucket (𝑒7, 8) in 𝑆1. The 𝐾 is also

not equal to 𝑒9. We replace this bucket to (𝑒9, 9) with probability
1

9
.

Update: At the end of each window, the data plane sends the estimated frequencies in 𝑆2, 𝑆3 and

K-V pairs in 𝑆1 to the control plane. The control plane updates its stages, which will be elaborated

in Section 6, and sends update information back to the data plane. The data plane updates its

buckets accordingly as follows. In stage 𝑆1, all buckets are cleared. In 𝑆2 and 𝑆3, the keys are updated

according to the latest information received from the data plane while the values are reset to 0 for

all buckets. For example, if we update 𝑒3 and insert it from 𝑆2 to 𝑆3 in the control plane, then we do

the same operations in the data plane.

6 THE PONTUS CONTROL PLANE

v(𝑒!,1,8,20,1,4,2,p)
...

empty

report 𝑒" as
negative wave

report 𝑒! as
positive wave

Situation 2

Situation 1
(𝑒",2,13,5,2,3,1,n)

(𝑒#,1,9,13,2,2,2,p) clear
Situation 4

(𝑒$,2,9,8,2,4,0,n) 𝑤% += 1

𝑤&' = 2 ≥ 𝑇&'-1

Others

(a) 𝑆3

v(𝑒!,6,6,10,0,0,2,n)

...

empty

Situation 4

Situation 2
(𝑒",5,5,13,0,0,3,n)

(𝑒#,5,11,7,2,0,0,p)
Situation 3

(𝑒$,6,17,2,2,0,0,p)
Situation 1

𝑤%& = 2 ≥ 𝑇%&-1
clear

Stage Variance
Maximization

insert to Stage 3
×

𝑤() += 1

(b) 𝑆2

(!!",2,1)
empty

(!!#,6,0)

(!$,14)

(!!!,0,13)
Situation 2

Stage Variance
Maximization

insert to
Stage 3

Situation 3 insert to
Stage 2

(!$,14,1)
Situation 1

...

insert to
Stage 3

×

(!!",2)Others

(c) 𝑆1

Fig. 3. The Pontus control plane (the data received from the data plane is highlighted in green).

The control plane uses aMulti-Stage Progressive Tracking strategy consisting of three stages

𝑆1,2,3 to filter the illegal wave patterns as early as possible to save memory. 𝑆𝑖 consists of 𝑙𝑖 buckets.

𝑆1 (initial stage) is responsible for recording the frequencies of current and previous windows

for the initial items. In 𝑆1, each bucket stores a K-V pair. 𝑆2 (weak potential stage) stores weak

potential positive and negative wave patterns that are in the increase or decrease phase. If the weak

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 106. Publication date: May 2023.

106:10 Zhengxin Zhang et al.

potential positive or negative wave pattern in 𝑆2 starts to decrease or increase, then it becomes

illegal and is evicted immediately. 𝑆3 (potential stage) is responsible for recording the frequencies of

the potential waves. Each bucket in 𝑆2 and 𝑆3 stores (𝐾, 𝑡,𝑉 ,𝑤𝑖𝑛,𝑤𝑙 ,𝑤𝑑𝑒 , 𝑡𝑦𝑝𝑒) where 𝑡 is current
window timestamp and 𝑡𝑦𝑝𝑒 is the potential type of wave.

Algorithm 2: Update 𝑆3
1 for 𝑒𝑎𝑐ℎ 𝑏𝑢𝑐𝑘𝑒𝑡 𝑖 ∈ B𝑆3 ∧ B𝑆3 [𝑖] 𝑖𝑠 𝑛𝑜𝑡 𝑒𝑚𝑝𝑡𝑦 do
2 if Situation1(𝑉𝑑 ,𝑉𝑐) then
3 if B𝑆3 [𝑖] .𝑡𝑦𝑝𝑒 == 𝑛 then
4 B𝑆3 [𝑖] .𝑤𝑖𝑛+ = 1 ;

5 Report 𝑒 as negative wave ;

6 clear B𝑆3 [𝑖] to empty ;

7 else if Situation2(𝑉𝑑 ,𝑉𝑐) then
8 if B𝑆3 [𝑖] .𝑡𝑦𝑝𝑒 == 𝑝 then
9 B𝑆3 [𝑖] .𝑤𝑑𝑒+ = 1 ;

10 Report 𝑒 as positive wave ;

11 clear B𝑆3 [𝑖] to empty ;

12 else if Situation3(𝑉𝑑 ,𝑉𝑐) then
13 if B𝑆3 [𝑖] .𝑡𝑦𝑝𝑒 == 𝑛 ∧ B𝑆3 [𝑖] .𝑤𝑖𝑛 < 𝑇𝑖𝑛 − 1 then
14 B𝑆3 [𝑖] .𝑤𝑖𝑛+ = 1 ;

15 else
16 clear B𝑆3 [𝑖] to empty ;

17 else if Situation4(𝑉𝑑 ,𝑉𝑐) then
18 if B𝑆3 [𝑖] .𝑡𝑦𝑝𝑒 == 𝑝 ∧ B𝑆3 [𝑖] .𝑤𝑑𝑒 < 𝑇𝑑𝑒 − 1 then
19 B𝑆3 [𝑖] .𝑤𝑑𝑒+ = 1 ;

20 else
21 clear B𝑆3 [𝑖] to empty ;

22 else
23 if B𝑆3 [𝑖] .𝑤𝑙 < 𝑇𝑙 then
24 𝑡𝑙+ = 1 ;

25 else
26 clear B𝑆3 [𝑖] to empty ;

27 return ;

At the end of each window, the control plane receives the estimated frequencies in 𝑆2, 𝑆3 and K-V

pairs in 𝑆1 from the data plane. The control plane updates each bucket correspondingly to filter out

illegal items and report waves. After updating, the control plane sends update information back to

the data plane. We define four update situations: 𝑆𝑖𝑡𝑢𝑎𝑡𝑖𝑜𝑛1: 𝑉𝑑 ≥ 𝑘 ·𝑉𝑐 ∧𝑉𝑑 ≥ T , indicating that

an item increases 𝑘 times. 𝑆𝑖𝑡𝑢𝑎𝑡𝑖𝑜𝑛2: 𝑉𝑑 ≤ 1/𝑘 ·𝑉𝑐 ∧𝑉𝑐 ≥ T , indicating that an item decreases 𝑘

times. 𝑆𝑖𝑡𝑢𝑎𝑡𝑖𝑜𝑛3: 𝑉𝑑 > _𝑖𝑛 ·𝑉𝑐 ∧𝑉𝑑 ≥ T/𝑇𝑖𝑛 , indicating that an item starts to increase. 𝑆𝑖𝑡𝑢𝑎𝑡𝑖𝑜𝑛4:

𝑉𝑑 < _𝑑𝑒 ·𝑉𝑐 ∧𝑉𝑐 ≥ T , indicating that an item starts to decrease.

𝑆𝑖𝑡𝑢𝑎𝑡𝑖𝑜𝑛1, 2 indicate a strong increase or decrease that satisfies left shape conditions in the

wave definition. 𝑆𝑖𝑡𝑢𝑎𝑡𝑖𝑜𝑛3, 4 indicate a weak increase or decrease that is not strong enough to

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 106. Publication date: May 2023.

Pontus: Finding Waves in Data Streams 106:11

satisfy the left shape condition but still worth further monitoring. _𝑖𝑛, _𝑑𝑒 indicate the threshold

that we further monitor the weak potential positive or negative wave. Note that𝑉𝑑 is the estimated

frequency collected by the data plane in the current window and 𝑉𝑐 is the estimated frequency in

the previous window stored in the control plane.

Update: We update the control plane in the order of 𝑆3, 𝑆2, and 𝑆1 so as to reduce the hash

collisions when the item updates. The current window is set to𝑊𝑡 . Non-empty buckets in the

three stages are updated as follows. Pseudo-codes of update 𝑆3, 𝑆2, 𝑆1 are shown in Algorithm 2,3,4,

respectively.

Algorithm 3: Update 𝑆2
1 for 𝑒𝑎𝑐ℎ 𝑏𝑢𝑐𝑘𝑒𝑡 𝑖 ∈ B𝑆2 ∧ B𝑆2 [𝑖] 𝑖𝑠 𝑛𝑜𝑡 𝑒𝑚𝑝𝑡𝑦 do
2 if Situation1(𝑉𝑑 ,𝑉𝑐) then
3 if B𝑆2 [𝑖] .𝑡𝑦𝑝𝑒 == 𝑝 then
4 B𝑆2 [𝑖] .𝑤𝑖𝑛+ = 1,B𝑆2 [𝑖] .𝑉 = 𝑉𝑑 ;

5 insert B𝑆2 [𝑖] into 𝑆3 ;
6 clear B𝑆2 [𝑖] to empty ;

7 else if Situation2(𝑉𝑑 ,𝑉𝑐) then
8 if B𝑆2 [𝑖] .𝑡𝑦𝑝𝑒 == 𝑛 then
9 B𝑆2 [𝑖] .𝑤𝑑𝑒+ = 1,B𝑆2 [𝑖] .𝑉 = 𝑉𝑑 ;

10 insert B𝑆2 [𝑖] into 𝑆3 ;
11 clear B𝑆2 [𝑖] to empty ;

12 else if Situation3(𝑉𝑑 ,𝑉𝑐) then
13 if B𝑆2 [𝑖] .𝑡𝑦𝑝𝑒 == 𝑝 ∧ B𝑆2 [𝑖] .𝑤𝑖𝑛 < 𝑇𝑖𝑛 − 1 then
14 B𝑆2 [𝑖] .𝑤𝑖𝑛+ = 1 ;

15 else
16 clear B𝑆2 [𝑖] to empty ;

17 else if Situation4(𝑉𝑑 ,𝑉𝑐) then
18 if B𝑆2 [𝑖] .𝑡𝑦𝑝𝑒 == 𝑛 ∧ B𝑆2 [𝑖] .𝑤𝑑𝑒 < 𝑇𝑑𝑒 − 1 then
19 B𝑆2 [𝑖] .𝑤𝑑𝑒+ = 1 ;

20 else
21 clear B𝑆2 [𝑖] to empty ;

22 else
23 clear B𝑆2 [𝑖] to empty ;

24 return ;

In 𝑆3, if a bucket 𝑏 matches 1) 𝑆𝑖𝑡𝑢𝑎𝑡𝑖𝑜𝑛1:𝑤𝑖𝑛+ = 1, report 𝐾 as a negative wave if 𝑡𝑦𝑝𝑒 = 𝑛, and

clear 𝑏; 2) 𝑆𝑖𝑡𝑢𝑎𝑡𝑖𝑜𝑛2:𝑤𝑑𝑒+ = 1, report 𝐾 as a positive wave if 𝑡𝑦𝑝𝑒 = 𝑝 , and clear 𝑏; 3) 𝑆𝑖𝑡𝑢𝑎𝑡𝑖𝑜𝑛3:

𝑤𝑖𝑛+ = 1 if 𝑡𝑦𝑝𝑒 = 𝑛 and 𝑤𝑖𝑛 < 𝑇𝑖𝑛 − 1, which implies the increase phase of a potential negative

wave, otherwise, an illegal wave is identified by clearing 𝑏; 4) 𝑆𝑖𝑡𝑢𝑎𝑡𝑖𝑜𝑛4:𝑤𝑑𝑒+ = 1 if 𝑡𝑦𝑝𝑒 = 𝑝 and

𝑤𝑑𝑒 < 𝑇𝑑𝑒 − 1, which implies the decrease phase of a potential positive wave, otherwise, an illegal

wave is identified by clearing 𝑏; 5) 𝑜𝑡ℎ𝑒𝑟 𝑠𝑖𝑡𝑢𝑎𝑡𝑖𝑜𝑛𝑠:𝑤𝑙+ = 1 if𝑤𝑙 < 𝑇𝑙 , otherwise clear 𝑏.

In 𝑆2, if a bucket 𝑏 matches 1) 𝑆𝑖𝑡𝑢𝑎𝑡𝑖𝑜𝑛1: 𝑤𝑖𝑛+ = 1,𝑉 = 𝑉𝑑 , insert 𝑏 into 𝑆3 if 𝑡𝑦𝑝𝑒 = 𝑝 , which

implies an existing weak potential positive wave experiences a strong enough increase so that it

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 106. Publication date: May 2023.

106:12 Zhengxin Zhang et al.

can be promoted to 𝑆3 as a potential positive wave, and clear 𝑏; 2) 𝑆𝑖𝑡𝑢𝑎𝑡𝑖𝑜𝑛2: 𝑤𝑑𝑒+ = 1,𝑉 = 𝑉𝑑 ,

insert 𝑏 into 𝑆3 if 𝑡𝑦𝑝𝑒 = 𝑛, which implies an existing weak potential negative wave experiences a

strong enough decrease so that it can be promoted to 𝑆3 as a potential negative wave, and clear 𝑏; 3)

𝑆𝑖𝑡𝑢𝑎𝑡𝑖𝑜𝑛3:𝑤𝑖𝑛+ = 1 if 𝑡𝑦𝑝𝑒 = 𝑝 and𝑤𝑖𝑛 < 𝑇𝑖𝑛 − 1, meaning it remains as a weak potential positive

wave, otherwise, an illegal wave is identified, and clear 𝑏; 4) 𝑆𝑖𝑡𝑢𝑎𝑡𝑖𝑜𝑛4:𝑤𝑑𝑒+ = 1 if 𝑡𝑦𝑝𝑒 = 𝑛 and

𝑤𝑑𝑒 < 𝑇𝑑𝑒 − 1, implying a weak potential negative wave remains in its status, otherwise, an illegal

wave is identified by clearing 𝑏; 5) 𝑜𝑡ℎ𝑒𝑟 𝑆𝑖𝑡𝑢𝑎𝑡𝑖𝑜𝑛𝑠: an illegal item is identified by clearing 𝑏.

In 𝑆1, set 𝑉𝑐 = 0 if a bucket 𝑏 is not in the control plane and set 𝑉𝑑 = 0 if 𝑏 is not in the data

plane. We regard the above buckets as special buckets in 𝑆1. If 𝑏 matches 1) 𝑆𝑖𝑡𝑢𝑎𝑡𝑖𝑜𝑛1: an increase

experienced which is strong enough to directly identify the increase phase of a potential positive

wave, set 𝑡 =𝑊𝑡 ,𝑤𝑖𝑛 = 1,𝑉 = 𝑉𝑑 , 𝑡𝑦𝑝𝑒 = 𝑝 in a temporary bucket 𝑡𝑚𝑝 and insert 𝑡𝑚𝑝 into 𝑆3; 2)

𝑆𝑖𝑡𝑢𝑎𝑡𝑖𝑜𝑛2: a decrease experienced which is strong enough to directly identify the decrease phase

of a potential negative wave, set 𝑡 =𝑊𝑡 ,𝑤𝑑𝑒 = 1,𝑉 = 𝑉𝑑 , 𝑡𝑦𝑝𝑒 = 𝑛 in 𝑡𝑚𝑝 and insert 𝑡𝑚𝑝 into 𝑆3; 3)

𝑆𝑖𝑡𝑢𝑎𝑡𝑖𝑜𝑛3: a weak increase experienced which is not strong enough to justify a potential positive

wave, so we set 𝑡 =𝑊𝑡 ,𝑤𝑖𝑛 = 1,𝑉 = 𝑉𝑐 , 𝑡𝑦𝑝𝑒 = 𝑝 in 𝑡𝑚𝑝 and insert 𝑡𝑚𝑝 into 𝑆2 as a weak potential

positive wave for further monitoring. 4) 𝑆𝑖𝑡𝑢𝑎𝑡𝑖𝑜𝑛4: a weak decrease experienced which is not

strong enough to justify a potential negative wave, so we set 𝑡 =𝑊𝑡 ,𝑤𝑑𝑒 = 1,𝑉 = 𝑉𝑐 , 𝑡𝑦𝑝𝑒 = 𝑛 in

𝑡𝑚𝑝 and insert 𝑡𝑚𝑝 into 𝑆2 as a weak potential negative wave for further monitoring. If 𝑏 matches

any of the above situations and the insertion is successful, clear 𝑏. Otherwise, clear 𝑏 if 𝑉𝑑 = 0, or

set 𝑉 = 𝑉𝑑 if 𝑉𝑑 ≠ 0.

Algorithm 4: Update 𝑆1
1 for 𝑒𝑎𝑐ℎ 𝑏𝑢𝑐𝑘𝑒𝑡 𝑖 ∈ B𝑆1 ∧ B𝑆1 .[𝑖] 𝑖𝑠 𝑛𝑜𝑡 𝑒𝑚𝑝𝑡𝑦 do
2 set 𝑒 = B𝑆1 [𝑖] .𝐾 ;

3 if Situation1(𝑉𝑑 ,𝑉𝑐) then
4 insert 𝑏 = (𝑒,𝑊𝑡 ,𝑉𝑑 , 1, 0, 0, 𝑝) into 𝑆3 ;
5 else if Situation2(𝑉𝑑 ,𝑉𝑐) then
6 insert 𝑏 = (𝑒,𝑊𝑡 ,𝑉𝑑 , 0, 0, 1, 𝑛) into 𝑆3 ;
7 else if Situation3(𝑉𝑑 ,𝑉𝑐) then
8 insert 𝑏 = (𝑒,𝑊𝑡 ,𝑉𝑑 , 1, 0, 0, 𝑝) into 𝑆2 ;
9 else if Situation4(𝑉𝑑 ,𝑉𝑐) then
10 insert 𝑏 = (𝑒,𝑊𝑡 ,𝑉𝑑 , 0, 0, 1, 𝑛) into 𝑆2 ;
11 else
12 B𝑆1 [𝑖] .𝑉 = 𝑉𝑑 ;

13 if match one situation then
14 if fail to insert then
15 B𝑆1 [𝑖] .𝑉 = 𝑉𝑑 ;

16 else
17 clear B𝑆1 [𝑖] to empty ;

18 return ;

Example: Figure 3 shows an example of control plane update. Estimated frequencies in 𝑆2, 𝑆3
and K-V pairs in 𝑆1 collected by the data plane are highlighted in green. We set 𝑇𝑖𝑛 = 𝑇𝑑𝑒 = 3,𝑇𝑙 =

10, 𝑑 = 1, ˆ𝑑 = 1,T = 10, 𝑘 = 2,𝑊𝑡 = 8, _𝑖𝑛 = (𝑘 − 1)/𝑇𝑖𝑛 + 1 and _𝑑𝑒 = 1 − (1 − 1/𝑘)/𝑇𝑑𝑒 . For 𝑆3,

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 106. Publication date: May 2023.

Pontus: Finding Waves in Data Streams 106:13

to update 𝑒1, since it matches 𝑆𝑖𝑡𝑢𝑎𝑡𝑖𝑜𝑛4, we check 𝑤𝑑𝑒 = 2 ≥ 𝑇𝑑𝑒 − 1, thus 𝑒1 is an illegal wave

and we clear it to empty; to update 𝑒4, since it matches 𝑆𝑖𝑡𝑢𝑎𝑡𝑖𝑜𝑛2, we do𝑤𝑑𝑒+ = 1 (from 1 to 2)

and report it as a positive wave. For 𝑆2, to update 𝑒7, since it matches 𝑆𝑖𝑡𝑢𝑎𝑡𝑖𝑜𝑛2, we do𝑤𝑑𝑒+ = 1.

We successfully insert it into 𝑆3 using Stage Variance Minimization. For 𝑆1, to update 𝑒15, since it

matches 𝑆𝑖𝑡𝑢𝑎𝑡𝑖𝑜𝑛3, we use a temporary bucket 𝑡𝑚𝑝 and set 𝐾 = 𝑒15, 𝑡 = 8,𝑉 = 6,𝑤𝑖𝑛 = 1, 𝑡𝑦𝑝𝑒 = 𝑝 .

We successfully insert 𝑡𝑚𝑝 into 𝑆2 using Stage Variance Minimization. Then we clear the K-V pair

in 𝑆1 to empty.

Wave estimation: To estimate the curve points of a wave, we add two additional counters 𝑉𝑠𝑡
and 𝑉𝑣𝑟 for each bucket in 𝑆2 and 𝑆3. 𝑉𝑠𝑡 indicates 𝑓𝑖 which is the start curve point of a wave. 𝑉𝑣𝑟
indicates |𝑓𝑗 − 𝑓𝑖 |, which is the variance of a wave. It is worth noting that, when updating a bucket

𝑏 in 𝑆1, a temporary bucket is inserted to either 𝑆2 or 𝑆3 depending on its matching situation, we

set 𝑉𝑠𝑡 = 𝑉𝑐 (i.e. 𝑓𝑖) and 𝑉𝑣𝑟 = |𝑉𝑑 − 𝑉𝑐 | (i.e. |𝑓𝑗 − 𝑓𝑖 |) in the corresponding bucket in 𝑆2 or 𝑆3 as

part of the insertion operation. When updating a bucket 𝑏 in 𝑆2, under 𝑆𝑖𝑡𝑢𝑎𝑡𝑖𝑜𝑛1 and 𝑆𝑖𝑡𝑢𝑎𝑡𝑖𝑜𝑛2,

we set 𝑉𝑣𝑟 = 𝑉𝑑 −𝑉𝑐 , 𝑉𝑠𝑡 = 𝑉𝑐 in the corresponding bucket in 𝑆3 when 𝑏 is inserted to 𝑆3; under

𝑆𝑖𝑡𝑢𝑎𝑡𝑖𝑜𝑛3 and 𝑆𝑖𝑡𝑢𝑎𝑡𝑖𝑜𝑛4, we update𝑉𝑣𝑟 = 𝑉𝑑 −𝑉𝑐 in bucket 𝑏 itself. In 𝑆3, when a wave is detected,

𝑉𝑠𝑡 ,𝑉𝑠𝑡 +𝑉𝑣𝑟 ,𝑉𝑐 ,𝑉𝑑 are reported as the estimated curve points 𝑓𝑖 , 𝑓𝑗 , 𝑓𝑛, 𝑓𝑚 along with the wave.

Insertion: As discussed above, insertion may be triggered by moving from one stage to another.

We hash its key 𝐾 into
ˆ𝑑 mapping buckets B𝑠𝑖 [𝑔1 (𝐾), ..., 𝑔 ˆ𝑑

(𝐾)]. Then, we consider two cases.

Case 1: there exists an empty bucket B𝑆𝑖 [𝑔 𝑗 (𝐾)] in ˆ𝑑 mapping buckets, we insert 𝑏 in B𝑆𝑖 [𝑔 𝑗 (𝐾)].
Case 2: there is no empty bucket. When wave estimation is disabled, i.e., the counters 𝑉𝑠𝑡 and

𝑉𝑣𝑟 are not available, we randomly select one bucket to replace with 𝑏. When wave estimation

is enabled, we propose a Stage Variance Maximization technique to solve hash collisions. In

Stage Variance Maximization, we select one bucket B𝑆𝑖 [𝑔 𝑗 (𝐾)] with the smallest 𝑉𝑣𝑟 among
ˆ𝑑

mapping buckets. If the 𝑏.𝑉𝑣𝑟 > B𝑆𝑖 [𝑔 𝑗 (𝐾)] .𝑉𝑣𝑟 , we replace it with 𝑏. Our experiments show that

Stage Variance Maximization reduces estimation error.

Compared with the strawman solution, the advantages of Pontus using Multi-Stage Progressive

Tracking are two-fold. First, Pontus only requires 𝑂 (1) memory to detect waves, while strawman

requires 𝑂 (𝑇𝑖𝑛 +𝑇𝑙 +𝑇𝑑𝑒). Second, the throughput of Pontus is only related to the number of hash

functions (𝑑 + ˆ𝑑), while the throughput of strawman is associated with the number of hash functions

in CM sketches and the number of buckets in the hash table. Therefore, Pontus can achieve higher

throughput than the strawman.

7 OPTIMIZATION
We implement the data plane of Pontus in programmable switches to improve its throughput. With

the Stateful Algorithm and Logical Unit (Stateful ALU) in each stage of the switch pipeline, we

look up and update the entries in the corresponding register array. There are three differences

between the P4 hardware and software versions of Pontus. 1) Due to the resource limitation of

Stateful ALUs, we only store the key and value fields in physical registers. For insertion, we need

to go back to the register that has the smallest value and reset the key and value when there

are hash collisions in 𝑆1. However, this process is not allowed in the P4 language. To solve this

problem, we use the resubmit primitive. When a packet is resubmitted to the beginning of the

pipeline, it can maintain up to eight bytes of metadata in the resubmit header. We use the resubmit

metadata to record the necessary information (e.g., the counted packet number) for the replacement

operation. 2) As multiplications, divisions, and floating-point operations are not supported in P4, it

is difficult to calculate the probability. In P4, to approximate probabilistic replacement, we generate

a 32-bit random number 𝑟 and replace the smallest bucket in 𝑆1 if (𝑟 << 𝐿𝑉) < 2
32
, in which 𝐿𝑉

represents the bit furthest to the left in 𝑉 . 3) The control plane is deployed on the local CPU of the

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 106. Publication date: May 2023.

106:14 Zhengxin Zhang et al.

programmable switch or a remote server. At the end of each window, the programmable data plane

sends values in registers of different stages to the control plane. After updating, the control plane

sends the update information back to the data plane by rewriting physical registers in the switch

pipeline.

8 MATHEMATICAL ANALYSIS
In this section, we formally establish the error bound of 𝑆1 and the upper bounds of false positive

and false negative.

8.1 Error Bound of 𝑆1
Lemma 8.1. Given a data stream S, which obeys an arbitrary distribution, assume that 𝑆1 has 𝑑

hash functions and𝑚 is the value field of the minimum bucket among 𝑑 mapping buckets. Let ˆ𝑓 and 𝑓
be the estimated and actual frequency of an item 𝑒 , respectively. Then, we have ˆ𝑓 ≤ 𝑓 +𝑚.

Proof. Similarly as in [4], at time 𝑡 in current window: Case 1: 𝑒 is not in 𝑆1. In this case,
ˆ𝑓 = 0

and the claim obviously holds. Case 2: 𝑒 is in 𝑆1. In this case, consider the last time 𝑙 (𝑙 and 𝑡 are

both in the current window), 𝑒 is admitted in 𝑆1. So we have 𝑉 𝑙
𝑒 =𝑚𝑙−1 + 1, where 𝑉 𝑙

𝑒 is the value

field (𝑉) of 𝑒’s bucket at time 𝑙 and𝑚𝑙−1 is the minimum𝑉 among 𝑑 mapping buckets at time 𝑙 −1 in

𝑆1. Note that we only increase the minimum 𝑉 among 𝑑 mapping buckets due to an item insertion.

At that point, either no bucket changes or the minimum 𝑉 is incremented. Hence, 𝑉 𝑙
𝑒 ≤ 𝑚𝑙−1 + 1.

Suppose that 𝑒 arrives 𝑛 times between time 𝑙 and time 𝑡 . 𝑛 ≤ 𝑓 − 1 since 𝑒 arrived once at time

𝑙 − 1. Therefore, it follows that
ˆ𝑓 = 𝑉 𝑡

𝑒 = 𝑉 𝑙
𝑒 + 𝑛 ≤ 𝑚𝑙−1 + 1 + 𝑓 − 1 = 𝑓 +𝑚. □

Theorem 8.2. Assume that each window is fixed in S and has 𝑁 items. Let 𝑤 be the number of
buckets in 𝑆1 and 𝜖 be a small positive number, we have P(ˆ𝑓 − 𝑓 ≥ 𝜖𝑁) ≤ 1

𝜖𝜔
.

Proof. Suppose that 𝑑 hash functions are uniformly distributed, according to Lemma 8.1, we

have 𝐸 (ˆ𝑓 − 𝑓) ≤ 𝑚 ≤ 𝑁
𝜔
. By Markov inequality, we have

P(ˆ𝑓 − 𝑓 ≥ 𝜖𝑁) ≤ 𝐸 (ˆ𝑓 − 𝑓)
𝜖𝑁

≤ 𝑚

𝜖𝑁
≤ 1

𝜖𝜔
. (1)

□

8.2 Upper Bounds of False Positives
Lemma 8.3. Let 𝑁 be the window size, 𝜔1, 𝜔2, 𝜔3 be the numbers of buckets in 𝑆1, 𝑆2, 𝑆3, respectively.

𝑑 is the number of hash functions in 𝑆1. ˆ𝑑 is the number of hash functions in 𝑆2, 𝑆3. The probability of
hash collisions in 𝑆1, 𝑆2, 𝑆3 are given as

P𝑆1 ≤
{
1 − (𝑁

𝜔1

+ 1)𝑒
𝑁
𝜔
1

}𝑑
, (2)

P𝑆2 ≤
{
1 −

[
𝑁 (𝑇𝑖𝑛 + 1)

T𝜔2

+ 1

]
𝑒
− 𝑁 (𝑇𝑖𝑛+1)

T𝜔
2

} ˆ𝑑

, (3)

P𝑆3 ≤
[
1 −

(
2𝑁

T𝜔3

+ 1

)
𝑒
− 2𝑁

T𝜔
3

] ˆ𝑑

. (4)

Proof. 𝑆1 inserts a weak potential positive wave into 𝑆2 if it matches 𝑆𝑖𝑡𝑢𝑎𝑡𝑖𝑜𝑛3. So there are

at most
𝑁𝑇𝑖𝑛
T weak potential positive waves in a window. Similarly, 𝑆1 inserts a weak potential

negative wave into 𝑆2 if it matches 𝑆𝑖𝑡𝑢𝑎𝑡𝑖𝑜𝑛4. There are at most
𝑁
T weak potential negative waves.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 106. Publication date: May 2023.

Pontus: Finding Waves in Data Streams 106:15

Totally, there are at most
𝑁 (𝑇𝑖𝑛+1)

T weak potential waves. Each weak potential wave is randomly

mapped to a bucket in 𝑆2 by hash functions. The probability that a weak potential wave is mapped

to an arbitrary bucket is
1

𝜔2

. Therefore, for any bucket, the number of weak potential waves mapped

to bucket 𝑌 follows a Binomial distribution 𝐵

(
𝑁 (𝑇𝑖𝑛+1)

T , 1

𝜔2

)
. Usually,

𝑁 (𝑇𝑖𝑛+1)
T is large and

1

𝜔2

is a

small probability. Thus, 𝑌 approximately follows a Poisson distribution 𝜋

(
𝑁 (𝑇𝑖𝑛+1)

T𝜔2

)
, that is,

P(𝑌 = 𝑖) =

(
𝑁 (𝑇𝑖𝑛+1)

T𝜔2

)𝑖
𝑖!

𝑒
− 𝑁 (𝑇𝑖𝑛+1)

T𝜔
2 . (5)

Hash collisions happen when two or more weak potential waves are mapped to one bucket. The

probability of hash collision can be given as:

P(𝑌 ≥ 2) = 1 − P(𝑌 = 0) − P(𝑌 = 1)

≤ 1 −
[
𝑁 (𝑇𝑖𝑛 + 1)

T𝜔2

+ 1

]
𝑒
− 𝑁 (𝑇𝑖𝑛+1)

T𝜔
2 .

Since we use
ˆ𝑑 hash functions in 𝑆2, we have

P𝑆2 ≤
{
1 −

[
𝑁 (𝑇𝑖𝑛 + 1)

T𝜔2

+ 1

]
𝑒
− 𝑁 (𝑇𝑖𝑛+1)

T𝜔
2

} ˆ𝑑

. (6)

□

Similarly, we can prove P𝑆1and P𝑆3 . We omit the detailed proofs here due to limited space.

Lemma 8.4. Suppose that 𝑋 follows a Poisson distribution with parameter _. When _ is large (i.e.,
_ ≥ 20), its cumulative distribution function approximately obeys

𝑃 (𝑋 ≤ 𝑥) =
𝑥∑︁
𝑖=0

𝑝 (𝑋 = 𝑖) ≈
(
1 + 𝑒

_−𝑥√
_

)−1
. (7)

According to Equation (7), we have

𝑃 (𝑎 < 𝑋 ≤ 𝑏) = 𝑃 (𝑋 ≤ 𝑏) − 𝑃 (𝑋 ≤ 𝑎) ≤ 1 − 𝑒−
𝑏−𝑎√

_ , (8)

𝑃 (𝑎 < 𝑋 ≤ 𝑏) ≥ 𝑒
√
_

(1 + 𝑒
√
_)2

(𝑒−
𝑎√
_ − 𝑒−

𝑏√
_). (9)

Theorem 8.5. Let 𝑁 be the window size. The frequency 𝑓𝑐 of item 𝑒 in the current window follows
a Poisson distribution [45] with parameter _. The estimated frequency ˆ𝑓𝑝 of item 𝑒 in the previous
window is 𝑛. Items are independent and we cut off the tail of the distribution. The upper bounds of the
false positives of the positive wave 𝑃𝐹𝑃𝑃 and negative wave 𝑃𝐹𝑃𝑁 are

𝑃𝐹𝑃𝑃 ≤ {(1 − 𝑒−
𝑘 ·𝑛+1√

_) + (1 − 𝑒−
_𝑖𝑛 ·𝑛+1√

_) (10)

· (1 −
[

𝑒
√
_

(1 + 𝑒
√
_)2

(𝑒−
_𝑖𝑛 ·𝑛√

_ − 𝑒−
𝑘 ·𝑛√
_)

]𝑇𝑖𝑛−1
)} ·

P𝑆1

𝑑
, (11)

𝑃𝐹𝑃𝑁 ≤ {(1 − 𝑒−
𝑛/𝑘+1√

_) + (1 − 𝑒−
(_𝑑𝑒 −1/𝑘) ·𝑛+1√

_) (12)

· (1 −
[

𝑒
√
_

(1 + 𝑒
√
_)2

(𝑒−
𝑛/𝑘√
_ − 𝑒−

_𝑑𝑒 ·𝑛√
_)

]𝑇𝑑𝑒−1
)} ·

P𝑆1

𝑑
. (13)

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 106. Publication date: May 2023.

106:16 Zhengxin Zhang et al.

Proof. We first prove the upper bound of the false positive of the positive wave. Here, we only

consider the part where Pontus causes errors. The approximate count we use in 𝑆1 causes errors.

Note that for 𝑃𝐹𝑃𝑃 , we consider ˆ𝑓𝑝 = 𝑓𝑝 , since ˆ𝑓𝑝 > 𝑓𝑝 leads to smaller 𝑃𝐹𝑃𝑃 . For 𝑃𝐹𝑃𝑁 , we consider

ˆ𝑓𝑐 = 𝑓𝑐 , since ˆ𝑓𝑐 > 𝑓𝑐 leads to smaller 𝑃𝐹𝑃𝑁 where
ˆ𝑓𝑐 is the estimated frequency of item 𝑒 in the

current window. In 𝑆2 and 𝑆3, we use exact counts, which do not cause errors. Thus we consider

the probability that an item is mistakenly inserted into 𝑆3 (i.e., through 𝑆1 → 𝑆2 → 𝑆3 or 𝑆1 → 𝑆3)

due to hash collisions. So, 𝑃𝐹𝑃𝑃 satisfies

𝑃𝐹𝑃𝑃 ≤ 𝑃{𝑆1 → 𝑆2 → 𝑆3} + 𝑃{𝑆1 → 𝑆3}, (14)

where 𝑃{𝑆1 → 𝑆2 → 𝑆3} (𝑃1,2,3 for short) is the probability that an item is mistakenly inserted into

𝑆3 via 𝑆2 and 𝑃{𝑆1 → 𝑆3} (𝑃1,3 for short) is the probability that an item is mistakenly inserted into

𝑆3 directly. 𝑃1,2,3 is calculated by 𝑃{𝑆1 → 𝑆2} · 𝑃{𝑆2 → 𝑆3} (𝑃1,2, 𝑃2,3 for short, respectively), so we

have 𝑃1,2,3 = 𝑃1,2 · 𝑃2,3.
First, consider 𝑃1,2, we have

𝑃1,2 = 𝑃{𝑓𝑐 < _𝑖𝑛 · 𝑓𝑝 ∧ ˆ𝑓𝑐 ≥ _𝑖𝑛 · 𝑓𝑝 |𝑓𝑝 = 𝑛} (15)

=

⌈_𝑖𝑛 ·𝑛⌉∑︁
𝑖=1

𝑃 (𝑓𝑐 = ⌊_𝑖𝑛 · 𝑛⌋ − 𝑖) · 𝑃 (ˆ𝑓𝑐 − 𝑓𝑐 ≥ 𝑖). (16)

According to Lemma 8.4, we have

𝑃1,2 ≤ (1 − 𝑒−
_𝑖𝑛 ·𝑛+1√

_) · 𝑃 (ˆ𝑓𝑐 − 𝑓𝑐 ≥ 1). (17)

Note that necessary conditions of 𝑃 (ˆ𝑓𝑐 − 𝑓𝑐 ≥ 1) are that a hash collision occurs in 𝑆1 and the

bucket of the hash collision happens to be the bucket recorded 𝑓𝑐 . Therefore, we have

𝑃1,2 ≤
(
1 − 𝑒−

_𝑖𝑛 ·𝑛+1√
_

)
·
P𝑆1

𝑑
. (18)

Let 𝑃𝑥 and 𝑃𝑦 represent 𝑃 (_𝑖𝑛 · 𝑓𝑃 ≤ 𝑓𝑐 ≤ 𝑘 · 𝑓𝑝) and 𝑃 (𝑓𝑐 ≥ 𝑘 · 𝑓𝑝) for short, respectively. Note that
𝑃𝑥 + 𝑃𝑦 ≤ 1. So 𝑃2,3 is

𝑃2,3 =

𝑇𝑖𝑛−1∑︁
𝑖=0

𝑃𝑖−1𝑥 · 𝑃𝑦 =
1 − 𝑃𝑇𝑖𝑛−1𝑥

1 − 𝑃𝑥
· 𝑃𝑦 ≤

(
1 − 𝑃𝑇𝑖𝑛−1𝑥

)
. (19)

According to Lemma 8.4, we have

𝑃2,3 ≤ 1 −

𝑒
√
_(

1 + 𝑒
√
_

)
2

(
𝑒
− _𝑖𝑛 ·𝑛√

_ − 𝑒−
𝑘 ·𝑛√
_

)
𝑇𝑖𝑛−1

. (20)

Similar with 𝑃1,2, for 𝑃1,3, we have

𝑃1,3 ≤
(
1 − 𝑒−

𝑘 ·𝑛+1√
_

)
·
P𝑆1

𝑑
. (21)

Combine Equation (18), (20), and (21), we have

𝑃𝐹𝑃𝑃 ≤ {(1 − 𝑒−
𝑘 ·𝑛+1√

_) + (1 − 𝑒−
_𝑖𝑛 ·𝑛+1√

_) (22)

· (1 −
[

𝑒
√
_

(1 + 𝑒
√
_)2

(𝑒−
_𝑖𝑛 ·𝑛√

_ − 𝑒−
𝑘 ·𝑛√
_)

]𝑇𝑖𝑛−1
)} ·

P𝑆1

𝑑
. (23)

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 106. Publication date: May 2023.

Pontus: Finding Waves in Data Streams 106:17

Next, we prove the upper bound of the 𝑃𝐹𝑃𝑁 . For 𝑃1,2, we have

𝑃1,2 = 𝑃

{
1

𝑘
· ˆ𝑓𝑝 < 𝑓𝑐 ≤ _𝑑𝑒 · ˆ𝑓𝑝 ∧ 𝑓𝑐 > _𝑑𝑒 · 𝑓𝑝 | ˆ𝑓𝑝 = 𝑛

}
. (24)

Notice that 𝑓𝑝 = ˆ𝑓𝑝 − (ˆ𝑓𝑝 − 𝑓𝑝), so we have

𝑃1,2 =

⌊_𝑑𝑒 ·𝑛⌋∑︁
𝑖=⌈ 𝑛

𝑘
⌉
𝑃 (𝑓𝑐 = 𝑖) · 𝑃 (ˆ𝑓𝑝 − 𝑓𝑝 > 𝑛 − 𝑖

_𝑑𝑒
) (25)

≤
(
1 − 𝑒−

(_𝑑𝑒 −1/𝑘) ·𝑛+1√
_

)
·
P𝑆1

𝑑
. (26)

The proof of 𝑃2,3 and 𝑃1,3 of 𝑃𝐹𝑃𝑁 are similar to 𝑃𝐹𝑃𝑃 . □

The proof of upper bounds of false negatives can be obtained similarly. Due to the space limitation,

we omit them here.

9 EXPERIMENTAL RESULTS
In this section, we first introduce the experiment setup and metrics. Then we conduct experiments

to evaluate Pontus.

9.1 Experiment Setup and Metrics
Datasets: We use four datasets in our experiment. For each dataset, we divide it into windows that

have fixed size 𝑁 = 10000. Note that the ground truth of the wave is different when we set different

𝑇𝑖𝑛,𝑇𝑑𝑒 , 𝑘 . An example of the number of ground truths in the following dataset is shown in Table 2.

1) IP Trace dataset: The IP Trace dataset contains data streams of anonymized IP trace collected

by CAIDA in 2019 [7]. Each item contains a source IP address (4 bytes) and a destination IP address

(4 bytes). There are about 36M packages and 7.9M distinct items in the IP Trace dataset. 2) Data
Center dataset: The data center dataset[1] contains traces collected from the data centers studied

in [35]. Each item (4 bytes) represents the ID of the trace. There are about 20M packages and 4.7M

distinct items in the Data Center dataset. 3) MAWI dataset: The MAWI dataset contains traffic

traces collected by MAWI [23]. Each item contains a source IP address (4 bytes) and a destination

IP address (4 bytes). There are about 20M packages and 5.3M distinct items in the MAWI dataset. 4)
Synthetic dataset: We use Web Polygraph [33] to generate synthetic dataset which follows Zipf

[30] distribution. The length of each item is 4 bytes. We use the dataset with a skewness of 1.5 as

the Synthetic dataset in the following experiments. There are about 20M packages and the number

of distinct items is according to the skewness.

Implementation: Our software version of Pontus is implemented in C++. We conduct experi-

ments on a server with 16-core CPUs (32 threads, Intel(R) Xeon(R) Gold 5218 CPU @ 2.30GHz),

and 64GB DRAM memory. In our software version of Pontus, we use BOB Hash [21] to implement

the hash functions. We recommend a ratio of 7 : 2 : 1 for the memory of 𝑆1, 𝑆2 and 𝑆3 in practice

to reduce the hash collisions since the number of waves is much smaller than the number of the

potential waves and non-fluctuating items. We build our Pontus hardware prototype based on an

EdgeCore wedge 100BF-65X Tofino switch with a local CPU of Intel(R) Xeon(R) CPU D-1527 @

2.20GHz. The P4 code is compiled by Barefoot P4 Studio Software Development Environment(SDE).

We use the traffic generator KEYSIGHT XGS12-SDL to generate high-speed traffic. We enable the

Intel DPDK library on the server for high-performance traffic replay.

Metrics: 1) Recall Rate (RR): Ratio of the number of correctly reported instances to the

number of reported instances. 2) Precision Rate (PR): Ratio of the number of correctly reported

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 106. Publication date: May 2023.

106:18 Zhengxin Zhang et al.

instances to the number of correct instances. 3) F1-Score: 2·𝑅𝑅 ·𝑃𝑅
𝑅𝑅+𝑃𝑅 . 4) Average Relative Error

(ARE): 1

Ψ

∑
𝑒∈Ψ

∑
𝑎∈C

|𝑎−𝑎 |
𝑎

, where 𝑎 is the true curve point of item 𝑒 , 𝑎 is the estimated curve point,

C = {𝑎𝑖 , 𝑎 𝑗 , 𝑎𝑛, 𝑎𝑚} is true curve points set of item 𝑒 , and Ψ is the ground truth set. ARE evaluates

errors in wave estimation. 5) Throughput: Million insertions per second (MIPS). Throughput

experiments are repeated 10 times to ensure statistical significance.

Ground Truth: To generate the ground truth label, we assign a bucket to each incoming item,

which contains𝑇𝑑𝑒 +𝑇𝑙 +𝑇𝑖𝑛 counters to record the frequencies of items across windows. At the end

of each window, we iterate through all buckets and check if the frequency change of the counters in

the buckets satisfies the definition of the wave. If so, we report it as a wave. During experiments, a

wave detected by the algorithm is considered to be correct when its type (i.e., positive or negative),

𝑡 (timestamp),𝑤𝑖𝑛 ,𝑤𝑑𝑒 , and𝑤𝑙 equal those of the ground truth wave, which are used to calculate

PR and RR. We also assign each bucket four counters to record curve points, which are used to

calculate ARE.

0.1 0.2 0.3 0.4 0.5
Memory (MB)

0.0

0.2

0.4

0.6

0.8

1.0

PR

Pontus
Strawman

TLF
SS

(a) Data Center

0.1 0.2 0.3 0.4 0.5
Memory (MB)

0.0

0.2

0.4

0.6

0.8

1.0

PR

Pontus
Strawman

TLF
SS

(b) CAIDA

0.1 0.2 0.3 0.4 0.5
Memory (MB)

0.0

0.2

0.4

0.6

0.8

1.0

PR
Pontus
Strawman

TLF
SS

(c) WIDE

0.1 0.2 0.3 0.4 0.5
Memory (MB)

0.0

0.2

0.4

0.6

0.8

1.0

PR

Pontus
Strawman

TLF
SS

(d) Synthetic

Fig. 4. Wave detection Precision Rate of Pontus and baseline solutions.

0.1 0.2 0.3 0.4 0.5
Memory (MB)

0.0

0.2

0.4

0.6

0.8

1.0

R
R

(a) Data Center

0.1 0.2 0.3 0.4 0.5
Memory (MB)

0.0

0.2

0.4

0.6

0.8

1.0

R
R

(b) CAIDA

0.1 0.2 0.3 0.4 0.5
Memory (MB)

0.0

0.2

0.4

0.6

0.8

1.0

R
R

(c) WIDE

0.1 0.2 0.3 0.4 0.5
Memory (MB)

0.0

0.2

0.4

0.6

0.8

1.0

R
R

(d) Synthetic

Fig. 5. Wave detection Recall Rate of Pontus and baseline solutions.

0.1 0.2 0.3 0.4 0.5
Memory (MB)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

A
R

E

(a) Data Center

0.1 0.2 0.3 0.4 0.5
Memory (MB)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

A
R

E

(b) CAIDA

0.1 0.2 0.3 0.4 0.5
Memory (MB)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

A
R

E

(c) WIDE

0.1 0.2 0.3 0.4 0.5
Memory (MB)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

A
R

E

(d) Synthetic

Fig. 6. Wave estimation Average Relative Error of Pontus and baseline solutions.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 106. Publication date: May 2023.

Pontus: Finding Waves in Data Streams 106:19

Table 2. Performance regarding each type of wave.

Dataset

Metrics # waves F1-Score ARE

pos. neg. pos. neg. pos. neg.

Data Center 8942 2531 97% 99% 0.12 0.10

CAIDA 16894 6530 97% 98% 0.25 0.08

WIDE 7441 1657 98% 99% 0.21 0.05

Synthetic 10786 5688 97% 99% 0.17 0.11

9.2 Wave Detection and Estimation Experiments
We set 𝑑 = 3, ˆ𝑑 = 4,𝑇𝑖𝑛 = 𝑇𝑑𝑒 = 4,𝑇𝑙 = 10, 𝑘 = 2 and vary the memory from 0.1 MB to 0.5 MB.

SpaceSaving [27] (SS) maintains a hash table with 𝑘 buckets, and each bucket contains a K-V pair.

Two-Level Filtering [36] (TLF) uses two hash tables: the first-level filter and the second-level filter,

which contain 𝑘1 and 𝑘2 buckets, respectively. We extend the bucket in SS and TLF to maintain

more information for tracing waves and construct baseline methods based on them for comparison.

The results of wave detection precision rate on different datasets are illustrated in Figure 4. The

results show that Pontus obtains over 90% PR on all datasets even when the memory is very small,

and even achieves near 98% PR when the memory is increased to 0.5 MB. The strawman solution,

however, can barely detect waves when memory is small since it requires excessive memory to

build CM sketches to reduce the hash collisions. It only starts to function after the memory is more

than 0.2 MB, but still struggles to reach 75% PR even with 0.5 MB memory. The PRs of SS and TLF

are even worse than the strawman solution.

The results of wave detection recall rate on different datasets are illustrated in Figure 5. The

results show that Pontus performs well even under very scarce memory of 0.1 MB, achieving about

80% RR on the CAIDA dataset and over 95% RR on other datasets. When memory is raised to 0.5

MB, Pontus successfully achieves nearly 99% RR. Meanwhile, the strawman solution again could

barely operate under little memory and only gets near 50% and 75% RRs even with 0.5 MB memory.

SS and TLF are incompetent under small memory, achieving about 19% and 15% RR with 0.1 MB

memory, respectively. Though the RRs of SS and TLF increase as the memory increases, they merely

achieve about 60% RR with 0.5 MB memory.

The results of wave estimation AREs on different datasets are illustrated in Figure 6. Pontus

achieves much lower ARE than the strawman on all datasets. When memory is 0.5 MB, Pontus

achieves only 0.1 ARE, which is about 10 × lower than the strawman solution. The AREs of SS and

TLF are as high as 3.6 and 3.3 when memory is small, respectively, which are over 2 × higher than

the strawman.

9.3 Performance for Each Type of Wave
Pontus is designed to detect and estimate both positive and negative waves simultaneously, as

evaluated in previous experiments. To understand its performance in detecting either positive or

negative waves alone, we present the F1-score and ARE for positive and negative waves obtained

in the previous experiments separately (with the memory of 0.5 MB) in Table 2. As can be seen, the

F1-Scores of detecting the negative waves are slightly (about 0.02) higher than those of positive

waves for all four datasets. The AREs of detecting the negative waves are generally smaller than

those of positive waves, though to varying degrees, across the four datasets.

_𝑖𝑛, _𝑑𝑒 are hyper-parameters related to 𝑇𝑖𝑛,𝑇𝑑𝑒 , 𝑘 and the number of positive and negative wave.

In our experiment, we set _𝑖𝑛 = 1 + 𝑘−1
𝑇𝑑𝑒

, _𝑑𝑒 = 1− 𝑘−1
𝑘𝑇𝑑𝑒

. Since the numbers of the positive waves are

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 106. Publication date: May 2023.

106:20 Zhengxin Zhang et al.

Table 3. Numbers of positive and negative waves on different ports in each experimental dataset.

Port

Dataset

Data Center CAIDA WIDE Synthetic

80

pos. 2773 4395 2683 1325

neg. 1240 3569 1411 2958

23

pos. 3427 6763 3632 3711

neg. 14 30 7 78

53

pos. 1411 4187 209 1774

neg. 998 2841 154 2426

22

pos. 682 924 637 2449

neg. 6 13 0 22

123

pos. 137 531 123 1301

neg. 2 8 4 16

Others

pos. 512 94 157 226

neg. 271 69 81 188

much higher than those of negative ones in all four datasets, we slightly increase _𝑑𝑒 to maintain

more potential negative waves to reduce the probability of hash collision of negative waves. In

practice, administrators can adjust _𝑖𝑛 and _𝑑𝑒 to achieve good performance in their specific data

mining or networking scenarios.

We count the numbers of positive and negative waves in the experimental datasets in Table 3.

Next, we offer more insights into their potential applications in real-life scenarios. For the purpose

of user privacy protection, public datasets do not contain the payload of packets. Therefore, we

classify applications based on port numbers. As shown in Table 3, for all experimental datasets,

we observe waves mainly on ports 80, 23, 53, 22, 123, and others. Waves detected on port 80 can

be adopted in online advertising-related applications since this port is particularly reserved by

the HTTP protocol for web browsing. Port 53 is designated for DNS nameservers. As such, waves

detected on this port can be used for DNS query-related scenarios.

Waves on ports 23, 123, and 22 [26] may be caused by attacks in the networks. For example, Mirai

[2] attacks at port 23, and Worm [34] attacks at port 123. There are significantly more positive

waves than negative waves in all datasets, except for the Synthetic dataset, where we intentionally

generate more negative waves to see its impacts on the results.

In particular, the vast majority of waves that appear at ports 23, 22, and 123 are positive waves.

This is because attackers usually gradually ramp up the numbers of attacking packets and then

decrease to bypass DDoS detection, which is consistent with the definition of the positive wave.

When deploying Pontus in the real world, a detailed analysis can be done through the payloads of

packets.

9.4 Update Time and Packet Loss
We set 𝑑 = 3, ˆ𝑑 = 4,𝑇𝑖𝑛 = 𝑇𝑑𝑒 = 4,𝑇𝑙 = 10, 𝑘 = 2 and vary the memory from 0.1 MB to 10 MB. Each

window is set to contain 20K packets (items) and each packet length is 1500 Byte. The update time

and packet loss per window are illustrated in Figure 7(a). As the memory increases, the update

times of the control plane and data plane increase slowly in the beginning until the memory reaches

1 MB, after which the growth escalates rapidly. The increases in update times cause the packet

loss rate to rise in a similar trend: it increases slightly to just above 1% at 1MB memory and then

rises rapidly to 4.7% at 10 MB memory. The results in Figure 7(b) show that the accuracy first

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 106. Publication date: May 2023.

Pontus: Finding Waves in Data Streams 106:21

10−1 100 101

Memory (MB)

0

2

4

6

8

10

U
pd

at
e

Ti
m

e
×1

0−3
 (s

)

Control Plane
Data Plane

Packet Loss

0

1

2

3

4

5

6

Pa
ck

et
 L

os
s R

at
e

(%
)

(a) Update time/Packet Loss

10−1 100 101

Memory (MB)

0.90

0.92

0.94

0.96

0.98

1.00

F1
-S

co
re

(b) F1-Score

Fig. 7. Update Time and Packet Loss.

increases sharply to around 99% at 0.5 MB but decreases as the memory approaches 10 MB. This is

because overly small memory leads to frequent hash collisions while overly large memory causes

prolonged update time, which induces an increased packet loss rate and thus decreased accuracy.

In our experiments, the memory of Pontus is set to 0.5 MB.

9.5 Parameters Effects Analysis

2 4 6 8 10
k

0.90

0.92

0.94

0.96

0.98

F1
-S

co
re

0.1 MB
0.2 MB

0.3 MB
0.4 MB

0.5 MB

(a) 𝑘

0.1 0.2 0.3 0.4 0.5
Memory (MB)

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

F1
-S

co
re

Frequency Decay
Probability Replacement

Probability Decay

(b) Replacement strategy

4 8 12 16 20
Tin, Tde

0.88

0.90

0.92

0.94

0.96

0.98

F1
-S

co
re

0.1 MB
0.2 MB

0.3 MB
0.4 MB

0.5 MB

(c) 𝑇𝑖𝑛,𝑇𝑑𝑒

2 4 6 8 10
̂d

0.75

0.80

0.85

0.90

0.95

1.00

F1
-S
co
re

d = 1
d = 2

d = 3
d = 1

d = 5

(d) 𝑑, ˆ𝑑

Fig. 8. Analysis of different parameters and replacement strategies’ effects.

Effects of 𝑘: In this experiment, we vary the 𝑘 from 2 to 10. The results in Figure 8(a) show

that Pontus performs well, achieving over 92% F1-Score regardless of the value of 𝑘 . When 𝑘 varies

from 2 to 4, the F1-Score of Pontus drops slightly. The reason is that the number of items inserted

into 𝑆2 or 𝑆3 decreases, so hash collisions in 𝑆1 increase. When 𝑘 varies from 4 to 10, the number of

items inserted into 𝑆2 or 𝑆3 is stable. Thus, the F1-Score of Pontus is also stable. In general, Pontus

is insensitive to 𝑘 when 𝑘 varies.

Effects of replacement strategy: In Figure 8(b), we compare three replacement strategies

in 𝑆1 as mentioned in Section 5. The results show that probability replacement performs the best

among the three strategies while frequency decay performs worst. Therefore, we use probability

replacement in our implementation.

Effects of𝑇𝑖𝑛,𝑇𝑑𝑒 : We vary𝑇𝑖𝑛,𝑇𝑑𝑒 from 4 to 20. The results in Figure 8(c) show that the F1-Score

of Pontus slightly decreases as 𝑇𝑖𝑛 and 𝑇𝑑𝑒 increase. The reason the number of items inserted into

𝑆2 and 𝑆3 increases as 𝑇𝑖𝑛 and 𝑇𝑑𝑒 increase. Thus, the hash collisions in 𝑆2 and 𝑆3 increase.

Effects of 𝑑, ˆ𝑑: We vary 𝑑 from 1 to 5 and
ˆ𝑑 from 2 to 10. The results in Figure 8(d) show that

the F1-Score of Pontus increases as 𝑑, ˆ𝑑 increase. However, the insertion throughput will decrease

as 𝑑, ˆ𝑑 increase. Therefore, we set 𝑑 = 3 and
ˆ𝑑 = 4 to make a trade-off between accuracy and

throughput.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 106. Publication date: May 2023.

106:22 Zhengxin Zhang et al.

0.1 0.2 0.3 0.4 0.5
Memory (MB)

0.95

0.96

0.97

0.98

0.99

1.00

F1
-S

co
re

Stage Variance Maximization
Non Stage Variance Maximization

(a) F1-Score

0.1 0.2 0.3 0.4 0.5
Memory (MB)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

A
R

E

Stage Variance Maximization
Non Stage Variance Maximization

(b) ARE

Fig. 9. Effects of Stage Variance Maximization.

Effects of Stage Variance Maximization : This experiment evaluates the effects of Stage

Variance Maximization. We vary the memory from 0.1 MB to 0.5 MB. Figure 9(a) shows the F1-

Scores achieved with and without using Stage Variance Maximization. As can be seen, the Stage

Variance Maximization improves the F1-Score of Pontus for about 0.1 when the memory is small.

When the memory is up to 0.5 MB, using Stage Variance Maximization improves about 0.15.

Figure 9(a) shows the AREs achieved with and without using Stage Variance Maximization. Our

experiments show that using Stage Variance Maximization reduces about 0.2 ARE of Pontus when

the memory is 0.1 MB. When the memory is up to 0.5 MB, using Stage Variance Maximization

reduces about 0.1 ARE.

9.6 Experiments on P4 version of Pontus
We compare the throughput and F1-Score of the strawman, software version, and P4 version of

Pontus. We set the memory of Pontus and strawman to 0.3 MB and 𝑇𝑖𝑛 = 𝑇𝑑𝑒 = 4,𝑇𝑙 = 10, 𝑘 = 2.

Pontus (1,1) and Pontus (3,5) refer to 𝑑 = 1, ˆ𝑑 = 1 and 𝑑 = 3, ˆ𝑑 = 5, respectively.

Strawman

Pontus (1
,1)

Pontus (3
,5)

Pontus (P
4)

0.0

0.2

0.4

0.6

0.8

1.0

F1
-S

co
re

0.57

0.83
0.97

0.86

(a) F1-Score

Strawman

Pontus (1
,1)

Pontus (3
,5)

Pontus (P
4)

100

101

102

103

Th
ro

ug
hp

ut
 (M

IP
S)

0.68
1.32 1.24

572.60

(b) Throughput

Fig. 10. Experiments on P4 version of Pontus.

Figure 10(a) shows that Pontus (P4) achieves 86% F1-Score which is higher than those of Pontus

(1,1) and strawman. The F1-Score of Pontus (P4) is about 0.1 less than that of Pontus (3,5) due to

the approximate probabilistic replacement used in P4. Figure 10(b) shows that the throughput of

Pontus (P4) is about 842, 433, and 462 × higher than those of strawman, Pontus (1,1) and Pontus

(3,5), respectively. In general, the P4 version of Pontus achieves outstanding processing speed with

high accuracy.

9.7 Comparison with Prior Arts
In this part, we compare Pontus with BurstSketch [43], Topic-Sketch [38] and CM-PBE [29] on

burst detection and wave detection.

In burst detection, we set 𝑑 = 3, ˆ𝑑 = 4,𝑇𝑖𝑛 = 𝑇𝑑𝑒 = 1,𝑇𝑙 = 10,𝑘 = 2 and vary the memory from

0.1 MB to 0.5 MB. The F1-Scores of Pontus and the prior arts in burst detection are illustrated in

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 106. Publication date: May 2023.

Pontus: Finding Waves in Data Streams 106:23

0.1 0.2 0.3 0.4 0.5
Memory (MB)

0.5

0.6

0.7

0.8

0.9

1.0

F1
-S

co
re

Pontus
BurstSketch

TopicSketch
CM-PBE

(a) Burst detection

1 2 3 4 5
Tin, Tde

0.5

0.6

0.7

0.8

0.9

1.0

F1
-S
co
re

Pontus
BurstSketch

TopicSketch
CM-PBE

(b) Wave detection

Fig. 11. F1-Score comparison with prior arts. In Figure 11(b), the dotted lines indicate the enhanced versions
of the corresponding solutions.

Figure 11(a). The results show that BurstSketch and Pontus achieve comparable F1-Score (above

95%) in detecting bursts most of the time and BurstSketch only outperforms Pontus slightly when

the memory is small. The F1-Scores of TopicSketch and CM-PBE are only around half of that of

Pontus since they only consider the increase of a burst and do not consider the decrease of a burst.

In wave detection, we vary 𝑇𝑖𝑛,𝑇𝑑𝑒 from 1 to 5. The bigger 𝑇𝑖𝑛,𝑇𝑑𝑒 is, the more complicated the

waves in data streams are. To evaluate the wave detection performance of Pontus, we implement

enhanced versions of prior arts, which are called as BurstSketch(E), TopicSketch(E), and CM-PBE(E),

respectively. Specifically, to support the tracking of waves, we add additional hash tables to the

original schemes to track item frequency in multiple windows and extend each bucket to maintain

necessary information. As shown in Figure 11(b), Pontus retains about 97% F1-Score, regardless

of the variation of 𝑇𝑖𝑛,𝑇𝑑𝑒 . Though the enhanced versions of prior arts outperform their original

versions, their F1-Scores, ranging from 0.65 to 0.85, are still significantly inferior to that of Pontus.

Pontus (P
4)

Pontus

BurstS
ketch

BurstS
ketch(E)

TopicSketch

TopicSketch(E)

CM-PBE

CM-PBE(E)
100

101

102

103

Th
ro

ug
hp

ut
 (M

IP
S)

572.60

1.32 1.03 0.89 1.17 1.01 1.35 1.06

Fig. 12. Throughput comparison with prior arts.

As shown in Figure 12, the throughput of P4 version Pontus is over 500 × higher than others.

The throughput of software version Pontus is about 30% and 13% higher than BurstSketch and

TopicSketch, respectively, though slightly lower than CM-PBE. The enhanced versions of prior arts

suffer from degraded throughput than their original versions due to insertions in additional hash

tables.

Overall, the results show that Pontus significantly outperforms prior arts in detecting waves,

while still achieving one of the best performances in detecting bursts.

9.8 Experiments on Distributions
To evaluate the effects of dataset skewness, we generate 10 synthetic datasets with skewness

from 0.3 to 3. We set 𝑑 = 3, ˆ𝑑 = 4,𝑇𝑖𝑛 = 𝑇𝑑𝑒 = 4,𝑇𝑙 = 10,𝑘 = 2 and the memory of Pontus to 0.3

MB. Figure 13(a) shows the F1 scores under different dataset skewness. The results show that the

F1-Score under a skewness of 0.3 is about 1.35 × and 1.4 × lower than those under a skewness of

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 106. Publication date: May 2023.

106:24 Zhengxin Zhang et al.

0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0
Skewness

0.65

0.70

0.75

0.80

0.85

0.90

0.95

F1
-S

co
re

0.1 MB
0.2 MB

0.3 MB
0.4 MB

0.5 MB

(a) F1-Score

0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0
Skewness

0.2

0.4

0.6

0.8

1.0

1.2

1.4

A
R

E

0.1 MB
0.2 MB

0.3 MB
0.4 MB

0.5 MB

(b) ARE

Fig. 13. Experiments on dataset skewness.

0.9 and 3, respectively. Figure 13(b) shows the AREs achieved under different dataset skewness.

The ARE under a skewness of 0.3 is about 2.3 × and 7.5 × higher than those under a skewness of

0.9 and 3, respectively. Our results reveal that Pontus performs well under the high skewness of

the dataset and is robust against dataset skewness.

10 CONCLUSION
In this paper, we propose the wave, a new data pattern in data streams, and propose Pontus, a

lightweight wave detection and estimation framework. Pontus utilizes the data plane to process the

incoming data stream and the control plane to detect waves. Pontus uses theMulti-Stage Progressive

Tracking strategy to filter the illegal items in advance and the Stage Variance Maximization to

minimize the estimation error. The P4 version of Pontus further improves the throughput. Moreover,

we prove the theoretical error bound and establish upper bounds of false positive and false negative.

Experiment results show that our Pontus is significantly faster andmore accurate than the strawman.

ACKNOWLEDGMENTS
We would like to thank the anonymous SIGMOD reviewers and our shepherd Blanas, Spyros for

their thorough comments and feedback that helped improve the paper. We thank Xudong Zuo

for his helpful suggestions about mathematical analysis. This work is supported by the National

Key Research and Development Program of China under grant No. 2020YFB1804704, the National

Natural Science Foundation of China under grant No. 61972189, and the Major Key Project of

PCL under grant No. PCL2021A03-1, Shenzhen Science and Technology Innovation Commission:

Research Center for Computer Network (Shenzhen) Ministry of Education, and the Shenzhen Key

Lab of Software Defined Networking under grant No. ZDSYS20140509172959989.

REFERENCES
[1] Aditya Akella, Theophilus Benson. 2010. Data center dataset. https://pages.cs.wisc.edu/~tbenson/IMC10_Data.html.

(2010).

[2] Manos Antonakakis and Tim April. 2017. Understanding the mirai botnet. In 26th USENIX Security Symposium,
USENIX Security 2017, 1093–1110.

[3] Barefoot Networks. 2021. Tofino switch. https://www.barefootnetworks.com/products/brief-tofino. (2021).

[4] Ran Ben-Basat and Gil Einziger. 2017. Randomized admission policy for efficient top-k and frequency estimation. In

2017 IEEE Conference on Computer Communications, INFOCOM 2017, 1–9.
[5] Pat Bosshart and Dan Daly. 2014. P4: programming protocol-independent packet processors. Comput. Commun. Rev.,

44, 3, 87–95.

[6] Pat Bosshart and Glen Gibb. 2013. Forwarding metamorphosis: fast programmable match-action processing in

hardware for SDN. In Proceedings of the ACM SIGCOMM 2013 Conference on Applications, Technologies, Architectures,
and Protocols for Computer Communication, 99–110.

[7] Caida. 2019. Anonymized 2019 internet traces. http://www.caida.org/data/overview/. (2019).

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 106. Publication date: May 2023.

https://pages.cs.wisc.edu/~tbenson/IMC10_Data.html
https://www.barefootnetworks.com/products/brief-tofino
 http://www.caida.org/data/overview/

Pontus: Finding Waves in Data Streams 106:25

[8] Moses Charikar and Kevin C. Chen. 2002. Finding frequent items in data streams. In Automata, Languages and
Programming, 29th International Colloquium, ICALP 2002, Proceedings, 693–703.

[9] Peiqing Chen and Chen. 2021. Out of many we are one: measuring item batch with clock-sketch. In SIGMOD ’21:
International Conference on Management of Data, 261–273.

[10] Tingting Chen and Yi Wang. 2006. Detecting lasting and abrupt bursts in data streams using two-layered wavelet

tree. In Advanced International Conference on Telecommunications and International Conference on Internet and Web
Applications and Services (AICT/ICIW 2006), 30–36.

[11] Cloudflare DDoS Team. 2021. Meris botnet. https://radar.cloudflare.com/notebooks/meris-botnet#meris_attacks_ove

r_time. (2021).

[12] Graham Cormode and S. Muthukrishnan. 2005. An improved data stream summary: the count-min sketch and its

applications. J. Algorithms, 55, 1, 58–75.
[13] Sean Patrick Donovan and Nick Feamster. 2014. Intentional network monitoring: finding the needle without capturing

the haystack. In Proceedings of the 13th ACM Workshop on Hot Topics in Networks, HotNets-XIII, 5:1–5:7.
[14] Cristian Estan and George Varghese. 2003. Bitmap algorithms for counting active flows on high speed links. In

Proceedings of the 3rd ACM SIGCOMM Internet Measurement Conference, IMC 2003, 153–166.
[15] Cristian Estan and George Varghese. 2002. New directions in traffic measurement and accounting. In Proceedings

of the ACM SIGCOMM 2002 Conference on Applications, Technologies, Architectures, and Protocols for Computer
Communication, 323–336.

[16] Flajolet and Philippe. 2007. Hyperloglog: the analysis of a near-optimal cardinality estimation algorithm. In Discrete
Mathematics and Theoretical Computer Science, 137–156.

[17] Philippe Flajolet and G. Nigel Martin. 1985. Probabilistic counting algorithms for data base applications. J. Comput.
Syst. Sci., 31, 2, 182–209.

[18] Monia Ghobadi and Ratul Mahajan. 2016. Optical layer failures in a large backbone. In Proceedings of the 2016 ACM
on Internet Measurement Conference, IMC 2016, 461–467.

[19] Lukasz Golab and David DeHaan. 2003. Identifying frequent items in sliding windows over on-line packet streams.

In Proceedings of the 2003 ACM on Internet Measurement Conference, IMC 2003, 173–178.
[20] Nikita Ivkin and Zhuolong Yu. 2019. Qpipe: quantiles sketch fully in the data plane. In Proceedings of the 15th

International Conference on Emerging Networking Experiments And Technologies, CoNEXT 2019, 285–291.
[21] Robert J. Jenkins Jr. 1995. Bob hash website. http://burtleburtle.net/bob/hash/evahash.html. (1995).

[22] Z. Karnin and K. Lang. 2016. Optimal quantile approximation in streams. In IEEE 57th Annual Symposium on
Foundations of Computer Science, FOCS 2016, 71–78.

[23] Koushirou Mitsuya Kenjiro Cho. 2000. Traffic data repository at the wide project. In Proceedings of the Freenix Track:
2000 USENIX Annual Technical Conference, 263–270.

[24] Jason Kim and Hyojoon Kim. 2021. Analyzing traffic by domain name in the data plane. In SOSR ’21: The ACM
SIGCOMM Symposium on SDN Research, 1–12.

[25] Jon M. Kleinberg. 2002. Bursty and hierarchical structure in streams. In Proceedings of the Eighth ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, 91–101.

[26] Yeheskel Lapid and Niv Ahituv. 1986. Approaches to handling "trojan horse" threats. Comput. Secur., 5, 3, 251–256.
[27] Ahmed Metwally and Divyakant Agrawal. 2005. Efficient computation of frequent and top-k elements in data streams.

In Database Theory - ICDT 2005, 10th International Conference, Proceedings, 398–412.
[28] Congcong Miao and Jingyu Xiao. 2022. Detecting ephemeral optical events with optel. In 19th USENIX Symposium

on Networked Systems Design and Implementation, NSDI 2022, 339–353.
[29] Debjyoti Paul and Yanqing Peng. 2019. Bursty event detection throughout histories. In 35th IEEE International

Conference on Data Engineering, ICDE 2019, 1370–1381.
[30] David M. W. Powers. 1998. Applications and explanations of zipf’s law. In Proceedings of the Joint Conference on New

Methods in Language Processing and Computational Natural Language Learning, NeMLaP/CoNLL 1998, 151–160.
[31] Shouke Qin and Weining Qian. 2005. Adaptively detecting aggregation bursts in data streams. In Database Systems

for Advanced Applications, 10th International Conference, DASFAA 2005, Proceedings, 435–446.
[32] Shouke Qin and Weining Qian. 2006. Approximately processing multi-granularity aggregate queries over data

streams. In Proceedings of the 22nd International Conference on Data Engineering, ICDE 2006, 67–67.
[33] Alex Rousskov and Duane Wessels. 2004. High-performance benchmarking with web polygraph. Softw. Pract. Exp.,

34, 2, 187–211.

[34] Eugene H. Spafford. 1989. The internet worm incident. In ESEC ’89, 2nd European Software Engineering Conference,
Proceedings, 446–468.

[35] Aditya Akella Theophilus Benson. 2010. Network traffic characteristics of data centers in the wild. In Proceedings of
the 10th ACM SIGCOMM Internet Measurement Conference, IMC 2010, 267–280.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 106. Publication date: May 2023.

https://radar.cloudflare.com/notebooks/meris-botnet#meris_attacks_over_time
https://radar.cloudflare.com/notebooks/meris-botnet#meris_attacks_over_time
http://burtleburtle.net/bob/hash/evahash.html

106:26 Zhengxin Zhang et al.

[36] Shobha Venkataraman andDawnXiaodong Song. 2005. New streaming algorithms for fast detection of superspreaders.

In Proceedings of the Network and Distributed System Security Symposium, NDSS 2005.
[37] L. Wang and G. Luo. 2013. Quantiles over data streams: an experimental study. Proc. VLDB Endow., 25, 4, 1–24.
[38] Wei Xie and Feida Zhu. 2013. Topicsketch: real-time bursty topic detection from twitter. In 2013 IEEE 13th International

Conference on Data Mining, 837–846.
[39] Dai Yumei and Liang Yu. 2014. POSTER: A hybrid botnet ecological environment. In Proceedings of the 2014 ACM

SIGSAC Conference on Computer and Communications Security, CCS 2014, 1421–1423.
[40] Y. Zhang and J. Li. 2020. On-off sketch: a fast and accurate sketch on persistence. Proc. VLDB Endow., 14, 2, 128–140.
[41] Yinda Zhang and Zaoxing Liu. 2021. Cocosketch: high-performance sketch-based measurement over arbitrary partial

key query. In Proceedings of the ACM SIGCOMM 2021 Conference on Applications, Technologies, Architectures, and
Protocols for Computer Communication, 207–222.

[42] Zhengxin Zhang. 2022. Source code of pontus. https://github.com/YouAreSpecialToMe/Pontus. (2022).

[43] Zheng Zhong and Shen Yan. 2021. Burstsketch: finding bursts in data streams. In SIGMOD ’21: International Conference
on Management of Data, 2375–2383.

[44] Yunyue Zhu. 2003. Efficient elastic burst detection in data streams. In Proceedings of the Ninth ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, 336–345.

[45] Moshe Zukerman, Timothy D. Neame, and Ron Addie. 2003. Internet traffic modeling and future technology

implications. In 2003 IEEE Conference on Computer Communications, INFOCOM 2003, 587–596.

Received 16 July 2022; revised 21 October 2022; accepted 20 November 2022

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 106. Publication date: May 2023.

https://github.com/YouAreSpecialToMe/Pontus

	Abstract
	1 Introduction
	2 Related Work
	3 The Wave
	3.1 Wave Definition
	3.2 Wave Detection and Estimation

	4 System Overview
	4.1 The Strawman Solution
	4.2 The Pontus Framework

	5 The Pontus Data Plane
	6 The Pontus Control Plane
	7 Optimization
	8 Mathematical Analysis
	8.1 Error Bound of S1
	8.2 Upper Bounds of False Positives

	9 EXPERIMENTAL RESULTS
	9.1 Experiment Setup and Metrics
	9.2 Wave Detection and Estimation Experiments
	9.3 Performance for Each Type of Wave
	9.4 Update Time and Packet Loss
	9.5 Parameters Effects Analysis
	9.6 Experiments on P4 version of Pontus
	9.7 Comparison with Prior Arts
	9.8 Experiments on Distributions

	10 Conclusion
	Acknowledgments

