
Efficient and Accurate Flow Record Collection
With HashFlow

Zongyi Zhao , Xingang Shi ,Member, IEEE, Zhiliang Wang ,Member, IEEE, Qing Li ,

Han Zhang ,Member, IEEE, and Xia Yin, Senior Member, IEEE

Abstract—Traditional tools like NetFlow face great challenges as both the speed and the complexity of the network traffic increase. To

keep the pace up, we propose HashFlow for more efficient and accurate collection of flow records. HashFlow keeps large flows in its

main flow table and uses an ancillary table to summarize the other flows when the main table is full. With our flow collision resolution

and flow record promotion schemes, a flow in the ancillary table is promoted back to the main flow table with a guaranteed probability

when it becomes large enough. These operations can be performed highly efficiently, so HashFlow can keep up with ultra-high traffic

speed. We implement HashFlow in a Tofino switch, and using traces from different operational networks, we compare its performance

against some state-of-the-art flow measurement algorithms. Our experiments show that, for various types of traffic analysis

applications, HashFlow consistently demonstrates clearly better performance than its competitors. For example, the performance of

HashFlow in flow size estimation, flow size distribution estimation and heavy hitter detection is up to 21, 60 and 35 percent better than

those of the best competitors respectively, and these merits of HashFlow come with almost no degradation of throughput.

Index Terms—Network measurement, flow record measurement, sketch

Ç

1 INTRODUCTION

FLOW record collection tools (e.g., NetFlow [1] and
IPFIX [2]) maintain information such as source and desti-

nation IP addresses, transport protocol, source and destina-
tion ports, start and end timestamps, and the volume of
packets and bytes, for flows. These tools are widely used in
network measurement and analysis, because, unlike SNMP
counters [3] and packet capture tools [4], they achieve a good
balance between the accuracy and scalability of the main-
tained information.

The challenge in flow record collection is to keep up with
the ultra high speed of network traffic while dealing with the
enormous number of concurrent flows. For example, on a
100 Gbps link of the backbone network, hundreds of thou-
sands, evenmillions, of concurrent flowsmay exist, and, with
the average packet size of 700 bytes, the time budget for

processing one packet is around 56 nanoseconds [5], [6], [7].
Therefore, huge-capacity and high-speedmemory is required
for flow record collection. However, the high-speed memory
such as SRAM in the commodity routers/switches is scarce
(e.g., with the capacity of a few hundreds of Mbits in our
Tofino switch), while the abundant DRAM is too slow (e.g.,
with the access time of 50�150 nanoseconds [8]) for packet
processing.

One straightforward solution is to use sampling [9],
where only a portion of the packets are used to update the
flow record table. Some advanced sampling algorithms [10],
[11], [12] have been proposed and tailored for specific mea-
surement tasks, with their performance analyzed [13], [14].
However, sampling results in fewer packets and flows
being recorded, undermining the accuracy of the main-
tained statistics. On the other hand, sketches, which are
highly succinct data structures, usually maintain only coun-
ters [15], [16], [17] or a few special flows (e.g., the top-K larg-
est flows) [18], so cannot deal with flow record collection
nicely. The last category of solutions [19], [20], [21], [22],
[23] typically maintain a record for each flow in SRAM, but,
by assuming that the information of large flows is more
valuable, evict small flows when there isn’t enough space.
However, the difficulty lies in that, the flow table must be
updated highly efficiently so that the delay does not exceed
a constant bound, and it’s not easy to determine which flow
is to be evicted.

We follow the last direction and propose HashFlow to
make a further step in improving the efficiency and accu-
racy of flow record collection. The central idea of HashFlow
is to keep large flows (which we also call heavy flows) in its
main flow table as intact as possible, while summarizing the
other flows in an ancillary table when they are bypassed by
the main table due to hash collisions. However, with our

� Zongyi Zhao is with the Department of Computer Science and Technology,
Tsinghua University, Beijing 100084, China. E-mail: zhaozong16@mails.
tsinghua.edu.cn.

� Xingang Shi, Zhiliang Wang, and Han Zhang are with the Institute for
Network Sciences and Cyberspace, Tsinghua University, Beijing 100084,
China, and also with the Beijing National Research Center for Information
Science and Technology (BNRIST), Beijing 100084, China. E-mail: {shixg,
wzl}@cernet.edu.cn, zhhan@tsinghua.edu.cn.

� Qing Li is with the Peng Cheng Laboratory, Shenzhen 518066, China, and
also with the Southern University of Science and Technology, Shenzhen
518055, China. E-mail: liq@pcl.ac.cn.

� Xia Yin is with the Department of Computer Science and Technology,
Tsinghua University, Beijing 100084, China, and also with the Beijing
National Research Center for Information Science and Technology
(BNRist), Beijing 100084, China. E-mail: yxia@tsinghua.edu.cn.

Manuscript received 13 Dec. 2020; revised 12 July 2021; accepted 13 July 2021.
Date of publication 26 July 2021; date of current version 15 Oct. 2021.
(Corresponding author: Xingang Shi.)
Recommended for acceptance by P. Bangalore.
Digital Object Identifier no. 10.1109/TPDS.2021.3099442

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 5, MAY 2022 1069

1045-9219 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on January 08,2024 at 02:58:47 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-5058-4900
https://orcid.org/0000-0002-5058-4900
https://orcid.org/0000-0002-5058-4900
https://orcid.org/0000-0002-5058-4900
https://orcid.org/0000-0002-5058-4900
https://orcid.org/0000-0001-6487-9526
https://orcid.org/0000-0001-6487-9526
https://orcid.org/0000-0001-6487-9526
https://orcid.org/0000-0001-6487-9526
https://orcid.org/0000-0001-6487-9526
https://orcid.org/0000-0001-6587-820X
https://orcid.org/0000-0001-6587-820X
https://orcid.org/0000-0001-6587-820X
https://orcid.org/0000-0001-6587-820X
https://orcid.org/0000-0001-6587-820X
https://orcid.org/0000-0002-6071-473X
https://orcid.org/0000-0002-6071-473X
https://orcid.org/0000-0002-6071-473X
https://orcid.org/0000-0002-6071-473X
https://orcid.org/0000-0002-6071-473X
https://orcid.org/0000-0003-4429-9959
https://orcid.org/0000-0003-4429-9959
https://orcid.org/0000-0003-4429-9959
https://orcid.org/0000-0003-4429-9959
https://orcid.org/0000-0003-4429-9959
mailto:zhaozong16@mails.tsinghua.edu.cn
mailto:zhaozong16@mails.tsinghua.edu.cn
mailto:shixg@cernet.edu.cn
mailto:wzl@cernet.edu.cn
mailto:zhhan@tsinghua.edu.cn
mailto:liq@pcl.ac.cn
mailto:yxia@tsinghua.edu.cn

carefully designed flow collision resolution and flow record pro-
motion schemes, a flow in the ancillary table also gets a
chance to be promoted back to the main flow table when it
becomes large later, and all the operations can be performed
highly efficiently. In particular, the effectiveness of the pro-
motion scheme can be theoretically analyzed with a proba-
bilistic model. With these designs, HashFlow brings no
extra complexity so that it can keep up with ultra-high traf-
fic speed, and achieves better coverage and accuracy in flow
record collection than its state-of-the-art competitors.

We have implemented HashFlow in a Tofino switch [24],
which supports data plane programming with the P4 [25]
language. Then we use traces from different operational net-
works to evaluate its performance under typical metrics
related to flow record analysis. Our experiments show that
HashFlow demonstrates consistently better accuracy than
its state-of-the-art competitors in nearly all cases. For exam-
ple, using a small memory of 1 MB, for a CAIDA trace with
250K flows, HashFlow estimates the sizes of its recorded
flows with an average relative error of 0.12, and estimates
the flow size distribution with a relative error of 0.08, which
are 21 and 60 percent better than those of the best competi-
tor respectively. Moreover, under 500K flows, HashFlow
detects 81 percent of the heavy hitters (which we define as
flows containing at least 10 packets) with a relative size esti-
mation error of 0.33, which are 19 and 35 percent better than
those of the best competitors respectively. At last, we show
that these merits of HashFlow come with negligible poten-
tial degradation of throughput.

Our contributions are summarized as follows:

� We design HashFlow, a novel algorithm for accurate
flow record collection in high-speed networks. Hash-
Flow uses a main table and an auxiliary table to com-
plement each other, and uses flow collision resolution
and flow record promotion to efficiently record flows,
especially large flows.

� We implement HashFlow in a Tofino switch and
achieve the line-speed packet processing on multiple
100 Gbps ports.

� We conduct extensive experiments using traces from
several operational networks and demonstrate that
HashFlow has clearly better performance than the
state-of-the-art competitors.

The remainder of the paper is organized as follows. We
first review some of the works in network measurement in
Section 2, then introduce the rationale behind our design
choices of HashFlow in Section 3. We present the algorithm
details of HashFlow in Section 4, and give the correspond-
ing theoretical analysis in Section 5. Then we describe the
implementation details of HashFlow as well as the other
algorithms used in our performance evaluation in Section 6.
After that, using both real and synthetic traffic traces, we
compare HashFlow against its state-of-the-art competitors
in Section 7. Finally, we conclude the paper in Section 8.

2 RELATED WORK

In this section, we briefly review several state-of-the-art
algorithms in network measurement to prepare the readers
for this field.

The most widely adopted method of network measure-
ment is packet sampling, where, given a sampling rate p, a
packet is captured with the probability p. Afterwards, the
size of a flow is recovered by multiplying the number of
captured packets of the flow by 1=p. However, packet sam-
pling suffers from flow size bias since the heavy flows con-
taining more packets are captured with a higher probability
than the light flows. Moreover, it’s impossible to obtain the
accurate size of a flow since two flows with different sizes
appear the same if the same number of packets are captured
for them. Although many advanced sampling-based algo-
rithms [10], [11], [12], [26] have been proposed to mitigate
the drawbacks, the loss of information is inevitable.

Another popular trend in network measurement is to
design various sketches, which record traffic information
using a compact data structure and fixed computations.
One widely used sketch is count-min (CM) sketch [15],
which consists of d rows of counters where each row con-
tains r counters and has an independent hash function asso-
ciated with it. When a packet arrives, it is mapped to a
counter, and increment the counter by 1, in each row of the
sketch. Finally, given a flow, we get the counters corre-
sponding to the flow ID in each row and take the minimum
one as the estimated size of the flow. Although the update
strategy of CM sketch is simple and efficient, it causes a
huge positive bias in flow size estimation, especially for the
light flows. Conservative-update (CU) sketch [16] and
Count sketch [17] adopt the same data structure as CM
sketch, and the query procedure of CU sketch is the same as
that of CM sketch. However, when a packet arrives, instead
of incrementing each counter this packet is mapped to, CU
sketch only increments the smallest counter by 1, then, tak-
ing the updated counter value in mind, sets each of the
other counters to the larger one of this updated value and
its original value. Count sketch takes a completely different
approach for update and query, as it has two hash functions
hi and gi associated with each row of the data structure.
Both functions take a flow ID as the input, but hi outputs
the index of the counter this flow ID is mapped to, while gi
outputs 1 or -1. Therefore, when a packet arrives, Count
sketch increments each counter this packet is mapped to by
the output of the respective function gi. To obtain the size of
a flow, Count sketch multiplies each of the counters this
flow is mapped to by the output of gi, then takes the median
of the new values as the estimate.

In our experience, the sketches stated above don’t have
satisfying performance in flow size estimation, as shown in
Fig. 10, as they rely heavily on approximation. More impor-
tantly, they cannot generate flow records by themselves as
they don’t maintain flow IDs, which seriously constrains
their usage in network measurement. Therefore, many algo-
rithms maintaining flow IDs explicitly have been proposed.
In the following, we will illustrate some of the most influen-
tial falling in this category.

In FlowRadar [21], when a packet arrives, its information
is encoded into a flow set, then flow records are recovered
from the flow set during the post-processing stage. How-
ever, the chances that such decoding succeeds drop
abruptly if the table is overloaded, rendering the flow set
unusable, which is the price of maintaining information for
every packet indiscriminately with limited memory.

1070 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 5, MAY 2022

Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on January 08,2024 at 02:58:47 UTC from IEEE Xplore. Restrictions apply.

Unlike FlowRadar, many algorithms propose to track the
heavy flows preferentially, as the heavy flows are usually
more important for higher applications than the light ones.
A well-known algorithm of this type is Space-Saving
(SS) [18], which maintains an ordered array of counters,
with a flow ID attached to each counter. When a packet
arrives, the counter with the same flow ID as the packet is
incremented by 1, or a counter is allocated to this flow ID if
such a counter doesn’t exist. However, if neither a counter
with the desired flow ID nor an empty counter is available,
the smallest counter is located, its value is incremented by
1, and its flow ID is replaced by that of this packet. While
the error of SS in flow size estimation is theoretically
bounded, it has poor performance in practice. Moreover,
locating a counter with the same flow ID as a given packet
is time consuming, thus it’s challenging, if not impossible,
to implement SS in the programmable switches like P4
switch.

As the popularity of the programmable switches grows,
many algorithms, such as HashPipe [22], PRECISION [27]
and Elastic [23], which track the heavy flows preferentially
and can be readily implemented in P4 platform have been
proposed. The algorithms have the similar data structures,
i.e., several hash tables, each fitting into some stages of the
pipeline of the P4 switch. When a packet arrives, it traverses
the hash tables sequentially, and simple updates are con-
ducted on the hash tables. We argue that the algorithms are
far from perfect, as HashPipe and Elastic tend to split one
flow record into multiple records that are stored in different
locations, each with a partial count, which makes the mem-
ory utilization less efficient, and PRECISION adopts the
approximation skill when creating a flow record, which
undermines the accuracy of flow size estimation. Inspired
by the algorithms, in this paper we propose HashFlow,
which overcomes the drawbacks of the algorithms and
achieves much better performance.

3 MOTIVATION AND DESIGN CHOICES

In this paper we abstract a flow record as a key-value pair
ðflowID; countÞ, where the typical 5-tuple (i.e., source and des-
tination IP addresses, source and destination ports, and
transport protocol) [28] is taken as the flowID by default, and
the count field can be either the packet count or the byte vol-
ume. In practice information such as start and end time-
stamps, packet count, and byte volume are usually
maintained altogether, [2] so that many statistics such as

mean packet size and mean inter-arrival time of packets can
be derived for each flow record.

Due to traffic skewness, we often face an uneven flow
size distribution. For example, a 1-minute CAIDA trace [29]
contains 1:3� 106 active flows but 87 percent of the packets
are from the top 105 heavy flows, while on a backbone link
of a campus network, we find 4:8� 106 active flows in 1
minute, where 83 percent of the packets are from the top 4�
105 heavy flows. With a limited memory budget, it is usu-
ally better to maintain records for the heavy flows preferen-
tially, and discard light flows when the memory is
insufficient, since the heavy flows usually have a greater
impact on most applications such as heavy hitter detection,
traffic engineering and billing.

To implement this strategy, when a new flow is to be
stored but the memory is insufficient, a natural solution is
to replace the smallest flow record stored in the memory.
While Space-Saving [18] and similar data structures [30],
[31] are perfect in picking the smallest flow record, the time
complexity of locating and updating an existing flow record
in the data structures when a new packet arrives is not
Oð1Þ, thus they are insufficient for our purpose. For exam-
ple, Space-Saving [18] stores the counters in a linked list
and n flow IDs are attached to the corresponding counters.
Although the flow ID(s) for the smallest counter can be
accessed with Oð1Þ time, in the worst case it may take OðnÞ
time to locate the counter given a desired flow ID. A good
alternative to this, which we adopted in this paper, is to
maintain the flow records in multiple hash tables of which
each associated with an independent hash function. The
new flow is mapped into a bucket in each hash table, and
the smallest one of the records residing in the buckets is
replaced. Theorem 1 of Section 5 shows that, using this
multi-hashing method, the replaced flow record is very
close to the smallest one in the memory.

Another choice we make in designing HashFlow is to
ensure that a flow never gets split into multiple sub-records
and occupies more than one bucket in the hash tables, since
high-speed SRAM in network devices is a scarce and pre-
cious resource, and the sub-records are more likely to be
discarded because of their relatively small packet counts
and the heavy-flows-first strategy. This design helps to
achieve both better memory utilization and higher accuracy.
On the contrary, some existing algorithms are prone to split-
ting large flows. For example, in our experiments, up to 13
percent of the flows tracked by HashPipe [22] and Elas-
tic [23] are split into at least 2 sub-records in the memory.

4 ALGORITHM

In this section, we will present the detailed data structure of
HashFlow and explain how the different components of
HashFlow interact with each other.

The data structure of HashFlow is composed of a main
tableM and an ancillary table A, andM further consists of d
sub-tables M1;M2; . . . ;Md, where d ¼ 3 typically. Each of
M1;M2; . . . ;Md and A is a hash table without bucket chain-
ing, where each bucket can store a flow record in the form
of ðkey; countÞ. The count field can be either the packet count
or the volume of bytes, and flowID is used as the key in M,
while an 8-bit digest of flowID is used as key in A to save

Fig. 1. A few examples of HashFlow.

ZHAO ETAL.: EFFICIENTAND ACCURATE FLOW RECORD COLLECTIONWITH HASHFLOW 1071

Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on January 08,2024 at 02:58:47 UTC from IEEE Xplore. Restrictions apply.

space. Besides, we have dþ 1 independent hash functions
h1; h2; . . . ; hd, and g, where hi ði ¼ 1; 2; . . . ; dÞmaps a flowID
to one bucket in Mi, and g maps the flowID to one bucket in
A. The digest can be generated by truncating some
hiðflowIDÞ.

When a packet p arrives, HashFlow updates M and A in
the following two stages, as illustrated in Algorithm 1,
where DðpÞ returns 1 if the packet count is considered, or
the size of p if the byte volume is considered.

Stage I. First, we map packet p into the bucket indexed by
idx¼h1ðp:flowIDÞ in M1. If M1½idx� is empty, we initialize the
bucket by putting the flowID and DðpÞ into the bucket. If the
bucket is already occupied by the flow that p belongs to, we
simply increment the count field by DðpÞ. In either case, a
proper bucket for the packet is found, so the process fin-
ishes. Otherwise, a collision occurs, so we repeat the same
process but with h2; . . . ; hd on M2; . . . ;Md one by one, until
a proper bucket is found for the packet. This is a simple flow
collision resolution procedure similar to d-left hashing, but
we deliberately avoid bucket chaining. It also differs from
existing algorithms such as cuckoo hashing [32], Hash-
Pipe [22] and Elastic [23] by not evicting any existing flow
record, thus preventing any flow record from being split
into multiple sub-records. In case that no proper bucket is
found in M to store p:flowID, p will be sent to stage II.
Besides, along the path p travels in M, we save a sentinel
flow record, which is the one with the smallest count among
the d records that have collided with p.

Stage II. Packet p enters this stage only if a flow record
corresponding to p doesn’t exist in M and an empty bucket
is not found there. In this stage, p is mapped into the bucket
A½idx� where idx ¼ gðp:flowIDÞ. Similar to that in stage I, if
A½idx� is empty, we store the flow into this bucket but record
only the digest of p:flowID, instead of the full flowID. When a
collision occurs (i.e., the digest of p:flowID is different from
the key field of this bucket), we make a different flow collision
resolution by replacing the existing flow record with the
digest of p:flowID and DðpÞ. Otherwise, the key value is the
same as the digest of p:flowID, so we update the flow record
by adding DðpÞ to its count. If this updated count is larger
than that of the sentinel flow record we have tracked in
stage I, the flow record promotion procedure replacing the
sentinel one inMwith ðp:flowID;A½idx�:countÞ is triggered.

Notice that after a flow record inA½idx� is promoted toM,
nothing will happen to the bucket A½idx�. This won’t have
any negative influence on HashFlow, since once the flow
record is recorded in M, all the following packets with its
flow ID will be recorded in M and never reach A. Mean-
while, when another packet with a different flow ID is
mapped to bucket A½idx�, this bucket will be rewritten
immediately with high probability.

In HashFlow, we use multi-hashing method to decide
where to store a flow record in the M table. This may be
similar to the multi-level hash functions widely used by
large-scale object storage systems such as Hadoop [33] and
Lustre [34], but there is a cirtical difference in how they
resolve collisions. A typical collision resolution strategy
adopted by the multi-level hash functions is chaining, i.e.,
storing those objects hashed to the same bucket in a list.
Therefore, the table storing objects of the storage systems
can be dynamically expanded, and objects will be stored as

long as there is free space. However, the space used in
HashFlow is fixed, so each bucket can be occupied by at
most one flow record. If a collision occurs, HashFlow will
use its specifically designed flow collision resolution scheme
to decide which one should be kept, and it’s possible that a
flow record is dropped.

No cooperation from other switches is required for Hash-
Flow to do the flow record collection, but the collected flow
records have to be exported periodically to a separate data
server, so that HashFlow can refresh M and A to accommo-
date new flow records. Packets are always processed at line
speed if HashFlow is implemented in a Tofino switch, but
throughput degradation is likely to happen if HashFlow is
implemented in other platforms, especially the CPU based
ones such as Open vSwitch. Load balancing [35] techniques
may help HashFlow to reduce such degradations, and we
leave the study of that to our future work.

Algorithm 1.HashFlow

Input: packet p
//Stage I
flowID p:flowID;min 1; pos �1; t �1
//flow collision resolution
for i ¼ 1 to d do
idx hiðflowIDÞ
if Mi½idx� ¼¼ NULL then
Mi½idx� ðflowID;DðpÞÞ return(f1

else if Mi½idx�:key ¼¼ flowID then
Mi½idx�:count Mi½idx�:countþ DðpÞ (f2
return

else if Mi½idx�:count < min then
//save the sentinel flow record
min Mi½idx�:count
t i;pos idx

//Stage II
idx gðflowIDÞ
digest h1ðflowIDÞ%ð2digest widthÞ
if A½idx� ¼¼ NULL or A½idx�:key 6¼ digest then
A½idx� ðdigest;DðpÞÞ (f3

else
A½idx�:count A½idx�:countþ DðpÞ (f4
if A½idx�:count > min then
//flow record promotion(f5
Mt½pos�:key flowID
Mt½pos�:count A½idx�:count

We use a few examples to illustrate the above algorithm,
and plot the workflow in Fig. 1. For ease of understanding,
we use d ¼ 2 and the packet count as the count field of a
flow record. We also make corresponding annotations in
Algorithm 1. When a packet of flow f1 arrives, it is mapped
into a bucket ofM1 indexed by h1ðf1Þ, where it collides with
the flow record ðf6; 4Þ. Then it is mapped into an empty
bucket of M2 indexed by h2ðf1Þ, and the content of the
bucket becomes ðf1; 1Þ. When a packet of flow f2 arrives, it
collides with flow record ðf7; 9Þ in M1, but the bucket it is
mapped into in M2 happens to have been occupied by f2, so
the count field of the bucket is simply incremented by 1.
When a packet of flow f3 arrives, it collides with the flow
records inM1 andM2, so it is mapped to A. However, it col-
lides with the flow record ðf8; 6Þ there as well, so it replaces

1072 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 5, MAY 2022

Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on January 08,2024 at 02:58:47 UTC from IEEE Xplore. Restrictions apply.

the flow record with ðf3; 1Þ. Collisions also occur when a
packet of f4 is mapped to M1 and M2, so it further goes to a
bucket of A indexed by gðf4Þ. Then the count field is incre-
mented by 1 since the key field of the bucket is the same as
the digest of f4. A packet of f5 goes through the same proce-
dure and the count of flow record ðf5; 7Þ in A is incremented
by 1. Now the count value (i.e., 8) becomes larger than that
of the sentinel flow record (i.e., ðf13; 7Þ in M1). Therefore,
flow record promotion is triggered and the sentinel flow
record is replaced by ðf5; 8Þ.

5 ANALYSIS

We analyze the performance of HashFlow in the case of
packet count theoretically in this section. First, we prove
that the sentinel flow records that may be replaced in the
flow record promotion procedure are relatively small among
the flow records maintained by M (Theorem 1). Then, we
show how many colliding packets a flow is expected to
encounter in A under a certain memory budget (Theorem
2). At last, we prove that a large flow in A will have a good
chance to be promoted back to M (Theorem 3). As Theo-
rems 1 and 2 can be easily extended to the case of byte vol-
ume, this is not true for Theorem 3. Therefore, we will leave
the theoretical analysis of the byte volume case to the future
work.

Suppose that M consists of d subtables M1, M2, . . . , Md,
each with w buckets, and A consists of c buckets, so wd and
c flow records can be stored inM and A respectively.

Theorem 1. On average, a sentinel flow record is smaller than
d

dþ1 of the wd flow records stored inM.

Proof. For a given sentinel flow record (with flowID f and
size l) in M, according to its definition, there must be a
flow record fi (with size li) in each sub-table Mi, such
that l ¼ minfl1; l2; . . . ; ldg. Use fðxÞ to represent the proba-
bility that x is larger than the sizes of at least a fraction g

of the flow records in M, then fðliÞ ¼ 1� g since fi is ran-
domly selected by the hash functions. Therefore

fðlÞ ¼ fðminfl1; . . . ; ldgÞ ¼ fðl1Þ . . . fðldÞ ¼ ð1� gÞd:

Then the expectation of fðlÞ is
Z 1

0

ð1� gÞddg ¼ 1

dþ 1
:

Hence the sentinel record f is expected to be larger than
1

dþ1 , or smaller than d
dþ1 , of the records stored inM. tu

This result shows that, the top wd� d
dþ1 heavy flow

records in M tend to not be evicted as sentinel ones, so
heavy flows can keep accumulating inM. However, a heavy
flow may also fail to find an empty bucket in M in the first
place, so next we analyze how flow record promotion helps to
record it. Notice that when we refer to a flow record in The-
orem 1, we mean the content maintained in our data struc-
tures, while when we say a flow below, we are referring to
all the packets belonging to this flow.

Suppose that the number of buckets of A is c ¼ d 1�de,
where � > 0 is a positive error bound, and 1� d (d < 1Þ is
some level of probability guarantee, and N packets from n

different flows, where flow fi has li packets (1 � i � nÞ, are
processed by A. Let Xi denote the total number of packets
mapped into the bucket A½gðfiÞ� (i.e., the bucket fi is
mapped into) but belonging to flows other than fi.

Theorem 2.

PrðXi � �NÞ � 1� d:

Proof. For any two different flows fi and fj, we define Iij as
follows:

Iij ¼ 1; if gðfiÞ ¼ gðfjÞ
0; otherwise

�
;

then the number of packets colliding with fi is

Xi ¼
Xn

j¼0;j6¼i
Iijlj:

For a given i, if we assume g is a standard 2-universal
hash function, then PrðIij ¼ 1Þ ¼ 1

c , and

EðXiÞ ¼
Xn

j¼0;j6¼i
EðIijljÞ

¼
Xn

j¼0;j6¼i
lj

�
0� PrðIij ¼ 0Þ þ 1� PrðIij ¼ 1Þ

�

¼ 1

c

Xn
j¼0;j6¼i

lj � �dN:

By Markov Inequality [36]

PrðXi � �NÞ � 1� EðXiÞ
�N

� 1� d:

tu
This result is general for any flow fi, so in the following,

we will simply use f , l and X to denote a flow processed in
A, its packet count, and the number of colliding packets f
may encounter there, respectively.

Now we discuss how flow record promotion is carried out.
A flow f with l packets can be promoted back from A to M
only if it first bypasses M, then its packets start to accumu-
late in the bucket A½gðfÞ�, and finally its packet count in
A½gðfÞ� becomes larger than that of its sentinel flow record
in M. Denote the size of the sentinel flow record by k, and
the total number of packets mapped into A½gðfÞ� by m.
According to Algorithm 1, to promote f to M, more than k
packets of f have to arrive in a row, without being inter-
vened by any of the m� l packets belonging to the other
flows. This can be abstracted as picking l boxes from an
array of m ordered boxes randomly, and more than k boxes
picked must be consecutive in location. We denote the total
number of ways where no more than k of the l picked boxes
are consecutive by Gðm; l; kÞ, then it is easy to see, under the
assumption that any packet order is equally possible, the
probability that f can be promoted back to M is pðm; l; kÞ ¼
1�Gðm; l; kÞ= m

l

� �
. In the following we will show how to cal-

culate Gðm; l; kÞ.

ZHAO ETAL.: EFFICIENTAND ACCURATE FLOW RECORD COLLECTIONWITH HASHFLOW 1073

Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on January 08,2024 at 02:58:47 UTC from IEEE Xplore. Restrictions apply.

It’s obvious that the following equation holds:

Gðl; l; kÞ ¼ 1; if 0 � l � k
0; otherwise

�
: (1)

To calculate the value of Gðm; l; kÞ, we consider the first
box that is not picked for any eligible picking method. It’s
straightforward that the first kþ 1 boxes of the array must
contain at least a box that is not picked. Specifically, if the
ith box is not picked, where i ¼ 0; 1; . . . ; k, and all the boxes
before it are picked, then we have to pick another l� i boxes
from the remaining m� ðiþ 1Þ boxes, and no more than k
picked boxes should be consecutive in location. Therefore

Gðm; l; kÞ ¼
Xk
i¼0

Gðm� 1� i; l� i; kÞ: (2)

Lemma 1. Gðlþ r; l; kÞ ¼Prk
i¼0 aiGðl� i; l� i; kÞ.

Proof. For any Gðm; l; kÞ, we define its argument distance as
m� l. It’s obvious that, for any Gðm; l; kÞ, when it is
expanded once using Equation (2), all the expanded
items, namely Gðm� 1� i; l� i; kÞ for any i ¼ 0; 1; . . . ; k,
have the same argument distance m� l� 1. Therefore, to
expand Gðlþ r; l; kÞ into the sum of items which have the
argument distance of 0, it must be expanded r times
recursively.

Consider the second argument of the expanded items
(e.g., l� i in Gðm� 1� i; l� i; kÞ). In the best case, the
second argument keeps the same after every expansion,
but it is reduced by k after every expansion in the worst
case. Therefore, the final expansion of Gðlþ r; l; kÞ is
enclosed by an item Gðl; l; kÞ and another item
Gðl� rk; l� rk; kÞ.

The item Gðl� ðxkþ cÞ; l� ðxkþ cÞ; kÞ, where 0 �
x < r, 0 � c < k, can be derived by the following pro-
cess:

Gðlþ r; l; kÞ
¼ 	 	 	 þGðlþ ðr� 1Þ � k; l� k; kÞ þ 	 	 	
	 	 	
¼ 	 	 	 þGðlþ ðr� xÞ � xk; l� xk; kÞ þ 	 	 	
¼ 	 	 	 þGðlþ ðr� x� 1Þ � ðxkþ cÞ; l� ðxkþ cÞ; kÞ þ 	 	 	
	 	 	
¼ 	 	 	 þGðl� ðxkþ cÞ; l� ðxkþ cÞ; kÞ þ 	 	 	

Therefore, after being expanded r times, the expan-
sion of Gðlþ r; l; kÞ contains and only contains the items
Gðl� i; l� i; kÞ where i ¼ 0; 1; . . . ; rk. Hence the theorem
holds. tu

Lemma 2. Denote the coefficient of Gðl� t; l� t; kÞ in the
expansion of Gðlþ r; l; kÞ by ½Gðl� t; l� t; kÞ�Gðlþ r; l; kÞ,
and the coefficient of xt in the expansion of ð1þ xþ 	 	 	 þ xkÞr
by ½xt�ð1þ xþ 	 	 	 þ xkÞr. For t ¼ 0; 1; 	 	 	 ; rk

½Gðl� t; l� t; kÞ�Gðlþ r; l; kÞ ¼ ½xt�ð1þ xþ 	 	 	 þ xkÞr:

Proof. We prove the theorem by induction. First, in the case
where r ¼ 1, Gðlþ 1; l; kÞ ¼Pk

i¼0 1�Gðl� i; l� i; kÞ. So

the coefficient of Gðl� t; l� t; kÞ (i.e., 1) is the same as the
coefficient of xt in ð1þ xþ 	 	 	 þ xkÞ1.

Now suppose that the theorem holds for the case
where r ¼ b. Based on the assumption, we will prove
that the theorem holds for the case where r ¼ bþ 1.

By definition

Gðlþ bþ 1; l; kÞ ¼
Xk
i¼0

Gððl� iÞ þ b; l� i; kÞ

)½Gðl� t; l� t; kÞ�Gðlþ bþ 1; l; kÞ

¼
Xk
i¼0
½Gðl� t; l� t; kÞ�Gððl� iÞ þ b; l� i; kÞ:

Meanwhile, for any i ¼ 0; 1; . . . ; k

Gðl� t; l� t; kÞ ¼ Gððl� iÞ � ðt� iÞ; ðl� iÞ � ðt� iÞ; kÞ:

Since the theorem holds for the case where r ¼ b, the
coefficient of Gðl� t; l� t; kÞ in the expansion of Gððl�
iÞ þ b; l� i; kÞ is equal to ½xt�i�ð1þ xþ 	 	 	 þ xkÞb. This in
turn gives

½Gðl� t; l� t; kÞ�Gðlþ bþ 1; l; kÞ ¼
Xk
i¼0
½xt�i�ð1þ xþ 	 	 	 þ xkÞb:

Notice that the coefficient of xt in the expansion of ð1þ
xþ 	 	 	 þ xkÞbþ1 is

½xt�ð1þ xþ 	 	 	 þ xkÞbþ1 ¼
Xk
i¼0
½xt�i�ð1þ xþ 	 	 	 þ xkÞb:

So ½Gðl� t; l� t; kÞ�Gðlþ ðbþ 1Þ; l; kÞ is equal to
½xt�ð1þ xþ 	 	 	 þ xkÞbþ1. Hence the theorem always
holds. tu

Lemma 3. The value of Gðm; l; kÞ can be calculated as follows:

Gðm; l; kÞ ¼
Xl

i¼l�k

Xr

t¼0
ð�1Þt r

t

� � i� tðkþ 1Þ þ r� 1

r� 1

� �
	

sði� tðkþ 1ÞÞsðrk� iÞ;

where

sðxÞ ¼ 1; if x � 0
0; otherwise

�
; (3)

and r ¼ m� l.

Proof. According to Lemmas 1 and 2

Gðm; l; kÞ ¼ Gðlþ r; l; kÞ ¼
Xrk
i¼0

aiGðl� i; l� i; kÞ;

where ai ¼ ½xi�ð1þ xþ 	 	 	 þ xkÞr.
As stated earlier

Gðl; l; kÞ ¼ 1; if 0 � l � k
0; otherwise

�
:

1074 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 5, MAY 2022

Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on January 08,2024 at 02:58:47 UTC from IEEE Xplore. Restrictions apply.

Therefore

Gðm; l; kÞ ¼
Xl

i¼l�k
aisðrk� iÞ: (4)

By multinomial theorem [37], the coefficient of xi in
the expansion of ð1þ xþ 	 	 	 þ xkÞr is

ai ¼
Xr
t¼0
ð�1Þt r

t

� � rþ i� 1� tðkþ 1Þ
r� 1

� �
sði� tðkþ 1ÞÞ:

So the value of Gðm; l; kÞ is

Gðm; l; kÞ ¼
Xl

i¼l�k

Xr

t¼0
ð�1Þt r

t

� � i� tðkþ 1Þ þ r� 1

r� 1

� �
	

sði� tðkþ 1ÞÞsðrk� iÞ;

where r ¼ m� l. tu
In the following, we will establish a connection between

the possibility that a flow is promoted and the size of A,
when a total number ofN packets are processed by A.

Theorem 3. Suppose that the packet count of the sentinel flow
record is k, denote the event that a flow f containing l packets
is promoted by A, then

PrðAÞ ¼
XN�l
i¼0

1�Gðlþ i; l; kÞ
lþi
l

� �
" #

	 N � l

i

� �
	 ð�dÞi
ð1� �dÞlþi�N

� ½1�Gðlþ �N; l; kÞ= lþ �N

l

� �
�ð1� dÞ:

Proof. Suppose that every packet except those of f are
mapped into the buckets of A with the same probability,
and X packets besides those of f are mapped into the
bucket that f is mapped into, then, as stated before, the
probability that f is promoted is PrðAÞ ¼ 1�Gðlþ
X; l; kÞ= lþX

l

� �
, and

PrðX ¼ iÞ ¼ N � l

i

� �

� 1

c

� �i

1� 1

c

� �N�l�i

¼ N � l

i

� � ð�dÞi
ð1� �dÞlþi�N ;

where c ¼ d 1�de is the number of buckets of A. Therefore

PrðAÞ ¼
XN�l
i¼0

PrðAjX ¼ iÞPrðX ¼ iÞ

¼
XN�l
i¼0

1�Gðlþ i; l; kÞ
lþi
l

� �
" #

	 N � l

i

� �
	 ð�dÞi
ð1� �dÞlþi�N :

Meanwhile, by Theorem 2 and total probability theo-
rem

PrðAÞ ¼
XN
i¼0

PrðAjX ¼ iÞPrðX ¼ iÞ

�
X�N
i¼0

PrðAjX ¼ iÞPrðX ¼ iÞ

�
X�N
i¼0

PrðAjX ¼ �NÞPrðX ¼ iÞ

¼ PrðAjX ¼ �NÞPrðX � �NÞ

� 1�Gðlþ �N; l; kÞ= lþ �N

l

� �	

ð1� dÞ:

Hence the theorem holds. tu
We denote the top wd2

dþ1 flows in the monitored traffic by
heavy flows, and the other flows by light flows. According
to Theorem 1, the heavy flows and a few light flows should
be maintained in M with high probability. Suppose the sum
of packet counts inM is V, the heavy flows contains Q pack-
ets, and the other light flows maintained in M contains a
packets, then V ¼ Qþ a. Meanwhile, suppose L packets are
directly recorded by M, and the flow record promotion is trig-
gered s times, then V ¼ Lþ s, since a sentinel flow record
of size k in M is usually replaced by another flow record of
size kþ 1 when flow record promotion is triggered. Since s
and a should be far smaller than Q, L ¼ Qþ a� s
 Q.
Therefore, the number of packets processed by A, which we
denote by N , should approximate the number of packets
from the light flows defined above, which we denote by N 0.
To prove the prediction, we replay the CAIDA trace using
HashFlow with the memory of 1 MB. As shown in Fig. 2a,
the number of packets processed by A is very close to the
number of packets belonging to the light flows.

To illustrate the equality part of Theorem 3, we set d to
0.1, set � to 0.01, and set the packet count of the sentinel
record (i.e., k) to 5. First, we generate and replay N ¼ 10000
packets which consist of a flow containing l packets and
another N � l random packets, with l increasing from 10 to
50. We repeat the experiment 10000 times and calculate the
probability that the l-packet flows are promoted. Second,
we take and replay N ¼ 10000 packets from the CAIDA
trace. We repeat the experiment 2757 times, then calculate
the probability that flows with various sizes are promoted.
Fig. 2b shows that the probability that the flows of the syn-
thesized trace are promoted strictly conforms to that pre-
dicted by Theorem 3. Notice that the flows in the CAIDA
trace are promoted with higher probability than that pre-
dicted. We argue that it’s because strong locality exists in
the real traffic since the packets of the same flow tend to
arrive continuously, which helps the flows to be promoted.

6 IMPLEMENTATION

We have implemented the algorithms used in this paper in
python (software implementation), and HashFlow and PRE-
CISION [27] in P4 [25] in a Tofino switch [24] with the type
of Wedge 100BF-32X [38] (hardware implementation) in
particular. Especially, the codes for FlowRadar [21], Elas-
tic [23], HashPipe [22] and PRECISION [22] are rewritten

ZHAO ETAL.: EFFICIENTAND ACCURATE FLOW RECORD COLLECTIONWITH HASHFLOW 1075

Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on January 08,2024 at 02:58:47 UTC from IEEE Xplore. Restrictions apply.

based on their published code, while SpaceSaving [18], CM
sketch [15], CU sketch [16] and Count sketch [17] are imple-
mented based on the algorithms in the published papers.
The memory allocated to the algorithms is 1 MB by default.

A P4 program is composed of a bunch of match-action
tables, and is compiled into a pipeline consisting of multiple
stages. Multiple match-action tables can be packed into a
stage and executed in parallel if they are independent of
each other, but two tables with dependency relationship
must be placed in different stages. Moreover, every stage
contains a certain amount of SRAM1 which can only be
accessed by the tables located in the same stage. There are
only very limited number of stages in the Tofino switch.2

Therefore, the P4 programs must be very carefully designed
so that HashFlow and PRECISION can fit into the pipeline.

We use SRAM to store flow records in our implementa-
tion. M consists of three sub-tablesM1;M2;M3 in the imple-
mentation of HashFlow. We use 5 arrays of buckets for the
key fields (i.e., one array for the srcip, dstip, protocol,
srcport, dstport respectively) of M1;M2;M3 in stage 0, 2, 4,
and one array of buckets, each bucket with the width of 32
bits, for their count fields in stage 1, 3, 5. The A table where
the key fields and count fields all have the width of 8 bits is
in stage 6. We record the count fields and indexes of the
buckets a packet is mapped into when the packet is proc-
essed by M1;M2 and M3, and determine the sentinel flow
record and update A in stage 6. Stage 7 determines whether
to trigger the flow record promotion, and if does, it is triggered
in stage 8. This implementation contains more than 1000
lines of P4 source code, but uses 9 stages only. We share the
source code here [39].

While the flow record promotion procedure requires to
revisit one of the sub-tables of M, backtracking is not
allowed in the pipeline. Our solution is to use the resubmit
primitive, which sends a packet and some metadata to the
ingress of the pipeline. When the resubmitted packet is
processed, the resubmitted metadata can provide enough
information for replacing the sentinel flow record. Since
more packets than that transmitted through the Tofino
switch are processed when the resubmit primitive is used,
the throughput of the switch is influenced negatively. In

Section 7.6 we will evaluate the loss of throughput caused
by the resubmit primitive.

Following recommendations in the corresponding
papers, we use four sub-tables of equal size for HashPipe
and PRECISION. With regards to FlowRadar, we use four
hash functions for its bloom filter and three hash functions
for its counting table. The number of buckets in the bloom
filter is 40� of that in the counting table.

Elastic paper [23] provides various versions of Elastic.
We pick the P4 version (denoted by P4 Elastic) and hard-
ware version (denoted by Hardware Elastic) in this paper
for evaluation. Hardware Elastic contains a heavy part,
which consists of three sub-tables with the same number of
buckets, and a light part. Instead, P4 Elastic doesn’t have a
light part, and its heavy part consists of four sub-tables
with the same number of buckets. As recommended in the
paper, the value of � is 8 for Hardware Elastic and 32 for P4
Elastic.

The implementation of SpaceSaving consists of a Space-
Saving sketch and a hash table, each occupying half of the
allocated memory. When a new packet arrives, if a flow
record corresponding to it exists in the hash table, we sim-
ply update the flow record there. Otherwise, we create a
flow record for this packet in the hash table and the sketch
if the hash table is not full, or query the sketch (and synchro-
nize it with the hash table meanwhile) for the flow record
with the minimum packet count and replace it with a new
one corresponding to the new packet if the hash table is full.

The implementations of Count, CM, CU use three data
structures, namely, a Count/CM/CU sketch, a hash table,
and a min heap. The sketch occupies half of the allocated
memory, and each of the min heap and hash table occupies
1/4 of the allocated memory. Moreover, the sketch uses
four hash functions. When a new packet arrives, we use it
to update the sketch, which will return an estimated size of
the flow record corresponding to the packet. Then we use
this packet and the estimated size to update the hash table
and the min heap. If a flow record corresponding to the
packet exists in the hash table, the packet count of the flow
record is incremented by 1 simply. Otherwise, the min heap
will synchronize with the hash table and give a flow record
with the minimum packet count. This flow record will be
replaced by the flow record consisting of the flow ID of the
packet and the estimated size given by the sketch if its
packet count is smaller than the estimated size.

To save space, we use HF, HP, FR, SS, PE, HE in place of
HashFlow, HashPipe, FlowRadar, SpaceSaving, P4 Elastic,
Hardware Elastic, respectively, when plotting figures.

7 EVALUATION

In this section, we evaluate the performance of HashFlow in
various applications, but we mainly focus on flow records
in terms of packet count, and we will state it explicitly when
byte volume is considered.

7.1 Methodology

We use 4 traces from different operational networks,
namely, one from a 40 Gbps backbone link provided by
CAIDA [29], one from a 10 Gbps link in a campus network,
one from a backbone link of the Hutchison Global

Fig. 2. (a) The number of packets processed by the A Table (denoted by
N) and that predicted by Theorem 1 (denoted by N 0); (b) The promotion
ratios predicted by Theorem 3, achieved by the synthesized traffic, and
achieved by the CAIDA trace.

1. It is called register in the context of Tofino, but we avoid this termi-
nology to avoid confusion with the registers in the CPU architecture.

2. We cannot present the specific number of stages available in our
Tofino switch due to the Non-Disclosure Agreement.

1076 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 5, MAY 2022

Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on January 08,2024 at 02:58:47 UTC from IEEE Xplore. Restrictions apply.

Communications (HGC), and the other one from a 10 Gbps
backbone link in CERNET [40], for performance evaluation.
Some flow level (defined by the typical 5-tuple [28]) statis-
tics, as summarized in Table 1, shows that the traffic in dif-
ferent traces differs greatly from each other. However, by
having a deeper inspection into the flows, we find that they
all exhibit a similar skewness pattern. For example, about
90 percent of the flows are light flows containing no more
than 10 packets (as shown in Fig. 3a), while the top 10 per-
cent heavy flows account for about 85 percent of the packets
(as shown in Fig. 3b).

Applications considered for performance evaluation
include general flow size estimation, flow size distribution
estimation, top-k heavy flows detection, and heavy hitter
detection, where, given a threshold T, a flow is recognized
as a heavy hitter only if it contains no less than T packets.
Given a packet sequence, with regards to each application,
a target set S is defined, and the algorithm to be evaluated
will give an estimated set Ŝ. For example, S is the set of all
the flows, heavy hitters, or top-k heavy flows, contained in
the packet sequence for general flow size estimation, heavy
hitter detection, or top-k heavy flows detection, respec-
tively. Given a flow f , S½f� (or Ŝ½f �) is the size of f in S (or Ŝ).
For flow size distribution estimation, S consists of pairs in
the form of ðk; nkÞ and S½k� ¼ nk, where k is an integer and
nk is the number of flows containing k packets. For all the
applications, Ŝ½x� ¼ 0 by default if x =2 Ŝ and lenðSÞ is the
number of elements in S.

We use Average Relative Error (ARE), Weighted Relative
Error (WRE) and F1 score, to evaluate the performance of
the algorithms. ARE andWRE are defined as follows:

ARE ¼ 1

lenðSÞ
X

x2S
S½x� � Ŝ½x�

S½x�
����

����
WRE ¼

P
x2S S½x� � Ŝ½x��� ��P

x2S S½x�
:

We define ~S to be ~S ¼ S \ Ŝ, so the precision rate (PR) and
recall rate (RR) are

PR ¼ lenð~SÞ
lenðŜÞ ; RR ¼ lenð~SÞ

lenðSÞ ;

and F1 score is defined as

F1 Score ¼ 2 	 PR 	 RR
PRþRR

:

The relationship between the applications and the metrics
are shown in Table 2.

7.2 Hardware versus Software

In the following, we will evaluate the performance of Hash-
Flow using the software implementation for flexible param-
eter tuning and statistics collection, but before that, we need
to prove the correctness of this implementation by compar-
ing its performance with that of the hardware implementa-
tion. Meanwhile, to evaluate the impact different hash
functions have on the performance of HashFlow, we use
CRC for the hardware implementation and MD5 for the
software implementation to generate the digest and
indexes. We use the two implementations to detect the
heavy hitters with the threshold increasing from 10 packets
to 100 packets while replaying 107 packets from the CAIDA
trace and the Campus trace, using a Cisco UCS server to
push the packets through the Tofino switch particularly for
the hardware implementation. As shown in Fig. 4, the dif-
ference in performance between the two implementations is
negligible, which assured that the software implementation
is correct, and the impact different hash functions have on
the performance of HashFlow is insignificant.

7.3 Application Performance

General Flow Size Estimation & Flow Size Distribution Estima-
tion. In this experiment, we replay a number of packets

TABLE 1
Traces Used for Evaluation

Trace Max Flow Size Ave. Flow Size # Concur. Flows3

CAIDA 460212 pkts 20.4 pkts 149339
Campus 1554222 pkts 9.1 pkts 774510
HGC 213979 pkts 11.4 pkts 124244
CERNET 27209 pkts 16.7 pkts 93977

3 the number of concurrent flows.

Fig. 3. Light flows accounts for a great portion of the flows, but most
packets are from the Heavy flows.

TABLE 2
Metrics Used for Various Applications

WRE ARE F1 Score

General Flow Size Estimation @ @ •

Flow Size Distribution Estimation • @ •

Heavy Hitter Detection • @ @
Top-K Heavy Flows Detection • @ @

Fig. 4. The performance of hardware and software implementations of
HashFlow in heavy hitter detection.

ZHAO ETAL.: EFFICIENTAND ACCURATE FLOW RECORD COLLECTIONWITH HASHFLOW 1077

Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on January 08,2024 at 02:58:47 UTC from IEEE Xplore. Restrictions apply.

from each of the traces, then evaluate the performance of
HashFlow, P4 Elastic, HashPipe and PRECISION in general
flow size estimation and flow size distribution estimation.
The number of replayed packets increases from 5� 105 to
5� 106. As shown in Fig. 5, although the ARE of PRECI-
SION is smaller than that of HashFlow when the number of
replayed packets is small, the ARE of HashFlow is better
than those of the competitors when the number of packets
is no less than 1:5� 106. When it comes to the metric of
WRE, the performance of HashFlow is much more out-
standing. For example, as shown in Fig. 6, when 5� 106

packets from the CAIDA trace are replayed, the WRE of
HashFlow is 0.12, which is 21 percent better than that of the
best competitor. Fig. 7 shows that, when doing flow size dis-
tribution estimation, the performance of HashFlow is clearly
better than those of the competitors. For example, when 5�
106 packets of CAIDA are replayed, the ARE of HashFlow
(i.e., 0.08) is 60 percent smaller than that of the best
competitor.

Notice that the performance of HashFlow varies across
data sets, which we believe is caused by the difference in
the traffic patterns of the traces. Consider the flow size
entropy defined as�Pmi

m lnmi
m , wherem is the total number

of packets and mi is the number of packets in flow fi. It is
expected that HashFlow will perform worse for a data set
with a larger entropy, since that means greater randomness
in flow sizes. Actually, the CAIDA trace has an entropy of
9.58 and the Campus trace has an entropy of 11.72, while
the other traces sit in between.

When the number of replayed packets is small, FlowRa-
dar collects the flow records very accurately, and Hardware
Elastic usually has better performance than P4 Elastic since
the light part of Hardware Elastic can compensate for the
packets that are not recorded by the heavy part. However, if
too many packets are processed, the light part of Hardware
Elastic and the counting table of FlowRadar may be over-
whelmed, making their performance degrade abruptly.
Therefore, we conduct another experiment, where we

Fig. 5. Average relative error (ARE) for general flow size estimation.

Fig. 6.Weighted Relative Error (WRE) for General flow size estimation.

Fig. 7. Average relative error (ARE) for flow size distribution estimation.

1078 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 5, MAY 2022

Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on January 08,2024 at 02:58:47 UTC from IEEE Xplore. Restrictions apply.

increase the number of replayed packets from 3� 104 to 6�
105, and evaluate the performance of HashFlow, Hardware
Elastic and FlowRadar in general flow size estimation. As
shown in Fig. 8, when no more than 2:4� 105 packets of
CAIDA are replayed, the ARE of FlowRadar is 0, which is
perfect performance. However, when the number of
replayed packets becomes 2:7� 105, the ARE of FlowRadar
increases to 0.58 abruptly. On the contrary, the ARE of
HashFlow increases smoothly, and is clearly better than
that of Hardware Elastic. For example, when 6� 105 packets
of CAIDA are replayed, the ARE of HashFlow (i.e., 0.24) is
36 percent smaller than that of Hardware Elastic.

Since the performances of HashFlow as well as the other
algorithms on the traces are similar, in the following we will
present the performance of the algorithms using only one of
the traces as the representative case.

Heavy Hitter Detection. To evaluate the performance of
HashFlow in heavy hitter detection, we replay 107 packets
from the HGC trace, then calculate the ARE and F1 score of
the algorithms as the threshold of heavy hitters increases
from 10 packets to 100 packets. As shown in Fig. 9, the algo-
rithms have better performance as the threshold increases,
and HashFlow achieves the F1 score of 0.99 and the ARE of
0.02 when the threshold is 100 packets. While the perfor-
mance of PRECISION is very close to that of HashFlow
when the threshold is large, it has bad performance for the
smaller thresholds since in PRECISION the light flows are
replaced randomly, and a new flow is recorded with an ini-
tial packet count irrelevant to its size. For the thresholds of
10 packets and 20 packets, the F1 scores of HashFlow are
0.76 and 0.90 respectively, which are 20 and 14 percent bet-
ter than those of the best competitor, and the AREs of Hash-
Flow are 0.41 and 0.19 respectively, which are more than 23

percent better than those of the best competitors. It’s worth
noting that when the CAIDA trace is replayed, for the heavy
hitters with the threshold of 10 packets, the F1 score and
ARE of HashFlow are 0.81 and 0.33 respectively, which are
19 and 35 percent better than those of the best competitors.

Top-K Heavy Flows Detection. To evaluate the performance
of HashFlow in top-k heavy flows detection, we replayed a
number of packets from the Campus trace. The number of
replayed packets increases from 5� 105 to 5� 106. Then we
evaluate the performance of HashFlow, Count sketch, CU
sketch, CM sketch and SpaceSaving in collecting the top 104

heavy flows. As shown in Fig. 10, the F1 score of HashFlow
(
0:99) is about 7 percent better than that of the best com-
petitor, and the ARE of HashFlow (
0:015) is about 84 per-
cent smaller than that of the best competitor. It’s clear from
Fig. 10 that as the number of replayed packets increases, the
performance of HashFlow is very steady while that of the
other algorithms degrade constantly. That’s because the old
information in a bucket of A of HashFlow is erased when-
ever collision occurs in it, while for the other algorithms, the
information in the sketches is accumulated as more packets
are processed, making the error in flow size estimation
increase constantly, which may result in the tracked heavy
flows being replaced by the light flows mistakenly.

7.4 Measurement Accuracy and Memory
Consumption

To evaluate the performance of HashFlow when the mem-
ory allocated changes, we replay 2� 107 packets of the
CAIDA trace, and increase the memory consumption of the
algorithms from 1 MB to 5 MB. Since 5 MB of memory can
accommodate about 2:5� 105 flow records only, and the 2�
107 packets contains more than 106 flows, it’s meaningless to
evaluate the performance of HashFlow in general flow size
estimation. Instead, we evaluate the performance of Hash-
Flow and the competitors in heavy hitter detection with the
threshold of 10 packets. As shown in Fig. 11, as the allocated
memory increases from 1 MB to 5 MB, the F1 score of Hash-
Flow increases from 0.61 to 0.98, which is 5%�24% better
than that of the best competitor, and the ARE of HashFlow
decreases from 0.58 to 0.04, which is 18%�69% better than
that of the best competitor.

7.5 Measurement Accuracy and Traffic Skewness

To evaluate the performance of HashFlow for various traffic
patterns, we generate a packet sequence following the zipf

Fig. 8. Average relative error (ARE) for general flow size estimation.

Fig. 9. The performance of HashFlow in heavy hitter detection.

Fig. 10. The performance of HashFlow in top-K heavy flows detection.

ZHAO ETAL.: EFFICIENTAND ACCURATE FLOW RECORD COLLECTIONWITH HASHFLOW 1079

Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on January 08,2024 at 02:58:47 UTC from IEEE Xplore. Restrictions apply.

distribution [41]. The packet sequence contains 5� 106

packets and the average flow size is 20 packets. We increase
the skewness parameter of the zipf distribution from 0.6 to
1.2, then compare the performance of HashFlow in heavy
hitter detection with the threshold of 10 packets against
those of the competitors. As shown in Fig. 12, HashFlow
usually has better performance than its competitors. Espe-
cially, when the skewness parameter is 0.9, the F1 Score and
ARE of HashFlow are 0.77 and 0.39, which are 13.9% and
16.0% better than those of the best competitor respectively.

7.6 Influence of the Resubmit Primitive

As stated in Section 6, we use the resubmit primitive to do
the flow record promotion. The influence of this solution is
twofold. On the one hand, when a packet is resubmitted, it
is passed to the ingress of the pipeline, and several other
packets that are already in the pipeline have to be processed
before the sentinel flow record is replaced, thus the effec-
tiveness of the flow record promotionmay be undermined. On
the other hand, the resubmit operation results in some pack-
ets being processed twice, which may degrade the through-
put of the Tofino switch. In this section, we will evaluate the
influence the use of resubmit primitive has on the perfor-
mance of HashFlow.

First, we set the delay (in packets) for replacing the senti-
nel record of the software implementation to a certain value
t, so that once the flow record promotion is triggered, the senti-
nel record is replaced only after another t packets are proc-
essed. Notice there are only a few tens of stages in the
pipeline of a Tofino switch, the delay should be very small.
We replay 107 packets from the Campus trace, then collect

heavy hitters using HashFlow with the delays of 0 packets,
10 packets, 50 packets and 100 packets respectively. As
shown in Fig. 13, the difference in performance of Hash-
Flow with different delays is negligible, so it’s usually safe
to use the resubmit primitive for flow record promotion.

Notice that both HashFlow and PRECISION adopt the
resubmit primitive. To evaluate the throughput of HashFlow
and PRECISION, we connect the Tofino switch to a Spirent
SPT-N4U tester [42] using optical fibers and 100 Gbps opti-
cal transceiver modules. We use four ports of the Tofino
switch, and initiate 16384 flows for each port, so that 65536
flows in total are active in the traffic. The packet size is 700
bytes, for each port the flow speeds follow the zipf distribu-
tion [41], with their sum being about 99.99 Gbps meanwhile
(it is impossible to make the sum 100 Gbps exactly), and the
experiment duration is 5 seconds. We allocate about 540 KB
of memory to the algorithms so that the algorithms can
maintain about 30K flow records. As shown in Fig. 14a, as
no packet losses are observed during the 5 seconds, the
throughput of the Tofino switch is almost 400 Gbps. Some
packet losses are observed when the experiment lasts 60 sec-
onds, but the number of packet losses is much smaller than
that of the resubmit operations, implying that not all resubmit
operations result in packet losses.

We also define Resubmit Ratio as follows:

Resubmit Ratio ¼ number of resubmit operations

number of packets
:

As shown in Fig. 14b, in this experiment the resubmit primi-
tive is triggered about 14.5K times by HashFlow, making
the Resubmit Ratio about 3:2� 10�5, which is significantly
smaller than that of PRECISION. In a more realistic experi-
ment where 5� 106 packets from the HGC trace are pushed
by a Cisco UCS server through the Tofino switch, the resub-
mit primitive is triggered 51.1K times by HashFlow, and the

Fig. 12. Performance for heavy hitter detection with T ¼ 10.

Fig. 13. The performance of HashFlow in heavy hitter detection.

Fig. 11. Performance for heavy hitter detection with T ¼ 10.

Fig. 14. The throughput and resubmit ratio for the Tofino switch.

1080 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 5, MAY 2022

Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on January 08,2024 at 02:58:47 UTC from IEEE Xplore. Restrictions apply.

Resubmit Ratio of HashFlow (1.02%) is much smaller than
that of PRECISION (6.39%) as well. Therefore, in the
extreme case where each resubmit operation results in a
packet being dropped, the throughput degradation of Hash-
Flow is no more than 1.02%.

7.7 The Choice of Number of Sub-Tables

Notice that we use 3 sub-tables for the main table M by
default. In this section, we will demonstrate the perfor-
mance of HashFlow when more or fewer sub-tables are
used. We create eight instances of HashFlow where the
number of sub-tables ofM increases from 1 to 8, then replay
5� 106 packets from each of the four traces, and use the
eight instances to do the general flow size estimation and
the flow size distribution estimation. As shown in Fig. 15,
when the number of sub-tables increases from 1 to 3, the
performance of HashFlow is improved significantly, but
when it increases further, the improvements become trivial.
For example, when this number increases from 2 to 3, the
WRE for the Campus trace decreases from 0.358 to 0.339,
but when it increases from 3 to 4, the WRE decreases from
0.339 to 0.331 only. In our implementation, each sub-table
consumes 2 stages of the pipeline, and a maximum number
of 4 sub-tables are supported by our Tofino switch, but this
setting requires to do 6 (i.e., 4

2

� �
) comparisons to obtain the

sentinel flow record, which is much more tedious when con-
figuring the match-action tables from the control plane than
the case where there are 3 sub-tables and 3 (i.e., 3

2

� �
) compar-

isons are needed to obtain the sentinel flow record. There-
fore, we believe that it is a good choice to take 3 as the
default number of sub-tables.

7.8 Packet Count versus Byte Volume

As mentioned in Section 4, HashFlow is able to collect flow
records based on the packet count as well as the byte vol-
ume. To illustrate the strength of HashFlow in byte volume
oriented flow record collection, we replay a sequence of
packets from the CAIDA trace and the HGC trace, with the
number of replayed packets increasing from 5� 105 to 5�
106, then use HashFlow to collect the top 10 percent heavy
flows by considering the packet count and the byte volume
respectively. As shown in Fig. 16, HashFlow generally has

better performance when byte volume, instead of the packet
count, is considered. For example, when 5� 106 packets
from the CAIDA trace are replayed, the ARE when byte vol-
ume is considered is 42.0% better than that when the packet
count is considered.

8 CONCLUSION

We propose HashFlow for efficient collection of flow
records, which is useful for a wide range of measurement
and analysis applications. The flow collision resolution and
flow record promotion are of central importance to
HashFlow’s accuracy and efficiency. We analyze the perfor-
mance bound of HashFlow based on a probabilistic model,
and implement it in P4 in a Tofino switch. The evaluation
results based on real traces from different operational net-
works show that HashFlow consistently achieves clearly
better performance than its competitors in all the cases. In
the future, we plan to study how to make it adaptive to
more accurate measurement of light flows and network-
wide measurement.

ACKNOWLEDGMENTS

This work was supported in part by the National Key R&D
Program of China under Grant 2018YFB1800401 and in part
by National Natural Science Foundation of China under
Grants 61972189 and 62002009.

REFERENCES

[1] B. Claise, “Cisco systems netflow services export version 9,”
Tech. Rep. RFC 3954, Oct. 2004.

[2] B. Claise, B. Trammell, and P. Aitken, “Specification of the IP flow
information export (IPFIX) protocol for the exchange of flow
information,” Tech. Rep. RFC 7011, Sep. 2013.

[3] J. Case, M. Fedor, M. Schoffstall, and J. Davin, “Simple network
management protocol (SNMP),” Tech. Rep. RFC 1157, May 1990.

[4] P. Goyal and A. Goyal, “Comparative study of two most popular
packet sniffing tools-Tcpdump and Wireshark,” in Proc. 9th Int.
Conf. Comput. Intell. Commun. Netw., 2017, pp. 77–81.

[5] H. Zhang, X. Shi, Y. Guo, Z. Wang, and X. Yin, “More load,
more differentiation — Let more flows finish before deadline
in data center networks,” Comput. Netw., vol. 127, pp. 352–367,
Nov. 2017.

[6] H. Zhang, X. Shi, X. Yin, F. Ren, and Z. Wang, “More load, more dif-
ferentiation—Adesign principle for deadline-aware congestion con-
trol,” inProc. IEEEConf. Comput. Commun., Apr. 2015, pp. 127–135.

Fig. 15. (a) Weighted relative error for general flow size estimation; (b)
Average relative error for flow size distribution estimation.

Fig. 16. Performance of HashFlow in detecting the top 10 percent flows
when packet volume and byte volume are considered respectively.

ZHAO ETAL.: EFFICIENTAND ACCURATE FLOW RECORD COLLECTIONWITH HASHFLOW 1081

Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on January 08,2024 at 02:58:47 UTC from IEEE Xplore. Restrictions apply.

[7] Z. Wang et al., “Efficient scheduling of weighted coflows in data
centers,” IEEE Trans. Parallel Distrib. Syst., vol. 30, no. 9, pp. 2003–
2017, Sep. 2019.

[8] Access Time of DRAM and SRAM, 2018. Accessed: Jul. 6, 2018.
[Online]. Available: https://www.webopedia.com/TERM/A/
access_time.html

[9] Random Sampled NetFlow, 2006. Accessed: Jul. 31, 2020. [Online].
Available: https://www.cisco.com/c/en/us/td/docs/ios/12_2sb/
feature/guide/sbrsnf.html

[10] N. Hohn and D. Veitch, “Inverting sampled traffic,” in Proc. 3rd
ACM SIGCOMM Conf. Internet Meas., 2003, pp. 222–233.

[11] N. Duffield, C. Lund, and M. Thorup, “Estimating flow distribu-
tions from sampled flow statistics,” IEEE/ACM Trans. Netw., vol.
13, no. 5, pp. 933–946, Oct. 2005.

[12] P. Tune and D. Veitch, “Towards optimal sampling for flow size
estimation,” in Proc. 8th ACM SIGCOMM Conf. Internet Meas.,
2008, pp. 243–256.

[13] N. Duffield, “Sampling for passive internet measurement: A
review,” Stat. Sci., vol. 19, pp. 472–498, 2004.

[14] V. Carela-Espa~nol, P. Barlet-Ros, A. Cabellos-Aparicio, and
J. Sol�e-Pareta, “Analysis of the impact of sampling on netflow traffic
classification,”Comput. Netw., vol. 55, pp. 1083–1099, Apr. 2011.

[15] G. Cormode and S. Muthukrishnan, “An improved data stream
summary: The count-min sketch and its applications,” in Proc.
LATIN Theor. Inf., 2004, pp. 29–38.

[16] C. Estan and G. Varghese, “New directions in traffic measurement
and accounting,” in Proc. Conf. Appl., Technol., Architectures, Protoc.
Comput. Commun., 2002, pp. 323–336.

[17] M. Charikar, K. Chen, and M. Farach-Colton, “Finding frequent
items in data streams,” in Proc. Int. Colloq. Automata, Lang. Pro-
gram., 2002, pp. 693–703.

[18] A. Metwally, D. Agrawal, and A. El Abbadi, “Efficient computa-
tion of frequent and top-K elements in data streams,” in Proc. Int.
Conf. Database Theory, 2005, pp. 398–412.

[19] M. Yu, L. Jose, and R. Miao, “Software defined traffic measure-
ment with opensketch,” in Proc. 10th USENIX Conf. Netw. Syst.
Des. Implementation, 2013, pp. 29–42.

[20] Z. Liu, A. Manousis, G. Vorsanger, V. Sekar, and V. Braverman,
“One sketch to rule them all: Rethinking network flow monitoring
with univmon,” in Proc. Conf. ACM SIGCOMM, 2016, pp. 101–114.

[21] Y. Li, R. Miao, C. Kim, and M. Yu, “FlowRadar: A better netflow
for data centers,” in Proc. 13th USENIX Conf. Netw. Syst. Des.
Implementation, 2016, pp. 311–324.

[22] V. Sivaraman, S. Narayana, O. Rottenstreich, S. Muthukrishnan,
and J. Rexford, “Heavy-hitter detection entirely in the data plane,”
in Proc. Symp. SDN Res., 2017, pp. 164–176.

[23] T. Yang et al., “Elastic sketch: Adaptive and fast network-wide
measurements,” in Proc. Conf. ACM Special Int. Group Data Com-
mun., 2018, pp. 561–575.

[24] Explore the Power of Intel� Programmable Ethernet SwitchProducts.
Accessed: Nov. 23, 2020. [Online]. Available: https://www.intel.
com/content/www/us/en/products/network-io/programmable-
ethernet-switch.html

[25] P. Bosshart, et al., “P4: Programming protocol-independent packet
processors,” SIGCOMM Comput. Commun. Rev., vol. 44, pp. 87–95,
2014.

[26] C. Estan, K. Keys, D. Moore, and G. Varghese, “Building a better
netflow,” in Proc. Conf. Appl., Technol., Architectures, Protoc. Com-
put. Commun., 2004, pp. 245–256.

[27] R. Ben-Basat, X. Chen, G. Einziger, and O. Rottenstreich, “Efficient
measurement on programmable switches using probabilistic
recirculation,” in Proc. IEEE 26th Int. Conf. Netw. Protoc., 2018, pp.
313–323.

[28] M. Bagnulo, P. Matthews, and I. van, “Stateful NAT64: Network
address and protocol translation from IPv6 Clients to IPv4 serv-
ers,” Tech. Rep. RFC 6146, Apr. 2011.

[29] CAIDA UCSD Anonymized Internet traces dataset - 2018, 2018.
Accessed: Jul. 27, 2018. [Online]. Available: http://www.caida.org/
data/passive/passive_dataset.xml

[30] M. Mitzenmacher, T. Steinke, and J. Thaler, “Hierarchical heavy
hitters with the space saving algorithm,” in Proc. Meeting Algo-
rithm Eng. Experiments, 2012, pp. 160–174.

[31] D. Anderson, P. Bevan, K. Lang, E. Liberty, L. Rhodes, and
J. Thaler, “A high-performance algorithm for identifying fre-
quent items in data streams,” in Proc. Internet Meas. Conf., 2017,
pp. 268–282.

[32] R. Pagh and F. F. Rodler, “Cuckoo hashing,” J. Algorithms, vol. 51,
pp. 122–144, May 2004.

[33] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The Hadoop
distributed file system,” in Proc. IEEE 26th Symp. Mass Storage
Syst. Technol., 2010, pp. 1–10.

[34] P. Braam, “The lustre storage architecture,” 2019, arXiv:1903.01955.
[35] Z. Zeng and B. Veeravalli, “Design and performance evaluation of

queue-and-rate-adjustment dynamic load balancing policies for
distributed networks,” IEEE Trans. Comput., vol. 55, no. 11,
pp. 1410–1422, Nov. 2006.

[36] E. W. Weisstein, “Markov’s Inequality.” Accessed: Nov. 27,
2020. [Online]. Available: https://mathworld.wolfram.com/
MarkovsInequality.html

[37] “Multinomial theorem,” Wikipedia, 2020. Accessed: Nov. 26, 2020.
[Online]. Available: https://en.wikipedia.org/w/index.php?
title=Multinomial_theorem&oldid=986621683

[38] Edgecore Networks, 2010. Accessed: Jan. 8, 2019. [Online]. Available:
https://www.edge-core.com/productsInfo.php?
cls=1&cls2=180&cls3=181&id=335

[39] P4 Source Code of Hashflow. Accessed: May 3, 2020. [Online].
Available: http://gitee.com/zhao_zong_yi/open-p4-projects

[40] IP Trace and Service of CERNET, 2011. Accessed: Oct. 27, 2020.
[Online]. Available:http://www.iptas.edu.cn/show.php

[41] T. Benson, A. Akella, and D. A. Maltz, “Network traffic character-
istics of data centers in the wild,” in Proc. 10th ACM SIGCOMM
Conf. Internet Meas., 2010, pp. 267–280.

[42] Spirent SPT-N4U Compact Chassis. Accessed: Nov. 25, 2020.
[Online]. Available: https://www.spirent.com/assets/spirent_
n4u_chassis_datasheet

Zongyi Zhao received the BS degree in software
engineering from Nankai University in 2013 and
the ME degree in computer science and technol-
ogy in 2016 from Tsinghua University, where he is
currently working toward the PhD degree in com-
puter science and technology. His research inter-
ests include network measurement, data plane
programming, and packet loss detection.

Xingang Shi (Member, IEEE) received the BS
degree from Tsinghua University and the PhD
degree from The Chinese University of Hong
Kong. He is currently with the Institute for Net-
work Sciences and Cyberspace, Tsinghua Uni-
versity and the Beijing National Research Center
for Information Science and Technology. His
research interests include network measurement
and routing protocols.

Zhiliang Wang (Member, IEEE) received the BE,
ME, and PhD degrees in computer science from
Tsinghua University in 2001, 2003, and 2006,
respectively. He is currently with the Institute for
Network Sciences and Cyberspace, Tsinghua
University and the Beijing National Research
Center for Information Science and Technology.
His research interests include formal methods
and protocol testing, next generation internet,
and network measurement.

1082 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 5, MAY 2022

Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on January 08,2024 at 02:58:47 UTC from IEEE Xplore. Restrictions apply.

https://www.webopedia.com/TERM/A/access_time.html
https://www.webopedia.com/TERM/A/access_time.html
https://www.cisco.com/c/en/us/td/docs/ios/12_2sb/feature/guide/sbrsnf.html
https://www.cisco.com/c/en/us/td/docs/ios/12_2sb/feature/guide/sbrsnf.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch.html
http://www.caida.org/data/passive/passive_dataset.xml
http://www.caida.org/data/passive/passive_dataset.xml
https://mathworld.wolfram.com/MarkovsInequality.html
https://mathworld.wolfram.com/MarkovsInequality.html
https://en.wikipedia.org/w/index.php?title=Multinomial_theorem&oldid=986621683
https://en.wikipedia.org/w/index.php?title=Multinomial_theorem&oldid=986621683
https://www.edge-core.com/productsInfo.php?cls=1&cls2=180&cls3=181&id=335
https://www.edge-core.com/productsInfo.php?cls=1&cls2=180&cls3=181&id=335
http://gitee.com/zhao_zong_yi/open-p4-projects
http://www.iptas.edu.cn/show.php
https://www.spirent.com/assets/spirent_n4u_chassis_datasheet
https://www.spirent.com/assets/spirent_n4u_chassis_datasheet

QingLi received theBSdegree from theDalianUni-
versity of Technology in 2008 and the PhD degree
from Tsinghua University, in 2013, both in computer
science and technology. He is currently a research
associate professor with the Southern University of
Science and Technology. His research interests
include reliable and scalable routing of the internet,
software defined networking, network function virtu-
alization, in-network caching/computing, intelligent
self-running network, and edge computing.

Han Zhang (Member, IEEE) received the BS
degree in computer science and technology from
JiLin University and the PhD degree from Tsinghua
University. He is currently with the Institute for Net-
work Sciences and Cyberspace, Tsinghua Univer-
sity. His research interests include computer
networks, network security, and network system.

Xia Yin (Senior Member, IEEE) received the BE,
ME, and PhD degrees from Tsinghua University in
1995, 1997, and 2000, respectively. She is currently
with the Department of Computer Science and
Technology, Tsinghua University and the Beijing
National Research Center for Information Science
and Technology. Her research interests include
future internet architecture, formal method, protocol
testing, and large-scale internet routing.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

ZHAO ETAL.: EFFICIENTAND ACCURATE FLOW RECORD COLLECTIONWITH HASHFLOW 1083

Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on January 08,2024 at 02:58:47 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

