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ABSTRACT
With the rapid popularity of short video applications, a large num-

ber of short video transmissions occupy the bandwidth, placing a

heavy load on the Internet. Due to the extensive number of short

videos and the predominant service for mobile users, traditional

approaches (e.g., CDN delivery, edge caching) struggle to achieve

the expected performance, leading to a significant number of re-

dundant transmissions. In order to reduce the amount of traffic, we

design a Novel Coded Transmission Mechanism (NCTM), which

transmits XOR-coded data instead of the original video content.

NCTM caches the short videos that users have already watched

in user devices, and encodes, multicasts, and decodes XOR-coded

files separately at the server, edge nodes, and clients, with the assis-

tance of cached content. This approach enables NCTM to deliver

more short video data given the limited bandwidth. Our extensive

trace-driven simulations show how NCTM reduces network load by

3.02%-14.75%, cuts peak traffic by 23.01%, and decreases rebuffering

events by 43%-85% in comparison to a CDN-supported scheme and a

naive edge caching scheme. Additionally, NCTM also increases the

user’s buffered video duration by 1.21x-13.53x, ensuring improved

playback smoothness.

CCS CONCEPTS
• Networks→ Mobile networks.

∗
Qing Li is the corresponding author.

This work is licensed under a Creative Commons Attribution

International 4.0 License.

WWW ’24, May 13–17, 2024, Singapore, Singapore
© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0171-9/24/05.

https://doi.org/10.1145/3589334.3645387

KEYWORDS
short video delivery, coded transmission, client-side cache

ACM Reference Format:
Zhenge Xu, Qing Li, Wanxin Shi, Yong Jiang, Zhenhui Yuan, Peng Zhang,

and Gabriel-Miro Muntean. 2024. NCTM: A Novel Coded Transmission

Mechanism for Short Video Deliveries. In Proceedings of the ACM Web
Conference 2024 (WWW ’24), May 13–17, 2024, Singapore, Singapore. ACM,

New York, NY, USA, 12 pages. https://doi.org/10.1145/3589334.3645387

1 INTRODUCTION
Short video applications such as Tiktok [1] and YouTube Shorts

[2] are rapidly rising in popularity, attracting billions of active

users per month [3, 4]. Taking Tiktok as an example, it had 1.4

billion monthly active users in 2022, and it is predicted to reach 1.8

billion by the end of 2023 [5]. Billions of users imply a huge number

of video streams. According to TikTok’s report [5], globally, 167

million hours of short videos are consumed every minute, putting

an enormous pressure on the current Internet infrastructure.

Traditional video transmission solutions maintain videos on

the cloud and stream them to users via content delivery networks

(CDNs) [6, 7]. A major weakness of CDN is the huge redundant

traffic, causing network pressure and affecting the user viewing

experience. Edge caching approaches [8–10] can reduce the amount

of redundant traffic by caching user-desired contents at edge nodes

[11–13]. However, in short video services, users have different

preferences determined by their hobbies, culture, etc. Even though

videos are rarely watched in groups, they might be popular with

others [14]. Therefore, it is difficult to identify which are the most

popular videos among various ones. As a result, it is difficult for edge

nodes to cache adequate user-desired contents due to limitations

in cache capability, leading to low caching efficiency [15].

https://orcid.org/0009-0006-9950-6328
https://orcid.org/0000-0002-6071-473X
https://orcid.org/0000-0001-5394-1478
https://orcid.org/0000-0002-4260-1395
https://orcid.org/0000-0001-5676-6433
https://orcid.org/0000-0003-1634-0440
https://orcid.org/0000-0002-9332-4770
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3589334.3645387
https://doi.org/10.1145/3589334.3645387


WWW ’24, May 13–17, 2024, Singapore, Singapore Zhenge Xu et al.

Figure 1: File flows example for NCTM

Recent studies [16, 17] have revealed that using client-side caches

within a peer-to-peer (P2P) network can significantly reduce band-

width pressure caused by redundant video transmissions [18]. P2P

is a promising solution to increase the cache hierarchy and can

compensate for the limited edge node capability. However, the ma-

jority of short video deliveries are from mobile devices, e.g., 97% of

TikTok video deliveries [5]. The expensive uploading data bills or

the data cap make P2P not a feasible solution. Therefore, we aim to

make better use of the client-side cache to compensate for the lack

of edge cache capacity, while avoiding the upload traffic costs.

Coded cache [19–22] could provide a solution. It is based on

merging two separate video files into one coded file at the server

and forward it to the destination. The most commonly encoding

approach is XOR-merging (Exclusive OR). After receiving the coded

file, the destination device separates the original files by locally

cached content prefetched during network idle time. So the coded

cache technique requires fewer transmission files to transmit all

data. But it also means some contents need to be cached in the

destination device before use, and devices need to be active simul-

taneously to receive the coded files in time. However, in practice,

short video applications generally do not allow network usage

when they are closed, and the server lacks mechanisms to confirm

the apps running status. The above-mentioned problems hinder the

practical deployment of the coded cache solution.

In this paper, we propose an innovative Novel Coded Trans-
mission Mechanism (NCTM) for efficient short video delivery.

With deep insight on the characteristics of short video delivery,

NCTM avoids content prefetching or uploading through an effective

cooperation between the cloud, edge, and mobile clients. Particu-

larly, NCTM caches videos that the user has already watched for

subsequent decoding rather than prefetching ones.

As shown in figure 1, the cloud server in NCTM applies XOR

operations to combine video files into a single coded file, and sends

it to the edge node (coded transmission). Then the edge node mul-

ticasts the coded file to specific mobile clients. The mobile clients

will decode the coded file by applying XOR operations with the

previously watched and cached videos. To make sure that the coded

file can be successfully decoded, we should divide the clients into

multiple groups, ensuring that any two clients within a group have

previously watched and cached the files being requested currently

by each other (group divided problem). So we introduce a User
Cache Table (UCT) and a Transmission Matching Graph (TMG)
that record the cache status and explore coded transmission oppor-

tunities. Recognizing the similarity between the above-mentioned

requirement and the mathematical concepts of “cliques”, we model

the group divided problem as the clique cover problem [23, 24] and

propose the novel Minimum Clique Coverage algorithm. This algo-

rithm involves multiple linear-time searches to find a sub-optimal

solution. Furthermore, we introduce the new Recommendation Re-
order algorithm, which modifies the playback order by bringing

forward videos scheduled for later to create more opportunities for

coded transmission. Finally, we propose a Client-side Cache Update
method based on the video recommended queue, which is informed

by the recommendation system in short video services.

To evaluate the performance of NCTM, we utilized the kuaiRec

dataset [25] and collected real user interactions with the Kuaishou

app on August 12, 2020, totaling 117,977 records. For each client,

edge node, and cloud server, we created separate docker containers

[26] to simulate video requests and playback behaviors based on

their app usage time. The results show that under sufficient band-

width, NCTM reduces the average network load by 3.02%-14.75%,

and cuts the peak traffic by 23.01%. With limited bandwidth, NCTM

reduces 43%-85% of rebuffering events and increases video occu-

pancy in the user’s buffer by 1.21x-13.53x. Furthermore, we use the

NCTM to assist the edge caching, proving that they are compati-

ble. In addition, we demonstrate that NCTM can achieve real-time

performance on the server and provide reference values for the

hyperparameters in the proposed approach.

In summary, our contributions are as follows:

• We propose the innovative NCTM that sends XOR-coded

files and utilizes the client-side cache to store watched videos

for file decoding. This approach reduces the network load

without data prefetching or uploading.

• We design the Minimum Clique Coverage algorithm and the

Recommendation Reorder algorithm to find a relatively op-

timal solution for the client dividing problem with linear

time complexity, which ensures successful decoding for the

coded files in coded transmissions. The Client-side Cache
Update method based on the video recommended queue is

also proposed.

• We devise trace-driven experiments to emulate the NCTM

and verify its effectiveness in the reduction of bandwidth

consumption, buffer variation, and rebuffering frequency.

The remaining of the paper is structured as follows. In section 2,

we summarize the NCTM relatedwork, in section 3, we illustrate the

overall structure of NCTM and in section 4, NCTM is described in

details. In section 5, the experimental results are presented. Finally,

we give a brief conclusion of our work in section 6.

2 RELATEDWORKS
The popularity of short video applications leads to massive video

traffic and introduces a significant load on CDNs.

Edge caching [27, 28] is a key approach to alleviate the CDN

load. It utilizes cache-enabled edge servers, such as base stations and

smart gateways, to store popular contents, so that these contents

can be transmitted directly from the caches instead of from the

remote cloud [11]. As these cache edges are closer to the users,

there is a reduction in the traffic load on the core network. The

cache hit rate is an essential metric to evaluate the performance of

edge caching. For short video deliveries, [29] proposes to consider

the number of views and likes as the popularity basis to choose

the edge cache content. Furthermore, [30] takes user preferences

into consideration. To achieve a higher hit rate, [31] introduces

a multi-agent deep reinforcement learning algorithm where each

edge learns its own best policy.
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Figure 2: Overall structure of NCTM

P2P-CDNs [32–35] enables content caching on mobile phones

by utilizing wireless channels for cache sharing, also known as P2P

sharing. With a P2P approach, users can send their stored content

to other users, effectively balancing the upstream and downstream

transfers, and increasing the cache hierarchy [36]. [37] consid-

ers different network environments. High-quality Internet access

shares its resources (e.g., bandwidth) with slower or unreliable ones.

[38] takes advantage of user social information (friends/ followers),

using the friend list to identify additional P2P sharing.

Coded cache [19–22] utilizes network coding techniques, which
aggregate (encode), multicast, and separate (decode) data messages

in the cloud, edge node, and client devices, respectively. This tech-

nique results in lower traffic load for data transmission. For example,

if user A caches video file 𝑐1 and user B caches video file 𝑐2, when

user A requests video file 𝑐2 and user B requests video file 𝑐1, the

server can transmit a single coded file 𝑐1 ⊕ 𝑐2 (the symbol ⊕ rep-

resents bitwise XOR) instead of two separate files 𝑐1 and 𝑐2. It can

deliver the coded file simultaneously to both users by multicasting

at the edge node, and users can decode it based on their local files

(e.g., for user A: 𝑐1 ⊕ 𝑐2 ⊕ 𝑐1 = 𝑐2).
The previous works made important contributions in terms of

edge caching, P2P-CDNs and coded cache solutions individually,

but they have not combined them in an approach that reduces the

load for short video deliveries as proposed by NCTM.

3 NCTM ARCHITECTURE AND PRINCIPLE
The overall NCTM architecture is shown in figure 2. The mobile

clients cache their watched video files based on their cache capabil-

ities, and the cloud server sends the coded files to the edge node.

Then the edge node multicasts the coded file to the mobile clients.

These clients decode the coded file based on the cached files to

obtain the desired one. To make sure the coded file can be decoded,

we need to ensure that all the files involved in the coded file have

been cached at the clients, except the desired one. So the challenge

lies in finding how to efficiently and accurately identify the
clients with the above cache situation among multiple ones.
We employ the following designs to address this challenge.

The cloud server includes three key modules: Client Cache
Management, Coded Chances Exploration, and XOR-encoder.
The Client Cache Management informs the cache status of the

client’s devices. We design the User Cache Table (UCT) (section

4.1) to record the cached files in clients. Due to the limited cache ca-

pability, we specify the cache update policy (section 4.4). The Coded

Chances Exploration module finds the coded transmission oppor-

tunities, thus minimizing bandwidth consumption. Additional, we

design the Transmission Matching Graph (TMG) and reduce the

chances exploration problem to the clique cover problem [23, 24]

(section 4.1). To solve this NP-Hard problem, we designed the Min-
imum Clique Coverage algorithm to find a sub-optimal solution

within linear time complexity (section 4.2). Moreover, based on

our observation, switching the playback order of short video can

create more coded transmission opportunities, so we further pro-

posed Recommendation Reorder algorithm (section 4.3). File encoder

merges several origin video files into one coded file by XOR before

transmission.

The edge nodes copy the coded file and multicast it to clients.

Clients decode the coded file and extract the original files, as desired.

4 CODED TRANSMISSION MECHANISM
4.1 Definitions
We assume that there are 𝑁 short video files, denoted as C =

{𝐶1,𝐶2, ...,𝐶𝑁 }. Short videos are commonly delivered with an adap-

tive bitrate paradigm [39, 40]. Nowwe assume that each short video

consists of only one video chunk; this will be generalized to the

common case in the next section. Suppose there are𝐾 mobile clients,

denoted as U = {𝑈1,𝑈2, ...,𝑈𝐾 }. Each client is assigned an recom-

mendation queue. We denote 𝑣𝑖 𝑗 as the 𝑗-th video pushed to the 𝑖-th

user (𝑣𝑖 𝑗 ∈ C determined by the recommendation system). There-

fore, for the user 𝑈𝑖 , the recommendation queue can be denoted

as 𝑉𝑖 = {𝑣𝑖1, 𝑣𝑖2, ...}. At this point, we define the UCT as T = {𝑡𝑖 𝑗 },
where 𝑡𝑖 𝑗 = 1 indicates that user 𝑈𝑖 has watched and cached
video 𝐶 𝑗 , and vice versa (𝑖 ∈ [1..𝐾], 𝑗 ∈ [1..𝑁 ]). Thus, for the
user𝑈𝑖 , all the videos in their client-side cache can be recorded as

𝑇𝑖 = {𝐶 𝑗 |𝑡𝑖 𝑗 = 1, 𝑗 ∈ [1..𝑁 ]}.
For example, here we assume that user𝑈𝑎 has cached video 𝐶 𝑗 ,

and user𝑈𝑏 has cached video 𝐶𝑖 . It can be denoted as 𝑡𝑎𝑗 = 1 and

𝑡𝑏𝑖 = 1, respectively. When the user 𝑈𝑎 needs the video 𝐶𝑖 , and

user𝑈𝑏 needs video 𝐶 𝑗 , the coded file 𝐶𝑖 ⊕ 𝐶 𝑗 can be transmitted.

So the condition for coded transmission is that they have cached
the files needed by each other (e.g., 𝑡𝑎𝑗 = 1, 𝑡𝑏𝑖 = 1), which is

to ensure successful decoding in the user device (e.g., for user𝑈𝑎 ,

(𝐶𝑖 ⊕ 𝐶 𝑗 ) ⊕ 𝐶 𝑗 = 𝐶𝑖 , where 𝐶 𝑗 is watched and cached video file of

user𝑈𝑎). This is defined as a binary-coded transmission.

Similarly, we assume that there are three users 𝑈𝑎,𝑈𝑏 , and 𝑈𝑐
who need videos 𝐶𝑖 ,𝐶 𝑗 , and 𝐶𝑘 , respectively. When 𝑡𝑎𝑗 = 𝑡𝑎𝑘 = 1,

𝑡𝑏𝑖 = 𝑡𝑏𝑘 = 1 and 𝑡𝑐𝑖 = 𝑡𝑐 𝑗 = 1, indicating that each user has cached

the files needed by other two users, the coded file 𝐶𝑖 ⊕ 𝐶 𝑗 ⊕ 𝐶𝑘
can be transmitted. The client devices can also decode the coded

file with their cached video files. (e.g., for user𝑈𝑎 , decoding can be

achieved through (𝐶𝑖 ⊕𝐶 𝑗 ⊕𝐶𝑘 ) ⊕𝐶 𝑗 ⊕𝐶𝑘 = 𝐶𝑖 ). This is defined as a

ternary-coded transmission. Similar operations can be generalized

to multivariate-coded transmission involving x video files (𝑥 ≥ 2).

Clearly, a larger value of 𝑥 indicates merging more video files

into one coded file, resulting in fewer number of transmissions and

less bandwidth consumption. Therefore, we prefer the coded trans-

mission that covers more users. To make sure the client devices can

successfully decode, multivariate-coded transmission requires that

any two users satisfy the condition for binary-coded transmission.

This requirement can be associated with the mathematical con-

cept of “cliques”. So we design the TMG as G = (𝐸, 𝐷) to model the

multivariate-coded transmission exploration problem as a graph

theory problem.𝐷 is the set of vertices representing the active users
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Figure 3: Example of NCTM with 6 users and 6 videos

currently. If 𝑑𝑖 ∈ 𝐷 , it means the user 𝑈𝑖 is watching videos. 𝐸
is the set of edges. If 𝑒𝑖 𝑗 ∈ 𝐸, it means there is an edge between

nodes 𝑖 and 𝑗 , indicating that users 𝑈𝑖 and 𝑈 𝑗 currently satisfy the

condition for binary-coded transmission.
Let us denote the watching video of user 𝑈𝑖 as 𝑣

∗
𝑖
(𝑣∗
𝑖

∈ 𝑉𝑖 ).

In this case, for users 𝑈𝑖 and 𝑈 𝑗 , if 𝑡𝑖𝑣∗
𝑗
= 𝑡 𝑗𝑣∗

𝑖
= 1, binary-coded

transmission can be achieved, i.e., 𝑒𝑖 𝑗 ∈ 𝐸. Following this rule, we
can construct the G with 𝐾 ′

nodes, where 𝐾 ′
is the number of

active users (𝐾 ′ ≤ 𝐾 ). In TMG, if we can find a clique with 𝑥 nodes, it

means that among these 𝑥 users, any two users satisfy the condition

for binary-coded transmission, thus satisfying the condition for

multivariate coded transmission involving 𝑥 users. On the other

hand, all user requests need to be fulfilled, so any node in TMG needs
to be covered by a clique (a single node is also considered a clique,

we define it as the separate clique). Therefore, the problem can be

transformed into finding the minimum number of cliques that
cover all nodes in the TMG. We call this the group divided problem.

Formally, we denote R = {𝑅1, 𝑅2, ...} as all cliques in TMG, where
the i-th clique is represented as 𝑅𝑖 = {𝑑𝑥 , 𝑑𝑦, ...}. We must ensure

𝑅1∪𝑅2∪ ... = 𝐷 and minimize |R|. This problem is a classical clique

cover problem and has been proven to be NP-hard when the degree

of vertices is greater than 6 [23, 24]. In this paper, we propose the

Minimum Clique Coverage algorithm, which utilizes the previous

result and a single traversal to solve this problem with linear time

complexity. The details are presented in section 4.2.

Figure 3 illustrates an example containing 6 users and 6 videos,

and gives intuitive cases of binary-coded transmission and ternary-

coded transmission. In the example, two cliques are used to cover

the TMG, with 𝑅1 = {𝑑1, 𝑑2, 𝑑3, 𝑑4} and 𝑅2 = {𝑑5, 𝑑6}. Therefore, in
the coded transmission, two coded files need to be transmitted. 𝐹1
merging 4 video files 𝐶6,𝐶4,𝐶5,𝐶3 and 𝐹2 merging 2 video files

𝐶2,𝐶1. They will be decoded in the client devices with cached video

files. In practical deployment, we group users with close geographic

proximity and similar playback queues together to perform coded

transmission. So the scale of the UCT and the TMG will not be very
large. In our experiments, there are 1398 users and 10230 videos,

reflecting the coded transmission processes of a single group of

users. In this situation, the storage capacity for the UCT is 202MB,

which does not impose a significant load on the server.

4.2 Minimum Clique Coverage algorithm
To ensure smooth video playback, short video transmission uses

the adaptive bitrate paradigm. We define a video 𝐶𝑖 as composed

Figure 4: An example of asynchronous user requests

of multiple video chunks, denoted as 𝐶𝑖 = {𝑐𝑖1, 𝑐𝑖2, ...}. Note that
the UCT and TMG are dynamically maintained as the videos play.

As shown in figure 4, users𝑈1 −𝑈4 have already watched and

cached parts of the videos. For example, the user 𝑈1 cached the

videos 𝐶3,𝐶4,𝐶5, i.e., 𝑇1 = {𝐶3,𝐶4,𝐶5}. Now let us consider that

user 𝑈1,𝑈2 is watching video 𝐶6,𝐶4, i.e., 𝑣
∗
1
= 𝐶6, 𝑣

∗
2
= 𝐶4, and so

on. User𝑈1,𝑈2 watches video 𝐶6,𝐶4 within the time range of 4-14

and 0-22 seconds, and so on. Therefore, the TMG also changes within
different time intervals. The figure depicts the TMGs corresponding

to the current 5 intervals. At this point, encoding operations are

performed between different video chunks rather than the entire

video (for example, at the 8th second, 𝑐63 ⊕ 𝑐45 ⊕ 𝑐51 is encoded
for transmission). Now the TMG changes only when a user either

completes a video playback (e.g., 14th second) or starts watching a

new video (e.g., 0th,4th,8th,18th second). During each time interval,

the TMG remains unchanged. Note that the example above illustrates

a simplified scenario where the video bitrates are the same. We

discuss the more general case in the appendix C.

After completing a video playback, the user will leave the current

TMG. Since the subgraph of a clique remains a clique, the removal of

a node will not break the current clique. In the given example, at the

14th second, user𝑈1 (node 𝑑1) leaves the TMG, but users𝑈2 (node 𝑑2)

and𝑈3 (node𝑑3) can still form a clique. When a user starts playing a

new video, a new node is added to TMG, but the cliques formed by all

the existing nodes remain unchanged. So we can decide whether the

new node can be added to an existing clique (the number of cliques

unchanged) or the new node forms a separate clique (number of

cliques increase by 1). For example, at the 8th second, user𝑈3 joins

the TMG as a new node 𝑑3. According to the rules, node 𝑑3 has edges

with nodes 𝑑1 and 𝑑2, so it can be added to this clique, forming a

clique with three nodes and achieving ternary-coded transmission.

Therefore, whenever a new request arrives, we need to add a

new node to the TMG and try to incorporate this node into existing

cliques. We can judge whether the incorporation condition is met

by iterating through all existing cliques and checking whether all

nodes can connect to the new node. If a suitable clique is found, the

new node will be added to this clique, maintaining the number of

cliques and the coded files to be transmitted unchanged. Otherwise,

the new node forms a separate new clique, leading to an increase

in both the number of cliques and the coded files to be transmitted.

However, the aforementioned approach often yields poor per-

formance, as shown in figure 5. As new requests from user 𝑈5 and
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Figure 5: Naive solutions fail to achieve optimal solutions

Figure 6: Example of Minimum Cliques Coverage algorithm

𝑈6 arrive at time 𝑡2 and 𝑡3, new nodes 𝑑5 and 𝑑6 are added to TMG.
Since they do not have edges connecting to all nodes in the existing

clique, they will form new cliques. Clearly, the optimal solution

involves two cliques, but the result at time 𝑡3 contains three. To

address this issue, we propose a search algorithm with linear time

complexity, the Minimum Cliques Coverage algorithm, to find a

sub-optimal solution based on the previous results. The algorithm

includes𝑇 iterations, where𝑇 is a hyperparameter that controls the

computational cost. In each iteration, following steps are executed:

(1) Randomly select a node 𝑑𝑖 among all separate cliques. We

assume that 𝑑𝑖 comes from the clique 𝑅𝑥 .

(2) Randomly select an edge 𝑒𝑖 𝑗 from all the edges connected

the node 𝑑𝑖 . Obviously 𝑒𝑖 𝑗 connects to node 𝑑 𝑗 . We assume

that 𝑑 𝑗 comes from the clique 𝑅𝑦 .

(3) Let 𝑑 𝑗 exits original clique 𝑅𝑦 and joins clique 𝑅𝑥 where 𝑑𝑖

belongs to. The processed cliques are denoted as 𝑅
′
𝑦 and 𝑅

′
𝑥 .

(4) Iterate through all the nodes (𝑑𝑘 ) from 𝑅
′
𝑦 . Check if there

exist nodes that have edge connected to 𝑑𝑖 (𝑒𝑖𝑘 ∈ 𝐸).
(5) Make these nodes (𝑑𝑘 ) exit original clique 𝑅

′
𝑦 and join clique

𝑅
′
𝑥 . The processed cliques are denoted as 𝑅

′′
𝑦 and 𝑅

′′
𝑥 .

(6) Iterate through all remaining separate cliques (𝑑𝑘 ). Check if

one can be added to clique 𝑅
′′
𝑦 after excluding some nodes.

(7) If such a separate clique exists, node 𝑑𝑘 joins the clique 𝑅
′′
𝑦 .

The processed clique is denoted as 𝑅
′′′
𝑦 . Now a solution is

found and the algorithm terminates. Otherwise, all adjust-

ments are retained and the next iteration starts.

The pseudocode is shown in appendix A, and we prove this

algorithm in appendix B. During the iteration, if such a separate

clique is found in Step 7, it means that we merge two separate

cliques (𝑅𝑥 , 𝑅𝑧 ) and one non-separate clique (𝑅𝑦 ) into two non-

separate cliques (𝑅
′′
𝑥 , 𝑅

′′′
𝑦 ). The number of cliques and the coded

files to be transmitted reduces by one, and the algorithm termi-

nates. Otherwise, we still preserve the above operations so that the

next iteration can discover more matching opportunities. Figure 6

illustrates an example of the Minimum Cliques Coverage algorithm.

Here the separate cliques 𝑅3 (𝑑4) and 𝑅1 (𝑑7) are merged with the

Figure 7: Example of Recommendation Reorder Algorithm

clique 𝑅2 containing three nodes {𝑑1, 𝑑2, 𝑑3} to form the new clique

𝑅
′′
1
with three nodes {𝑑1, 𝑑2, 𝑑7} and the new clique 𝑅

′′′
2

with two

nodes {𝑑3, 𝑑4}. At this point, the clique 𝑅3 disappears.
This algorithm is executed whenever a new request arrives and

the newly added node in the TMG cannot join an existing clique (i.e.,

forming a separate clique). In each round, all nodes are traversed

at most three times, resulting in a computational complexity of

O(𝐾𝑇 ), where 𝐾 is the number of users in the current TMG, and
𝑇 is a hyperparameter that controls the number of iterations. We

will further explore the time complexity of this algorithm and the

impact of 𝑇 on the success rate of the search in our experiments.

The major benefit of the above algorithm is that we do not rely

on any prior knowledge (such as video popularity or predictions of

user viewing behavior). Instead, we dynamically adjust the cliques

through the UCT and TMG. This allows us to determine which users

currently satisfy the coded transmission conditions. Furthermore,

with the Minimum Clique Coverage algorithm, we utilize the histor-

ical results to explore a better solution for the clique cover problem

in linear time complexity. This allows us to use fewer cliques, which

means fewer coded files to be transmitted, thereby reducing band-

width consumption.

4.3 Recommendation Reorder algorithm
Based on our observations, in some cases, playing a video located

further in the recommended queue may create more chances for

coded transmission than playing the very next video. A typical

example is presented in figure 7.

The example contains two users, 𝑈1 and 𝑈2. User 𝑈1 has a rec-

ommendation queue 𝑉1 = {𝐶3,𝐶4,𝐶5,𝐶6,𝐶1, . . .}, and videos 𝐶3,

𝐶4, 𝐶5 have been watched and cached in the client device, i.e.,

𝑇1 = {𝐶3,𝐶4,𝐶5}. User 𝑈1 is watching the video 𝐶6, i.e., 𝑣
∗
1
= 𝐶6.

Similarly, 𝑉2 = {𝐶6,𝐶3,𝐶1,𝐶4,𝐶5, . . .}, and 𝑇2 = {𝐶6,𝐶3}. Since the
previous video has just ended, no video is being played by user𝑈2.

Now we find that if video𝐶1 is played next based on the recommen-

dation queue, since 𝑡11 = 0, NCTM cannot be used between users𝑈1

and𝑈2. However, if video𝐶4 is chosen (also in the recommendation

queue, but not the very next one), we have 𝑡26 = 𝑡14 = 1, and NCTM

can be used. Specifically, if the user𝑈2 chooses video𝐶1 as the next

one, there will be no edges connecting to node 𝑑2 in the TMG, and
𝑑2 will inevitably form a separate clique. However, if 𝑈2 chooses

video 𝐶4, in the TMG, the node 𝑑2 will have at least one edge. Even
if it forms a separate clique, with the Minimum Clique Coverage
algorithm, it also offers the potential for coded transmission.

For push-playback short videos, there are no content correlations

between two consecutive videos. Therefore, changing the playback

order of videos without altering their content will not significantly
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affect the user experience. The above example illustrates that in

certain situations, reordering the recommendation queue can create

more opportunities for coded transmission. Given that the users

might end, skip, or re-watch videos at any time, this makes it diffi-

cult to predict users’ viewing behaviors. Therefore, we propose the

Recommendation Reorder algorithm, which focuses on short-term

benefits. Whenever a user switches videos, this algorithm will filter

the videos that can trigger NCTM based on the current UCT and

select one based on the recommendation queue. This method does

not change the video contents, but changes the video playback

order by prioritizing the ones that enable coded transmission to

create more chances for coded transmission. The pseudocode is

shown in appendix D. The algorithm considers the next 𝐺 videos

in the recommendation queue of user𝑈𝑖 . For each video, it iterates

through all users to determine if the binary-coded transmission can

be used. The algorithm can be described as the following process:

(1) Traverse the next 𝐺 videos in 𝑉𝑖 , denote as 𝐶 𝑗 .

(2) For each 𝐶 𝑗 , traverse all other active users, denote as 𝑈𝑘 .

Check if one satisfies the requirement of binary-coded trans-

mission, i.e., 𝑡𝑘 𝑗 = 𝑡𝑖𝑣∗
𝑘
= 1.

(3) If such a user exists, let 𝑣∗
𝑖
= 𝐶 𝑗 . That is, the next video to

be played is 𝐶 𝑗 . Otherwise, still play the first video in 𝑉𝑖 .

Here 𝐺 is a hyperparameter that decides the maximum number

of look-forward videos as well as limits the computational cost.

This algorithm involves two iterations. So the time complexity

is referred to O(𝐺𝐾), where 𝐾 represents the number of users

watching videos. To further prune the search path, we can avoid

the case where 𝑡𝑖𝑣∗
𝑗
= 0 during the first traversal, i.e., excluding the

users who are watching the video not cached by user 𝑈𝑖 . That is

because the user 𝑈𝑖 can not perform coded transmission whatever

the next video is (it is impossible to change others playing videos).

Currently, most short video applications pre-cache the first video

chunk of several subsequent videos in the recommendation queue,

to alleviate the stalling and rebuffering issues caused by rapid video

switching. For example, TikTok pre-caches the first video chunk of

the next five videos [41]. Assuming the application pre-caches the

first video chunk of 𝑃 subsequent videos, it should ensure 𝐺 ≤ 𝑃

to mitigate the risk of increased stalling and rebuffering events.

4.4 Client-side cache update method
As discussed in Section 1, both edge caching and client-side cache

have limited storage capabilities. Compared to edge caching, user

devices (such as smartphones) may be more restricted. In this sec-

tion, we will discuss how to perform cache placement/replacement

to better cooperate with the Minimum Clique Coverage algorithm
and Recommendation Reorder algorithm.

We define the maximum storage capacity for user𝑈𝑖 as𝑀𝑖 , thus

we need to ensure

∑
𝐶 𝑗 ∈𝑇𝑖 |𝐶 𝑗 | ≤ 𝑀𝑖 , where 𝑇𝑖 is the cached videos

of user𝑈𝑖 and |𝐶 𝑗 | represents the file size of video𝐶 𝑗 . Suppose that
after watching video𝐶𝑘 , (

∑
𝐶 𝑗 ∈𝑇𝑖 |𝐶 𝑗 |) + |𝐶𝑘 | > 𝑀𝑖 , indicating that

the user 𝑈𝑖 cannot store these videos on user device. Therefore, it

is necessary to determine which content should be replaced.

For video 𝐶𝑘 , we cache video files so we can decode the coded

files with the assistance of them in the future. Hence, cached videos

𝐶𝑘 are only valuable if they are watched by other users later. Using

the "push playback" style, a recommendation system can keep track

of the video playback list. Therefore, we can estimate the earliest

possible time when the video 𝐶𝑘 will be used for file decoding. As

NCTM mainly focuses on short-term benefits, we prefer the files

that can create coded transmission opportunities in the short term

and replace those that would take longer to be used.

Formally, we define 𝐹 (𝐶𝑘 ) as the earliest occurrence time of

video file 𝐶𝑘 in the recommendation queue. That is, 𝐹 (𝐶𝑘 ) =

min( 𝑗) 𝑠 .𝑡 . 𝑣𝑖 𝑗 = 𝐶𝑘 𝑓 𝑜𝑟 𝑎𝑙𝑙 𝑖 ∈ [1..𝐾], where we find the smallest

𝑗 among all 𝐾 users’ recommendation queues such that 𝑣𝑖 𝑗 = 𝐶𝑘 .

This is the earliest possible time when the current video could be

used for decoding. For the user 𝑈𝑖 , we can sort the videos in 𝑇𝑖 by

𝐹 (𝐶𝑘 ) and replace the videos that would take longer to be used.

Note that from the perspective of the Recommendation Reorder
algorithm, it can be regarded as 𝐹 ∗ (𝐶𝑘 ) = max{1, 𝐹 (𝐶𝑘 )−𝐺}, where
𝐺 is the hyperparameter defined in the algorithm description. This

is because the Recommendation Reorder algorithm can look ahead𝐺

videos based on the current recommendation queue, thus this video

could potentially be played ahead by up to 𝐺 videos. Additionally,

when we consider edge cache, if video 𝐶𝑘 is cached in the edge

cache, it means that requests involving video 𝑐𝑘 will not use NCTM

and can be regarded as 𝐹 ∗ (𝐶𝑘 ) = +∞.

4.5 Further considerations
Besides the mentioned points above, there are many other aspects

that need to be taken into consideration. For the uncompleted

watching events, we will consider weighted TMG in our subsequent

work to explore more stable coded transmission opportunities. Fur-

thermore, short video playback on mobile devices also exhibits a

significant degree of randomness. For instance, users may slide the

progress bar to skip some uninteresting scenes, network conditions

can affect the video bitrate, and user movements can impact the

connection status of edge nodes. We have taken these issues into

consideration and discussed them in detail in appendix C.

5 EVALUATION
5.1 Methodology
We used the traditional CDN delivery and edge cache (size of
500MB with a LRU update method) approaches for comparison to

evaluate the performance of NCTM. To replicate the users video-

watching behavior, we utilized the kuaiRec dataset [25] and col-

lected 117,977 real request records from 1,398 users on the Kuaishou

app on August 6, 2020, involving 10,230 short videos. To simulate

the network conditions, we used the MAWI [42] and FCC18 [43]

network traces from August 12, 2020. In the experiment, we created

separate Docker [26] containers for the server, the edge node, and

each user device. Users sent requests to servers via edge nodes ac-

cording to the real request records mentioned above. Additionally,

we used the Mahimahi network tool [44] to replay the network

trace, aiming to closely reproduce the network conditions at that

time. In the experiments, we considered two fundamental scenar-

ios: the sufficient bandwidth network and the limited bandwidth

network. For the former one, we mainly considered the network

bandwidth utilization. For the latter one, we mainly focused on

buffer variation and rebuffer events. More detailed settings are

shown in appendix E.
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Figure 8: The network throughput varia-
tion under sufficient bandwidth

Figure 9: Normalized bandwidth usage
under sufficient bandwidth

Figure 10: The distribution of rebuffer
events under limited bandwidth

Figure 11: Statistics of rebuffer
events under limited band-
width

Figure 12: Proportion of re-
buffered request under limited
bandwidth

Figure 13: Average proportion
of rebuffer time under limited
bandwidth

Figure 14: Average buffered
video duration under limited
bandwidth

5.2 Performance
Under sufficient bandwidth: Figure 8 presents the network load

variations under high-speed connections (200Mbps) across CDN

and edge caching approaches with and without NCTM, as well as a

histogram of short video requests distribution. The network load

variations are closely related to the request frequency. The peak

value of requests occurs at around the 29700th second. During this

time, there are 118 requests within one minute (1398 users), and the

network load also reached its peak value. In CDNs delivery mode,

the real-time throughput was 69.94 Mb/s and 53.84 Mb/s without

and with NCTM, cutting peak traffic by 23.01%. Similar results are

observed in the edge caching mode, indicating that NCTM can

effectively alleviate peak throughput pressure. Figure 9 presents

the cumulative distribution function (CDF) of the normalized band-

width usage. It can be observed that NCTM can significant re-

duce bandwidth usage. In CDNs delivery mode/edge caching mode

(edge cache size of 500MB), the average network load decreased

by 14.06%/13.30% with NCTM versus no NCTM. As a result of the

change in the order of video playback, there may be a short period

of time when NCTM’s throughput exceeds that of baselines. From

a global perspective, the NCTM is clearly superior to the baseline.

Limited bandwidth scenario: Figure 10 shows the distribution
of rebuffer events using NCTM in both CDNs delivery mode and

the edge caching mode in a limited bandwidth scenario (60Mbps).

Figure 11 and 12 show the statistics of rebuffer events and the

proportion of rebuffered requests. It can be observed that due to

the limited bandwidth, in the CDN delivery mode, 73.93% of user

requests suffer from rebuffer events. During peak request times,

almost all users experience rebuffer events, resulting in 35,726 re-

buffer instances. NCTM relieves some of the bandwidth pressure,

resulting in a 40.23% reduction in rebuffer events for user requests.

This represents a decrease of 33.7% compared to the baseline. To-

tal rebuffer instances decreased by 45.6% to 19,431. Similarly, in

the edge caching mode, with the efficient cooperation of NCTM

and edge caching, the number of user requests experiencing re-

buffer events has been reduced to only 9.21%, and the total count

of rebuffer events has decreased by 80.8% compared to the baseline.

Figure 13 shows the average proportion of rebuffer time across

CDN and edge caching approaches with and without NCTM. Figure

14 shows the average buffered video duration during video play-

back in client devices. Due to frequent rebuffer events in the CDN

delivery mode, the average buffered video duration is only 1.97 sec-

onds. About 45.82% time of video watching is waiting for rebuffer-

ing. With NCTM, the average buffered video duration increases by

13.53x to 26.66 seconds, mitigating the effects of fluctuations in net-

work performance. Similarly, in the edge caching mode, the average

buffered video duration increases by 1.21x, and the proportion of

buffer time decreases to only 5.79%. These significantly improve

user experience within limited network bandwidth conditions.

Dynamic bandwidth scenario: Figure 15 illustrates the av-

erage bandwidth usage in different delivery modes in a scenario

where the network bandwidth ranges from 60Mbps to 100Mbps.

When the bandwidth is relatively abundant (100Mbps 80Mbps),

NCTM reduces the bandwidth usage rate by 3.02%-14.75%. Under

the constrained bandwidth (70Mbps), NCTM significantly allevi-

ates the bandwidth pressure, reducing the time of full bandwidth

occupancy by 15.28%, substantially reducing rebuffering events.

NCTM assisting edge caching: To further explore the cooper-

ation between NCTM and edge caching, we analyzed the number

of requests in different transmission stages, including the number
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Figure 15: Average bandwidth usage un-
der 60Mbps-100Mbps

Figure 16: Time complexity of NCTM-
related algorithm

Figure 17: Average execution time of re-
lated algorithms and request delay

Figure 18: Cooperation between NCTM
and edge caching

Figure 19: Average execution time and
success rate in different 𝑇

Figure 20: Average execution time and
success rate in different 𝐺

of hit-edge-cache requests and the number of NCTM requests, as

shown in Figure 18. In the early stages, when the response workload

of the edge cache is low, LRU can satisfy over 20% of the requests.

However, with the video files increasing in the later stages, the edge

cache becomes overwhelmed. On the contrary, NCTM does not

occur frequently in the early stages due to limited cache content.

But in the later stages, as user caches accumulate, many requests

(over 25%) can use NCTM. Therefore, edge caching and NCTM

are not only compatible, but they are complementary and further

reduce the network load by cooperation.

5.3 Time complexity and hyperparameters
Time complexity: We design an experiment to compute the time

complexity of NCTM in order to assess NCTM’s capability to pro-

cess the received requests in real-time. Figure 16 illustrates the time

complexity of NCTM. Figure 17 illustrates the relationship between

the average execution time of NCTM and short video playback

latency. The execution time of NCTM primarily includes four dis-

tinct components., i.e., cliques traversal, two algorithms, and the

XOR encoding. Figure 16 shows four fitting curves, illustrating the

actual execution time of the algorithms with different entity counts

(𝑁 for time complexity), such as the number of current nodes or

cliques. It can be concluded that both the two algorithms show

nearly linear growth, consistent with our analysis. Besides, the

average execution time from opening the APP to the start of the

first video playback is 706ms (tested with the Chrome browser for

Tiktok). Considering that NCTM’s execution time is much shorter

than the video playback delay, we can conclude that NCTM can

process requests in real time for short videos.

Hyperparameter analysis: In the above section, we set hyper-

parameters 𝑇 and 𝐺 to control the computational cost. To deter-

mine the values of 𝑇 and 𝐺 , we design experiments with values

{1, 3, 5, 7, 9} and calculated the success rate for finding solutions

and execution time under each parameter setting. Results in Figure

19 and figure 20 reveal that both 𝑇 and 𝐺 exhibit a nearly linear

increase in average execution time as their values increase. When

𝑇 = 5, the probability of reducing the number of cliques in theMini-
mum Clique Coverage algorithm is 8.11%, with an average execution

time of 12.92𝑚𝑠; when 𝐺 = 5, the probability of finding videos in

the Recommendation Reorder algorithm is 68.25%, with an average

execution time of 2.54𝑚𝑠 . As 𝑇 and 𝐺 further increase, the success

rate of finding solutions approaches a plateau, indicating that𝑇 = 5

and 𝐺 = 5 are relatively optimal values.

6 CONCLUSIONS
As short videos become increasingly common, they put a significant

strain on network resources due to the massive amount of data

they transmit. Due to the time- and space-intensive nature of short

videos, CDNs are faced with considerable bandwidth challenges.

Moreover, edge caching and other solutions rely too heavily on

predicting popular files. In this paper, we propose NCTM, which em-

ploys XOR-encoded files to make effective use of user-side caches,

reducing bandwidth consumption and improving transmission effi-

ciency. Trace-driven experiments show that compared to CDNs and

edge caching, NCTM reduces bandwidth consumption, rebuffer-

ing events, and the reliance on caching popular files, ultimately

improving the user experience when watching short videos.
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APPENDICES
A PSEUDOCODE FOR MINIMUM CLIQUE

COVERAGE ALGORITHM

Algorithm 1Minimum Clique Coverage algorithm

Input: G = (𝐸, 𝐷) , R , 𝑇

Output: R
′

1: function main

2: R
′
= R

3: repeat
4: randomly select 𝑑𝑖 ∈ 𝐷 , s.t. 𝑑𝑖 ∈ 𝑅𝑥 , |𝑅𝑥 | = 1

5: randomly select 𝑒𝑖 𝑗 ∈ 𝐸 , s.t. 𝑑 𝑗 ∈ 𝑅𝑦 , |𝑅𝑦 | ≠ 1

6: 𝑅
′
𝑥 = 𝑅𝑥 ∪ {𝑑 𝑗 }

7: 𝑅
′
𝑦 = 𝑅𝑦 − {𝑑 𝑗 }

8: for 𝑑𝑘 ∈ 𝑅′
𝑦 do

9: if 𝑒𝑖𝑘 ∈ 𝐸 then
10: 𝑅

′′
𝑥 = 𝑅

′
𝑥 ∪ {𝑑𝑘 }

11: 𝑅
′′
𝑦 = 𝑅

′
𝑦 − {𝑑𝑘 }

12: end if
13: end for
14: for 𝑑𝑘 s.t. 𝑑𝑘 ∈ 𝑅𝑧 , |𝑅𝑧 | = 1 do
15: if � 𝑑𝑙 s.t. 𝑑𝑙 ∈ 𝑅

′′
𝑦 , 𝑒𝑘𝑙 ∉ 𝐸 then

16: 𝑅
′′′
𝑦 = 𝑅

′′
𝑦 ∪ {𝑑𝑘 }

17: R
′
= R

′ − {𝑅𝑥 , 𝑅𝑦, 𝑅𝑧 }
18: R

′
= R

′ ∪ {𝑅′′
𝑥 , 𝑅

′′′
𝑦 }

19: return R
′

20: end if
21: end for
22: R

′
= R

′ − {𝑅𝑥 , 𝑅𝑦}
23: R

′
= R

′ ∪ {𝑅′′
𝑥 , 𝑅

′′
𝑦 }

24: 𝑇 = 𝑇 − 1

25: until 𝑇 = 0

26: end function

B PROOF OF THE MINIMUM CLIQUE
COVERAGE ALGORITHM

In the Minimum Clique Coverage algorithm, we randomly select

a separate clique in each iteration and search for a solution to

reduce the clique number. It’s worth noting that although there

are situations where the clique number remains unchanged, we

still retain all adjustments made during this iteration. Figure 21

explains why we should retain the states. With simple TMG adjust-
ments, larger cliques can be split into smaller ones, creating more

opportunities for successful matches. In this example, the clique

𝑅1 = {𝑑1, 𝑑2, 𝑑3, 𝑑4} is split into smaller clique 𝑅
′
1
= {𝑑2, 𝑑3, 𝑑4} in

the first iteration, leading to a successful match in the next itera-

tion. More generally, if we can find several separate nodes whose
connected edges completely cover all nodes of a non-separate
clique, we can then divide this non-separate clique into several

parts putting in the separate cliques.

Formally, we define 𝑃𝑖 as the set of pointed nodes for all edges

connected to node 𝑑𝑖 . For example, in the first subgraph of fig-

ure 21, 𝑃1 = {𝑑2, 𝑑3, 𝑑4, 𝑑6, 𝑑8}, which means node 𝑑1 is connected

to nodes 𝑑2, 𝑑3, 𝑑4, 𝑑6, and 𝑑8. We also define 𝑄𝑖 as the set of

Figure 21: An example of finding the solution through multi-
step iteration search

nodes belonging to the same clique as node 𝑑𝑖 . For example, in

the first subgraph of figure 21, we have 𝑄1 = 𝑅1 = {𝑑1, 𝑑2, 𝑑3, 𝑑4},
𝑄2 = 𝑅1 = {𝑑1, 𝑑2, 𝑑3, 𝑑4}, and 𝑄8 = 𝑅5 = 𝑑8. If we can find sev-

eral separate cliques (nodes) {𝑑𝑖 }, {𝑑 𝑗 }, {𝑑𝑘 }, ... and a non-separate

clique 𝑄𝑥 such that 𝑄𝑥 ⊆ 𝑃𝑖 ∪ 𝑃 𝑗 ∪ 𝑃𝑘 ∪ ..., it means the clique 𝑄𝑥
can be divided. For example, in the first subgraph of figure 21, we

have 𝑃5 = {𝑑3, 𝑑4}, 𝑃7 = {𝑑2}, 𝑃8 = {𝑑1}, and thus 𝑃5 ∪ 𝑃7 ∪ 𝑃8 =

{𝑑1, 𝑑2, 𝑑3, 𝑑4}. At the same time, we have 𝑄1 = {𝑑1, 𝑑2, 𝑑3, 𝑑4}, so
we have 𝑄1 ⊆ 𝑃5 ∪ 𝑃7 ∪ 𝑃8. In this case, we can reconstruct the

cliques 𝑄1 (𝑅1), 𝑄5 (𝑅2), 𝑄7 (𝑅4), 𝑄8 (𝑅5) to form cliques 𝑄5 (𝑅
′
2
) =

{𝑑3, 𝑑4, 𝑑5}, 𝑄7 (𝑅
′
4
) = {𝑑2, 𝑑7}, 𝑄8 (𝑅

′
5
) = {𝑑1, 𝑑8} in the third sub-

graph. It means we form three non-separate cliques from three

separate cliques and one non-separate clique.

This problem is a classic Set Cover Problem (SCP) that involves

selecting specific sets and taking their union to cover all elements

of a given set [45]. SCP is NP-hard in the strong sense, proven by

Garey and Johnson[46]. In theMinimum Clique Cover algorithm, we

utilize the characteristics of separate cliques. Each time, we select

a separate clique and a non-separate clique, removing all nodes
that are connected to the separate clique in the non-separate clique.

Formally, it can be proven that if𝑄𝑥 ⊆ 𝑃𝑖 ∪𝑃 𝑗 ∪𝑃𝑘 ∪ ..., then for any
set 𝑃 ′, we have (𝑄𝑥−𝑃 ′) ⊆ ((𝑃𝑖∪𝑃 𝑗∪𝑃𝑘∪...)−𝑃 ′). Assuming it is for

separate node 𝑑𝑖 , we have (𝑄𝑥 − 𝑃𝑖 ) ⊆ ((𝑃𝑖 ∪ 𝑃 𝑗 ∪ 𝑃𝑘 ∪ ...) − 𝑃𝑖 ) ⊆
𝑃 𝑗 ∪ 𝑃𝑘 ∪ .... In other words, in the Minimum Clique Coverage
algorithm, the SCP problem is broken into multiple subproblems

which can be solved linearly. In each search, we use a separate

clique to grab parts of a non-separate clique. This process continues

until a suitable solution is found or the iteration limit has been

reached.

Through the above example, we demonstrate that the Minimum
Clique Coverage algorithm helps us reach the sub-optimal solution

without deteriorating the current situation. Therefore, we should

retain all adjustments made during each iteration.

C FURTHER CONSIDERATIONS IN DETAILS
Uncompleted watching events: An uncompleted watching event

occurs when the user switches to the next video before finishing the

last one. This is very common in short video playbacks. Obviously,

the video chunks that are not downloaded before switches will

not be saved in the client-side cache. Therefore, in the NCTM, if

these video chunks are involved in the coded file, the client can

not decode it successfully. We can make the node exit the current

clique in TMG, forming a separate clique, this will evidently impair

the performance of NCTM (the number of clique increase). A com-

promise solution approach is to assign a weight 𝑠𝑖 𝑗 for each edge

in the TMG, representing how long the edge between node 𝑑𝑖 and

𝑑 𝑗 can be maintained (how long the coded transmission can be
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Figure 22: Minimum Clique Coverage algorithm with weight
edges in TMG

sustained). Next, we denote 𝑡 (𝑅𝑖 ) to represent how long the clique

𝑅𝑖 can be sustained. In theMinimum Clique Coverage algorithm, the

problem is transformed into a weighted search problem. Greedy

algorithms or heuristic search methods can be used to determine

whether to retain the adjustments in each iteration. Figure 22 illus-

trates the process of the weighted algorithm. This iteration does not

result in a decrease in clique number, but it extends their duration

significantly. This implies a longer duration for coded transmission.

Sliding the progress bar: Sliding the progress bar indicates

that the user may skip some uninterested content within one video.

This is often accompanied by uncompleted watching events. In the

NCTM, when a user slides the video, the edges of the corresponding

node in the TMG need to be recalculated (sliding may cause some

edges to disappear due to uncompleted watching). The node exits

the current clique and then re-runs the Minimum Clique Cover
algorithm. Furthermore, since NCTM is designed around continuous

video playback, if there are missing video chunks in a video, it’s

recommended to only store the continuous video chunks from the

beginning up to the missing portion in the client-side cache. The

subsequent video chunks will be rarely used in file decoding.

Video chunkswith different bitrates: Short videos are usually
encoded as video chunks with different bitrates using the adaptive

bitrate paradigm. In the NCTM, we treat video chunks with different

bitrates as distinct videos. Fortunately, most short video platforms

encode videos in only a limited range of bitrates. For instance,

TikTok has only three bitrate options [41]. Furthermore, recently

researched layered coding schemes [47, 48] are more compatible

with NCTM. In these schemes, video files of different bit rates are

compatible. High-bitrate files can also be used for decoding the

coded files involving low-bit rate files.

Coded file involving different bitrate chunks: As described
in Section 4.2, XOR-encoding occurs between video chunks. In

addition, there is sufficient evidence indicating that in short video

services (e.g., TikTok, a popular short video service provider), videos

are split into size-based chunks (size of 1MB for TikTok) rather than

duration-based chunks [41]. Therefore, the file sizes of high-bitrate

and low-bitrate video chunks are the same, but the durations of the

decoded videos are different. When a coded file involving different

bitrates arrives at the edge node, it will be stored in the memory.

The higher bitrate clients imply shorter video durations for each

chunk, leading to this coded file being more promptly transmitted

to the client’s device. In contrast, the lower bitrate clients must

transmit the former coded file before this one, which will be stored

in the memory for a while before it is transmitted. This usually

indicates that the user suffers from a lower bandwidth on the link

from the edge node to the device, which becomes the bottleneck

link, resulting in requests for videos with lower bitrates.

User movement: The user rapid movement implies frequent

changes to the connecting base stations, while the user’s cache

remains the same. In NCTM, due to the involvement of edge nodes

(base stations), changing base stationsmeans that the existing coded

transmission conditions cease to be satisfied. Any change can be

regarded as exiting the original TMG and joining the new TMG with

a new identity to explore coded transmission opportunities. In-

deed, NCTM is not suitable for situations with frequent handovers

between base stations. However, it’s important to note that the

purpose of NCTM is to reduce the throughput of the shared links.

When other users (who do not frequently move) trigger coded

transmission, it means that the high-speed moving users have the

opportunity to be allocated more bandwidth, leading to a better

video viewing experience. Therefore, NCTM takes into considera-

tion the interests of all users, not just a specific category of users.

So we still believe that NCTM has strong potential applications.

D PSEUDOCODE FOR RECOMMENDATION
REORDER ALGORITHM

Algorithm 2 Recommendation Reorder algorithm

Input: 𝑉𝑖 , T , 𝐺
Output: 𝑣∗

𝑖
1: function main

2: 𝑓 𝑙𝑎𝑔 = 𝐹𝐴𝐿𝑆𝐸

3: for 𝐶 𝑗 in 𝑉𝑖 next 𝐺 videos do
4: for𝑈𝑘 ∈ U do
5: if 𝑡𝑘 𝑗 = 1 and 𝑡𝑖𝑣∗

𝑘
= 1 then

6: 𝑣∗
𝑖
= 𝐶 𝑗

7: 𝑓 𝑙𝑎𝑔 = 𝑇𝑅𝑈𝐸

8: end if
9: end for
10: if 𝑓 𝑙𝑎𝑔 = 𝑇𝑅𝑈𝐸 then
11: break

12: end if
13: end for
14: if 𝑓 𝑙𝑎𝑔 = 𝐹𝐴𝐿𝑆𝐸 then
15: 𝑣∗

𝑖
= 𝑉𝑖 next video

16: end if
17: return 𝑣∗

𝑖
18: end function

E OVERALL SETTING OF THE EXPERIMENT
Comparison baselines: We will compare NCTM with the follow-

ing approaches. 1) Traditional CDN delivery: CDNs maintain all

videos on the cloud servers. Mobile clients send requests to CDNs

through base stations and the cloud servers will transmit the de-

sired content to the mobile clients through the same path. 2) Edge
caching: The edge nodes (e.g., base stations) cache popular files and
use the Least Recently Used (LRU) method to update the content.

When a client requests a file cached at the edge node, the edge node

will prioritize providing it.

Entity settings: The video distribution over mobile networks

generally involves three entities, i.e., content distribution servers
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Figure 23: Experimental Overall Structure Design

(cloud servers), base stations (edge nodes), and client devices. In the

evaluation, we use Docker [26] to simulate the above transmission

process. At the beginning of the experiment, we create one Docker

for the cloud server and another Docker for the edge node, sepa-

rately running codes implemented with Python, to serve the clients.

For each client, a new Docker is created during the first 30 seconds

before the user starts watching videos, and then simulating the

behaviors of requesting video content as well as video playbacks.

Once the client completes the session, the corresponding Docker

will be deleted. The overall system is presented in figure 23.

Viewing behaviors: The experiment uses the kuaiRec dataset

[25], which is a publicly available dataset released by Kuaishou. All

data is collected from real user interaction records on the Kuaishou

app, a popular short video app, between July 5 and September 5,

2020. We use the user interaction records from August 6, 2020, as

the dataset for the experiment. It includes 117,977 video viewing

records from 1,398 users requesting 10,230 video files, during 24

hours. In the experiment, we use the order of watched videos in

the dataset as the original recommendation queue. However, due

to the Recommendation Reorder algorithm, the order and timing of

video views by users may not follow the original data, still ensuring

video playback completion.

Network conditions: The experiment consists of two end-to-

end network scenarios, i.e., from the cloud server to the base station

(cable network) and from the base station to the end client devices

(wireless network). We used the network traces provided by the

MAWI Working Group [42] for the wide backbone network to

simulate network throughput variations. Specifically, we use the

network traces from August 12, 2020, from the main IX link of

WIDE to DIX-IE. The network fluctuations ranged from 60Mbps to

200Mbps in mean value, constructing different bandwidth scenar-

ios (abundant bandwidth or limited bandwidth). We also used the

FCC18 network traces to simulate network throughput fluctuations

from the base station to the end client devices. The FCC18 dataset

has been commonly used in previous works [49, 50]. To reflect the

differences among clients, the network fluctuations were adjusted

to differentiate bandwidth conditions including mean values of

2Mbps, 4Mbps, 6Mbps, and 12Mbps, each with a random variation

of up to 5%.

Video representations:We use videos downloaded from the

TikTok app and choose the corresponding video with a match-

ing duration for each video in the dataset. Following the existing

method [41], we divided each video into chunks of 1MB in size

(the last chunk may be smaller than 1MB) and stored them on the

cloud server. During the transmission process, if NCTM is trig-

gered, these 1MB-sized chunks are XOR-encoded into coded files

and transmitted to the clients over the network.

Evaluation metrics: NCTM was evaluated in terms of network

bandwidth utilization, buffer variation, and rebuffer events. Net-

work bandwidth utilization refers to the amount of bandwidth used

between a cloud server and a base station. As a video is played,

buffer variation refers to changes in the duration of the buffered

content. Rebuffer events occur when video playback is interrupted

due to low throughput. Since we consider the limited bandwidth

struggles to meet the demands of all users, the coded transmission

implemented by NCTM can transmit more data content within the

limited bandwidth, thus reducing rebuffering events.
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