
TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. X, XXX XXXX 1

RBLJAN: Robust Byte-Label Joint Attention
Network for Network Traffic Classification

Xi Xiao İD , Shuo Wang İD , Guangwu Hu İD , Qing Li İD , Kelong Mao,

Xiapu Luo İD , Bin Zhang and Shutao Xia

Abstract—Network traffic classification plays a crucial role in network management and cyberspace security. As the Internet evolves
with new applications and protocols, traditional machine learning-based methods relying on feature mining have become obsolete.
Instead, deep learning-based methods are becoming more popular in the field of traffic classification due to their end-to-end
processing approach. However, the vulnerability of neural networks to adversarial examples significantly compromises their
performance. In this paper, we propose Robust Byte-Label Joint Attention Network (RBLJAN), an efficient and robust deep
learning-based framework for encrypted network traffic classification at both the packet-level and the flow-level. RBLJAN comprises a
classifier and an adversarial traffic generator. The classifier utilizes mechanisms such as header-payload parallel processing and
byte-label joint attention learning to capture implicit correlations between bytes and labels, enabling the construction of powerful packet
representations. The generator produces adversarial examples that are fed to the classifier to enhance its robustness. Experimental
results demonstrate that RBLJAN achieves over 99% average F1-score on real-world legitimate traffic datasets and achieves 97.86%
average F1-score on malware identification. Moreover, RBLJAN exhibits superior performance in terms of detection speed and
robustness compared to state-of-the-art methods in real-world scenarios.

Index Terms—Traffic classification, deep learning, joint attention, adversarial learning

✦

1 INTRODUCTION

T RAFFIC classification (TC) identifies network traffic of
different types during transmission, which is a vital

process for network management and anomaly detection.
However, nowadays, the influencing factors of Internet
applications and behaviors are complex, dynamic, and in-
terrelated. At the same time, Internet data is huge-amount,
encrypted, and high-noise, making it challenging to extract
useful information effectively [1]. Consequently, efficient
and robust TC technologies of encrypted traffic are of great
significance in the current network environment.

The wide adoption of encryption techniques and the
emergence of increasingly complex network applications
put forward new requirements for TC approaches [2]. Tra-
ditional methods based on port numbers or packet pattern
matching [3] have become obsolete. Substantial progress has

• Xi Xiao is with the Tsinghua Shenzhen International Graduate School,
Tsinghua University, Shenzhen, Guangdong 518055, China, and also with
the Peng Cheng Laboratory, Shenzhen, Guangdong 518055, China.
E-mail: xiaox@sz.tsinghua.edu.cn.

• Shuo Wang and Shutao Xia are with the Tsinghua Shenzhen International
Graduate School, Tsinghua University, Shenzhen, Guangdong 518055,
China. Email: {wangs22@mails, xiast@sz}.tsinghua.edu.cn

• Qing Li and Zhang Bin are with the Peng Cheng Laboratory, Shenzhen,
Guangdong 518055, China. E-mail: {liq, bin.zhang}@pcl.ac.cn.

• Guangwu Hu is with the School of Computer Science, Shenzhen Institute
of Information Technology, Shenzhen, Guangdong 518172, China.
E-mail: hugw@sziit.edu.cn.

• Kelong Mao is with the Gaoling School of Artificial Intelligence, Renmin
University, Beijing 100086, China. E-mail: mkl@ruc.edu.cn.

• Xiapu Luo is with the Department of Computing, Hong Kong Polytechnic
University, Hong Kong, China. E-mail: csxluo@comp.polyu.edu.hk.

Manuscript received X XX. 202X; revised X XX. 202X; accepted X XX. 202X.
Date of publication X XX. 202X; date of current version X XX. 202X.
(Corresponding author: Qing Li.)
Digital Object Identifier no. XX.XXXX/TDSC.202X.XXXXXXX

been achieved since the introduction of Machine Learning
(ML) into TC tasks [4]. However, ML-based methods are
highly dependent on manually crafted features, which are
time-consuming and error-prone [5]. With the proliferation
of Internet applications and the emergence of complex en-
cryption technologies, feature mining becomes increasingly
challenging, leading to a gradual decline in the performance
of ML-based models. With the rise of Deep Neural Net-
works (DNN) in various recognition or classification tasks,
Deep Learning (DL) based methods become popular in
various TC tasks [5]. DNN can directly take the original data
as input and process in an end-to-end way. They usually
treat packets or flows as gray-scale images [6] or text [7] and
adopt neural networks, e.g., Convolutional Neural networks
(CNN) [2] or Recurrent Neural Networks (RNN) [7] to
learn abstract features of network traffic, which makes it
applicable to encrypted traffic identification. However, it is
unreasonable to make an analogy between network traffic
and images or text, because packets is specific sequences of
bytes without a strong spatial representation like images or
a large vocabulary like text since there are only 256 different
bytes [8]. In addition, network traffic is affected by the dy-
namic network environment, causing data imbalance, heavy
noise, and diversification. Besides, Lightweight DNN learns
less knowledge and has lower performance, while complex
DNN is deployed with high hardware requirements and
time-consuming. In addition, recent studies show that DNN
is susceptible to various attacks (e.g., malicious manipula-
tion [9]), resulting in suboptimal performance. Therefore,
in the current complex network environment, the design of
a DL-based TC algorithm with high robustness, accuracy,
and efficiency is an urgent problem in the current complex
network environment [10].

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3478838

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on October 18,2024 at 01:22:41 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-1521-9542
https://orcid.org/0009-0005-6393-4163
https://orcid.org/0000-0003-3947-9998
https://orcid.org/0000-0002-6071-473X
https://orcid.org/0000-0002-9082-3208

TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. X, XXX XXXX 2

In this paper, we propose Robust Byte-Label Joint Atten-
tion Network (RBLJAN) for efficient network traffic classifi-
cation. Specifically, at the packet level, RBLJAN consists of
two components, i.e., a classifier and an adversarial traffic
generator. The classifier first divides a packet into the header
part and the payload part. For each part, the bytes and
all candidate labels are embedded into a joint space for
the calculation of a byte-label similarity matrix, which is
then fed to four meticulously designed attention encoders
to learn the attention scores of each byte and label. In this
way, we obtain four packet representations by calculating
the weighted sum of the embedded vectors based on the
attention scores. Finally, these representations are splices
and connected to each label for classification. At the flow
level, RBLJAN performs flow classification by adjusting the
model structures. The learning and classification process
at the flow level follows a similar procedure to that of
packet-level classification. To enhance the robustness of
RBLJAN, motivated by Generative Adversarial Networks
(GAN) [11], an adversarial traffic generator is introduced.
It takes random vectors and original packets as input and
generates adversarial packets on which the classifier could
make errors. In the training process, the classifier receives
input from both the original packets and the generator,
which is trained to accurately determine the labels of these
packets. This adversarial training approach strengthens the
robustness of RBLJAN, enabling it to handle noise and
attacks effectively.

We conduct extensive experiments on four benchmark
TC tasks at the packet level and evaluate RBLJAN on mal-
ware identification at the flow level. Besides, we evaluate
the robustness of the baselines and RBLJAN by conducting
experiments on datasets with random noises. Results show
that our method could handle various network TC scenarios
and achieve high performance.

The contributions of this paper (which is an extended
version of our previous conference paper [8]) can be con-
cluded as follows:

• We design a novel deep learning network, the Robust
Byte-Label Joint Attention Network (RBLJAN), for
traffic classification. RBLJAN has the superiority of
effectiveness, detection speed, and robustness, and
works well at both packet and flow levels.

• RBLJAN leverages the improved joint attention en-
coders, header-payload parallel processing, and the
improved GAN mechanism to improve its perfor-
mance. RBLJAN is designed according to the charac-
teristics of network traffic and is more interpretable.

• We implemented multiple baseline methods for
the performance evaluation. In addition to the
early approaches [12] [7] [13], some SOTA meth-
ods [14] [15] [16] [17] [18] are also used as the
baselines. Furthermore, we apply RBLJAN in four
classification scenarios to prove its feasibility and
universality.

The rest of this paper is organized as follows. Section
2 discusses the related work. Section 3 provides the details
of RBLJAN. Then, we present the experimental results in
Section 4. Finally, we conclude the paper of our work in

TABLE 1
List of the acronyms used in the manuscript.

Acronym Definition
TC Traffic Classification
ML / DL Machine Learning / Deep Learning
DNN Deep Neural Networks
MLP Multilayer Perceptron
CNN Convolutional Neural networks
1D-CNN one-dimensional CNN
RNN Recurrent Neural Networks
ResNet Residual Network
GRU Gated Recurrent Unit
LSTM Long Short-Term Memory
Tree-RNN Tree Structural RNN
GAN Generative Adversarial Networks
RBLJAN Robust Byte-Label Joint Attention Network
DPI Deep Packet Inspection
LDA Latent Dirichlet Allocation
SAE Stacked Auto Encoder
TTL Time-to-Live
SC Similarity Calculation
CDN Content Distribution Networks
C / G Classifier / Generator
FLOPS Floating Point Operations Per Second

Section 5. Also, Table 1 summarizes the acronyms used in
the text for readability.

2 RELATED WORK

Typical works on TC involve many different techniques. In
this section, we first show the summary of previous works
in Table 2, then introduce them in three main categories:
port-based and packet inspection-based methods, tradi-
tional machine learning-based methods, and deep learning-
based methods.

2.1 Port-based and Packet Inspection-based Methods
At an early age, the methods on TC are large to perform
the port matching. Obviously, using the individual port
features is simple and fast, however, due to the prevalence
of dynamic port and port camouflage techniques, port-
based classification methods can only achieve low accu-
racy and are no longer suitable for the current network
environment. The next generation of TC is known as Deep
Packet Inspection (DPI) methods. DPI focuses on mining
the patterns or keywords manually in the packet payload.
Libprotoident [3], nDPI [19] and BlindBox [20] are pop-
ular DPI techniques, which leverage predefined patterns
to distinguish protocols from others. However, this means
they need to update patterns whenever a new protocol
is released, which is time-consuming. Moreover, with the
wide use of more complex encryption and anonymous
techniques, extracting protocol patterns is more difficult and
prone to be invalidated, thus making DPI lose effectiveness
and encounter great challenges.

2.2 Traditional Machine Learning-based Methods
In recent academic research, significant attention has been
paid to traditional ML-based techniques to solve TC prob-
lems. ML-based methods typically requires manual feature
extraction and leverage ML-based classifiers to determine
traffic classes.

Traffic side-channel features generally refer to the spe-
cific fields in packets or flows, such as protocol type,

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3478838

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on October 18,2024 at 01:22:41 UTC from IEEE Xplore. Restrictions apply.

TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. X, XXX XXXX 3

TABLE 2
Summary of previous works. ∗, ◦ and • indicate that this reference processes header and payload separately,

uses multimodal learning and considers model’s robustness, respectively.

Method Based Input Features References Technique Merits and Defects

Port/DPI port/packet byte [3] [19]∗ [20] pattern matching fast, but unable to handle encrypted tra-
ffic, hard to extract and update patterns

Machine
Learning

bit/byte stream [21] [12] [22] [23] [24]• semi-supervised learning, topic
models, clustering, ML-based
classifiers, ensemble model

hard to extract distinguished traffic
features, ML-based models’ ability to
express complex problems is limited

statistical features [25] [26]∗ [27] [28]◦•
side-channel features [29] [30] [31] [24]•

Deep
Learning

pseudo-image [32] [2] [6] [33] [11]◦• [34] CNN, GAN an end-to-end way without manual
feature extraction, but treating traffic
as images or text is unreasonable,
lack of interpretability and robustness
consideration

bit/byte stream
[35] [36]◦ [37]◦ [38]◦ [39]∗ [40] [13]
[14] [7] [16] [41]∗◦ [15] [17]◦ [42]◦
[8] [43]◦ [44] [45] [46] [47] [48] [49]◦

CNN, RNN, MLP, GAN, GNN,
ResNet, contrastive/incremental/
multimodal learningstatistical features [50]◦• [51]◦ [52]◦ [53]∗ [18]∗•

side-channel features [40] [54]◦ [47]◦
bit/byte stream RBLJAN(This paper)∗◦• CNN with joint attention, GAN accurate, robust, fast and interpretable

TCP header length and payload length. Based on side-
channel features extracted from packets or flows, existing
works take these features as inputs and train various ML-
based models for TC, including K-Means, Gaussian Mixture
Model [29], random forest [30], Markov models [31] and
clustering algorithms [24]. Besides, some studies perform
statistical calculations on these side-channel features and
obtain traffic statistical features. These statistics typically
perform on spercific fields in traffic flows, including count,
mean, extremum, standard deviation, etc. Researchers lever-
age statistical features to feed ML-based classifiers, such
as SVM [25], random forest [27], semi-supervised mod-
els [26] and ensemble models [28]. In addition to using
these features, some works directly feed the raw bit/byte
stream of traffic into ML-based models. They convert traffic
into byte sequences and learn traffic characteristics by ap-
pling ML-based methods, such as Bayes, semi-supervised
learning [21], Latent Dirichlet Allocation (LDA) [12], topic
models [22] and clustering techniques [23].

Note that with the large emergence of more complex
new network applications, it is difficult and time-consuming
to extract distinguished features from network traffic. In
addition, ML-based models are generally shallow structured
algorithms. When the number of training samples is limited,
their ability to express complex problems is limited, and
their generalization ability is also constrained [55].

2.3 Deep Learning-based Methods

Deep learning has achieved considerable progress in many
fields related to classification problems, such as computer
vision and natural language processing. Since network traf-
fic can be considered as images or texts, the field of TC can
leverage DL-based techniques to improve its performance.
DL-based methods do not require manually extracting fea-
tures and can directly utilize the raw byte sequence of the
network traffic in an end-to-end way.

Initially, researchers made an analogy between net-
work traffic and images and applied CNN for malware
TC [32] [2] [6] [34]. As network traffic can be viewed as a
sequence of bits or bytes, a large number of studies process
traffic as bit/byte sequences and apply DL-based models
for TC. Typical deep learning models include SAE [13] [38],
CNN [14] [39] [33] [44], RNN [16] [16] [35] [40] [15]
and GNN [53] [18]. In addition, some works combine
different models to perform network traffic classifica-
tion [36] [37] [38] [41] [17] [54] [42] [43] [50] [51] [52] [47] [49].

They leveraged various networks to learn potential features
of network traffic from multiple perspectives (i.e., mul-
timodal learning) and achieved significant results. More-
over, with the rapid development of DNN, attention net-
work [56] [44] [8] [45] [49], contrastive learning [45] [18],
incremental learning [46] [48] are also applied in network
TC tasks.

It is true that DL-based methods have the advantage
of automatic feature extraction and are occupying the TC
field [10]. However, researchers demonstrated that DNN is
difficult to interpret [57] and is highly vulnerable to small
perturbations on the input data [58]. Recently, in [59], a set of
adversarial network traffic examples such as Start_RandPad
and End_AdvPad are proposed and utilized to evaluate the
robustness of network traffic classifiers. Based on GAN, Liu
et al. proposed TrafficGAN [11] by transforming traffic into
images to identify malware traffic. In addition, Li et al. [51]
developed their model based on feature extraction and
GFDA-WGAN, which detects unbalanced attack traffic and
traffic with noise. However, state-of-the-art methods pay
little attention to the interpretability and rationality of their
methods that enhance effectiveness and robustness [60]. To
cope with these challenges, we design an improved gen-
erative adversarial network with byte-label joint attention
learning for efficient and robust traffic classification.

3 METHODOLOGY

This section describes the architecture of our proposed
method. We first show the model overview in Section 3.1,
then discuss the data preprocessing phase in Section 3.2.
Section 3.3-3.5 gives the whole framework of RBLJAN at the
packet-level, including the classifier, the adversarial traffic
generator, and the training phase. Moreover, we extend our
model to the flow-level classification in Section 3.6.

3.1 Model Overview
As mentioned, RBLJAN aims to classify network traffic
into specific classes (e.g., application, website) according
to user’s requirements. As shown in Figure 1, RBLJAN
contains a classifier and a generator, which are trained
through a generative adversarial mode. The classifier first
divides a packet into the header part and the payload part.
For each part, it embeds the bytes and all candidate labels
into a joint space. Then it uses attention encoders that are
meticulously designed to learn attention scores for each byte
and each label. Finally, it obtains a packet representation

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3478838

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on October 18,2024 at 01:22:41 UTC from IEEE Xplore. Restrictions apply.

TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. X, XXX XXXX 4

vector, which is put into a linear space to obtain the pre-
diction of each label. The generator takes the preprocessed
packets and random vectors as input. Then through linear
connections and reshaping operations, it feeds the inner
generator network to obtain adversarial bytes, which are
inserted into the original packets to form the adversarial
packets.

Dataset

Random
Adversarial
Packets

Preprocessed
Packets

Preprocessor

Scapy Parser

Masking

Vectorization Embedding

Joint Attention

Classification

Classifier

Generator

Input

AdvPkt Generation

Validation

Predictions

D Loss Function

G Loss Function

Fig. 1. The overall structure of RBLJAN, which includes three modules,
i.e., the preprocessor, the generator, and the classifier. The entire model
is trained through a generative adversarial mode.

3.2 Data Preprocessing
The raw network traffic is composed of network packets
and is generally stored in the format of .pcap or .pcapng
files. Specifically, a packet is generally encapsulated by the
Ethernet II header, the IP header, the TCP/UDP header,
and the payload. We leverage Scapy1 to transform the raw
traffic into the proper format that is suitable to our model.
The preprocessing includes the masking phase and the
vectorization phase.

3.2.1 Masking
Although packet header information can be exploited for
traffic classification, not all the bits of the header are useful
and part of them (e.g., source and destination IP address
in the IPv4 header) might lead to overfitting. Therefore, we
first mask some fields in the header with zeros and then
generate the input of our model.

1) Ethernet II header: This header contains EtherType,
Source and Destination MAC Addresses, which are useless for
the classification task, so we remove this part.

2) IP header: Some fields in this header play an important
role in TC, i.e., Total Length, Protocol, Time-to-Live (TTL),
while some of them do not provide useful information, such
as IP addresses, Checksum and Identification. Therefore, we
discard these fields and mask them with zeros.

3) TCP/UDP header: We set the random and useless port
numbers to zero and keep some Well-known Ports2. Notice
that although TCP/UDP ports are slightly related to the
local network configuration and may lead to overfitting,
some well-known ports also provide useful information for
TC tasks. For example, the standard HTTP port is 80, and
the default port of SSL is 443.

4) Payload: Even if the payload is encrypted in a pseudo-
random-like format [8], its inner relationship between bytes
may still exist, especially the similarity between bytes and

1. https://scapy.net/
2. https://www.iana.org/

labels. Since the payload is essential for TC tasks, for legit-
imate traffic TC tasks, only packets with payload are kept
for experiments. However, in the case of malware TC tasks,
we keep these packets without a payload. This is because
several types of common network attacks, such as Port Scan
and DDoS, exploit packets without payload.

3.2.2 Vectorization
After finishing the masking phase, we get a binary packet
sequence. To facilitate the calculation, we treat the traffic
as bytes and convert them to integers from 0 to 255 (8
bits). As the packet header is largely composed of side-
channel features of the packet, the payload is usually user
data that is generally encrypted [16]. They provide different
information for classification tasks, so we divide the packet
into the header part and the payload part, which are two
vectors consisting of integers from 0 to 255.

In addition, as our model requires that the input data
must be uniform in length, we counted the distribution of
the length of all packets in the X-APP dataset [16]. We found
that the length of most packets are less than 1500 bytes and
the header size is below 50 bytes, so we unify the length of
the header and the payload to 50 bytes and 1450 bytes by
truncating the byte sequence or padding with 256 (a number
unrelated to other bytes), respectively.

Finally, the packet is processed into a byte sequence
vector and is defined as:

(H,P) = ({bi}Mi=1 , {bi}
N
i=M+1), (1)

where bi refers to the i-th byte of the packet, M and N −M
represent the size of the header part H and payload part P
respectively.

3.3 Packet-level Classifier Design
The overall structure of RBLJAN for the packet-level clas-
sification is illustrated in Figure 2. RBLJAN can capture
the implicit and complex relations between the packet byte
sequence and candidate labels due to its effective header-
payload parallel processing and joint attention mechanism.
On the whole, our classifier is composed of three modules,
i.e., the embedding module, the joint attention module, and
the classification module. In this subsection, we introduce
the details of these three modules.

3.3.1 Embedding Module
The input of our classifier contains three components, i.e.,
the header H = {bi}Mi=1, the payload P = {bi}Ni=M+1, and
T candidate labels L = {li}Ti=1. We first embed each byte bi
and each label li into two joint embedding spaces, i.e., the
Header-Label joint space and the Payload-Label joint space.
Specifically, each joint space contains two parallel layers,
i.e., the byte embedding layer and the label embedding
layer. The former maps byte bi to byte embedding vector
B

′

i , and the latter maps label li to label embedding vector
Li respectively, where B

′

i , Li ∈ RE . We use B
′
, L to

denote
(
B

′

1, . . . , B
′

S

)
and (L1, . . . , LT) respectively, where

S = M or N − M . Notice that we use different maps
for header embedding and payload embedding, in order
to explain our model more clearly, we simply use B

′
to

represent the byte part.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3478838

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on October 18,2024 at 01:22:41 UTC from IEEE Xplore. Restrictions apply.

https://scapy.net/
https://www.iana.org/

TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. X, XXX XXXX 5

𝐿ℎ

𝐺ℎ

𝒉𝒃
𝒉

𝒉𝒍
𝒑

z ℒ𝑝𝑎𝑐

ℒ𝑟𝑒𝑔

Embedding Module Joint Attention Module Classification Module

Linear

…

T

෠𝑳𝟏 ෠𝑳𝟐 ෠𝑳𝑻

𝐻

𝑃 𝒉𝒃
𝒑

Header AE

...

Payload AE

...

Label AE

...

Inputs

Header Bytes

Labels

Payload Bytes

Header

Embedding

Layer

ℎ1

…
ℎ2

ℎ𝑀

Label

Embedding

Layer

𝑙1

…
𝑙2

𝑙𝑇

Payload

Embedding

Layer

𝑝1

…
𝑝2

𝑝𝑁−𝑀

𝐿𝑝

SC
Unit

SC
Unit

+

𝐺𝑝

𝒉𝒍
𝒉

+

Positional Encoding

Similarity Calculation Unit
SC

Unit

* AE * Attention Encoder

Concatenation Operation+

......

...

Fig. 2. The Classifier in RBLJAN, classifies network traffic in the form of byte sequences into specific categories.

Besides, the bytes or bits in different positions may
have different meanings and importance. For instance, if
the Version field in the IP header is 6, it indicates it is
an IPv6 packet. While a Protocol number of 6 means the
communication protocol is TCP. Therefore, we introduce
the position encoding mentioned in [61] to make use of
the absolute positional information. Define Qi ∈ RE as the
position embedding for the i-th byte, then we update the
byte embedding by adding B

′

i and Qi. In the following, we
use Bi to denote the byte embedding in the i-th position.

3.3.2 Joint Attention Module

This module is the core of RBLJAN, which contains three
components, i.e., (1) Similarity Calculation (SC) unit, (2) byte
attention encoder, and (3) label attention encoder. It learns
the packet representations from byte vectors Bi and label
vectors Li.

1) Similarity Calculation Unit: It is to calculate the cosine
similarity between the i-th byte and the j-th label by:

G(i, j) =
Bi · Lj

∥Bi∥ · ∥Lj∥
, i ∈ [1, S], j ∈ [1, T], (2)

where G = [G(i, j)] is the byte-label similarity matrix, which
will be used by the attention encoders to generate their
attention scores respectively.

2) Byte Attention Encoder: It uses 1D-CNN to learn at-
tention scores of each byte from G and gets a representation
vector of the byte part as a weighted sum of the bytes.

Notice that the byte attention encoder includes the
header attention encoder and the payload attention encoder,
both of which have the same structure with different pa-
rameters. Therefore, we use the byte attention encoder to
represent the two encoders for convenience. Specifically,
since a byte in a packet is usually not independent in
semantics, we consider a sequence of n consecutive bytes
as a unit rather than using a single byte. Thus, an S-byte
sequence will have S−n+1-byte units. The byte unit vector
is obtained by taking an average of all its byte vectors. We
employ K kernels convolution with a non-linear activation
function to act on the n × T region of G to produce K
attention scores as candidates for each byte unit. For each

byte unit i, the j-th candidate attention score is obtained
from the following formula:

α̂ij = σ
(
BN

(
Convj

(
G(i:i+n−1,1:T)

)))
,

i ∈ [1, S − n+ 1], j ∈ [1,K],
(3)

where σ is the non-linear activation function ReLU, BN is
the batch normalization function to normalize all candidate
scores from a batch, Convj denotes the convolution oper-
ation with the j-th kernel. Then we use max-pooling to
choose the largest candidate of each byte unit:

α̂i = MaxPooling ([α̂i1, . . . , α̂iK]) ,
i ∈ [1, S − n+ 1].

(4)

Finally, by using the weight normalization function
softmax [8], we obtain the byte attention vector α =
[α1, . . . , αS−n+1]. We sum up all byte unit vectors weighted
by the byte attention vector to obtain the byte part of the
packet representation, which consists of the header repre-
sentation and the payload representation:

h
(h)
b =

∑M−n(h)+1
i=1 αi

(h)
(

1
n(h)

∑i+n(h)−1
j=i Hj

)
,

h
(p)
b =

∑N−M−n(p)+1
i=1 αi

(p)
(

1
n(p)

∑i+n(p)−1
j=i Pj

)
,

(5)

where (∗)(h) and (∗)(p) represent the corresponding param-
eters of the header and the payload respectively.

3) Label Attention Encoder: This encoder employs a
similar calculation method as the byte attention encoder,
which learns the label attention vector from G and generates
the label part of the packet representation as the weighted
sum of the label vectors.

Notice that the input of each attention encoder is a
matrix (i.e., G) with S rows and T columns. For the byte
attention encoder whose input channel is the number of
candidate labels T (e.g., 20), which is smaller. While for
the label attention encoder, its input size increased to S
(e.g., 1460 bytes of payload), which is so large that simply
applying network units to it may result in the loss of local
information. Therefore, we divide the input size of G into
multiple segments and learn the label attention separately,
and then combine the results to obtain the label part of the
packet representation.

Specifically, we divide the S channels into s groups (so
S

′
= S/s). We first adopt a fully connected layer to act

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3478838

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on October 18,2024 at 01:22:41 UTC from IEEE Xplore. Restrictions apply.

TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. X, XXX XXXX 6

on each group to obtain s attention scores for each label.
Then another fully connected layer is used to connect these
groups to their corresponding label. Therefore, we get a T-
dimension attention vector β by employing the softmax on
the output of the two-stage full connection. Finally, The label
part of the packet representation is the weighted sum of all
label vectors, which also includes the header representation
and the payload representation. It is given by the following
two formulas:

h
(h)
l =

∑T
i=1 β

(h)
i L

(h)
i ,

h
(p)
l =

∑T
i=1 β

(p)
i L

(p)
i .

(6)

3.3.3 Classification Module
First, we concatenate the four packet representations
learned by the attention encoders to form the whole packet
representation:

h =
[
h
(h)
b ||h

(p)
b ||h

(h)
l ||h

(p)
l

]
, (7)

where || is the concatenation operation and h ∈ R4E .
Then we employ a linear layer to transform the packet
representation into a T -dimension space for classification:

z = softmax (Wh+ q) , (8)

where W ∈ RT×4E and q ∈ RT are the weight and bias
respectively. We adopt Focal Loss [62] for model training
because it focuses learning on hard and misclassified sam-
ples and is superior on the imbalanced multi-classification
problem. For a T-class classification, it is formulated as:

Lpac = FL(y, z;α, γ)

= −α [1− softmax (zy)]
γ
log (softmax (zy)) ,

(9)

where y is the label representing the ground truth, zy
denotes the prediction probability of the label y, α and γ
are the class weight and the focusing parameter of focal
loss. We set α as one minus the percentage of the class and
γ = 2 based on the discussion in [16].

In addition, as RBLJAN classifies traffic based on the
similarity between the byte embedding and the label em-
bedding, we hope that the learned packet representation
should be more similar to its ground truth label embed-
ding. In other words, the label embedding itself should
be correctly classified through the classification module.
Therefore, we replaced h in the Formula (8) with L̂t =

[L
(h)
t ||L

(p)
t ||L

(h)
t ||L

(p)
t], where t ∈ [1, T] and L̂t denotes

the t-th label representation. Then we add another label
regularization loss formulated as:

Lreg =
∑T

t=1 CEL
(

softmax
(
WL̂t + q

)
, ŷt

)
, (10)

where ŷt is a one-hot vector that denotes the t-th class label.
CEL denotes the Cross Entropy Loss. We use Cross Entropy
Loss but not Focal Loss because each class only has one label
vector, which is balanced. Finally, the loss of RBLJAN is the
weighted sum of the above two losses:

Ltot = Lpac + λLreg, (11)

where λ is a hyper-parameter to adjust the proportion of
label regularization loss. In this way, RBLJAN not only
learns powerful packet representations but also tries to learn

RandomRaw Packet

… Inner
Generator

Concate

Dense

Reshape

Select

Insert

Truncate

Reshape Relu

DeConv
BatchNorm

Relu

Dense
BatchNorm

Sigmoid

× 256 Truncate

Adversarial
Packet

Fig. 3. The overall architecture of the adversarial traffic generator in
RBLJAN at the packet level.

discriminative label embedding for each class, ensuring that
the label attention mechanism is an effective enhancement
for TC tasks.

3.4 Adversarial Traffic Generator Design
The architecture of the adversarial traffic generator at the
packet level is shown in Figure 3. Random vectors and
preprocessed packets are used as the input of the model to
generate adversarial packets corresponding to the original
labels. The inner generator network is based on deconvo-
lution and the output of the generator is a sequence of
adversarial bytes, which will be inserted into the original
packet to form an adversarial packet.

3.4.1 Inputs
The input of the generator is the original preprocessed
packet and a certain length of random noise. In previous
works, the input generally contains a label vector [11] indi-
cating the label of adversarial data to be generated, but there
are two shortcomings in using the label vector as the input:

1) It leads the data generated by the generator to a single
distribution, which is easy to identify by the classifier and
cannot improve the generalization of the classifier.

2) It is difficult for the generator to learn the distribution
characteristics of the original data, and the adversarial data
generated are difficult to attack the classifier. When the
classifier is trained to be relatively strong, it is difficult for
the generator to make further progress.

Therefore, we take the original packet directly as the
generator input and add random noise to expand the gener-
ated packet distribution. In this way, the generator can not
only learn the data distribution characteristics of the original
packet, but also generate a variety of adversarial bytes and
optimize the generation of adversarial bytes continuously.

3.4.2 Inner Generator Network
The inner generator is based on deconvolution, which con-
tains a reshape layer, a deconvolution layer, and a dense
layer. Specifically, the preprocessed packets and random
vectors are first concatenated into one sequence. Then it
is transformed through the dense layer and reshaped into
a matrix to be input into the deconvolution layer. Finally,

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3478838

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on October 18,2024 at 01:22:41 UTC from IEEE Xplore. Restrictions apply.

TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. X, XXX XXXX 7

through a dense layer, we obtain some adversarial bytes to
be inserted into the original packet. We also employ batch
normalization and ReLU between each layer to improve the
training effect of the generator. Note that, unlike traditional
works that directly generate the whole packet, our method
does not destroy the structure and functionality of the
packet, especially the packet header. It is more reasonable
and applicable in the current network environment.

In order to construct adversarial packets, we define the
original packet input by the model as X = (H,P), and
the adversarial bytes generated by G as x̃. We first insert
x̃ between H and P to obtain X = (H, x̃,P) and then
obtain adversarial packets by truncating X to a length of N .
Moreover, in order to make the classifier able to deal with
adversarial packets with different lengths and different data
distributions, we introduce a selection mechanism similar
to the Dropout mechanism. Specifically, we first select a
random length of continuous bytes from the generated
adversarial data and then determine whether to use the
generated adversarial bytes by a random probability p. If
used, the continuous bytes are inserted into the original
packet, and if not, we randomly generate bytes of that
length to insert. We define the function RandomDomain(s̃)
to generate a random array of length s̃ in Domain. Then, the
process of generating adversarial bytes x̃ is:

x̃ =

{
{x̃i}s̃i=1 , if p < 0.5

Random[0,255]
⋂

N(s̃), if p ≥ 0.5
, (12)

where N denotes the natural number domain, len (x̃) rep-
resents the length of the adversarial bytes x̃. Define R as
the real number domain, then p = Random[0,1)

⋂
R(1) and

s̃ = Random[1,len(x̃))
⋂

N(1).

3.4.3 Validation
The outputs of the generator are adversarial examples of
network traffic. As mentioned above, these adversarial ex-
amples should make the classifier predict errors. In other
words, when a generated packet is input into the classifier
but the prediction is not the ground truth, then the generator
achieves its purpose. The loss function of the generator is
also Focal loss, which can be described as:

Ladv = F̂L(y, z;α, γ)
= −α [softmax (zy)]

γ
log (1− softmax (zy)) ,

(13)

comparing the above formula with Formula (9), we can see
that the prediction probability of the loss function utilization
of generators is one minus the probability of the classifier
loss function. In this way, the generator will be trained in
the opposite direction of the classifier, and this adversarial
learning makes our classification model increasingly robust.

3.5 Training Method
As shown in Figure 1, RBLJAN leverages a training method
similar to GAN. Overall, the input of RBLJAN training
includes three parts, namely, packet byte sequence, all can-
didate labels, and a certain length of random vectors. Firstly,
the packet byte sequence and all candidate labels are sent
to the classifier for training and the prediction probability
of each label is obtained. Then, the loss function of the
classifier is used to reverse propagation and update its

parameters. At the same time, the packet byte sequence and
random vectors are sent to the adversarial traffic generator
to obtain adversarial traffic examples. The prediction results
of the classifier and the loss function of the generator are
used to reverse propagation and update the parameters of
the generator. Since the generator is a simpler network, in
one epoch, we train the generator several times for each
batch until it converges or reaches a maximum number of
iterations, while the classifier updates the parameters only
once. Then, the adversarial traffic examples are sent to the
classifier for additional training. In this way, the classifier
could accurately classify the original packets as well as the
adversarial packets into the correct label.

Algorithm 1: The workflow of the Training method
of RBLJAN

Input: Training dataset D, all candidate labels ŷ,
Batch size B, Embedding dimension E,
Focal Loss parameters γ, α, Classifier
parameters θc, Generator parameters θg ,
Random size r, Learning rate ηc and ηg

Output: Learned model parameters θc
1 Initial model parameters: θc ← θ0c , θg ← θ0g
2 Initial step counter: i← 1
3 while θic not converged do
4 Getting data: randomly select training batch X

and its ground truth labels y from D
5 Preprocessing: X←clean, mask, zero-pad, unify

length
6 Initial step counter of G: k ← 1
7 while θkg not converged do
8 A ← Random[0,1)

⋂
R(r)

9 G Forward propagation: X̃ ← G
(
A,X ;θkg

)
10 C Forward propagation: z̃, L̃← C

(
X̃; θic

)
11 G Backward propagation: θk+1

g ←
θkg − ηg ·Adamg

(
∇θg F̂L(y, z̃;α, γ)

)
12 k ← k + 1
13 end
14 C Forward propagation: z̃1, L̃1 ← D

(
X ;θic

)
15 A ← Random[0,1)

⋂
R(r)

16 G Forward propagation: X̃ ← G
(
A,X ;θkg

)
17 C Forward propagation: z̃2, L̃2 ← D

(
X̃; θic

)
18 C Backward propagation: θi+1

c ←
θic − ηc ·Adamc(∇θcFL ([z̃1, z̃2], [y, y];α, γ)+

λ∇θcCEL([L̃1, L̃2], [ŷ, ŷ]))
19 i← i+ 1
20 end

Suppose the input of a neural network model is A and
the parameter of the model is θ, then the classifier (C) and
the generator (G) can be expressed as follows:

z̃, L̃ = C (Ac; θc) ,

X̃ = G (Ag; θg) ,
(14)

where z̃ is the probability that the classifier predicts each
label, L̃ denotes the T label representations, and X̃ is

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3478838

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on October 18,2024 at 01:22:41 UTC from IEEE Xplore. Restrictions apply.

TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. X, XXX XXXX 8

the generated adversarial examples. The workflow of the
training phase of RBLJAN is shown in Algorithm 1.

3.6 Extend to flow-level classification
The initial objective of RBLJAN is to identify the single
packet and perform the packet-level classification, it also can
be used to solve traffic flow classification problems as traffic
flow is just formed by several continuous packets. Ensemble
and voting are common ways to extend classification from
the packet level to the flow level. However, they usually
first get the output of each packet and then aggregate these
outputs to get the label of the flow, which ignores the
flow-level features. Instead, we introduce a novel extension
approach to decide the class of the flow that can directly
apply the model to the flow-level classification. Some stud-
ies [29] [18] indicate that the first U packets of the flow
involve the important information about the flow. Thus, we
use SplitCap3 to obtain bidirectional flows and select the
first U packets to represent the whole flow.

·
·
·

Byte Attention Encoder

Label Attention Encoder

Linear+
L1

L2

L3

LT

···

Z
Embedding

↓
SC Unit

↓
Gh, Gp

Labels

Headers Payloads

·
·
·

·
·
·

Fig. 4. The architecture of the classifier in RBLJAN at the flow level.

Fig 4 shows the overall structure of the classifier in RBL-
JAN for the flow-level classification. Similar to the packet-
level classifier, the model receives a flow F with U packet
sequences and all candidate labels as input and process the
header sequences and the payload sequences in parallel.
In the following, we use byte sequences to describe both
the header and payload for convenience. The embedding
module first embeds each byte and each label into a joint
space, where we obtain B ∈ RU×S×E and L ∈ RT×E .
Then through the SC Unit, we can obtain a 3-dimensional
byte-label similarity matrix

[
G(i, j, k)

]
∈ RU×S×T . To enable

RBLJAN to handle data with an additional dimension, we
extend the dimension of the learning unit (e.g., the con-
volutional kernel, the fully connected layer) in RBLJAN.
Specifically, for the byte attention, we extend the byte unit
to a 3D-matrix like n × T × U , then we employ K̃ kernels
convolution with a non-linear activation function to act on
U×n×T region of

[
G(i, j, k)

]
to produce K̃ attention scores

as candidates for each byte unit. Then we use max-pooling
and softmax functions to obtain the byte attention vector. As
for the label attention, we use a three-stage full connection
to get label attention scores, in which an added layer is to
connect different packets in the flow. As for the generator
part, it generates adversarial bytes for all packets in the flow
and inserts them into the packets separately. In this way, the
generator produces adversarial flows and sends to the flow-
level classifier to improve its robustness.

RBLJAN-Flow can directly use the flows as the input
of the model, instead of training the model of the packet-
level classification in advance. It can learn the correlations

3. https://www.netresec.com/?page=SplitCap

between packets (i.e., the flow-level features) and within
packets (i.e., the packet-level features). Thus, RBLJAN-Flow
leverages more comprehensive information from both the
packet-level and the flow-level features, which also per-
forms well in real-world scenarios.

4 EXPERIMENTS

To evaluate the performance of RBLJAN, in this section, we
conduct experiments on four large real-world datasets with
four benchmark tasks at the packet-level classification, i.e.,
application classification, website fingerprinting, malware
identification and traffic characterization, and we perform
extensive experiments for malware identification at the flow
level. We provide a detailed analysis of the robustness eval-
uation on baselines and RBLJAN. Furthermore, we conduct
some ablation studies and show the interpretability of the
learned embedding and attention scores of RBLJAN. In
the following, we present details of datasets, experimental
setup, comparison results and analysis.

4.1 Dataset and Implementation

We evaluate RBLJAN on four real-world datasets, includ-
ing X-APP [16], X-WEB [16], USTC-TFC [32] and ISCX-
VPN [63]. X-APP and X-WEB are two large real-world
datasets containing both encrypted and unencrypted traffic
packets for application classification and website finger-
printing respectively. Specifically, X-APP contains 29 kinds
of popular applications and X-WEB contains 20 popular
websites. ISCX-VPN and USTC-TFC are two widely used
public encrypted traffic datasets for TC. The former consists
of VPN and non-VPN traffic of multiple applications under
several behaviors and is frequently updated. According
to the 2022 version of this dataset, we divide it into 12
types (6 types of VPN, 6 types of non-VPN) to validate
the effectiveness of RBLJAN on traffic characterization. The
latter includes 10 types of malware traffic and 10 types of
benign traffic. We select the 10 types of malware traffic in
this dataset to verify the ability to detect malware traffic of
RBLJAN. In general, these four traffic datasets cover various
areas including email, music, video, security, chat, search,
shopping, etc, which is rich enough for evaluating RBLJAN.

At the packet level, we compare RBLJAN with
eight SOTA TC methods: Securitas [12], DeepPacket [13],
SAM [14], Tree-RNN [15] and EBSNN [16], ICLSTM [17],
CLE-TFE [18] and our previous work BLJAN [8], which are
described in Section 2. For RBLJAN, in most cases, we set the
embedding dimension E of bytes and labels to 256, set the
byte unit lengths of headers and payloads, i.e., n(h) and n(p),
to 17 and 65, respectively, set the number of convolution
kernels K to 8 on both the header part and the payload part,
and set λ to 0.1. We train RBLJAN with Adam Optimizer
with a learning rate of 0.001 and batch size of 256, and we
employ a dropout of 0.5 on the classification layer to prevent
overfitting. An early stopping strategy is performed, i.e.,
premature stopping if the average F1-score on the validation
data does not increase for 5 successive epochs.

Each method is evaluated with a 10-fold cross-
validation. We randomly divide the dataset into ten parts
and take turns selecting 8, 1, and 1 of them for training,

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3478838

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on October 18,2024 at 01:22:41 UTC from IEEE Xplore. Restrictions apply.

https://www.netresec.com/?page=SplitCap

TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. X, XXX XXXX 9

validation and testing. Except for Securitas, due to the large
memory consumption of LDA and the limitation of our
hardware conditions, we randomly select 4k packets as the
positive class and 4k packets as the negative class. The av-
erage of the results of 10 experiments is used as an estimate
of the performance of each method. All the experiments are
conducted on a server with 128 GB memory, Intel Xeon Sil-
ver 4210 CPU, and NVIDIA 2080Ti GPU. We carefully tune
the parameters of compared baselines and RBLJAN for a fair
comparison. To evaluate these models, common metrics in-
cluding Precision, Recall, F1-score and accuracy are adopted
for every target category. When evaluating the robustness of
these models, in order to ensure the consistency of the input
data, we use the method of inserting random noise to verify
all the classification algorithms, instead of using adversarial
examples that may cause unfairness during evaluation. We
test the accuracy of all methods by inserting random noise of
different lengths between the header and the payload, thus
evaluating the robustness based on changes in accuracy.

4.2 Performance Comparison at Packet-level

In this subsection, we give a detailed analysis of all baselines
and RBLJAN on four datasets at the packet level.

4.2.1 Application Classification
We evaluate the performances of RBLJAN and compared
baselines on the application classification on the X-APP
dataset. The F1-scores are shown in Table 3. SVM, C4.5
and Bayes refer to the Securitas with SVM, C4.5 Decision
Tree and Bayes Network, respectively. DP-SAE and DP-
CNN stand for DeepPacket with the stacked autoencoder
and the one-dimension CNN, respectively. EBSNN-LSTM
and EBSNN-GRU represent EBSNN with the LSTM unit
and GRU unit, respectively. For EBSNN, because we use
similar data processing methods and the same dataset, our
reproduced results are slightly worse than those in their
paper, so we directly refer to the experimental results in [16].
Through the results, we draw the following conclusions.

Overall, RBLJAN achieves the best performance on F1-
score on average. It is notable that RBLJAN achieves the
best F1-score on the detection of 22 out of 29 applications,
achieving more than 99.90% on 24 classes. Such good results
strongly demonstrate the effectiveness of RBLJAN on appli-
cation TC tasks. EBSNN, BLJAN, ICLSTM and Tree-CNN
also achieve good results in application TC, whose averaged
F1-score is slightly lower than RBLJAN. DP-CNN, C4.5
reached F1-scores of 96.5% and 94.2%, which can also deal
with the application TC in the current network environment.
The performance of DP-SAE is the worst, which only got
74.7%. The performance of SVM and Bayes of Securitas
is slightly worse than that of C4.5. SAM only uses the
header information, and the average F1-score is only 91.2%.
Although CLE-TFE uses powerful GNNs, it needs to use
the information of flows when training packet classification.
Due to the imbalance of the number of flows of different
classes in this dataset, its averaged F1 score is only 90%.
Generally, the performance of the ML-based methods is not
as high as that of the neural network. SAM only uses header
information and ignores the features in the payload, which
leads to lower performance. In 29 kinds of applications, the

performances of Gmail, Aimchat, and QQ4 are lower than
other categories in all models. These real-time communica-
tion applications are very similar in packet features (e.g.,
TTL and Encryption Type), which makes all methods have
sub-optimal performance in these applications.

In fact, the byte distributions of the header and payload
of the packet are totally different. The header part contains
different feature fields (such as Time to Live, Protocol, etc.).
RBLJAN can find the discriminative feature fields in the
header and give greater weights to provide information for
classification. In addition, for the encrypted byte sequences
in the payload, the potential features of different labels
of sequences still exist, which can be learned through the
byte-label similarity matrix. RBLJAN makes the similarity
between the bytes of each category and the corresponding
labels reach the maximum similarity, so as to provide the
label information as much as possible. In this way, RBLJAN
integrated the side-channel features and sequence similarity
features of packets, which can learn more useful information
about packets to obtain better performance.

4.2.2 Website Fingerprinting
In addition to the application TC task, we implement web-
site fingerprinting on the X-WEB dataset. Websites utilize a
large number of public static resources stored in the Con-
tent Distribution Network (CDN), which makes it contain
more network noise than network applications. At the same
time, some websites contain various links to other websites,
which makes the traffic dataset itself contain more category-
cross noise that is hard to identify. Therefore, through
website fingerprinting, we can better evaluate the ability of
classification models to process noisy data.

Table 4 lists the experimental results of each method on
the X-WEB dataset. We can see that RBLJAN outperforms
the SOTA methods. In 20 kinds of websites, 13 kinds of
RBLJAN get the highest F1-score. Compared with BLJAN,
RBLJAN has improved the Performance in all categories.
EBSNN-LSTM also performs quite well and gets 11 kinds
of the highest F1-score, its average F1-score is slightly
worse than RBLJAN. ICLSTM, Tree-RNN and EBSNN-GRU
achieve sub-optimal performances and reach over 98% av-
erage F1-score. But they are based on multi-layer RNNs,
whose detection speed is much slower than RBLJAN (refer
to Subsection 4.5). CLE-TFE performs better in this task than
application identification because it can better handle the
noise in website traffic by learning from flow-level features.
For DeepPacket, although it uses 1D-CNN or linear connec-
tion layers as an important part of RBLJAN, it only achieves
90.04% and 64.39% average F1-score mainly because it re-
gards packets to images and ignores the differences and
potential relationships between bytes. The input of SAM is
just the first 50 bytes of the packet and it does not leverage
the potential features in the payload, which is inferior to
RBLJAN by 5.46%. C4.5 of Securitas is better than SVM
and Bayes, but compared with recent DL-based models,
its performance is no longer able to deal with the task of
current website fingerprinting. It is worth mentioning that
Taobao and Youku belong to the core business of Alibaba

4. QQ is a popular instant messaging application in China that
provides services such as chat, music, online games, etc

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3478838

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on October 18,2024 at 01:22:41 UTC from IEEE Xplore. Restrictions apply.

TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. X, XXX XXXX 10

TABLE 3
Performance comparison on X-APP w.r.t. F1-score. AVE denotes the average results of all applications.

Model Vimeo Spotify Voipbuster Sinauc CloudMusic Weibo Baidu Tudou Amazon Thunder Gmail PPlive QQ Taobao YahooMail
C4.5 0.9568 0.9435 0.9887 0.9950 0.9439 0.8631 0.8405 0.9789 0.8936 0.9357 0.9466 0.9504 0.8943 0.8571 0.9517
SVM 0.9249 0.8476 0.9937 0.9926 0.9393 0.8379 0.7620 0.9730 0.6978 0.9109 0.9311 0.9120 0.7334 0.7356 0.8878
Bayes 0.8996 0.7965 0.9925 0.9863 0.8743 0.7663 0.7190 0.9368 0.6944 0.8479 0.9015 0.8910 0.7139 0.3206 0.8117

DP-SAE 0.9343 0.7662 0.9920 0.9845 0.8173 0.7233 0.6041 0.8282 0.2926 0.7817 0.2719 0.9485 0.4748 0.7072 0.8920
DP-CNN 0.9781 0.9305 0.9984 0.9995 0.9856 0.9656 0.9255 0.9890 0.8986 0.9845 0.8876 0.9880 0.9366 0.9293 0.9906

SAM 0.9841 0.9452 0.9971 0.9995 0.8456 0.7939 0.5847 0.9617 0.7253 0.9809 0.8356 0.9891 0.8625 0.9286 0.9588
Tree-RNN 0.9967 0.9869 0.9986 0.9998 0.9953 0.9997 0.9990 0.9964 0.9757 0.9962 0.9262 0.9924 0.9562 1.0000 0.9841
ICLSTM 0.9873 0.9705 0.9995 0.9999 0.9983 0.9928 0.9857 0.9979 0.9976 0.9981 0.9519 0.9972 0.9721 0.9987 0.9980
CLE-TFE 0.9783 0.8919 1.0000 0.9996 0.9581 0.7873 0.6912 0.9345 0.6772 0.9725 0.7561 0.9954 0.8778 0.8303 0.8894

EBSNN-LSTM 0.9988 0.9925 0.9995 1.0000 0.9998 0.9999 0.9992 0.9997 1.0000 0.9995 0.9923 0.9999 0.9979 0.9997 1.0000
EBSNN-GRU 0.9963 0.9773 0.9989 0.9999 0.9990 0.9981 0.9929 0.9989 0.9997 0.9981 0.9701 0.9985 0.9907 0.9993 0.9993

BLJAN 0.9963 0.9844 0.9997 1.0000 0.9972 0.9966 0.9933 0.9985 0.9945 0.9960 0.9784 0.9979 0.9764 0.9921 0.9970
RBLJAN 0.9997 0.9995 0.9999 1.0000 0.9998 0.9999 1.0000 0.9995 1.0000 0.9997 0.9958 0.9999 0.9979 0.9998 1.0000

Model iTunes Twitter JD Sohu Youtube Youku Netflix Aimchat Kugou Skype Facebook Google MS-SQL MS-Exchange AVE
C4.5 0.8761 0.9666 0.8812 0.9335 0.9799 0.9406 0.9925 0.9425 0.9735 0.9338 0.9913 0.9711 0.9950 0.9927 0.9417
SVM 0.7867 0.9721 0.7883 0.9198 0.9619 0.9554 0.9578 0.9223 0.9849 0.9179 0.9937 0.9815 0.9975 0.9854 0.9036
Bayes 0.6348 0.9721 0.7839 0.8951 0.9165 0.9479 0.9566 0.8582 0.9677 0.8579 0.9778 0.9815 0.9937 0.9780 0.8577

DP-SAE 0.4525 0.7328 0.2654 0.8507 0.9354 0.8605 0.9721 0.6128 0.9761 0.9637 0.9836 0.4626 0.9520 0.6114 0.7466
DP-CNN 0.9323 0.9811 0.9000 0.9777 0.9800 0.9868 0.9940 0.9252 0.9962 0.9974 0.9995 0.9731 0.9957 0.9585 0.9650

SAM 0.6009 0.9979 0.8785 0.9739 0.9719 0.9564 0.9970 0.8756 0.9951 0.9922 0.9981 0.9896 0.9955 0.8577 0.9129
Tree-RNN 0.9945 0.9982 0.9997 0.9905 0.9963 0.9980 0.9990 0.9582 0.9303 0.9780 0.9983 0.9970 0.9992 0.9762 0.9868
ICLSTM 0.9825 0.9837 0.9961 0.9945 0.9898 0.9954 0.9963 0.9690 0.9981 0.9990 0.9998 0.9788 0.9998 0.9855 0.9901
CLE-TFE 0.7576 1.0000 0.7431 0.9277 0.9632 0.9504 0.9903 0.7677 0.9980 0.9297 0.9997 1.0000 0.9992 0.8542 0.9007

EBSNN-LSTM 0.9997 0.9997 0.9995 0.9992 0.9979 0.9997 0.9992 0.9954 0.9999 0.9996 1.0000 0.9989 1.0000 0.9985 0.9988
EBSNN-GRU 0.9944 0.9992 0.9987 0.9942 0.9950 0.9986 0.9985 0.9783 0.9996 0.9991 0.9999 0.9989 0.9993 0.9971 0.9954

BLJAN 0.9891 0.9995 0.9927 0.9893 0.9933 0.9975 0.9985 0.9822 0.9992 0.9995 0.9999 0.9993 0.9993 0.9912 0.9941
RBLJAN 0.9997 1.0000 0.9997 0.9984 0.9996 0.9995 0.9998 0.9955 0.9997 1.0000 1.0000 1.0000 1.0000 0.9971 0.9993

TABLE 4
Performance comparison on X-WEB w.r.t. F1-score. AVE denotes the average results of all websites.

Model Amazon Baidu Bing Douban Facebook Google IMDb Instagram iQIYI JD
C4.5 0.8844 0.9561 0.9641 0.9265 0.8872 0.9212 0.9357 0.9075 0.9264 0.9524
SVM 0.8086 0.9479 0.9637 0.8652 0.8138 0.8886 0.8179 0.8479 0.8506 0.9362
Bayes 0.7851 0.9165 0.9462 0.8488 0.7643 0.8702 0.7909 0.8413 0.8377 0.8727

DP-SAE 0.4502 0.9163 0.8372 0.8027 0.5991 0.3095 0.8962 0.3326 0.7682 0.8599
DP-CNN 0.9283 0.9520 0.8176 0.9556 0.6225 0.8774 0.9380 0.9327 0.9734 0.9789

SAM 0.9999 0.9797 0.9700 0.9284 0.9996 0.9995 0.9979 0.9998 0.8793 0.9778
Tree-RNN 0.9977 0.9983 0.9990 0.9983 0.9972 0.9980 0.9996 0.9948 0.9937 0.9997
ICLSTM 0.9965 0.9856 0.9938 0.9927 0.9974 0.9854 0.9975 0.9930 0.9920 0.9868
CLE-TFE 0.9988 0.9891 0.9788 0.9732 0.9903 0.9933 0.9916 0.9957 0.9726 0.9718

EBSNN-LSTM 1.0000 1.0000 0.9971 1.0000 0.9934 1.0000 0.9990 0.9990 0.9998 0.9998
EBSNN-GRU 0.9998 0.9998 0.9901 1.0000 0.9786 0.9999 0.9973 0.9961 0.9994 0.9994

BLJAN 0.9998 0.9885 0.9946 0.9958 0.9997 0.9994 0.9977 0.9996 0.9883 0.9772
RBLJAN 1.0000 0.9968 0.9993 0.9989 0.9999 0.9998 0.9998 0.9998 0.9982 0.9998

Model CloudMusic QQMail Reddit SinaWeibo Taobao TED Tieba Twitter Youku Youtube AVE
C4.5 0.9225 0.8619 0.9350 0.9306 0.9627 0.9260 0.9378 0.9384 0.9240 0.9327 0.9267
SVM 0.8530 0.8000 0.8376 0.8578 0.9325 0.8229 0.8229 0.9125 0.8673 0.8609 0.8654
Bayes 0.7626 0.7263 0.7991 0.8472 0.9339 0.7850 0.8428 0.8872 0.7934 0.8360 0.8344

DP-SAE 0.6370 0.3878 0.3832 0.6366 0.5954 0.8155 0.7852 0.5615 0.5864 0.7182 0.6439
DP-CNN 0.9055 0.9416 0.9773 0.9597 0.8142 0.9567 0.8205 0.8116 0.8987 0.9467 0.9004

SAM 0.9059 0.7699 0.9995 0.9004 0.9954 0.9145 0.9995 0.9362 0.7555 1.0000 0.9454
Tree-RNN 0.9885 0.9971 0.9213 0.9964 0.9891 0.9957 0.9999 0.9951 0.9797 0.9346 0.9802
ICLSTM 0.9820 0.9377 0.9976 0.9771 0.9981 0.9702 0.9975 0.9898 0.9724 0.9992 0.9871
CLE-TFE 0.8872 0.8310 0.9949 0.9612 0.9946 0.9464 0.9954 0.9751 0.9199 0.9923 0.9677

EBSNN-LSTM 0.9994 1.0000 1.0000 0.9984 0.9958 0.9991 1.0000 0.9974 0.9969 0.9993 0.9987
EBSNN-GRU 0.9981 1.0000 0.9999 0.9954 0.9879 0.9960 0.9996 0.9915 0.9918 0.9973 0.9959

BLJAN 0.9821 0.9300 0.9998 0.9789 0.9973 0.9792 0.9999 0.9894 0.9689 0.9996 0.9883
RBLJAN 0.9971 0.9999 1.0000 0.9970 0.9968 0.9998 1.0000 0.9989 0.9969 1.0000 0.9990

Group5, and their website traffic contains a large number
of similar packets (for example, both contain DNS packets
for alibaba domain name resolution), which are difficult
to identify even through manual detection. Therefore, the
fingerprinting results of these two websites in all methods
are not very good. In total, RBLJAN achieves very high
performance and reaches 99.90% average F1-score, verifying
its strong ability and universality for website fingerprinting.

4.2.3 Traffic Characterization
In addition to the fine-level classification of network ap-
plications or website contents, we also use the ISCX-VPN
dataset to evaluate the ability of traffic characterization of
all methods. The experimental results are shown in Table 5.

The performance of all methods is similar to the above
tasks and RBLJAN performs the best on average. Compared

5. Taobao is a shopping website and Youku is an online video
platform in China. Both of them operate as subsidiaries of Alibaba
Group Holding Limited.

with the above two tasks, SAM obtains obvious improve-
ment in F1-score. This is mainly because, the Protocol and
other feature fields in the packet header may provide more
useful information for classification. SAM only uses some
fields of the header to classify, so it has high practical
application value in traffic characterization. Moreover, C4.5
reaches 94.10% average F1-score and its performance ap-
proaches or even exceeds some DL-based methods, but
note that Securitas is a binary TC method while the other
methods are capable of multi-classification directly. Thus,
in the real scenario that requires multi-classification, if we
have K classes, we have to build K models and adopt an
ensemble method, e.g., Bagging, Boosting, and Stacking [64],
to integrate their results to get the final predicted class.
So when Securitas is extended to multi-classification which
is more complex than the current binary classification, its
performance may decrease.

RBLJAN not only focuses on learning features from the
header part of the packet but also learns sequence features

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3478838

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on October 18,2024 at 01:22:41 UTC from IEEE Xplore. Restrictions apply.

TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. X, XXX XXXX 11

TABLE 5
Performance comparison on ISCX-VPN w.r.t. F1-score. AVE denotes the average results of all types of traffic.

Model audio chat file mail streaming voip vpn-audio vpn-chat vpn-file vpn-mail vpn-streaming vpn-voip AVE
C4.5 0.9346 0.8854 0.9630 0.9156 0.9520 0.9438 0.9301 0.9006 0.9650 0.9614 0.9862 0.9545 0.9410
SVM 0.8575 0.7906 0.8777 0.8734 0.9538 0.8973 0.6777 0.8571 0.9367 0.8831 0.9417 0.9557 0.8752
Bayes 0.8344 0.6759 0.736 0.7845 0.8873 0.8973 0.6212 0.7637 0.8526 0.8229 0.9307 0.9487 0.8129

DP-SAE 0.9635 0.7099 0.9655 0.6074 0.9797 0.9611 0.9690 0.7322 0.9536 0.6860 0.9944 0.9647 0.8739
DP-CNN 0.9820 0.8361 0.9859 0.7316 0.9909 0.9509 0.9832 0.8965 0.9873 0.9287 0.9972 0.9559 0.9355

SAM 0.9947 0.8746 0.9993 0.7198 0.9968 0.9897 0.9926 0.9762 0.9994 0.9849 0.9992 0.9918 0.9599
Tree-RNN 0.9759 0.8700 0.9579 0.7441 0.9989 0.9964 0.9936 0.9721 0.9888 0.9820 0.9996 0.9941 0.9561
ICLSTM 0.9939 0.9516 0.9966 0.8980 0.9979 0.9987 0.9953 0.9817 0.9977 0.9892 0.9987 0.9990 0.9832
CLE-TFE 0.9992 0.9093 0.9997 0.8309 0.9981 0.9981 0.9952 0.9661 0.9992 0.9792 0.9998 0.9992 0.9728

EBSNN-LSTM 0.9976 0.9619 0.9975 0.9201 0.9996 0.9974 0.9982 0.9913 0.9988 0.9981 0.9997 0.9979 0.9882
EBSNN-GRU 0.9840 0.8833 0.9969 0.8759 0.9984 0.9943 0.9964 0.9798 0.9965 0.9911 0.9987 0.9989 0.9745

BLJAN 0.9964 0.9618 0.9978 0.9286 0.9992 0.9993 0.9979 0.9842 0.9982 0.9903 0.9992 0.9996 0.9877
RBLJAN 0.9980 0.9893 0.9980 0.9799 0.9996 0.9996 0.9984 0.9897 0.9995 0.9977 0.9999 0.9997 0.9958

TABLE 6
Performance comparison on USTC-TFC w.r.t. F1-score. AVE denotes the average results of all malware.

Model Cridex Geodo Htbot Miuref Neris Nsis-ay Shifu Tinba Virut Zeus AVE
C4.5 0.9222 0.8165 0.7004 0.7640 0.8136 0.9158 0.9397 0.9937 0.7016 0.9188 0.8486
SVM 0.8193 0.7511 0.1943 0.6003 0.4792 0.8252 0.9412 0.9614 0.4718 0.6973 0.6741
Bayes 0.5185 0.7188 0.0769 0.4753 0.1085 0.7290 0.9118 0.9614 0.0387 0.5016 0.5041

DP-SAE 0.8087 0.6653 0.5287 0.4579 0.6809 0.8269 0.9149 0.9711 0.5671 0.5431 0.6965
DP-CNN 0.8621 0.7884 0.6590 0.5348 0.8359 0.9346 0.9384 0.9944 0.7632 0.8553 0.8166

SAM 0.9021 0.7710 0.7986 0.6756 0.8843 0.9685 0.9524 0.9946 0.8360 0.9714 0.8755
Tree-RNN 0.9311 0.9094 0.9474 0.7353 0.9714 0.9968 0.9697 0.9995 0.9693 0.9934 0.9423
ICLSTM 0.9601 0.9499 0.9817 0.8502 0.9649 0.9953 0.9877 0.9988 0.9626 0.9852 0.9636
CLE-TFE 0.9951 0.9477 0.9742 0.9536 0.7689 0.9774 0.9877 0.9991 0.7495 0.9913 0.9345

EBSNN-LSTM 0.9172 0.8945 0.9375 0.8485 0.9805 0.9964 0.9673 0.9993 0.9781 0.9906 0.9510
EBSNN-GRU 0.9333 0.8285 0.8621 0.7941 0.9577 0.9537 0.9671 0.9937 0.9248 0.9333 0.9148

BLJAN 0.9651 0.9544 0.9761 0.8142 0.9530 0.9959 0.9921 0.9988 0.9523 0.9725 0.9574
RBLJAN 0.9679 0.9703 0.9925 0.8895 0.9895 0.9987 0.9962 0.9975 0.9887 0.9956 0.9786

from the payload part. Compared with other methods (only
using the header, or processing the header and the payload
as a whole), RBLJAN is more reasonable and efficient in
traffic characterization. In addition, as for chat and mail,
these two types of traffic have the highest similarity in
behavior and traffic features [8]. Compared with other cat-
egories, RBLJAN is about 1~2% lower in the performance
of these two categories. However, RBLJAN has achieved the
highest results on the three metrics of these two categories
and outperforms other SOTA methods, which shows that
RBLJAN can focus on learning more difficult categories to
achieve better performance.

4.2.4 Malware Identification

With increasing attention to network security, the identifi-
cation of network malware is also a challenging task in the
field of network traffic. We select 10 types of malware traffic
in the USTC-TFC dataset for the malware identification
experimental task. Results of the F1-score of the malwares
are shown in Table 6. Note that different from the above
legitimate TC tasks that discard packets without payload,
we keep these packets in the case of malware identification
for the reasons described in Section 3.2.1.

It is notable that RBLJAN outperforms the other SOTA
methods on all classes in terms of the F1-score, which
demonstrates RBLJAN has a strong ability to identify mal-
ware traffic. Among the baselines, the average F1-scores
of DeepPacket and ICLSTM have been improved to some
degree. This dataset contains 10 traffic classes, which itself
reduces the training difficulty of the multi-classification
model. For Tree-RNN, it has always been in sub-optimal
performance (about 94-98%), but note that in addition to
the time overhead brought by its RNN-based network, its
tree-like structure requires training multiple models and it
requires traversing from the root node to the leaf node to
complete the multi-classification. In this 10-class classifica-
tion task, 7 models need to be trained and at least 3 times of

TABLE 7
Performance of RBLJAN-Flow on USTC-TFC. P., R., and F1. are the

abbreviations for Precision, Recall, and F1-score, respectively.

Malware P. R. F1. Malware P. R. F1.
Cridex 0.998 1.000 0.999 Neris 0.977 0.973 0.975
Geodo 0.996 0.995 0.995 Shifu 0.999 0.998 0.998
Htbot 0.996 0.991 0.993 Tinba 1.000 1.000 1.000
Miuref 0.992 0.999 0.995 Virut 0.955 0.972 0.964
Nsis-ay 0.997 0.978 0.988 Zeus 0.995 0.999 0.997

Average 0.990 0.991 0.990

predictions are required to obtain the results. The training
difficulty and prediction time of Tree-RNN will continue to
increase with the increase of categories.

4.3 Performance of extending RBLJAN to Flow-level

To validate the ability of RBLJAN to identify network
bidirectional flows, we select the USTC-TFC Dataset to do
flow-level experiments. Most of the malware contains more
than 5k bidirectional flows in the dataset and the number
of flows is balanced. We also made statistics on the flows
of the other three datasets, but the number of their flows
is very unbalanced, even though some categories contain
only dozens of flows, which is inappropriate for training.
USTC-TFC consists of 10 types of encrypted flow traffic and
consists of both the connection-oriented (TCP) flows and the
connection-less (UDP) flows, which is enough to validate
the ability of RBLJAN to identify traffic flows. We set U = 15
and the flow-level experimental results are listed in Table 7.

Results show that all the malware except Neris, 97.7%,
and Virut, 95.5%, obtain F1-score higher than 99.0%. First,
USTC-TFC is a malware traffic dataset, which has more
noise traffic and is difficult to classify. We carefully analyzed
the composition of this dataset, which contains lots of broad-
cast traffic and LAN address-related protocols. For Neris
and Virut, we traced the source to find the wrong classified
data flows and found that most of the wrong classified
flows are UDP flows. Besides, Note that for the F1-socre

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3478838

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on October 18,2024 at 01:22:41 UTC from IEEE Xplore. Restrictions apply.

TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. X, XXX XXXX 12

0 100 200 300 400 5000.00.20.40.60.81.0
Accura

cy
(1) X-APP

0 100 200 300 400 5000.00.20.40.60.81.0 (2) X-WEB

0 100 200 300 400 500Bytes Injected (Byte)0.00.20.40.60.81.0

Accura
cy

(3) USTC-TFC

0 100 200 300 400 500Bytes Injected (Byte)0.00.20.40.60.81.0 (4) ISCX-VPN

RBLJAN(OURS)BLJANCLE-TFE
Tree-RNNEBSNN-GRUEBSNN-LSTM

Securitas-C4.5Securitas-SVMSecuritas-Bayes
DP-SAEDP-CNN ICLSTMSAM

Fig. 5. Robustness comparison on four datasets.

of miuref that is only 88% at the packet level but reaches
99% at the flow level. We found it contains a large number
of packets without payload, making it difficult to classify
at the packet level. However, at the flow level, RBLJAN
can learn flow-level features to improve its accuracy. In
particular, the traffic of some LAN address communication
protocols, such as MDNS and SSDP, has a small number of
packets in the flow with a short packet length. In addition,
the payload of these packets contains almost no effective
information, which is difficult to classify even by manual
methods. But RBLJAN-Flow can still predict accurately in
high noise network traffic, which validates the extensibility
and effectiveness of the flow-level classification.

4.4 Robustness Comparison at Packet-level
This subsection describes the robustness comparison be-
tween baselines and RBLJAN, we first show an overall
comparison of robustness on four datasets, then we take
USTC-TFC as an example and discuss the robustness of
each model on specific categories. Moreover, we investigate
the impacts of the inner generator structure to get better
performance of RBLJAN.

4.4.1 Overall Comparison of Four Datasets
According to the robustness evaluation method of the clas-
sification models in Section 4.1, we randomly insert random
bytes of different lengths into the packet. we test the length
of inserted bytes in [0, 25, 50, . . . , 500], and show the
accuracy of each method on the four datasets in Figure 5.
Note that for RBLJAN, the model we used in this section
is the same as the one in Section 4.2, i.e., both contain the
generator and the improved GAN mechanism.

Results show that the accuracy of RBLJAN on the four
datasets is stable at more than 95% due to its noise process-
ing mechanism and adversarial learning mechanism. On the
contrary, the accuracy of other models significantly reduces
after adding random noise due to over-reliance on the single
input of the original data. Specifically, when the first 25

bytes are inserted, their accuracy has dropped significantly
to around the fixed value. DNN-based algorithms are most
affected by random noise, while ML-based methods Securi-
tas are not. Specifically, ML-based Securitas utilizes the topic
model of LDA, which leverages the statistical distribution of
byte frequency for feature extraction. The inserted random
noise conforms to a uniform distribution and has little effect
on the statistical characteristics of bytes, so Securitas is less
affected by the random noise. But note that the attacker can
obtain the features extracted by Securitas, that is, which
bytes have a greater impact on the classification results.
If these bytes related to classification are inserted, then
the byte distribution will change and the accuracy will
reduce significantly. DNN-based methods take the original
bytes as input and classify them through the parameters
of the hidden layer of the neural network. If the relative
position or value of the original data is slightly changed, the
output will be greatly changed. ICLSTM is most affected
with an accuracy close to zero, which means it has almost
no robustness. It converts packets into gray-scale images
and uses DNN models for classification, resulting in higher
sensitivity to noisy data. DeepPacket uses a stacked CNN
or linear connection network, which is also heavily affected
by random bytes. The DP-SAE method has only about 20%
accuracy in application and malware classification, and the
performance of DP-CNN is also reduced to a maximum of
60% accuracy. They are no longer able to make a satisfactory
prediction of network traffic. Tree-RNN, EBSNN and CLE-
TFE are less affected by random noise than DeepPacket, but
note that these methods have achieved an accuracy of nearly
99% without any noise, after inserting random noise, the
highest accuracy in website fingerprinting is only 65%, and
the lowest is below 40%. BLJAN neither separately processes
the header and payload, nor considers model robustness. Its
accuracy rates are all below 80%, indicating that RBLJAN
greatly improves the robustness of BLJAN.

Such results demonstrate that RBLJAN has the advan-
tages of high accuracy and strong robustness. In fact, during
the training process of RBLJAN, adversarial examples of
different lengths and distributions are inserted, so that the
classifier can learn the difference between the adversarial
example sequence and the original packet byte sequence.
For the inserted random bytes, RBLJAN will give them a
smaller weight, so the adversarial packet and the original
packet will finally have similar high-level representations.
Therefore, RBLJAN can maintain high accuracy even after
inserting noise of different lengths and distributions.

4.4.2 Categories Comparison on USTC-TFC
The previous section introduces the average accuracy of
each method in four noisy datasets. In order to gain a
deeper understanding of the classification behavior of each
model on each category, we take the USTC-TFC dataset as
an example and show the results of some classes in Figure 6.

From the results, random noise will make the classifica-
tion model misclassify more or less for each class, among
which the Nsis-ay category has the least impact, and the
other classes have a greater impact. Although the previous
analysis argues that inserting random noise has little effect
on Securitas, take C4.5 as an example, the accuracy drops
more significantly on the Shifu and Tinba. In addition, the

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3478838

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on October 18,2024 at 01:22:41 UTC from IEEE Xplore. Restrictions apply.

TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. X, XXX XXXX 130 100 200 300 400 5000.00.20.40.60.81.0

Accura
cy (%)

Cridex
0 100 200 300 400 5000.00.20.40.60.81.0 Geodo

0 100 200 300 400 5000.00.20.40.60.81.0 Htbot
0 100 200 300 400 5000.00.20.40.60.81.0 Virut

0 100 200 300 400 5000.00.20.40.60.81.0 Neris

0 100 200 300 400 5000.00.20.40.60.81.0
Accura

cy Nsis-ay
0 100 200 300 400 5000.00.20.40.60.81.0 Shifu

0 100 200 300 400 500Bytes Injected (Byte)0.00.20.40.60.81.0 Tinba
0 100 200 300 400 5000.00.20.40.60.81.0 Miuref

0 100 200 300 400 5000.00.20.40.60.81.0 Zeus

RBLJAN(OURS)BLJANCLE-TFE
Tree-RNNEBSNN-GRUEBSNN-LSTM

Securitas-C4.5Securitas-SVMSecuritas-Bayes
DP-SAEDP-CNN ICLSTMSAM

Fig. 6. Robustness comparison of some classes on USTC-TFC.

classification of different classes under random noise can
correspond to the structural characteristics of the classifica-
tion behavior of the model. For example, when DP-CNN
is classifying Miuref, Shifu, Tinba and Zeus, the accuracy
jumps to a higher value for every 75 bytes added, and the
accuracy decreases sharply under other length noise. This
can be interpreted that the model is a two-stage convolution
process, the stride of the first layer convolution is 3 and the
second layer is 5, so that the model learns 15 consecutive
bytes of features when moving as a whole (the step size
is 25 bytes in the figure and the least common multiple
of 15 and 25 is 75). For EBSNN, on the Miuref and Zeus,
the accuracy does not decrease continuously as the number
of random noise increases but increases to higher accuracy
for some specific number of bytes, which is also due to its
two-stage network designation. Both the accuracy of CLE-
TFE and BLJAN varies greatly across different categories,
indicating that they heavily rely on the raw data and may
have bias towards certain categories.

Overall, the accuracy of the comparison methods in
noisy environments drops to unsatisfactory results, while
RBLJAN maintains high accuracy in each class. Such results
verify its practical value to cope with various network TC
tasks in noisy environments.

4.4.3 Investigation of the inner generator structure

To further obtain better performances in our generator,
we implemented three inner generators based on different
neural network architectures (i.e., MLP, CNN, and RNN) to
generate different adversarial examples and analyze their
performances. Similar to the robustness testing method, the
evaluation results on different neural network generators on
ISCX-VPN dataset are shown in Figure 7(left).

In order to ensure fairness through experiments, the
parameter quantity of each inner generator is controlled at
the order of 106. We also add batch normalization operation
and ReLU between each layer to improve the training effect.
Specifically, for MLP, we employ three fully connected layers
on the input sequence with a dropout of 0.05 after each
linear layer. And for CNN, the generator is mainly based
on deconvolution, which has already been introduced in
section 3.4.2. And for RNN, we implement a sequence gen-
eration method based on LSTMCell [65], which generates a
specific length (e.g., 25 bytes) of bytes in every timestamp
and finally forms the whole adversarial byte sequence.

0 100 200 300 400 500Bytes Injected (Byte)0.98
0.99
1.00

Accura
cy MLPCNNRNN

0 100 200 300 400 500Bytes Injected (Byte)0.6
0.8
1.0 X-APPX-WEBUSTC-TFCISCX-VPN

Fig. 7. (left) Robustness evaluation of RBLJAN on different neural
network generators (Section 4.4.3); (right) robustness evaluation of
RBLJAN-GAN on four datasets (Section 4.6.3).

From the results, when evaluating the original dataset,
i.e., the inserted byte length is 0, CNN performs best,
followed by MLP, and RNN performs worst. Notice that the
accuracy of all three generators exceeds 99.4%, which indi-
cates that our classification model itself has a strong classi-
fication ability. However, when inserting random bytes, the
accuracy of MLP sharply decreases to around 98.0%, while
the accuracy of RNN slightly decreases but remains above
99.0%. The robustness of CNN is the best, with almost no
decrease in accuracy as the number of inserted adversarial
bytes increases. In addition, there is no significant change
in the accuracy of these three generators although different
lengths of adversarial bytes were inserted. In general, the
deconvolution-based generator has significantly improved
the robustness of the classification model proposed in this
paper, which may also be due to the fact that the classifier
is based on CNN. Although generators with different struc-
tures perform differently, they can still perform well when
inserting adversarial bytes, outperforming other baselines
in Section 4.4, which also proves the effectiveness of the
proposed GAN-based training framework in this paper.

4.5 Comparison of Testing Time
The classification speed is of great significance to the online
classification of network traffic. Hence, we compare the
classification speed of RBLJAN with those baselines. Since
training is conducted only once and can be done offline,
running time is measured by testing time. We set the batch
size B = 128 and the comparison results are shown in Fig-
ure 8. On average, RBLJAN only needs 0.051ms to detect the
class of one packet, which achieves around 4x, 10x, 50x and
100x speedups compared with EBSNN, Tree-RNN, Securitas

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3478838

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on October 18,2024 at 01:22:41 UTC from IEEE Xplore. Restrictions apply.

TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. X, XXX XXXX 14

RBLJAN BLJAN
EBSNN-GRU

EBSNN-LSTMICLSTM SAM DP-SAE DP-CNNTree-RNN C4.5 SVM Bayes CLE-TFE
Models

0.00.20.40.6
0.051 0.032 0.192 0.218 0.098 0.019 0.024 0.043

0.483
3.5
4.0

Detecti
on Tim

e per P
acket (

ms)

3.29 3.35 3.23
4.03

Fig. 8. Comparison of testing time per packet among 13 models.

TABLE 8
Numbers of operations and parameters and detection time under

limited resources.

Model FLOPS Params Server (ms/pkt) Laptop (ms/pkt)
CPU GPU CPU GPU

BLJAN 16.16 M 40.77 K 1.122 0.042 4.533 0.444
EBSNN-LSTM 502.4 M 433.1 K 9.324 0.218 16.98 5.914

DP-CNN 199.2 M 254.2 K 1.838 0.043 6.368 0.860
CLE-TFE 253.2 G 44.88 M 9.871 4.030 - -
RBLJAN 16.04 M 78.92 K 1.490 0.051 4.839 0.473

and CLE-TFE, demonstrating the efficiency superiority of
RBLJAN. SAM spends the shortest time to detect a single
packet, reaching 0.019ms. But note that SAM only uses the
packet header, while other methods use both the header
and payload for classification. Regarding DeepPacket, they
are slightly faster than RBLJAN due to the use of simpler
neural networks, such as MLP in DP-SAE and two CNN
layers in DP-CNN. Additionally, they do not utilize the
embedding layer, which reduces many computations but
loses effectiveness. The reasons why RBLJAN has a high
testing speed are as follows. Firstly, The internal network
of RBLJAN can be calculated in parallel and save much
time cost. The four attention encoders in Formula (5) and
Formula (6) are independent and can be calculated in par-
allel. Most of the other methods do not support parallel
computation, for example, the two-stage RNN in EBSNN
can only be calculated one by one, and the prediction of
child nodes in Tree-RNN can only be executed after the out-
put of the parent node. Secondly, compared with SAM and
DeepPacket which need to stack several CNN or MLP lay-
ers, RBLJAN has an efficient network structure composed
of one embedding layer, parallel joint-attention layers, and
one MLP layer for classification. In the joint attention layer,
the byte part has only one CNN layer and the label part
has only two fully connected layers. Thirdly, compared with
Securitas and CLE-TFE, RBLJAN is an end-to-end method
and does not require feature extraction. Securitas needs to
extract packet features through the LDA in advance and
CLE-TFE spends much time in generating graphs, and then
use classifiers to make predictions, so their testing time is
much longer than other models.

In consideration of real-world scenarios, we also conduct
experiments under limited resources. In addition to the
device described in Section 4.1, we also choose a laptop
with Intel i5-10210U CPU and NVIDIA MX250 GPU as
the constrained testing platform. We choose four DL-based
baselines and test RBLJAN and them in CPU and GPU

environments on these two devices. The testing results and
the analysis of the number of operations and parameters of
these models are shown in Table 8. CLE-TFE has the highest
Params (number of parameters) and FLOPS (Floating Point
Operations Per Second) due to its complex GNN and multi-
ple layers of neural networks. Its testing time on the server
far exceeds that of other models and even cannot be de-
ployed on laptops due to excessive memory usage. EBSNN-
LSTM and DP-CNN contain stacked RNNs or CNNs, result-
ing in a larger number of parameters and operations than
our method. Interestingly, DP-CNN has a bit less detection
time on the server than RBLJAN but more on the laptop.
This indicates that RBLJAN has good deployability and
fast detection speed on restricted devices. Compared with
our previous work BLJAN, RBLJAN doubles the Params
but its FLOPS has not increased. RBLJAN greatly improves
robustness and effectiveness while ensuring faster detection
speed, which is a significant improvement. Due to the GPU’s
accelerated processing of neural network model operations,
the running speed of each model has been improved to
some degrees. RBLJAN is lightweight and efficient, which
can be deployed on regular laptops and detect packets at a
relatively fast speed (0.473 ms/pkt). Compared with other
methods, RBLJAN can not only leverage GPU for acceler-
ated processing, but its internal byte-label joint attention
module can also be calculated in parallel, which greatly
improves its detection speed.

In summary, the structure of RBLJAN is reasonably
and meticulously designed, which makes it effective and
fast and can handle multi-scenario TC tasks in the current
network environment. Such results show the possibility that
RBLJAN can be deployed in real networks to perform online
classification of encrypted traffic.

4.6 Ablation Study
In this section, we perform ablation studies to verify the
effectiveness of important modules, i.e., the label attention
mechanism, the header-payload parallel processing mecha-
nism, and the improved GAN mechanism in RBLJAN.

4.6.1 Label Attention
We discard the label parts h

(h)
l and h

(p)
l and only use the

byte parts h
(h)
b and h

(p)
b as the packet representation. Cer-

tainly, Lreg is also removed. We name this simplified model
RBLJAN-LA and test its average F1-score on four datasets.
Results are shown in Table 9. It is clear that after removing
the label part, the average F1-score of RBLJAN obviously
drops (more than 4.5%) on all datasets, demonstrating that
the label attention mechanism is an indispensable part of
RBLJAN. In fact, the label attention part is the key for
RBLJAN to handle encrypted traffic packets. Even if the
packet payload is encrypted to be a pseudo-random-like
format [13], its relationship with each label embedding
may still exist, which can be learned by the label attention
mechanism to enhance the final packet representation and
help identify the packet class.

4.6.2 Header-Payload Parallel Processing
Most of the existing classification models take the entire
sequence of the packet as the input of the neural network,

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3478838

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on October 18,2024 at 01:22:41 UTC from IEEE Xplore. Restrictions apply.

TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. X, XXX XXXX 15

TABLE 9
Ablation study results on four datasets w.r.t. average F1-score.

Model X-APP X-WEB USTC-TFC ISCX-VPN
RBLJAN-LA 0.9537 0.9368 0.9524 0.9386
RBLJAN-HP 0.9822 0.9745 0.9867 0.9773

RBLJAN 0.9993 0.9990 0.9980 0.9958

ignoring the structural composition of the packet. In fact,
the information contained in the header and the payload
is completely different and the processing methods should
also be different. To validate the effectiveness of our header-
payload parallel processing, we take the entire packet as the
input of RBLJAN and adjust Formula (7) as h = [hb||hp].

We set the length of byte units n = 50 according to [8],
name the new model as RBLJAN-HP, and show results in
Table 9. When RBLJAN does not separate the header and
payload parts, the average F1-score is only about 97%-98%,
which verifies the advantage of header-payload parallel
processing. In fact, the header part is generally the feature
information in plaintext, and the payload part is generally
user data, which can be encrypted or unencrypted. For
encrypted traffic, the similarities between the bytes of the
header and payload and the label are totally different. In this
way, using different encoders to learn knowledge from the
header and payload parts is more helpful and reasonable.
Furthermore, by separating these two parts, the attention
encoders in RBLJAN can be parallelly computed and save
much time cost, which enhances its efficiency.

4.6.3 improved GAN
The reason for the high robustness of RBLJAN is that it
incorporates an improved GAN mechanism. We remove
the adversarial traffic generator, only use the classification
model for training, and obtain the new model named
RBLJAN-GAN. It is tested by inserting random noise of
different lengths into the original data. The test results are
shown in Figure 7(right). After the improved GAN mech-
anism is removed, the robustness of the RBLJAN-GAN is
greatly reduced, and the accuracy of website recognition is
reduced from 99% to about 40%. In fact, RBLJAN can learn
the difference between the noise sequence and the original
packet byte sequence and it can cope with random noise
of different lengths, so the classification effect after insert-
ing noise of different lengths remains basically unchanged.
Therefore, our improved GAN mechanism can effectively
improve the robustness of the classification model, which is
a very important part of RBLJAN.

4.7 Visualization for Interpretability

In this part, take the packet-level classification as an exam-
ple, we provide an intuitional illustration of why RBLJAN
performs well for TC tasks by visualizing the header atten-
tion scores, the similarities between bytes and labels, and
label attention scores learned by the joint attention module.

4.7.1 Header Attention Scores
For the header part of the packet, RBLJAN classifies ac-
cording to the information of the specific field of the packet
header. Therefore, the attention score of the header byte, i.e.,
the α, reflects the importance of every header field. After

0

0.02

0.04

0.06

0.08

0 5 10 15 20 25 30 35 40

A
tt

en
ti

o
n

 S
co

re

Byte Units Index

Fig. 9. The average byte attention scores of all packet headers at their
corresponding positions.

preprocessing, we consider the following fields kept in the
header section: IP Header Length (byte 1), Total Length (bytes
3~4), TTL (byte 9), Protocol (byte 10), Ports (bytes 21~24),
TCP Header Length (byte 33), TCP Flags (byte 34), Window
Size (bytes 35~36), and Urgent Pointer (bytes 39~40).

In order to get a better understanding of the classification
behavior of RBLJAN, we set the length of the header byte
unit as 17, and add padding with 8 zeros to both the
beginning and end of the header byte sequence, ensuring
that the length of the byte unit is equivalent to the size
of the packet header. Then we average the byte attention
scores of all packet headers at their corresponding positions
and show the results in Figure 9. Therefore, the first column
in the figure represents the weight of the first-byte unit,
which includes 8-byte padding at the beginning and the
first 9 bytes of the packet. Without considering padding, this
byte unit contains the IP Header Length, Total Length, and
TTL. The Protocol field is then covered into the following
2~9-byte units. They share the same byte unit vector but
the weights vary due to the movement of the convolutional
kernels. Note that their average weight is lower than most
other byte units, which indicates their average embedding is
not very important for classification. As the kernels move,
the weight increases (columns 10~13) and decreases to a
stationary stage (columns 13~17). This is because the IP
Header Length and the Total Length are no longer covered by
the kernels, and the trend indicates that the Total Length is
given a large weight by the classifier. Besides, The 18th-byte
unit discards TTL and only includes the Protocol. The weight
reduction indicates that TTL is more important than the
Protocol for the classification task. The weights of other byte
units can also be analyzed similarly, and we can draw the
following conclusions: TCP Header Length plays a significant
role in classification (column 25), some Well-known Ports are
still discriminate features (columns 19~24), and the low byte
of some field (e.g., Window Size and Ports) is more important
than the high byte (columns 27~32).

In total, results show that the weights of byte units vary
depending on their position, and the larger weight of a cer-
tain byte unit is directly correlated to some more significant
fields in the packet header. This demonstrates that RBLJAN
can learn the most suitable weights and features from the
packet header.

4.7.2 Similarities between Packets and Labels
RBLJAN embeds each byte and label into a joint space and
endeavors to ensure that the byte representation, i.e., the h

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3478838

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on October 18,2024 at 01:22:41 UTC from IEEE Xplore. Restrictions apply.

TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. X, XXX XXXX 16

CridexGeodoHtbotMiurefNerisNsis-ayShifuTinbaVirut Zeus
0.10
0.15
0.20
0.25

0.05
CridexGeodoHtbotMiurefNerisNsis-ayShifuTinbaVirut Zeus

CridexGeodoHtbotMiurefNerisNsis-ayShifuTinbaVirutZeus 0.00.10.20.30.40.50.60.7

(a) (b)

Fig. 10. (a) Visualization of similarities between packet class represen-
tation and label representation; (b) visualization of the average label
attention vectors, each row represents an average label attention vector
of that class.

in Formula (7), is close to its true label representation, i.e.,
the L̂t in Formula (10). In this section, we start by averaging
all the packet representations that belong to the same class
to obtain packet class representation for each class. Then we
calculate the similarities between each packet class representa-
tion and label representation and present the corresponding
confusion matrix in Figure 10(a). Consequently, the value in
the i-th row and j-th column shows the cosine similarity
between the packet class representation of the i-th class and
the label representation of the j-th class. Therefore, the
diagonal elements measure the compatibility of these two
representations for the same class, which should be as large
as possible. While the elements not on diagonal reflect the
ability of the two representations to distinguish from other
classes, which should be small.

It can be observed that the on-diagonal elements have
high values, whereas the off-diagonal elements have low
values. This indicates that RBLJAN successfully learns the
inherent dependencies and concealed associations between
packets and labels. Hence, it is evident why RBLJAN is
efficient in detecting the class of the traffic packet.

4.7.3 Label Attention

In RBLJAN, as shown in Formula (6), the label part of
the packet representation is the weighted sum of all label
vectors. The design of RBLJAN expects to enhance the
packet representation by incorporating the true label em-
bedding, which makes it easier to classify the packet into
the right class. Considering the label attention vector, i.e.,
the β, the i-th element of β represents the weight of the i-
th label. We hope that the position of the largest element
in β corresponds exactly to the true label of the packet.
Therefore, to verify that RBLJAN indeed achieves this goal,
we average all label attention vectors of the packets (in-
cluding the header part and the payload part) that belong
to the same class, to get the average label attention vector
of each class, and visualize them in a confusion matrix in
Figure 10(b). Specifically, the i-th row represents the average
label attention vector of that class, and its j-th value represents
RBLJAN’s attention to the j-th class when classifying the i-
th class. It is clear that the largest elements are positioned on
the diagonal, which demonstrates that RBLJAN is capable
of focusing on the correct label and performing effective
classification.

In summary, RBLJAN achieves excellent results on all
classification scenarios, outperforming the other state-of-
the-art methods in terms of accuracy, detection speed,
and robustness. The core mechanism of RBLJAN is also
highly interpretable. Such results demonstrate that our
header-payload parallel processing-based, joint attention-
based, GAN-based RBLJAN is an effective TC model, which
is superior to the traditional ML-based Securitas, (only)
header-based SAM, image processing-based ICLSTM and
DeepPacket, (only) RNN-based EBSNN and Tree-RNN and
graph features-based CLE-TFE.

5 CONCLUSIONS AND FUTURE WORK

In this paper, we propose a novel deep learning network, the
Robust Byte-Label Joint Attention Network (RBLJAN), for
both the packet-level and the flow-level traffic classification.
RBLJAN could learn the implicit correlations between bytes
and labels through well-designed attention encoders. At the
same time, it generates diversified adversarial examples to
improve its robustness. Through experiments on four large
real-world datasets, RBLJAN achieves superior performance
in accuracy, detection speed, and robustness, which proves
the practical value of RBLJAN in the real network envi-
ronment. We have released the source code of RBLJAN at
GitHub6. In terms of the limitation of this work, RBLJAN
only considers the adversarial attack of inserting malicious
bytes. In the future, we will further investigate the tech-
nology of adversarial examples to improve the robustness
of RBLJAN [59]. In addition, We will extend RBLJAN to
other traffic identification scenarios (e.g., mobile terminal
traffic [40]) and abnormal traffic detection [60]. At last,
we will continue to optimize the detection speed and test
RBLJAN in a real traffic classification system.

REFERENCES

[1] Z. M. Fadlullah, F. Tang, B. Mao, N. Kato, O. Akashi, T. Inoue, and
K. Mizutani, “State-of-the-art deep learning: Evolving machine
intelligence toward tomorrow’s intelligent network traffic control
systems,” IEEE Communications Surveys & Tutorials, vol. 19, no. 4,
pp. 2432–2455, 2017.

[2] W. Wang, M. Zhu, J. Wang, X. Zeng, and Z. Yang, “End-to-end
encrypted traffic classification with one-dimensional convolution
neural networks,” in 2017 IEEE international conference on intelli-
gence and security informatics (ISI). IEEE, 2017, pp. 43–48.

[3] S. Alcock and R. Nelson, “Libprotoident: traffic classification using
lightweight packet inspection,” Technical report, University of
Waikato, Tech. Rep., 2012.

[4] T. T. Nguyen and G. Armitage, “A survey of techniques for
internet traffic classification using machine learning,” IEEE com-
munications surveys & tutorials, vol. 10, no. 4, pp. 56–76, 2008.

[5] S. Rezaei and X. Liu, “Deep learning for encrypted traffic classifi-
cation: An overview,” IEEE communications magazine, vol. 57, no. 5,
pp. 76–81, 2019.

[6] H. Zhou, Y. Wang, X. Lei, and Y. Liu, “A method of improved
cnn traffic classification,” in 2017 13th international conference on
computational intelligence and security (CIS). IEEE, 2017, pp. 177–
181.

[7] R. Li, X. Xiao, S. Ni, H. Zheng, and S. Xia, “Byte segment neural
network for network traffic classification,” in 2018 IEEE/ACM 26th
International Symposium on Quality of Service (IWQoS). IEEE, 2018,
pp. 1–10.

[8] K. Mao, X. Xiao, G. Hu, X. Luo, B. Zhang, and S. Xia, “Byte-
label joint attention learning for packet-grained network traffic
classification,” in 2021 IEEE/ACM 29th International Symposium on
Quality of Service (IWQOS). IEEE, 2021, pp. 1–10.

6. https://github.com/ws0407/RBLJAN

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3478838

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on October 18,2024 at 01:22:41 UTC from IEEE Xplore. Restrictions apply.

https://github.com/ws0407/RBLJAN

TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. X, XXX XXXX 17

[9] Y. Li, B. Liang, and A. Tizghadam, “Robust online learning against
malicious manipulation and feedback delay with application to
network flow classification,” IEEE Journal on Selected Areas in
Communications, vol. 39, no. 8, pp. 2648–2663, 2021.

[10] M. S. Sheikh and Y. Peng, “Procedures, criteria, and machine
learning techniques for network traffic classification: A survey,”
IEEE Access, vol. 10, pp. 61 135–61 158, 2022.

[11] Z. Liu, S. Li, Y. Zhang, X. Yun, and Z. Cheng, “Efficient malware
originated traffic classification by using generative adversarial net-
works,” in 2020 IEEE Symposium on Computers and Communications
(ISCC). IEEE, 2020, pp. 1–7.

[12] X. Yun, Y. Wang, Y. Zhang, and Y. Zhou, “A semantics-aware
approach to the automated network protocol identification,”
IEEE/ACM transactions on networking, vol. 24, no. 1, pp. 583–595,
2015.

[13] M. Lotfollahi, M. Jafari Siavoshani, R. Shirali Hossein Zade, and
M. Saberian, “Deep packet: A novel approach for encrypted traffic
classification using deep learning,” Soft Computing, vol. 24, no. 3,
pp. 1999–2012, 2020.

[14] G. Xie, Q. Li, and Y. Jiang, “Self-attentive deep learning method
for online traffic classification and its interpretability,” Computer
Networks, vol. 196, p. 108267, 2021.

[15] X. Ren, H. Gu, and W. Wei, “Tree-rnn: Tree structural recurrent
neural network for network traffic classification,” Expert Systems
with Applications, vol. 167, p. 114363, 2021.

[16] X. Xiao, W. Xiao, R. Li, X. Luo, H. Zheng, and S. Xia, “Ebsnn:
extended byte segment neural network for network traffic clas-
sification,” IEEE Transactions on Dependable and Secure Computing,
vol. 19, no. 5, pp. 3521–3538, 2021.

[17] B. Lu, N. Luktarhan, C. Ding, and W. Zhang, “Iclstm: encrypted
traffic service identification based on inception-lstm neural net-
work,” Symmetry, vol. 13, no. 6, p. 1080, 2021.

[18] H. Zhang, X. Xiao, L. Yu, Q. Li, Z. Ling, and Y. Zhang, “One train
for two tasks: An encrypted traffic classification framework using
supervised contrastive learning,” arXiv preprint arXiv:2402.07501,
2024.

[19] L. Deri, M. Martinelli, T. Bujlow, and A. Cardigliano, “ndpi:
Open-source high-speed deep packet inspection,” in 2014 Inter-
national Wireless Communications and Mobile Computing Conference
(IWCMC). IEEE, 2014, pp. 617–622.

[20] J. Sherry, C. Lan, R. A. Popa, and S. Ratnasamy, “Blindbox: Deep
packet inspection over encrypted traffic,” in Proceedings of the 2015
ACM conference on special interest group on data communication, 2015,
pp. 213–226.

[21] Y. Wang, X. Yun, and Y. Zhang, “Rethinking robust and accurate
application protocol identification: a nonparametric approach,” in
2015 IEEE 23rd International Conference on Network Protocols (ICNP).
IEEE, 2015, pp. 134–144.

[22] X. Xiao, R. Li, H.-T. Zheng, R. Ye, A. KumarSangaiah, and S. Xia,
“Novel dynamic multiple classification system for network traf-
fic,” Information Sciences, vol. 479, pp. 526–541, 2019.

[23] P. Tang, Y. Dong, and S. Mao, “Online traffic classification using
granules,” in IEEE INFOCOM 2020-IEEE Conference on Computer
Communications Workshops (INFOCOM WKSHPS). IEEE, 2020, pp.
1135–1140.

[24] W. Li, X.-Y. Zhang, H. Bao, Q. Wang, and Z. Li, “Robust network
traffic identification with graph matching,” Computer Networks,
vol. 218, p. 109368, 2022.

[25] A. Finamore, M. Mellia, M. Meo, and D. Rossi, “Kiss: Stochastic
packet inspection classifier for udp traffic,” IEEE/ACM Transactions
on Networking, vol. 18, no. 5, pp. 1505–1515, 2010.

[26] H. Liu, Z. Wang, and Y. Wang, “Semi-supervised encrypted traffic
classification using composite features set,” Journal of Networks,
vol. 7, no. 8, p. 1195, 2012.

[27] F. Zaki, F. Afifi, S. Abd Razak, A. Gani, and N. B. Anuar, “Grain:
Granular multi-label encrypted traffic classification using classifier
chain,” Computer Networks, vol. 213, p. 109084, 2022.

[28] H. Mohanty, A. H. Roudsari, and A. H. Lashkari, “Robust stacking
ensemble model for darknet traffic classification under adversarial
settings,” Computers & Security, vol. 120, p. 102830, 2022.

[29] L. Bernaille, R. Teixeira, and K. Salamatian, “Early application
identification,” in Proceedings of the 2006 ACM CoNEXT conference,
2006, pp. 1–12.

[30] M. Shen, Y. Liu, L. Zhu, X. Du, and J. Hu, “Fine-grained webpage
fingerprinting using only packet length information of encrypted
traffic,” IEEE Transactions on Information Forensics and Security,
vol. 16, pp. 2046–2059, 2020.

[31] C. Liu, Z. Cao, G. Xiong, G. Gou, S.-M. Yiu, and L. He, “Mampf:
Encrypted traffic classification based on multi-attribute markov
probability fingerprints,” in 2018 IEEE/ACM 26th International
Symposium on Quality of Service (IWQoS). IEEE, 2018, pp. 1–10.

[32] W. Wang, M. Zhu, X. Zeng, X. Ye, and Y. Sheng, “Malware
traffic classification using convolutional neural network for rep-
resentation learning,” in 2017 International conference on information
networking (ICOIN). IEEE, 2017, pp. 712–717.

[33] G. Bendiab, S. Shiaeles, A. Alruban, and N. Kolokotronis, “Iot
malware network traffic classification using visual representation
and deep learning,” in 2020 6th IEEE Conference on Network Soft-
warization (NetSoft). IEEE, 2020, pp. 444–449.

[34] A. Tekerek and M. M. Yapici, “A novel malware classification and
augmentation model based on convolutional neural network,”
Computers & Security, vol. 112, p. 102515, 2022.

[35] C. Liu, L. He, G. Xiong, Z. Cao, and Z. Li, “Fs-net: A flow sequence
network for encrypted traffic classification,” in IEEE INFOCOM
2019-IEEE Conference On Computer Communications. IEEE, 2019,
pp. 1171–1179.

[36] S. Rezaei, B. Kroencke, and X. Liu, “Large-scale mobile app iden-
tification using deep learning,” IEEE Access, vol. 8, pp. 348–362,
2019.

[37] G. Aceto, D. Ciuonzo, A. Montieri, and A. Pescapè, “Mimetic:
Mobile encrypted traffic classification using multimodal deep
learning,” Computer networks, vol. 165, p. 106944, 2019.

[38] X. Wang, S. Chen, and J. Su, “Real network traffic collection and
deep learning for mobile app identification,” Wireless Communica-
tions and Mobile Computing, vol. 2020, pp. 1–14, 2020.

[39] Z. Bu, B. Zhou, P. Cheng, K. Zhang, and Z.-H. Ling, “Encrypted
network traffic classification using deep and parallel network-in-
network models,” Ieee Access, vol. 8, pp. 132 950–132 959, 2020.

[40] X. Wang, S. Chen, and J. Su, “App-net: A hybrid neural network
for encrypted mobile traffic classification,” in IEEE INFOCOM
2020-IEEE Conference on Computer Communications Workshops (IN-
FOCOM WKSHPS). IEEE, 2020, pp. 424–429.

[41] A. Nascita, A. Montieri, G. Aceto, D. Ciuonzo, V. Persico, and
A. Pescapé, “Xai meets mobile traffic classification: Understanding
and improving multimodal deep learning architectures,” IEEE
Transactions on Network and Service Management, vol. 18, no. 4, pp.
4225–4246, 2021.

[42] K. Lin, X. Xu, and H. Gao, “Tscrnn: A novel classification scheme
of encrypted traffic based on flow spatiotemporal features for
efficient management of iiot,” Computer Networks, vol. 190, p.
107974, 2021.

[43] J. Lan, X. Liu, B. Li, Y. Li, and T. Geng, “Darknetsec: A novel self-
attentive deep learning method for darknet traffic classification
and application identification,” Computers & Security, vol. 116, p.
102663, 2022.

[44] X. Yun, Y. Wang, Y. Zhang, C. Zhao, and Z. Zhao, “Encrypted tls
traffic classification on cloud platforms,” IEEE/ACM Transactions
on Networking, pp. 1–14, 2022.

[45] X. Meng, Y. Wang, R. Ma, H. Luo, X. Li, and Y. Zhang, “Packet
representation learning for traffic classification,” in Proceedings of
the 28th ACM SIGKDD Conference on Knowledge Discovery and Data
Mining, 2022, pp. 3546–3554.

[46] G. Bovenzi, A. Nascita, L. Yang, A. Finamore, G. Aceto,
D. Ciuonzo, A. Pescapé, and D. Rossi, “Benchmarking class in-
cremental learning in deep learning traffic classification,” IEEE
Transactions on Network and Service Management, 2023.

[47] A. Nascita, A. Montieri, G. Aceto, D. Ciuonzo, V. Persico, and
A. Pescapé, “Improving performance, reliability, and feasibility in
multimodal multitask traffic classification with xai,” IEEE Transac-
tions on Network and Service Management, 2023.

[48] Z. Song, Z. Zhao, F. Zhang, G. Xiong, G. Cheng, X. Zhao, S. Guo,
and B. Chen, “IΘ{2} rnn: An incremental and interpretable recurrent
neural network for encrypted traffic classification,” IEEE Transac-
tions on Dependable and Secure Computing, 2023.

[49] G. Wang, L. Tang, Z. Yang, L. Yan, P. Liu, and H. Qu, “Deep cnn-
rnn with self-attention model for electric iot traffic classification,”
in 2023 4th International Conference on Big Data & Artificial Intelli-
gence & Software Engineering (ICBASE). IEEE, 2023, pp. 363–368.

[50] Y. Li, Y. Huang, S. Seneviratne, K. Thilakarathna, A. Cheng,
G. Jourjon, D. Webb, D. B. Smith, and R. Y. Da Xu, “From traffic
classes to content: A hierarchical approach for encrypted traffic
classification,” Computer Networks, vol. 212, p. 109017, 2022.

[51] K. Li, W. Ma, H. Duan, H. Xie, J. Zhu, and R. Liu, “Unbalanced

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3478838

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on October 18,2024 at 01:22:41 UTC from IEEE Xplore. Restrictions apply.

TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. X, XXX XXXX 18

network attack traffic detection based on feature extraction and
gfda-wgan,” Computer Networks, vol. 216, p. 109283, 2022.

[52] Y. Liang, Y. Xie, S. Tang, S. Yu, X. Liu, and J. Hu, “Network traffic
content identification based on time-scale signal modeling,” IEEE
Transactions on Dependable and Secure Computing, 2022.

[53] H. Zhang, L. Yu, X. Xiao, Q. Li, F. Mercaldo, X. Luo, and Q. Liu,
“Tfe-gnn: A temporal fusion encoder using graph neural networks
for fine-grained encrypted traffic classification,” in Proceedings of
the ACM Web Conference 2023, 2023, pp. 2066–2075.

[54] M. Lopez-Martin, B. Carro, A. Sanchez-Esguevillas, and J. Lloret,
“Network traffic classifier with convolutional and recurrent neural
networks for internet of things,” IEEE access, vol. 5, pp. 18 042–
18 050, 2017.

[55] A. L’heureux, K. Grolinger, H. F. Elyamany, and M. A. Capretz,
“Machine learning with big data: Challenges and approaches,”
Ieee Access, vol. 5, pp. 7776–7797, 2017.

[56] G. Xie, Q. Li, Y. Jiang, T. Dai, G. Shen, R. Li, R. Sinnott, and S. Xia,
“Sam: self-attention based deep learning method for online traffic
classification,” in Proceedings of the Workshop on Network Meets AI
& ML, 2020, pp. 14–20.

[57] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Good-
fellow, and R. Fergus, “Intriguing properties of neural networks,”
arXiv preprint arXiv:1312.6199, 2013.

[58] S.-M. Moosavi-Dezfooli, A. Fawzi, O. Fawzi, and P. Frossard,
“Universal adversarial perturbations,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2017, pp. 1765–
1773.

[59] A. M. Sadeghzadeh, S. Shiravi, and R. Jalili, “Adversarial network
traffic: Towards evaluating the robustness of deep-learning-based
network traffic classification,” IEEE Transactions on Network and
Service Management, vol. 18, no. 2, pp. 1962–1976, 2021.

[60] G. Aceto, D. Ciuonzo, A. Montieri, V. Persico, and A. Pescape, “Ai-
powered internet traffic classification: Past, present, and future,”
IEEE Communications Magazine, pp. 1–7, 2023.

[61] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,”
Advances in neural information processing systems, vol. 30, 2017.

[62] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Focal loss
for dense object detection,” in Proceedings of the IEEE international
conference on computer vision, 2017, pp. 2980–2988.

[63] G. Draper-Gil, A. H. Lashkari, M. S. I. Mamun, and A. A.
Ghorbani, “Characterization of encrypted and vpn traffic using
time-related,” in Proceedings of the 2nd international conference on
information systems security and privacy (ICISSP), 2016, pp. 407–414.

[64] O. Sagi and L. Rokach, “Ensemble learning: A survey,” Wiley
Interdisciplinary Reviews: Data Mining and Knowledge Discovery,
vol. 8, no. 4, p. e1249, 2018.

[65] O. Mogren, “C-rnn-gan: Continuous recurrent neural networks
with adversarial training,” arXiv preprint arXiv:1611.09904, 2016.

Xi Xiao is an associate professor with the Shen-
zhen International Graduate School, Tsinghua
University. He got his Ph.D. degree in 2011 in
the State Key Laboratory of Information Security,
Graduate University of the Chinese Academy of
Sciences. His research interests focus on infor-
mation security and the computer network.

Shuo Wang is a student with the Shenzhen
International Graduate School, Tsinghua Univer-
sity. His research interests focus on machine
learning, computer network, and information se-
curity.

Guangwu Hu is the Vice Dean of School of
Computer Science, Shenzhen Institute of Infor-
mation Technology. He received the Ph.D. de-
gree in the Department of Computer Science
and Technology and held a post-doctoral posi-
tion from Tsinghua University. His research in-
terests include Next-Generation Internet, Cyber
Security, and Blockchain Technology.

Qing Li is an Associate Researcher with the
Peng Cheng Laboratory, Shenzhen, China. He
received the B.S. degree in computer science
and technology from the Dalian University of
Technology in 2008, and the Ph.D. degree in
computer science and technology from Tsinghua
University in 2013. His research interests in-
clude network function virtualization, in-network
caching/computing, and intelligent self-running
networks.

Kelong Mao is a student with the Gaoling School of Artificial Intelli-
gence, Renmin University. He received the M.S degrees in Computer
Science from Tsinghua University in 2021. His research interests in-
clude Conversational Information Seeking and Large Language Models.

Xiapu Luo He is an associate professor with
the Department of Computing, The Hong Kong
Polytechnic University. His research focuses on
Blockchain/smart contracts, mobile/IoT security
and privacy, network/web security and privacy,
software engineering, and internet measure-
ment.

Bin Zhang is currently a Researcher with the
Cyberspace Security Research Center, Peng
Cheng Laboratory, Shenzhen, China. He re-
ceived the Ph.D. degree in computer science
and technology from Tsinghua University in
2012. He was a Postdoctoral Researcher with
Nanjing Telecommunication Technology Institute
from 2014 to 2017. His research interests in-
clude network anomaly detection, network traffic
measurement, and information privacy security.

Shutao Xia is a full professor with the Shenzhen
International Graduate School, Tsinghua Univer-
sity. He received the B.S. degree in mathematics
and the Ph.D. degree in applied mathematics
from Nankai University in 1992 and 1997, re-
spectively. His research interests include coding
and information theory, machine learning, and
deep learning.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3478838

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on October 18,2024 at 01:22:41 UTC from IEEE Xplore. Restrictions apply.

