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Abstract—The video analytics system utilizes deep learning
models (DNN) to perform inference on the videos captured by
cameras. Continuous learning algorithms are used to address
the data drift problem in video analytics systems. However,
uploading images from deployment environments and processing
on the cloud carry the risk of privacy leakage. In this paper,
we have designed a system called CL-Shield to protect user’s
privacy. Firstly, we review the causes of privacy leakage in
a continuous learning system and propose the objective of
full privacy protection. Secondly, we design an online training
mechanism based on a scene library to avoid direct uploading of
user’s frames to the cloud server. Lastly, we design a fast training
set search algorithm based on a novel Ebv-List, which effectively
improves the speed of model updates. We collect various real-
world scenario data to build our scene library and validate
our system on a dataset of over 10 hours. The experiments
demonstrate that our privacy-aware continuous learning system
achieves an F1-score of over 92% compared to the conventional
systems without protecting privacy and has long-term stability
in analytic F1-score.

Index Terms—Video analytics, Continuous learning system,
Edge computing, Privacy protection

I. INTRODUCTION

The video analytics system [1]-[4] utilizes deep neural
networks (DNN) to analyze videos captured by cameras. These
systems are widely deployed in a variety of fields such as
individual tracking [5], city surveillance [6], action recog-
nition, and others, in both industrial and everyday settings.
Lightweight models are often deployed for inference on edge
devices to minimize end-to-end latency. However, the limited
capacity of lightweight models, due to their smaller number
of parameters, restricts their ability to capture features across
a broad range of scenes and objects (see Fig.1), which can
lead to data drift [7]. The primary approach to resolving
data drift involves updating the lightweight models online
by conducting training processes on cloud servers. The use
of continuous learning mechanisms enhances the accuracy
of video analytics tasks. However, state-of-the-art continuous
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Fig. 1: Data drift. The left subfigure illustrates that data drift
will lead to accuracy loss compared to continuous learning
on the Mall [10] dataset. The right subfigure demonstrates
that data drift occurs due to inconsistency distribution between
offline training data and deployment environment.

learning approaches [6]-[9] suffer from privacy leaks. Online
training of lightweight models requires the collection of video
segments or frames from the environment. The transmission
of frames containing environmental data to the cloud server
and subsequent processing on the server can potentially lead to
privacy breaches, as illustrated in Fig. 2, limiting the adoption
of continuous learning systems.

Privacy protection in continuous learning systems possesses
unique characteristics distinct from conventional video ana-
lytics systems that do not involve model updates or storage
systems. Video analytics inference algorithms [11] only fur-
nish statistical data and are inadequate for real-time training
purposes. Users encrypt their images before transferring them
to cloud servers to prevent comprehensive access by cloud
servers. Although servers temporarily store user images to
overcome storage limitations on users’ devices, cloud servers
cannot access these encrypted images. Solutions proposed
by Tian [12] extract motion and location data directly from
encoded data streams to prevent leakage; however, the method
is tailored for inference tasks and lacks the capability for
training through back-propagation, rendering them unsuitable
for continuous learning systems.

Challenges: It is essential to solve the privacy leakage prob-
lem in continuous learning systems. In our design, we encoun-
tered two challenges: (1) Privacy information is difficult to
capture. Both foreground and background information could
be exploited by unauthorized individuals. Current approaches,
such as target detection, cannot accurately identify foreground
targets and can’t eliminate background privacy information. (2)
Online training demands high-quality images. Continuous
learning relies on training with images of the same scenes used
for edge model inference, which requires high-quality training
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Fig. 2: Privacy leakage in continuous learning systems.

images.

Solution: To address these challenges, we have proposed a
new continuous learning system called CL-Shield. First, we
define the “privacy protection” issue in continuous learning
systems and analyze the causes of privacy leakage. We then
propose the “full privacy protection” concept in continuous
learning systems, which aims to protect foreground informa-
tion and background information of the deployment environ-
ment while achieving the goal of continuous learning accuracy
improvement. The aim of this paper is to set high privacy
standards that align with the role of continuous learning
systems themselves.

In the system design, we propose the concept of a “scene
library” which stores images of various scenes. The system can
select images of similar scenes based on the characteristics of
the deployment environment for the online training process,
which avoids directly collecting images from the deployment
environment and effectively protects user privacy. The next
step is to find optimal training sets quickly from thousands of
images. Finding similar scenes should achieve the following
three goals: (1) High matching accuracy, (2) High match-
ing speed, and (3) The ability to quickly update the scene
library and search data structure. To address this issue, we
have designed a new hash table-based search method that
supports real-time expansion of the scene library and rapid
mapping searches. Additionally, to further utilize the temporal
correlation of videos, we have innovatively designed the Ebv-
List (short for “list of excluding bad vectors”), which records
previous searches to minimize unnecessary comparisons. The
fast search algorithm based on the Ebv-List can save time
in finding similar scenes, thus allowing ample time for online
training of lightweight models. We want to emphasize that the
design of CL-Shield is not oriented towards class-incremental
learning scenarios [13]-[16]. Our contributions in this paper
can be summarized as follows:

1) We analyzed the privacy leakage problem in continuous
learning systems and set the objective of full privacy
protection in the continuous learning system.

2) This paper proposes an algorithm based on a “scene
library”, which provides scene images similar to the
deployment environment for the online training process
of continuous learning systems, thereby avoiding direct
upload of user images to cloud servers.

3) This paper proposes an accelerated search strategy based
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Fig. 3: Private information is present in both background and
foreground.

on Ebv-List, which can quickly find the appropriate scene
in the “scene library” for online training processes.

We collected real-world data to verify the performance of
the system. Experimental results show that our system is the
only one among all baseline algorithms that is capable of
providing “full privacy protection” and enhancing accuracy.
Our privacy-protected continuous learning system can achieve
an Fl-score of 92.1% - 99.77% of existing continuous learning
systems without privacy protect. We conducted experiments on
continuous videos lasting 10 hours and demonstrated that our
system is not affected by forgetting, which leads to a decrease
in Fl-score.

II. BACKGROUND AND MOTIVATION

A. Analysis of Privacy Leakage

The generalized continuous learning system consists of two
deployment machines (edge and cloud) and two transmission
links. The two transmission links are the uplink transmission
link (data stream for transmitting deployment environment
information) and the downlink transmission link (data stream
for transmitting updated model). The management of the data
on these four parts is summarized in Table 1. The existence
form of the above data in these two parts (uplink and cloud)
can directly reflect the real information of the deployment
environment, and the risk of user privacy leakage is large.
Therefore, it is necessary to design a new continuous learning
system to first reduce the leakage of environmental informa-
tion, and then improve the user’s trust in the use of video
analytics system.

Unlike prior work such as Privid [11] on video analytics
systems, which solely concentrate on model inference tasks,
we introduce the following two objectives in designing the
continuous learning systems:

(1) Objective 1 - accuracy improvement: We use V to
denote the collection of video segments, and use f to denote
the model trained offline. The continuous learning system
has two types of accuracy: one is the inference accuracy
of the lightweight model on video segments v € V with-
out online training A(v, f), the other is the inference accu-
racy A(v, fon) after online learning. Adding some privacy-
preserving measures of a continuous learning system yields an
accuracy on A(v, fp.on). The theoretical accuracy range that a
privacy-preserving continuous learning system should achieve
is shown as Equation (1), and the system design should make



TABLE I: Privacy risk analysis of each part of continuous learning system

Name of components Managers Forms of data Probability of privacy leakage Types of leakage User trust
Natural environment User Real environment None High
Sensing device User Video or image Storage leakage High
Edge device User Video or image Storage leakage High
Upload link Network operator ~ Image encoding stream High Transmission leakage Low
Download link Network operator ~ Model encoding stream Transmission leakage High
Cloud server Service provider Image and model data High Storage leakage Low
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Fig. 4: Limitations of traditional methods. The sub-figure
on the left shows that using traditional privacy-preserving
methods results in a loss of Fl-score in continuous learning
systems. The sub-figure on the right shows images processed
with traditional privacy-preserving methods.

the system accuracy as close as possible to the upper limit

A(v, fon)-
A(vap,on) > A(v, ), A(Uafp,on) < A(v, fon) (1)

(2) Objective 2 - full privacy protection: As shown in Fig.

3, the video collected by the camera contains a great deal of
privacy information, which can be divided into two categories:
(1) Private information contained in the foreground, such as
vehicle color, type of objects, license plate, pedestrian pose,
the face of a person, and the person in the car. (2) private
information about the context (also called inferential privacy
[17]), such as traffic signs, store signs, building locations, and
so on. Private information in the foreground has been studied
widely, but the background still reveals personal information
such as whereabouts. The privacy protection method explored
in this paper not only protects the information security in the
foreground, but also protects the information security in the
background. In other words, we will design a new system to
hide and protect most of the environmental information that
can be directly observed and understood by the human eye
before it is uploaded to the cloud server in the process of
uploading and online training.

B. Limitations of Traditional Measures

In order to deal with the problem of user privacy leakage
brought by the uploading data, the traditional approach is to
add noise to the image. There are two typical ways to add
noise. (1) Protect the global information by blurring the image
with a Gaussian kernel. (2) Protect the foreground by erasing
it, such as using semantic segmentation (DeeplabV3 [18]) to
identify the foreground or using the algorithm [19] based on
background modeling.

Fig. 4 (left) shows the F1-score of the continuous learning
system after the frames are processed by these methods,

0.7 #xx3 No Training
fg@@ Online Training

Accuracy(F1)

il
n*

0.2
Highway-D Highway-N
Test Scene

Fig. 5: Improved F1-score through training on similar scenes.
The two sets of data within the dashed vertical box are taken
from similar but distinct scenarios. The data outlined in red
(top) is used for online training, while the data outlined in
blue (bottom) is used for testing.

and Fig. 4 (right) shows the images after these processes.
Images processed with semantic segmentation (DeeplabV3-
Resnet101) might lead to Fl-score improvement, but objects
in the foreground are not fully hided, resulting in privacy
leakage (violation of objective 2). Although the background
subtraction algorithm can identify most of the moving objects
and play a certain role in privacy protection, the Fl-score after
continuous learning is damaged (violation of objective 1 and
objective 2). The algorithm based on global blur hides both
foreground private information and background private infor-
mation at the same time, but the Fl-score of the continuous
learning is undermined (violating objective 1). This experiment
also proves that the traditional privacy protection methods
violate the objectives proposed in this paper and cannot be
directly transferred to the design of the continuous learning
system.

C. Benefit of Using Similar Images

Ekya [7], RECL [9], and others have collected frames from
the system deployment environment to train lightweight mod-
els. However, our experiments have shown that using frames
from similar scenes for online training can also improve the
detection accuracy of lightweight models. Here, we fine-tune
the Efficientdet-DO model using the Park [20], CityRoad [21],
and Mot20 [22] datasets to obtain three models, referred to
as online training, while the model before online training is
referred to as no training. Then, we conduct inference on
frames from the Highway-D [23], Highway-N [24], and Mall
[10] videos using these three models, resulting in the outcomes
shown in Fig. 5. The Highway-D and Park frames are both
from daytime data, with the same target objects (vehicles)
in the images. Both Highway-N and CityRoad frames are
from nighttime data, while the Mall and Mot20 frames are
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Fig. 6: Information compression through deep neural network
layers.
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Fig. 7: System overview.

from indoor crowded scenes. Although these three sets of data
are from different deployed environments, they exhibit certain
similarities in terms of foreground objects and backgrounds.
As shown on the left side of Fig. 5, the online training
mode using frames from similar environments for continuous
learning can bring about an Fl-score improvement of 11.3%
to 14.7% compared to no training.

D. Privacy information transformation

Illustrated in Fig. 6a and 6b, by visualizing the output
sizes of intermediate layers of ResNet50 and VGG19, we can
draw the following conclusions: (1) Deeper layers compress
high-dimensional raw images (e.g., two million bytes of data
from a 1080p image) into low-dimensional features (e.g., the
output data of the global average pooling layer in ResNet50
is only 2048 dimensions, and the output of the FC1 layer in
VGG19 is only 4096 dimensions). These deep features have
already lost the visual information of the original image and
can be utilized to transform privacy information embedded
in images. (2) Information extracted by the shallow layers of
DNN contains a substantial amount of data and carries easily
discernible visual information, making it vulnerable to privacy
leaks during transmission and on cloud servers.

III. SYSTEM MODEL
A. Overall System Design

Based on the motivation above, we propose a system named
CL-Shield, which is a privacy-preserving continuous learning
system. The structure of the system is shown in Fig. 7. CL-
Shield is deployed on the edge and the cloud. The edge
has a lightweight object detection model (Lw-Model). The
cloud is mainly responsible for the online training process
of the Lw-Model. Unlike previous work [7]-[9], the labels
for the training dataset in the online learning process of
CL-Shield come from both the teacher model and manual
annotations (public dataset). As Fig. 2 shows, CL-Shield has
two data streams between the edge and the cloud: environment
data stream and model data stream. CL-Shield’s environment
data flow is different from the way previous work uploads
images, and the whole process is more secure. We divide
the whole working process of the video analytics system into
several online learning windows with equal time, abbreviated
as win,;. Like AMS [8], the length of win,,; is limited to 10s
in this paper.

Edge: Edge devices capture video from the camera and de-
code it into video frames that are stored in the buffer. The real-
time Inference Engine (Lw-Model deployed) is used for real-
time video inference, and the analysis results are fed back to
users or upper applications in time. The Env-Sensor (deployed
lightweight feature extraction network) inputs sampled frames,
and processes the searching feature vector sf_v. Then the edge
will transmit sf_v to the cloud for similar scene lookup. At
the beginning of each continuous learning window win,;, the
Env-Sensor collects one frame of the video. As a result of this
method, privacy is preserved since we do not upload frames
from the deployment environment, but rather the feature vector
generated by the search.

Cloud: A Scene Library is dynamically maintained on the
cloud, which stores the image and its labels in various scenes
(the definition of the scene will be explained later). The Trainer
obtains (picture, label) information from the scene library for
online training of the Lw-Model, and sends the new model
weights to the edge. Like Ekya [7] and RECL [9], each win,;
updates all the parameters of the Lw-Model.

An important aspect of online training is the fast matching
of similar scenes, which is performed by the Fast-Env Matcher.
The overall idea of CL-Shield can be described as to find
scene frames from the scene library that are similar to the
deployment environment, and then use these frames for the
online training process on the cloud server.

B. Establishment of Scene Library

In this section, we introduce the scene library designed for
the continuous learning system.

Deployment environment descriptor: Existing continuous
learning systems [7]-[9] send representative images from the
edge to the cloud for online training. In order to protect user
privacy, the goal of our system design is to avoid sending vi-
sually comprehensible environmental information to the cloud
server as much as possible. To inform the cloud about the
current deployment environment, at time ¢, where ¢t € T', we



use the Env-Sensor my to obtain the features (referred to as
the environment descriptor) of the deployment environment v
and send it to the cloud server via the upload link. The process
of obtaining the environment descriptor is recorded as symbol
Eteq(-). Throughout the entire testing period T, the system
maintains a sampling rate of ry FPS (frame per second), and
the work process of the Env-Sensor can be expressed as in
Equation (2).

sf_vy = Efeq(v,15,mys),v €V 2)

Definition 1 - scene: A collection of frames {p;|i € I,,q €
Q} captured by the same camera at the same location within
a short period of time (for example, within a few minutes)
constitutes a scene sc,, where () represents the index sequence
of scenes, and I, is the index number of the frames collected
in scene sc,.

Scene library: In order to protect users’ privacy, this paper
establishes a train set buffer called scene library that integrates
various scenes. In a scene library, the larger the variety of
images, the easier it is for the system to locate scenes that
are similar to the environment where the camera will operate.
Therefore, we have collected as many images as possible,
both online and offline. It should be noted here that the scene
library contains scenes that are different from those captured
by sensors. A description of the data source for the scene
library can be found at IV-B. Admittedly, the improvement in
the accuracy of continuous learning designed in this paper is
limited by the quality of the scene library.

Image representation vector: As in Equation (3), Env-
Feature Extractor use the my to extract the features (ef_v;)
of the image p; and add it to the scene library. The extracting
process is recorded as symbol E,..p(-).

ef_vi = Erep(pivmf) 3

AMS [8] and RECL [9] deploy the “Golden Model” on the
cloud to provide the label label_gm. The inference process
of “Golden Model” (represented as symbol FEj.pe;) can be
described as Equation (4):

label_gm; = Ejqper(pi, mg) “)

where my is the “Golden Model” used to provide the labels.

As in Fig. 8a, we train the object detector EfficientDet-
DO using the data from MOT20 [22] scene, and then verify
it on MOT20 and Mall [10] respectively. Three modes are
selected in the experiment: (1) Edge-Only without any fine-
tuning measures, (2) the labels of the second training set are
from EfficienDet-D7, and (3) the labels of the third mode are
provided by humans. Experimental results show that higher
F1-score can be achieved by using artificial labels. In addition,
due to the excessive reliance on the reasoning ability of
the “Golden Model” in the traditional continuous learning
system, there are also problems such as excessive demand
for computing resources and long delay in obtaining labels
in some scenarios. If the manual label [abel_man is used
for labeling, it will consume too much manpower and have
a longer delay to obtain the label, making it difficult to
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deploy in an automated system. In order to solve the above
problem, we propose a hybrid label generation method to
provide the required labels for the online training process.
Next, we illustrate the specific operation steps of the proposed
method.

Mixed label generator: There are two types of images
that are currently available through public sources: (1) Data
(D) that only contains image information, such as videos
from YouTube; (2) Data (Dg) contains image and its human
labels (label,,qn), such as the COCO dataset [25]. In order to
expand the scenarios in our scene library, we design a mixed
label generator which can be expressed as Equation (5). CL-
Shield uses it to provide labels for training lightweight model.
By using two data sources, CL-Shield expands the types of
scenes in the scene library, thereby reducing the possibility of
bias between online training data and deployment scenarios.

label; = {

Above, we have explained how to obtain the image p;,
representation vector ef_v;, and label;. Then we combine
them into a tuple scene_tuple,;(p;,ef_v;,label;) and add it
into the scene library. CL-Shield retains the external interface,
using the “Golden Model” to infer the newly added frame
of the scene or directly using artificial label information. The
scene library can be expanded online, without affecting other
online processes in cloud.

if p; € Dy,
if p; € Dy

label_gm,;
label_man;

(&)

Online learning process: The online learning process is
carried out within the Trainer on the cloud, which is re-
sponsible for the online training of the Lw-Model. At the
beginning of win,;, the system selects (the selection method is
described in Section III-C) the Top-K images with the highest
matching scores from the scene library as the training set S,,.
Subsequently, the Trainer uses the training set s, to train
the student model, resulting in new model weights. Once the
weights have been updated, they are sent to the edge. Similar
to AMS [8], in order to avoid disrupting the real-time inference
process of the Lw-Model on the edge, a copy of the model is
maintained on the edge. The updated model weights are first
loaded into the copy, and then the model copy is swapped with
the execution model in the real-time inference.

Next, we will discuss how to quickly and accurately search
for similar scene images in the scene library for online
training.



C. Organization of the Scene Library

We need to locate images in the scene library that are similar
to the deployment environment for the online training process.
There are three key points in the similar scene search process:
(1) How to determine whether two scenes are similar? (2)
How to efficiently structure the images in the scene library and
support real-time insertion of new data? (3) How to quickly
search for similar images in the scene library?

Definition 2 - similarity of scene: We use cosine similarity
to calculate the matching degree between the deployment
environment at time ¢ and the image p; in the scene library,
as shown in Equation (6). The closer d(sf_v;,ef_v;) is to 1,
the higher the similarity between sf_v, and ef_uv;.

sf vy -ef _v;
B [ B

Hash organization form: The simplest form of represen-
tation vector organization is linear organization. The search
process is to compare sf_v; with ef_v; in the scene library
one by one. As shown in Fig. 8b, we perform linear search
experiments on [512, 1024, 2048] dimensional vectors with
[1000, 5000, 10000, 20000, 50000] images. The result shows
that the time use of linear search depends on the image scale of
the scene library. As the size of the scene library increases, the
linear search time exceeds the win,;. The increase of search
time greatly compresses the time of online training, so the
image representation vector cannot be organized by linear.

Inspired by the LSH [26] algorithm, we organize the rep-
resentation vectors in the scene library in the form of hash
tables. Through the design of the hash function to achieve fast
mapping key to value, the same key value is mapped to the
same slot, and the time complexity of the mapping is usually
O(1). We use the hash table to organize the representation
vector to complete the rapid mapping of the environment
descriptor sf_v; to the matching representation vector. Let’s
first explain the data insertion method, and then introduce the
fast lookup strategy based on Ebv-List.

Real-time data stream insertion method: We use a hash
table to store the representation vectors in groups. The hash
table consists of N tuples (named as Tuple_HT), and each
tuple comprises two elements, represented as
Tuple_HT (gkn, [ef_vi,ef_va,..,ef v;,..]),n € N. Here,
lef_vi,ef_va,...,ef_v;,...] is the set of representation vectors
stored in this tuple. gf_v, represents the “key vector” of
this tuple. We consider that the representation vectors within
a tuple have relatively high similarity, while the similarity
between represent vectors in different tuples is relatively low.

For a newly arrived image p;, according to Equation (3), the
Env-Feature Extractor first obtains its feature vector e f_v;, and
then the Key Generator uses the matrix W € RE*V (W is a
random Gaussian matrix) to obtain e f_vi/, which is expressed
as Equation (7):

ef vi =W -(ef_v)T (7)

0 1 J

, .
where ef v, = [e,el,...;el,...], with e being a float

number. Next, the Key Generator uses Equation (8) to encode
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and the improvement in Fl-score of continuous learning.

e f_vi/ and obtain the key value ek; corresponding to the

image p;.
eki = {

When ek; is the same as gk,,, we insert e f _v; into the tuple.
The insertion method places relatively similar representation
vector into the same set, similar to a grouping strategy. This
method supports offline insertion and also supports online
insertion. By using the aforementioned real-time data stream
insertion method, scene library can update images online,
effectively expanding the variety of scenes. Next, we will
explain the fast lookup strategy.

1 ifel >0

: 8
0 ifel <0 ®

D. Speedup Strategy Based on Ebv-List

The search process needs to be mapped to the Tuple_ HT
according to the environment descriptor, and then the set of
representation vectors in the hash table is compared one by
one. Because the comparison method is linear search, which
consumes more time (refer to Fig. 8b for linear search speed).
Therefore, we should develop a strategy for accelerating
lookups.

Intuitively, the more similar the images used for online
training, the more accurate the updated model will be. We
conduct experiments on three datasets to test the similarity
distribution and the influence of similarity on the Fl1-score
improvement after online training. As shown in Fig. 9a, Fig.
9b, and Fig. 9c, we use ResNet50 [27], ResNetl01 [27],
VGG16 [28], VGG19 [28] to extract the features of all the
images in the scene library. The similarity is calculated by
using the data in Highway-D [23], Highway-N [24], Mall
[10] scenes and the data in the scene library. Experimental
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Fig. 10: Similarity distribution. The Fig. 10a illustrates the
similarity of frames within the same video and the dissim-
ilarity of frames from different scenes. Fig. 10b highlights
the similarity between adjacent frames. Based on the video
temporal correlation, we designed the Ebv-List algorithm.

results show that the similarity is mainly distributed around
0.4-0.9. The similarity distribution varies depending on the
feature extractor, but the range is relatively similar.

Based on the distribution of similarity ranges, we use the
feature vectors extracted by the ResNet50 feature extraction
part to calculate the relationship between similarity and F1-
score after continuous learning. As shown in Fig. 9d, the ver-
tical axis represents the proportion of Fl-score improvement
after continuous learning with respect to Edge-Only mode.
The Fl-score of lightweight models will be reduced if they
are trained with images with low similarity to the deployment
environment, as with scenes like Highway-N and Highway-
D, where the similarity is below 0.6. There is a generally
positive correlation between similarity and improved F1-score
after continuous learning.

Video temporal correlation: Videos have temporal cor-
relation, which is the similarity between frames. As shown
in Fig. 10a, we calculate the similarity distribution between
frames within the Highway-N, City-Road, and Mall datasets,
the similarity distribution between frames of similar scenes,
and the similarity distribution between frames of different
scenes. Experimental results show that the similarity of frames
in the same scene is mostly above 0.9, and the similarity
of similar scenes is between 0.8 and 0.9. We measured the
similarity of frames between two adjacent windows (window
length is 1s), and the similarity between frames of adjacent
windows taken by a stationary camera (Highway-D) is higher
than that of the autonomous driving scenario (Driving [29]).
However, the similarity between adjacent frames is mostly
concentrated above 0.94.

Ebv-List: Based on the above two findings, we have de-
signed a data structure called Ebv-List (List of Excluding
Bad Vectors) and a fast search algorithm. By using the
temporal correlation of videos, we can reduce the number of
comparisons in the T'uple_HT of hash table when searching
for similar scenes. As shown in Fig. 11, the Ebv-List (in Fea-
Cache) stored the search records of Tuple_HT. The number
of Tuple_HT in the hash table is consistent with the number
of records in the Ebv-List. Each record can be represented as
a tuple Tuple_Ebv (Tuple-Index, Ebv-Fea, Mark-List),
where Tuple-Index indicates the Tuple_HT in the hash ta-
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Fig. 11: Accelerated search strategy based on Ebv-List.

ble, Ebv-F'ea stores the the latest environment descriptor sf_v
mapped to this T'uple_HT, and M ark-List stores the records
of the sequential search for sf_v. If the calculated similarity
is less than the Vector Similarity Threshold (VST), the
Mark-List record is set to False; otherwise, it is set to
True. When the similarity is below the VST, we consider
the representation feature corresponding to the image having
no value for continuous learning, so we refer to such a feature
vector as a “bad vector”. Due to the temporal correlation of the
video, there is a high probability that the next sf_v mapping
to this tuple will have very close comparison results. Next, we
will explain the specific search process.

The search algorithm can be obtained from the Algorithm
1. At the start of win,;, CL-Shield captures a frame from the
buffer, converts it in the Env-Sensor to obtain s f_v;, and then
sends it to the Cloud. In the cloud, the key generator trans-
forms sf_v; into a key value sk;, following the same process
as the data stream insertion method. Next, sk; is used to map
to the corresponding T'uple_HT', in the hash table. Ebv-List is
queried to obtain the Ebv-Feay, and M ark-List;, correspond-
ing to Tuple_HT}. The similarity sim_compare between
sf_vs and Ebv-Feay is calculated. When sim_compare >
Time Similarity Threshold (T'ST), CL-Shield decides to
use the indication of Mark-Listy for linear comparison of
the representation vectors in the Tuple_HT and does not
calculate the similarity with bad vectors. Using the above
steps, we exclude some representation vectors (bad vectors),
thereby saving time during comparison.

Ebv-List update: Ebv-List needs to be updated according
to the changes in the video captured by the sensor. In order to
save time for updates, CL-Shield only updates Mark-Listy,
when Ebv-Feaj becomes invalid. The criterion for invalida-
tion is sim_compare < TST. When Ebv-Feaj; becomes
invalid, CL-Shield compares sf_v; with all representation
vectors in Tuple_HT}, and re-record Mark-Listy, and then
replaces the original storage of Ebv-Feay with sf_v,. In this
way, Ebv-List can be updated according to changes in the
video to ensure that the Ebv-List always indicates the most ad-
vantageous representation vectors for accuracy improvement.

IV. EXPERIMENTAL SETUP

This section describes the deployment of the system, the
dataset, and the baseline.



Algorithm 1: Search algorithm based on Ebv-List

Data: Frames collected by edge devices
Result: Train set s,, for online learning

1 for winl;, winl,, ..., win!,, ... do

2 Send sf_v; to the cloud

3 Convert sf_v; to the search key sk,

4 Map from sk, to the Tuple_HTy,

5 Obtain (T'uple-Indexy,, Ebv-Feay, Mark-Listy,)
6 sim_compare + d(skt, Ebv-Feay,)

7 if sim_compare > T ST then

8 ‘ Find in Tuple_HT}, based on the Mark-Listy
9 else

10 Find in Tuple_HT}, based on linear search
11 Ebv-Feay, — sf_uvs

12 Update Mark-Listy,

13 end

14 Sort and get Top-K images as s;

15 end

A. System Deployment

Hardware and software: We utilize Python to implement
CL-Shield, and deploy the system on an Ubuntu 18.04 ma-
chine using both edge and cloud. We conduct DNN model
inference and training process on the GeForce RTX 2080
SUPER GPU. The deep learning model is accomplished
through PyTorch [30], which incorporates a real-time inference
process for the lightweight model, online learning process and
inference of “Golden model”.

DNN model: The DNN model used in this paper contains
an object detection model and a feature extraction model.
The object detection model is responsible for inference. We
use EfficientDet-DO [31] as the Lw-Model, and we use
EfficientDet-D7 [31] as the “Golden Model” to provide labels
for online training. Four classic feature extractors, ResNet50
[27], ResNet101 [27], VGG16 [28] and VGGI19 [28], were
used as the Env-Sensor, respectively. We keep the final feature
output of ResNet, and adjust the VGG feature output from
4096 to 2048 dimensions. Below we list the information of
these four feature extractors in Table II.

Metrics: We have established two metrics to evaluate per-
formance: Fl-score and latency (in seconds).

TABLE II: Details of Env-Sensor

Model name Output layer name Dim  Final dim
ResNet50 [27] AvgPool 2048 2048
ResNet101 [27] AvgPool 2048 2048

VGG16 [28] FC1 4096 2048

VGG19 [28] FC1 4096 2048

B. Dataset

The data set is divided into the data set for testing and the
data set that makes up the scene library. In order to remove
the influence of the object detector, the “Ground Truth” that
we verify the Fl-score on the test set is from EfficientDet-D7

TABLE III: Test dataset

Video name Source Total duration
Highway-D YouTube [23] 600 seconds
Highway-N YouTube [24] 600 seconds
Mall Mall dataset [10] 1000 seconds
Driving YouTube [29] 1200 seconds
City YouTube [32] 10 hours

TABLE IV: Scene library data source

Scene name

Data source Label source

Park Open-Source [20]  Golden Model
City-Road YouTube [21] Golden Model
Mot20 Open-Source [22] Artificial

COCO02017  Open-Source [25] Artificial
Driving YouTube [33] Golden Model
Bit Open-Source [34] Artificial

[31]. It is important to emphasize that the scene in the test
data set is different from the scene library.

Video set for test: The test scenes we used in this paper
could leak user privacy, such as traffic scenes (leaked license
plates and driving trajectory), shopping malls (leaked face
information, walking trajectory, pedestrian pose), and driving
(users do not wish to upload their own videos). Due to ethical
considerations, we use the dataset from YouTube and open-
source. We did not utilize any home camera footage for testing.
Please refer to Table III for dataset specifics.

Video set in scene library: We have used datasets from
diverse scenes for CL-Shield’s scene library, including video
data captured by natural cameras and open-source datasets.
The labels are primarily artificial labels from the dataset itself
or “Golden Model” (EfficientDet-D7). We ensure a balanced
number of images for different scenes in constructing the scene
library. Refer to Table IV for specific dataset details.

C. Baseline

We select a number of algorithms that serve as baselines in
our experiment. We ensure that the settings are consistent in
baselines which has an online learning process, such as the
same number of images and learning rate.

1) Edge-Only : A pre-trained lightweight model is run on
the Edge device without cloud assistance. In this mode, we will
get the original inference F1-score of the lightweight model.

2) AMS [8]: AMS is a classic algorithm commonly used
in continuous learning systems, primarily geared towards
semantic segmentation tasks. In our case, we have adapted
it for object detection tasks. The online learning window of
AMS is set at 10 seconds, during which one frame is captured
per second from the real-world deployment environment and
then uploaded to the cloud server for online training. The
training labels are only obtained from the “Golden Model”. In
this paper, we consider the Fl-score achieved by AMS as the
upper limit of the continuous learning system, without taking
privacy protection into account. We update all parameters of
the student model, and the student and teacher models are
EfficientDet-DO [31] and EfficientDet-D7 [31], respectively.

3) EAF [6]: This is a continuous learning system algorithm.
The original paper does not provide a name for this system,
so we will name it the Edge-Assisted Framework Algorithm



(EAF). EAF selects key frames to send to the cloud server
by calculating the proportion of low-confidence objects at
the edge and reduces the number of training frames sent by
calculating frame redundancy. EAF also decides whether to
start the continuous learning process by evaluating fluctuations
in accuracy. EAF does not consider privacy protection issues.

4) CL-Blur: We blur images taken from the deployment
scene using a Gaussian kernel and then upload them to the
cloud server for online training. The labels used for online
training are provided by the “Golden Model”.

5) Ours (CL-Shield): Follow Fig. 7, we deploy a distributed
continuous learning system. win,; is set to 10s and we set the
system super-parameters V.ST = 0.65 and T'ST = 0.925. The
values of the super-parameters in the CL-Shield are discussed
in the experiment results. The only difference between AMS
and CL-Shield is that AMS uses fully real-world data from
the deployment environment, while CL-Shield trains using the
scene library.

6) Ours-Random: This mode randomly selects K frames
from the scene library as training sets in a win,; instead of
the most similar frames, and the rest of the operations are
consistent with CL-Shield.

7) FG-Removal: This pattern identifies and removes com-
mon foreground objects. For the static camera scenes (Mall,
Highway-D, Highway-N), we deploy the KNN-based back-
ground modeling algorithm [19] on the edge, which only sends
the established background frames (as training sets) to the
cloud. For the dynamic scene camera scene (Driving), the
background modeling algorithm is not effective, we deploy the
model segmentation algorithm (Deeplabv3-ResNet101 [18])
on the edge to detect and mask foreground objects. Then the
processed images are sent to the cloud to participate in the
online training process. While FG-Removal can identify and
hide most foreground objects, it is ineffective at removing
background privacy.

V. EXPERIMENT RESULTS

We conduct relevant experiments to verify the performance
of the system. The system will be tested to determine whether
it can meet the two goals of privacy protection and Fl-score
improvement. Next, we discuss the parameter values of the
system. Finally, we test the forgetting of the system.

A. Overall Performance

The Fl-score comparison results between CL-Shield and
the corresponding baselines are shown in Fig. 12, and the
performance comparison is shown in Table V.

Edge-Only: Deploying a lightweight detection model only
on edge can avoid user data transmission and privacy leakage.
The disadvantage is that data drift issues may occur, which
can decrease the Fl-score of video analytics.

AMS: Its Fl-score can be improved by 18.22%-65.63%
compared to Edge-Only mode, achieving the highest F1-score
among all baselines. A disadvantage is that privacy is not
protected.

EAF: EAF intermittently performs online training on the
cloud, resulting in accuracy that is higher than the Edge-Only
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Fig. 12: Overall performance.

mode but lower than the AMS algorithm (the upper limit of
continuous learning accuracy). The accuracy of the EAF mode
is not necessarily superior to that of CL-Shield. Additionally,
EAF directly uploads images collected from edge devices to
the cloud server, posing a higher risk of user privacy leakage.

CL-Blur: The Fl-score of CL-Blur has achieved a slight
improvement on the Highway-N and Driving datasets, but
its Fl-score on the Mall dataset is significantly lower than
Edge-Only mode. The reason is that the objects in the former
dataset are larger, and the degree of blurring is weaker, so
the “Golden Model” can still identify some objects and give
labels. With the same degree of blurring, the objects in the
mall are smaller than Highway-D, so all target features in the
mall dataset will be lost. Therefore, this mode is limited, and it
cannot accurately estimate the relationship between the degree
of blurring and the effectiveness of privacy removal.

FG-Removal: The background modeling algorithm is ap-
plied in scenes with static backgrounds, and can effectively
remove all moving objects (most foreground targets). The F1-
score after online learning is significantly lower than that of
Edge-Only mode. The segmentation-based algorithm effec-
tively eliminates the majority of foreground targets. However,
the small number of remaining targets has a limited impact
on improving the Fl-score of the continuous learning system,
resulting in an increase of only 5.56% on the Driving dataset.
Therefore, this removal of foreground mode cannot be directly
used in continuous learning systems. System F1-score is neg-
atively affected by privacy leaks involving foreground targets
and backgrounds.

Ours: The algorithm proposed in this paper demonstrates
significant improvements in Fl-score, achieving increases
of 18.01%, 22.19%, 10.25%, 17.94% and 64.74% on the
Edge-Only dataset. Furthermore, it attains Fl-score rates of
96.07%, 93.05%, 92.1%, 99.77% and 99.45% on five respec-
tive datasets, in comparison to the AMS F1-score. CL-Shield
effectively prevents foreground and background information
leakage by simply adding a lightweight model on the edge
device, thus relieving the computational burden. Consequently,
CL-Shield successfully accomplishes the objectives of enhanc-
ing Fl-score and providing comprehensive privacy protection,
as outlined in this paper.

Ours-Random: Randomly selecting images from the scene
library for training introduces a high degree of chance, leading
to a slight decrease in Fl-score on the Mall dataset. While
this approach may prevent user information leakage, it also
introduces instability to the system’s Fl-score, making it
unsuitable for practical use.



TABLE V: Baseline performance comparison

|  Method | Fl-score improvement | Protect foreground | Protect background | Additional burden on the edge |
| Edge-Only | ® | v | v | None |
| AMS | v | ® | | None |
| CL-Blur | maybe | v | v | Gaussian Kernel |
| Ours-Random | maybe | v | v | None |
Background extraction model
FG-Removal maybe maybe * Semantic segmentation model
| EAF | v | ® | ® | Keyframe detection algorithm |
| Ours | v | v | v | Lightweight model |
Top-K = 12.
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Fig. 13: The effect of the parameters of Ebv-List on the
contrast ratio and find time.

B. Sensitivity Testing of Online Module

In Section III, we set several hyperparameters for the sys-
tem, including the Top-K number of images involved in one-
time online training, the VST and the 7'ST for accelerating
the search. Generally, these parameters determine how images
are selected and how long training takes online. We analyze
their specific impacts as follows.

1) Top-K: Top-K is used to select the most similar K
images. The larger the value of K, the longer time used for
online training. We conducted tests on two GeForce RTX 2080
SUPER GPUs, and the results are shown in Fig. 14a. In order
to execute processes such as finding similar images and online
training within the continuous learning window win,;, we set

2) Parameters in Ebv-List: In the design of Ebv-List, the
Vector Similarity Threshold (VST) controls the num-
ber of representation vectors involved in the comparison,
and the Time Similarity Threshold (T'ST) controls the
frequency of updating Ebv-List. These two parameters play
an important role in the matching of representation vectors.
Both parameters are intuitively related to video features and
to scene library quality. Keeping the scene library consis-
tent, we conduct experiments on the Highway-D, Highway-
N, and Mall datasets, jointly analyzing the impact of these
two parameters on the matching of similar images within a
continuous learning window. Here, we provide a method to
measure the performance of Ebv-List - Average Contrast Ratio
(ACR), calculated as the ratio of the number of comparisons
using Ebv-List to the number of comparisons without Ebv-
List when searching for the Top-K representation vectors. A
smaller ACR value indicates fewer comparison times and a
shorter average search time (denoted as Find Time in the
figure) when searching for Top-K representation vectors. Fig.
13 illustrates the average contrast ratio and the average find
time. Experimental results demonstrate that Ebv-List saves
time in finding similar environments, and as 7'ST increases
and VST decreases, the number of comparisons decreases,
leading to less time spent, which is consistent with the design
logic.

Offline module sensitivity test: Two processes are involved
in establishing the scene library: (1) generating representation
vectors for new images (extracting process) and (2) inserting
the vector into the hash table (insert process). Both processes
are carried out offline while supporting online operations. In
this section, we discuss the performance of the extracting and
inserting process. We set the scale of the scene library to
[500, 1000, 5000, 10000, 50000, 100000] images, and use
ResNet50, ResNet101, VGG16, and VGG19 as the feature
extractors in Env-Feature Extractor. The information on these
feature extraction networks is shown in Table II. Experimental
results are shown in Fig. 14b. As the scale of the scene
library increases, the time required for generating vectors
increases, ranging from a few seconds to several hundred
seconds. Meanwhile, the time required to insert data streams
into the Hash Table also increases. The establishment time of
a scene library at a level of 100,000 images (including the
process of establishing representation vectors and organizing
using the Hash Table) can also be completed within 10 minutes
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Fig. 14: System module running time sensitivity experiments.
Fig. 14a shows the impact of Top-K on time for online
training, and Fig. 14b displays the impact of scene library
scale on use time under various feature extractors.

in these offline scenarios.

C. Visualization of Operation

1) The most similar images selected: CL-Shield selects
similar scenes from the scene library for online training, and
whether to select similar images has a great impact on the final
F1-score of continuous learning. As shown in Fig. 15, we show
the scenes that are selected more frequently in continuous
learning. We can see that for Highway-D, CL-Shield often
chooses scenarios with more vehicles. For the Highway-N
scene, CL-Shield often selects those driving scenes at night,
because light intensity has a significant impact on scene
similarity. For the data set Mall, there are usually a lot of
people in the scenes selected by CL-Shield, because Mall is
an indoor crowded scene. The experimental results show that
CL-Shield can select some scenes that are beneficial to its F1-
score improvement, which proves that our system is effective.

2) Scene transition: To test whether CL-Shield can select
appropriate images for training during scene transitions, we
conducted an experiment on scene changes. As shown in Fig.
16, we used a continuous autonomous driving video for testing
and filled the scene library with the COCO 2017 train dataset
[25]. At time TI1, the vehicle is driving on the road, and
the objects captured by the camera are primarily vehicles. At
time T2, a crosswalk appears ahead of the vehicle. At time
T3, the vehicle is stopped in front of the crosswalk, and the
objects captured by the camera are primarily pedestrians. As
needed, the system selected more vehicle-centered images at
T1 (the top row of images). As shown in the bottom row of
images, at T3, the system selected pedestrian-centered images
(some of which also include the crosswalk). This experiment
validates that our system can select images most similar to the
deployment environment during scene transitions for training.

D. The Influence of Images of Same Class

In this section, we aim to test the reasons for the improve-
ment in continuous learning accuracy. Is it due to: (1) training
with objects of the same class as those in the deployment envi-
ronment, or (2) training with images similar to the deployment
environment? We filtered images containing “vehicles” and
images containing “person” from the COC02017 [25] training

Fig. 15: Find similar scenes.
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Fig. 16: CL-shield selects appropriate images for training when
deploying scene transitions.

set, naming them Class-Based in Fig. 17. The filtering method
primarily relied on the labels provided by the COCO2017.
Then, we trained the model using images containing “vehi-
cles” in each online training window and tested it on the
“Highway-D” and “Highway-N", as the main objects captured
in the “Highway-D” and “Highway-N" datasets are vehicles.
Similarly, we used images containing “person” to train the
model and tested it on the “Mall” dataset. It is important to
emphasize that the number of training images in each training
window is the same for all experimental groups.

As shown in Fig. 17, selecting only images of the same
class (but not similar) for training did not achieve better
performance than the Edge-Only mode on the Highway-D
and Highway-N datasets, indicating that it does not have a
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Fig. 17: The influence of images of same class. The left
subfigure shows that using images of the same class as the
deployment environment (where the same category refers to
the foreground objects) for continuous learning may result
in lower accuracy than the Edge-Only mode. The right sub-
figure displays images of the same class selected from the
COCO02017 dataset for continuous learning.



positive effect on accuracy. By analyzing the images used in
training, we identify two reasons: (1) both foreground objects
and backgrounds can provide the necessary information for
training, and (2) the training set of objects from the same
class also includes a variety of complex features, making it
challenging for the object detection network to train effectively
on these complex features. This experiment demonstrates the
rationale behind choosing similar images for training rather
than only selecting images of the same class. It also indicates
that the improvement in accuracy of CL-shield does not come
from simply increasing the number of training epochs.

E. System Time-Based Performance

In this section, we present the Fl-score variation over
different continuous learning windows. Fig. 18 presents the
F1-score changes of Edge-Only, AMS, and our models on the
four datasets with varying time windows. Results reveal that
CL-Shield achieves a window F1-score above Edge-Only in
83.33%, 100%, 85%, and 87.5% of the windows across the
four datasets, and it can rapidly adapt to scene changes. CL-
Shield achieves a window Fl-score greater than 90% of AMS
Fl-score in 81.67%, 61.67%, 67%, and 94.17% of the win-
dows across the four datasets. Combined with Section V-A, it
can be observed that CL-Shield not only exhibits a significant
improvement in overall Fl-score but also demonstrates high
Fl-score stability over the time axis.

F. System Forgetting Test

We collected a video dataset called city [32] to test the
possibility of a decrease in Fl-score during the runtime of the
system. The city video data is a continuous 10-hour video.
We demonstrated the performance of three modes, Edge-Only,
AMS, and ours, in this video in the time windows [660, 720],
[1380, 1440], [2100, 2160], [2820, 2880], and [3480, 3600].
The experiments in Fig. 19 showed that even in a sequential
10-hour video, the Fl-score of our designed system remained
stable around the AMS mode, and there was no decrease in
F1-score due to forgetting or overfitting in similar scenes. Our
system exhibits operational robustness.

VI. RELATED WORK

Video analytics system: The video analytics system [1],
[35], [36] utilizes DNN to analyze videos captured at the edge.
Among the most common methods used by the video analytics
system are GPU resource allocation, transmission configura-
tion optimization, and model splitting. While AWStream [2]
and DDS [3] adjust the video configuration sent to cloud
servers to adapt to varying bandwidths, the current bandwidth
in the deployment environment is no longer a bottleneck
for video analytics system development. Neurosurgeon [37]
unloads most of the computation to cloud servers through
model splitting; however, model splitting is only suitable for
image classification models with relatively simple topological
structures. The current challenges in deploying the video
analytics system revolve around the generalization of models
and privacy leaks.
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Continuous learning system: The actual deployment sce-
narios of cameras are often complex and variable, differing
from the distribution of the model’s offline training data. This
leads to lower accuracy of lightweight models during real-
time inference (data drift). A continuous learning system can
enhance inference accuracy during deployment by collecting
images from the deployment environment for online model
training. Mullapudi R T et al. [38] design lightweight stu-
dent models suitable for training on edge devices, leading
to significant advancements in semantic segmentation tasks.
However, their work does not account for the constraints
encountered in practical deployment scenarios. In response to
this, Mehrdad Khani et al. [8] introduce the AMS algorithm,
a continuous learning system simulation based on edge-cloud
architecture for semantic segmentation tasks. AMS deploys the
student model on edge devices for real-time video inference
tasks, while a teacher model is hosted on a cloud server
to provide labels and conduct online training of the student
model. Furthermore, Bhardwaj R et al. [7] address the resource
competition scenario in continuous learning systems on edge
servers and propose the Ekya system for GPU space resource
allocation. Additionally, RECL [9] establishes a model zoo
on edge cloud to facilitate rapid online training and updates
of models, storing models trained in various environments to
achieve the goal of rapid model training and updates online.

These continuous learning systems [7]-[9] rely on the
knowledge distillation process on cloud servers for online
training of lightweight models. In knowledge distillation, the
teacher model provides labels for training the student model.
We have adopted the concept of knowledge distillation, but
with some differences from these works [7]-[9]. For CL-
Shield, the labels used for online training come from both
the teacher model and open-source datasets. The label acqui-
sition process and the online training process execute without
interfering with each other in CL-Shield.

In addition, we have noted another subfield in continuous
learning: class-incremental learning. Class-incremental learn-
ing increases the number of output classes of the model using
training data with new classes in the data stream. EWC [15]
addresses the issue of model forgetting by protecting important
parameters. iCaRL [14] employs a distillation learning mech-
anism and designs exemplar sets. WA [13] corrects the biased
weights in the FC layer during training. Other algorithms [16],
[39] expand the model structure, achieving a better balance
between model stability and plasticity. However, we do not
consider solving the class-incremental problem in this paper.

Privacy preserving algorithm: In the field of privacy
protection, the simplest method [17], [40] is to directly apply
blur or masking to the privacy-sensitive areas (e.g., pedestri-
ans) in images. Zheng et al. [41] propose a method to hide
visual privacy information by shuffling the order of blocks in
images. However, this method is only designed for VIT (Vision
Transformer) classifiers and is not suitable for complex DNN
models such as object detectors. Sun et al. [42] propose a two-
stage structure to hide facial privacy information, which can
modify faces in natural images and add facial information to
blacked-out areas. Tian et al. [12] extract motion information
from encrypted video bit streams for object detection and

tracking tasks. This algorithm extracts designed features from
video bit streams based on the H.265 encoding algorithm,
avoiding the decoding of original images on cloud servers.
Privid [11] transforms object location into continuous appear-
ance time length information and implements the system with
a specific database handling method. However, Privid does
not support more detailed queries, such as object location
information, which significantly affects the application of the
video analytics system. SPNN [43] designs a vertical federated
learning algorithm to ensure that two users use the same labels
when training a model. However, federated learning algorithms
generally consider only joint training of models by multiple
users, which is significantly different from continuous learning
systems (joint inference and training processes). In conclusion,
there is no algorithm specifically designed to address privacy
leakage in continuous learning systems.

VII. DISCUSSION
A. Scene library expansion

A core component of CL-Shield is the scene library. The
ability of the continuous learning system to match appropriate
scene images for online training is contingent upon the size of
this library. An increased library size enhances the probability
of matching scenes similar to the deployment environment.
We incorporated real-time data stream insertion method and
two data sources (open-source data and unlabeled data) into
the system design, providing a technical foundation for online
database expansion. To minimize the negative impact of li-
brary size, continuous learning systems in similar deployment
contexts can share the huge scene library. The discussion of
sharing methods is left for the future.

B. Similar image selection method

We use similar vectors to select images that are com-
parable to the deployment environment for training, which
is a relatively straightforward approach. However, to protect
user privacy, based on our current knowledge, we can only
compress image information into vector information, which
may result in some loss of information. In the future, we can
enhance feature matching by gathering additional environmen-
tal information from edge devices such as the time of capture,
weather conditions, and so on.

VIII. CONCLUSION

This paper presents CL-Shield, a privacy-protected continu-
ous learning system. We introduce an integration of a dynami-
cally updated scene library in the continuous learning system,
housing images depicting diverse scenarios. The proposed
approach eliminates the need for direct image acquisition from
the operational environment during online training, thereby
ensuring robust user privacy protection. Furthermore, we have
devised a swift retrieval mechanism utilizing Ebv-List, facil-
itating prompt identification of the optimal training images
within a mere 2 seconds. Our experiments have demonstrated
that CL-Shield can achieve an Fl-score of over 92% in
continuous learning systems without privacy protection, while
also ensuring no instances of forgetting.
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