
IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. X, NO. X, AUGUST 202X 1

Stateless and Proactive Routing for Dynamic
Multicast with Deep Reinforcement Learning

Qing Li, Senior Member, IEEE, Lie Lu, Dan Zhao, Zeyu Luan, Yuan Yang,
Yong Jiang, Member, IEEE, Jingpu Duan, Ruobin Zheng, Shaoteng Liu, Dingding Chen

Abstract—Stateful multicast protocols manage multicast group
memberships by maintaining state information about active
groups and their members. They have seen limited adoption
in the modern internet due to lack of scalability, simplicity,
and flexibility. Although stateless multicast protocols, like BIER,
eliminate extensive state management, they still face complex tree
computation and limited scalability for concurrent requests. In
this paper, we propose Hawkeye, a stateless multicast mechanism
with deep reinforcement learning (DRL) for real-time responses
to dynamic multicast requests with near-optimal multicast TE
performance. This mechanism is suited for Software-Defined
Networking (SDN) environment where the controller has a global
view of the network and supports flexible configuration of
network resources for traffic engineering. For real-time responses
to multicast requests, we leverage DRL enhanced by a temporal
convolutional network (TCN) to model the sequential feature
of dynamic group membership, and thus are able to build
multicast trees proactively for upcoming requests. We develop a
novel source aggregation mechanism to facilitate the convergence
of the DRL agent under high volume of multicast requests.
Moreover, to improve the practicality and robustness of Hawkeye,
we design incremental deployment and single failure handling
mechanisms, which take advantages of source aggregation and fit
well with multicast routing. Evaluation with real-world topologies
and multicast requests demonstrates that Hawkeye responds
effectively to dynamic multicast requests. It offers rapid routing
decisions, e.g., making routing decisions in under 5ms on a tested
topology, and reduces path latency variation by up to 89.5%, with
less than a 10% increase in bandwidth consumption compared
to the offline theoretical minimum.

Index Terms—multicast routing, DRL, BIER-TE

I. INTRODUCTION

In recent years, multimedia traffic has experienced rapid
growth, projected to exceed 70% of all internet traffic by
2023 [1]. The surge in bandwidth-consuming traffic places
a substantial strain on network infrastructures. Multicast can

This work is supported by the Major Key Project of PCL under
grant No. PCL2023A06 and Shenzhen R&D Program under grant NO.
KJZD20230923114059020. (Corresponding author: Dan Zhao)

Qing Li, Dan Zhao, Zeyu Luan and Jingpu Duan are with Peng Cheng
Laboratory, Shenzhen, Guangdong 518066, China (e-mail: liq@pcl.ac.cn;
zhaod01@pcl.ac.cn; luanzy@pcl.ac.cn; duanjp@pcl.ac.cn).

Lie Lu is with Alibaba Cloud, Alibaba Group, Hangzhou, Zhejiang 311121,
China (e-mail: lul16@foxmail.com).

Yong Jiang is with Tsinghua Shenzhen International Graduate
School, Tsinghua University, Shenzhen 518055, China (e-mail:
jiangy@sz.tsinghua.edu.cn).

Yuan Yang is with Tsinghua University, Beijing 100084, China (e-mail:
yuanyang@tsinghua.edu.cn).

Ruobin Zheng, Shaoteng Liu and Dingding Chen are with the 2012
Lab, Huawei Technologies Co. Ltd., Shenzhen, Guangdong 518129,
China (e-mail: zhengruobin@huawei.com; liushaoteng@huawei.com; chend-
ingding5@huawei.com).

potentially ease this burden by efficiently distributing data
from a single sender to multiple recipients, thereby con-
serving bandwidth through the elimination of redundant data
transmission. Unfortunately, traditional stateful network-layer
multicast [2] incurs prohibitive control overheads due to per-
flow state maintenance in routers. Application-layer multicast
reduces traffic pressure on servers, but the efficiency of net-
work resources is not sufficiently optimized [3]. Recently,
IETF introduced Bit Index Explicit Replication (BIER) [4],
a stateless source routing paradigm. Instead of preserving per-
flow states in intermediary nodes, BIER uses explicit bit-
based forwarding instructions for more efficient and scalable
multicast packet delivery.

Traffic engineering have been proved an effective network
utilization optimization measure in many prior works [5]–[8].
Tree Engineering for BIER (BIER-TE) [9] inherits the ad-
vantages of BIER and further enables flexible construction of
multicast trees. BIER-TE incorporates “packets BitString” to
indicate the edges of the multicast tree, allowing fine-grained
path control over multicast traffic. Nonetheless, the challenge
of efficient multicast tree construction persists, particularly in
the context of today’s highly dynamic environments. Unlike
unicast-based TE that can be formulated as a multicommodity
flow problem or similar variants, multicast TE is more com-
plicated. The current multicast standard, IETF PIM-SM [2],
generates routes by shortest-path tree (SPT), which always
uses the shortest path from the source to each destination and
result in sub-optimal bandwidth consumption. Steiner Tree
(ST) provides the optimal solution to minimize bandwidth
consumption. ST is NP-hard [10] and only works for static
trees. [11]–[13] investigated multicast TE with static multicast
requests. However, they still suffer from high computation
complexity even under fixed group membership assumptions.
Moreover, they only make shortsighted decisions for current
multicast requests, without considering upcoming demands.
Consequently, they struggle to achieve sustained long-term
performance. [14], [15] considered multicast TE with dynamic
requests. However, these studies rely on responsive heuristics
rather than capturing the underlying patterns of how multicast
demands change over time, which limits their ability to achieve
optimal long-term performance.

To tackle these challenges, Deep Reinforcement Learning
(DRL) emerges as a promising approach due to its capacity
for real-time decision-making and optimization of long-term
rewards. It has found application in addressing various unicast
TE problems. Geng et al. [16] adopts DRL to solve complex
inter-domain TE problems, achieving less congestion and bet-

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. X, NO. X, AUGUST 202X 2

ter scalability than traditional methods. Liu et al. [17], [18] ex-
ploit DRL’s adaptability to dynamic environments for efficient
online routing, thus providing near-optimal TE performance
under changing network statistics with multiple constraints.
Nevertheless, none of the existing research endeavors have
investigated the use of DRL within multicast TE scenarios.

In this paper, we propose Hawkeye, a DRL-based multi-
cast mechanism built upon BIER-TE protocol for real-time
responses to dynamic multicast requests. This mechanism is
particularly suited for network environments where adminis-
trators have the capability to manage all network devices and
monitor traffic, such as in a Software-Defined Networking
(SDN) environment. We first formulate multicast TE as an
optimization problem to minimize the long-term total network
cost under the path stability constraints. Then, we leverage
DRL to learn the multicast traffic pattern from historical re-
quirements and make routing decisions proactively, providing
near-optimal multicast TE performance.

Designing such a DRL-based dynamic multicast mechanism
faces two main challenges. First, unlike unicast with only
O(n2) possible source-destination pairs for routing, in mul-
ticast, the combinations of O(2n) multicast trees significantly
exacerbate the complexity of the problem. Consequently, the
solution space of the DRL algorithm increases drastically with
dynamic group membership, making it difficult to converge,
especially in the presence of numerous requests. Second,
the hidden temporal relationship among historical multicast
requirements should be effectively mined to facilitate the
decision making of the DRL agent.

To address convergence issues, we propose a source aggre-
gation mechanism to reduce the solution space of dynamic
multicast. Recognizing that groups stemming from the same
source can share portions of the same multicast tree with min-
imal performance impact, this method consolidates multicast
requirements originating from the same root source into a
single aggregated requirement capturing the dominant traffic
patterns. Then, the DRL agent handles only the aggregated
requirements, rather than the massive original requirements,
ensuring quicker convergence and response. Based on source
aggregation, we also propose an efficient means to build trees,
and a storage-efficient method for routing table arrangement.

To capture the temporal relationship of multicast require-
ments, we design a temporal convolutional network (TCN)-
based DRL approach for multicast tree generation. It regards
the agent’s output as a sub-policy to build a multicast tree at
each step of a training episode. As such, the agent can learn
the temporal relationship of consecutive multicast trees. Com-
bining source aggregation with DRL, Hawkeye outputs link
weights, based on which proactive routing decisions are made.
It implicitly considers the prospect of future major traffic,
ensuring real-time response and long-term TE performance.

To further enhance Hawkeye’s practicality, we design incre-
mental deployment and failure handling. Incremental deploy-
ment allows Hawkeye to function in hybrid networks with
nodes lacking BIER-TE support. Specifically, we propose an
overlay network construction method for multicast routing
that endeavours to save bandwidth consumption. The failure
handling mechanism leverages BIER-TE and source aggrega-

tion to rapidly identify single failures at source routers, only
using feedback from destinations, and enabling local recovery
through pre-installed backup rules.

We evaluate Hawkeye with simulations on real-world
topologies and multicast requests. The results show source
aggregation can effectively accelerate both convergence speed
and decision making speed. In our tests, Hawkeye is able to
make routing decisions within 5ms on a tested topology. The
DRL-based TE solution outperforms prior multicast methods,
reducing path latency variation by up to 89.5% with only
less than 12% additional bandwidth consumption compared
with the optimal solution. The efficiency of the incremental
deployment and failure handling mechanisms is also validated.

Our contributions can be summarized as follows:
• A multicast source routing framework based on BIER-TE

with source aggregation. It improves the efficiency of the
DRL algorithm and reduces the storage overhead at the
source routers.

• A DRL-based multicast routing algorithm. It considers
the static and dynamic multicast performance jointly and
provides responsive and far-sighted decisions.

• An overlay network construction method for incremental
deployment. It ensures the tree diversity in abstracted
overlay topologies, and thus prevents severe performance
degradation.

• A source-driven single failure detection mechanism. It
simplifies the failure handling process and enables fine-
grained recovery methods to be deployed locally.

While previously presented in part in [19], this extended
version integrates significant enhancements, including incre-
mental deployment, failure handling mechanism, accompany-
ing experimental evaluations, and theoretical foundation for
DRL reward design.

The remainder of this paper is organized as follows. Section
II introduces the background and motivation. Section III
presents the overall design of Hawkeye with routing prob-
lem formulation and incremental deployment consideration.
The proposed source aggregation and DRL framework are
described in depth in Sections IV and V. The failure handling
framework is explained in Section VI. Section VII shows
the evaluation results. Finally, we review the related work in
Section VIII and conclude this paper in Section IX.

II. BACKGROUND AND MOTIVATION

A. Background

1) BIER-TE: BIER-TE is a stateless path control mecha-
nism for multicast. It encodes a multicast tree as a Bit String
(BS) and encapsulates it in packet headers. Each Bit Position
(BP) in BS indicates an unambiguous adjacency of a router
in the network, which means an entity adjacent to the router.
A router receiving a multicast packet checks the BS in the
header and then forwards (and also replicates if necessary)
the packet to an adjacency if the corresponding BP is set to
1. The router is called a Bit Forwarding Router (BFR). In
particular, an ingress router is called a Bit Forwarding Ingress
Router (BFIR) and an egress router is called a Bit Forwarding
Egress Router (BFER).

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. X, NO. X, AUGUST 202X 3

Group BS

110111

(a) Ingress mapping

BS
000001

Adjacency BP
1

000010 2

000100 3

001000 4

010000 5

100000 6

(b) Adjacency to BP

S

u1

D1

D2

1 1 0 1 1 1

AdjBP
1

AdjBP
2

1 0 0 0 1 1

1 0 0 0 1 1

0 0 0 0 1 1

AdjBP
6

AdjBP
3
4
5

(c) Multicast packet forwarding
Fig. 1. An example of BIER-TE. (a) Ingress mapping of the BFIR (node S).
(b) Mapping from adjacencies to BPs. (c) Forwarding process.

Fig. 1 shows an example of BIER-TE. There are two kinds
of BPs in Fig. 1(b), i.e., node-BP and link-BP. A node-BP (e.g.,
D1 decap) is set if the node should decapsulate the packet
out of the BIER-TE domain. A link-BP (e.g., S-D1) is set if
the link is part of the multicast tree, i.e., the packet should
traverse this link. Assume a multicast packet enters the BIER-
TE domain from BFIR S towards BFERs D1 and D2, and
the multicast tree is {S–u1, u1–D2, S–D1}. First, the BFIR
receives the packet and encapsulates a BIER-TE header into it,
in which the BS is ⟨110111⟩ according to the ingress mapping.
Then, S updates the BS in the BIER-TE header as ⟨100011⟩
by ANDing the original BS ⟨110111⟩ and a mask ⟨100011⟩,
which effectively rules out all adjacencies of S from the BS to
avoid loops. Since BPs 3 and 5 are set in the original BS, S
sends a copy of the packet along the adjacencies S-D1 and S-
u1, respectively. When D1 receives the packet, it finds BP 1 in
the BS, which indicates node-BP D1 decap, so it decapsulates
this packet and passes its payload for higher layer processing.
Similarly, the other copy of the packet sent to u1 is forwarded
to D2 and D2 decapsulates and processes the packet locally.

2) DRL: DRL combines neural networks with reinforce-
ment learning to enable agents to learn optimal behaviors
in dynamic environments through trial and error, showing
tremendous potential for solving sequential decision-making
problems in networking scenarios with high-dimensional state
spaces [16], [18], [20], [21]. For example, [20] proposes a
DRL-based approach to make online virtual network func-
tion deployment decisions according to network resources
and network function characteristics states. In the context of
traffic engineering tasks, DRL presents distinct advantages
over traditional TE approaches under dynamic traffic demands,
making it particularly well-suited for our problem. DRL can
respond to network dynamics quickly, providing fast and
efficient routing decisions [22]. This rapid response capability
is particularly beneficial for latency-sensitive applications and
services. Moreover, as an experience-driven, model-free ap-
proach, DRL learns hidden patterns and causal relationships
rather than relying on explicit mathematical models. This
enables it to efficiently handle complex problems involving
multiple interactive factors, such as topology structures and
traffic demands in TE tasks while optimizing for accumulated
rewards over the long term. For example, DRL has been

used to decide link weights [23], traffic splitting ratios [16],
and the next hops [18]. As discussed in [24], using link-
level presentation as the agent action provides high training
efficiency and flexibility for routing policy generation. This
action form also benefits the construction of multicast trees.

B. Motivation

1) Why BIER-TE: Compared with stateful multicast proto-
cols, BIER-TE not only fits large-scale multicast better but also
provides flexible control of multicast trees for TE. It collects
multicast requests with a centralized controller and updates
routing rules directly at the source router. It can thus respond
to multicast requests much faster, and consume less network
resources than the traditional stateful protocols. Moreover, it
enables representations of arbitrary multicast trees with node-
BPs and link-BPs to control multicast traffic.

2) DRL for Multicast: In dynamic multicast, the multicast
tree is expected to change with dynamic group memberships.
Building efficient multicast trees following the real-time group
membership is a sequential decision-making problem, which
fits the logic of DRL due to three main reasons.
Sequential decisions and delayed rewards. Dynamic multi-
cast routing requires a sequence of decisions that optimize the
long-term performance. Traditional methods, such as Integer
Linear Programming (ILP) models [25] and heuristics, are
mainly designed for myopic offline optimization. They may
provide local optima that is far inferior to the global optimum
from a long-term perspective. In contrast, the DRL agent eval-
uates the long-term effect of each decision with the objective
of improving the total return containing not only current but
also future rewards.
Predictable requirements. The number and locations of users
in a multicast group may follow some probabilistic models,
such as the Poisson distribution [26], [27]. In dynamic multi-
cast, however, the traffic pattern changes over time, making
it difficult for traditional statistical models to fit the trend
timely and accurately. Learning from the past experience,
DRL can take full advantage of the inherent characteristics
of requirements, and capture the trend of multicast group
membership, thus enabling proactive routing.
Readily available training data. The data needed for training
is relatively easy to obtain in multicast networks. Network
states and performance can be easily measured. For example,
multicast requests and join/leave events are naturally collected
by protocols (e.g., IGMP [28]), and multicast trees gener-
ated by the agent can be evaluated using network topology
information. Unlike traditional methods that require exact
information of the incoming requirements to make correct
routing decisions, DRL learns to route based on historical
request data which can be accumulated at any time.

III. DESIGN OVERVIEW

In this section, first, we formulate the multicast routing with
dynamic membership as an optimization problem. Then, we
present the overall workflow of Hawkeye, from DRL-based
multicast tree configuration to packet forwarding.

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. X, NO. X, AUGUST 202X 4

A. Problem Formulation

We formulate a multicast tree construction optimization
problem, aiming to minimize long-term total bandwidth con-
sumption under path length variation constraints in response
to dynamic multicast requests. We model the network as a
graph G = (V,E), where V and E denote node and edge
sets, respectively. Multicast requests arrive at discrete time
slots t = 1, 2, . . . , T , with different group memberships. Let F
denote the set of multicast flows, and each flow is bound to a
group g whose bandwidth demand is qg . At a specific time slot
t, the set of members (destinations) in group g is denoted as
Dt

g . There are two binary variables ψg,e,t and ϕg,d,e,t, which
indicate the state of edge e in group g at time slot t. The
former is set if e is in the multicast tree, and the latter denotes
whether e is in the path to node d. We use two kinds of edge
weights to calculate the static and dynamic costs of multicast
trees, respectively. Specifically, ωst

e denotes the cost per unit
bandwidth and the static cost measures the total bandwidth
consumption. ωdy

e denotes the edge latency and the dynamic
cost measures the stability of path latencies. The problem of
multicast tree construction with dynamic membership can be
formulated as follows:

min
∑
g∈F

∑
e∈E

T∑
t=1

qg · ψg,e,t · ωst
e (1)

s.t.
∑

e∈E:se=u

ϕg,d,e,t −
∑

e∈E:de=u

ϕg,d,e,t = ∆(g, u),

t = 1, 2, . . . , T,∀g ∈ F, u ∈ V, d ∈ Dt
g (2)

ϕg,d,e,t ≤ ψg,e,t,

t = 1, 2, . . . , T, ∀g ∈ F, d ∈ Dt
g, e ∈ E (3)

T−1∑
t=1

∑
d∈Dt

g∩Dt+1
g

|
∑
e∈E

(ϕg,d,e,t+1 − ϕg,d,e,t) · ωdy
e | ≤ Cdy

g ,

∀g ∈ F. (4)

Objective function Eq.(1). The objective is to minimize the
total static cost, i.e., the costs of trees of all groups at all time
slots, where the cost of a tree is the weighted sum of all its
link costs. The bandwidth consumption is a significant and
commonly-used metric for multicast routing.
Flow conservation constraint Eq.(2). Flows entering a node
u should also leave the node, i.e., the left traffic equals zero at
intermediate nodes, except that u is the source or a destination.
In this constraint, se and de denote the start-point and end-
point of a specific edge e. ∆(g, u) equals 1 if u is the source
of the group g, −1 if u is a destination, and 0 otherwise.
Tree constraint Eq.(3). It represents the relationship between
two decision variables ϕg,d,e,t and ψg,e,t. Since ϕg,d,e,t and
ψg,e,t are binary variables, ψg,e,t equals 1 for group g if and
only if the edge e appears on the tree of g at any time slot t.
Dynamic cost constraint Eq.(4). It constrains the overheads
incurred by tree modifications. Multicast trees may change
with dynamic group membership, resulting in changed la-
tencies toward the destinations. Similar to unicast jitter, we
accumulate the variations of path latencies of the common

BFER3BFER1

BFER2

BFIR

Hawkeye
Controller

RequestsRules
Addr1 Addr2 ···

BFER1 1 0 ···
BFER2 0 1 ···
BFER3 1 1 ···

BS-P
BFER1 010···
BFER2 011···
BFER3 100···

 Address Payload BS Payload'

① Request
 collection

② Multicast tree
 computation

③ Routing rule
update

④ Packet encapsulation

Timeline

① ② ③ ④

DRL
Agent

Fig. 2. System overview.

destinations between consecutive time slots as a metric, which
is limited by a predefined capacity Cdy

g .
The above optimization problem can be reduced to a set

of Steiner tree problems by setting the weight ωdy
e in the

dynamic cost constraint (4) to 0. Since the Steiner tree problem
is proven to be NP-hard, this problem is also NP-hard [10].
The optimal solution can be obtained offline using ILP solvers
(e.g., Gurobi [29]), with the prior knowledge of destinations
Dt

g of each group g at each time. Nevertheless, future multicast
requests are inaccessible (or cannot be accurately predicted) at
each time slot, making ILP solvers impractical. Even worse,
solving this NP-hard problem is time-consuming especially in
large topologies.

B. System Overview

Hawkeye adopts DRL for proactive dynamic multicast rout-
ing, which not only provides near-optimal decisions quickly
but also learns the inherent property of group membership
changes. However, the large number of concurrent multicast
groups prevents the DRL agent from efficiently learning. To
accelerate the learning process, we propose a source aggre-
gation mechanism, which abstracts the major traffic patterns
by aggregating all multicast requirements rooted at the same
source. The DRL agent only deals with the aggregated traffics
rather than the original ones.

In the following, we present the workflow of Hawkeye that
contains 4 phases spanning two consecutive time slots, as
illustrated in Fig.2. The Hawkeye controller performs phases
1–3 to generate multicast trees, and the final phase is to process
the multicast packet in the BFIR.
Phase 1: multicast request collection. At the beginning of
time slot t, the Hawkeye controller collects multicast requests
from all destinations for a specific source. We denote multicast
demands as a matrix. Each column in the matrix represents a
multicast group identified by a multicast address, and each
element equals 1 if there is a multicast request from a specific
BFER. Once the Hawkeye controller obtains all requests from
BFERs, it performs source aggregation to obtain an aggregated
requirement (detailed in Section IV-A.). Then, the controller
submits the aggregated requirement to the DRL agent.

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. X, NO. X, AUGUST 202X 5

Phase 2: multicast tree computation. The agent is designed
to make proactive routing decisions for upcoming require-
ments, i.e., it plans routes for time slot t + 1 at t, so that
the ingress packets can be delivered immediately instead of
experiencing time-consuming computation at t+ 1. However,
the multicast requirements of t + 1 are unavailable at time
t, and hence the destinations are unknown. So we compute
in advance a spanning tree connecting all the BFERs in the
network for t+1. In particular, the agent takes the aggregated
requirements in the past time slots as input and outputs link
priorities, based on which a spanning tree is generated. During
this process, the major multicast traffic patterns are implicitly
taken into consideration by training on historical requests.
Phase 3: routing rule update. At the beginning of the second
time slot t + 1, the requests of t + 1 are collected and
then aggregated as an aggregated requirement. The controller
generates the routing table for these requests as follows.
First, the controller directly extracts paths for BFERs of the
aggregated requirement from the spanning tree generated in
Phase 2 to form a trunk that carries the majority of traffic.
Then, the controller finds paths for other BFERs, i.e., BFERs
not involved in the aggregated requirement, using the weighted
shortest path algorithm (e.g., Dijkstra’s Algorithm). Given
these paths, multicast trees can be generated by merging
the paths of all involved BFERs. Particularly, paths on the
trunk always take precedence when conflicts of path segments
happen (detailed in Section IV-B). Finally, the paths are
translated to routing rules, sent to and installed in the BFIR.
Phase 4: packet forwarding. When a multicast packet en-
counters the first BFIR in the domain, the BFIR looks up
the involved BFERs of this packet according to its multicast
address and sets corresponding BPs to generate the BS. Specif-
ically, each BS consists of both node-BPs of the destinations
and link-BPs of the links on the path to these destinations.
Then, the BFIR encapsulates a BIER-TE header encoded with
BS into the packet for multicast forwarding in this domain.

C. Incremental Deployment

Since there may have devices that cannot support BIER-TE
(e.g., an IP/BIER-TE hybrid network where most routers can
only perform packet forwarding and the multicast requests are
mainly processed by several BIER-TE routers), incremental
deployment of Hawkeye is often desired for robust iterative
performance improvement. Different from incremental deploy-
ment in unicast [30]–[32], where the main objective is to
reserve as many paths as possible in the overlay network, path
reuse efficiency becomes the top priority in multicast, making
the incremental deployment non-trivial. Multicast relies on
packet replication for bandwidth saving, so the paths to all
destinations should overlap as much as possible to facilitate
path reuse and better bandwidth utilization. The construction
of the overlay network should strive to adhere to this principle
to avoid bandwidth waste.

In this paper, we propose an overlay network construction
method for incremental deployment of Hawkeye. Assume
we have already selected k upgraded nodes. We name the
upgraded nodes as core nodes, and other nodes as marginal

DC E

A B

(a) Underlay

D

C E

A B
2

2

(b) Overlay
Fig. 3. An example of overlay network construction.

nodes. Because the marginal nodes only support basic packet
forwarding but not BIER-TE, we can only use the shortest
paths to connect overlay nodes. Thus, each link in the overlay
network is actually a shortest path in the underlay network,
and the link attribute is calculated based on that of the original
path. For example, the delay of the overlay link is the sum of
delays of all links in the corresponding path.

To avoid bandwidth waste caused by path duplication, we
define good path, which is a path without core nodes, except
the first and the last nodes. In a good path, only the starting
point and the terminal point can be core nodes. We also define
a tree diversity factor b, which facilitates path reusing for
further bandwidth saving. With good path and diversity factor
b, the construction method can be described as follows:
(1) Connecting core nodes: For every core node, compute

the shortest paths to other core nodes, and connect them
with the path if it is a good path.

(2) Connecting marginal nodes: For every marginal node,
compute the shortest paths to all core nodes, reserve good
paths among them, and choose the b shortest of them as
overlay links. If the number of usable paths is less than
b, use all of them.

Intuitively, instead of connecting marginal node to only one
core node, we connect marginal node to several core nodes
to furnish more feasible multicast trees, thus increasing the
chance of finding a tree with lower bandwidth consumption.

Fig. 3 shows an example of our method. The underlay
network consists of two core nodes, C and E, and three
marginal nodes, A, D, and B. The cost of each link in the
underlay network is assumed to be 1 unit for simplicity. To
construct the overlay network, we first connect core nodes C
and E with path {C–D–E}, so an overlay link C–E with
cost 2 is obtained, as indicated in Fig.3(b). Next, we need to
connect each marginal node to core nodes C and E. Here, we
set b = 2, i.e., a marginal node can be linked to at most 2 core
nodes. For node A, the paths to nodes C and E, i.e., {A–C}
and {A–D–E}, are both good paths, so we get two overlay
links A–C and A–E, as shown in Fig. 3(b). Similarly, node D
connects to core nodes C and E with links D–C and D–E,
respectively, which are qualified as overlay links as well. For
node B, the path to C cannot be used as an overlay link since
it passes through core node E, while the link B–E is a good
path and therefore counted as an overlay link. Finally, we get
the overlay network as Fig. 3(b). This example also shows the
feature of overlay network routing, that is, the routing costs in
the overlay network may be higher than those in the underlay
network. For example, the minimal cost of the path including
A, D, and E is 3 units ({A–E–D}) instead of 2 units ({A–

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. X, NO. X, AUGUST 202X 6

D–E}) in the underlay network.
Next, we briefly discuss the core node selection and for-

warding mechanism of the incremental deployment. For core
node selection, we use betweenness centrality as metric, which
reflects the number of shortest paths that pass through a node,
and is frequently used in hybrid communication network [33],
[34]. The nodes with high betweenness centrality are taken
in priority to be upgraded. For overlay network forwarding,
BIER-TE provides a mechanism of forward routed adjacency,
which uses encapsulation such as MPLS or IP tunnel to
forward packets between overlay neighbors. Regardless of the
encapsulation technique the underlay devices use, in overlay
networks, the forward routed adjacency can be regarded as a
single link represented by a BP. Then, the forwarding process
is the same as the conventional BIER-TE network, except that
the link connecting two core nodes is actually a shortest path
between them in the underlay network.

IV. SOURCE AGGREGATION

To optimize the routing policy in dynamic multicast sce-
narios, the DRL agent needs to explore the solution space
of all possible multicast requirements. However, the DRL
agent struggles to converge to the optimal solution due to
numerous multicast requests and dynamic group memberships.
Therefore, we design a pre-processing technique named source
aggregation to aggregate original multicast requirements, thus
reducing the solution space to be explored by the DRL agent.
Besides, source aggregation relieves the BFIR from excessive
storage overheads and improves the scalability of BIER-TE.

The proposed mechanism aggregates concurrent multicast
requirements rooted from the same source based on their
bandwidth requirements and group membership. In particular,
source aggregation is used in both training and inference of the
agent. During training, the historical requirements are aggre-
gated using the aggregation method described in Section IV-A,
and the aggregated requirements are taken as inputs instead of
the original ones to ensure fast convergence. During inference,
to keep consistency with the optimization objective used in
training, Hawkeye first aggregates the real-time requirements
and builds a multicast tree for the aggregated requirement.
Then, the multicast trees for the original real-time requests
are generated following the steps outlined in Section IV-B.

A. Aggregating original requirements

Recall that a BFIR is an ingress router of a multicast
domain, and the BFIR accommodates source nodes of different
multicast groups. We aggregate the bandwidth requirements of
these groups and create an aggregated bandwidth requirement
for this BFIR. Note that members of a multicast group may
differ from those of other groups, so we need to consider
possible members (i.e., BFERs) all at once.

Formally, let b ∈ V denote a BFIR, and gb be the set of
multicast groups whose source nodes are located at b. For each
v ∈ V and g ∈ gb, let δv,g be a binary variable, which equals
1 if v is a member of group g, and vice versa. Recall that qg
is the bandwidth requirement of group g. Let fb,v denote the
total bandwidth requirement that BFIR b needs to deliver to

S

u2

D1 D2

u1

D3

(a) Trunk

S

u2

D1 D2

u1

D3D1 D2 D3

S

u2

D1 D2

u1

D3

S

u2

D1 D2

u1

D3

(b) Paths

S

u2

D1 D2

u1

D3D1 D2 D3

S

u2

D1 D2

u1

D3

S

u2

D1 D2

u1

D3

(c) Tree for BFERs
D1,D2,D3

Fig. 4. An example of multicast tree building based on source aggregation.
(a) The trunk. (b) Paths to each destination. (c) The tree spanning D1, D2
and D3.

BFER v. Then we have fb,v =
∑

g∈gb
δv,gqg . We organize the

total bandwidth requirements from all BFERs as a vector of
|V | elements, i.e., f⃗b = [fb,v]v∈V .

Note that the total bandwidth requirements from different
BFER v may be different from each other, which is not in the
form of a single multicast group requirement. We process f⃗b in
such a way that the aggregated requirement follows the form
of a single multicast group requirement and can be dealt with
by our DRL agent more easily. We define aggregation ratio λ,
a fractional constant between 0 and 1. Let η = λmaxv∈V fb,v
be a threshold. For each v ∈ V , we replace fb,v in f⃗b by 0 if
fb,v < η, and obtain vector f⃗ ′b. Then, we compute the average
of the non-zero elements in f⃗ ′b, and replace each non-zero
element in f⃗ ′b by the average. The resulting vector is denoted
by f⃗Ab which represents the aggregated requirement.

We illustrate the above process with an example. Consider a
network with one BFIR b and three BFERs v1, v2, v3, and there
are two multicast groups with the BFIR as the source node.
The first group involves 4 units of bandwidth requirement,
and the members are v2 and v3. The second group involves
6 units of bandwidth requirement, and the members are v1
and v3. The total bandwidth requirement vector is then f⃗b =
[0 + 6, 4 + 0, 4 + 6] = [6, 4, 10]. Given the aggregation ratio
λ = 0.5, the threshold is then 10× 0.5 = 5. Thus, we obtain
f⃗ ′b = [6, 0, 10] by replacing the second element which is less
than the threshold by 0. The average of non-zero elements
of f⃗ ′b is 8, so finally, we obtain the aggregated requirement
f⃗Ab = [8, 0, 8]. We can see that this aggregated requirement
preserves some traffic patterns of the original requirements.

B. Building Trees for original requirements

Recall that Hawkeye uses DRL to build a multicast tree,
i.e., the trunk, for the aggregated requirement in Phases 2
and 3. Thus, an incoming user request arriving at a BFER
that is already in the trunk can be satisfied directly. However,
the trunk may not cover all possible BFERs, and we need to
generate routing rules for incoming requests arriving at the
uncovered BFERs.

We observe that with source aggregation and the con-
structed trunk, the majority of multicast traffic can be delivered
efficiently with little impact on the objective. Thus, it is
unnecessary to rebuild the whole multicast tree with the DRL
agent, and we take a simple heuristic to route the incoming
request. Following the notations used above, let b ∈ V be the
BFIR, o ∈ V be the BFER where a new request arrives, T be

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. X, NO. X, AUGUST 202X 7

Default BS Table Aggregated-P Aggregated-N
Multicast Address BS BFER BS-P Multicast Address BS-N

Fig. 5. The BFIR table before and after aggregation.

the trunk rooted at b, and SPi,j denote the shortest path from
i to j. Then, we use SPb,o directly as the forwarding path of
the new request if T ∩SPb,o = ϕ, or else, we let u be the node
on T ∩ SPb,o that is nearest to o, and concatenate SPu,o to
trunk T to obtain the forwarding path. This heuristic enables
a short latency from BFIR b to BFER o.

We use an example shown in Fig. 4 to illustrate the process
of constructing forwarding paths given the trunk. In Fig. 4(a),
the solid arrows indicate the trunk, which is rooted at BFIR
S and covers BFERs D1 and D2. Thus, the paths from S
to D1 and D2 can be extracted directly. In particular, P1 is
⟨S-u1-D1⟩ and P2 is ⟨S-u1-u2-D2⟩. Then, we compute the
forwarding path for BFER D3. We first compute the shortest
paths from S to D3, and obtain P3 = ⟨S-u2-D3⟩, as shown
in Fig. 4(b). We see that P3 intersects with the trunk at node
u2, and if we use P3 directly, there will be duplicated packets
when D2 and D3 are in the same group, which degrades the
performance. To address the issue, we concatenate sub-path
u2-D3 to T and obtain P ′

3 = ⟨S-u1-u2-D3⟩. As a result, a
multicast tree containing any arbitrary subset of {D1, D2, D3}
can be generated. For example, the multicast tree for a group
with BFERs D1, D2, D3 is shown in Fig. 4(c).

C. Storage-efficient Routing Table Arrangement

Although we aggregate the majority of requirements and
construct a trunk to deliver traffic, routing rules should be
maintained for each group separately, because different multi-
cast groups may have different members. We propose storage-
efficient routing table arrangement to reduce the storage over-
head on BFIRs.

Under the default setting of BIER-TE, a BFIR maintains
a BS for each multicast group (see Default BS Table in Fig.
5). Each BS contains node-BPs and link-BPs indicating the
specific multicast tree. Based on source aggregation, there
is only one path to each destination, regardless of which
group the destination belongs to. We split the default BS
table into two tables. In particular, an Aggregated-P table
maintains only link-BPs (BS-P), which indicate forwarding
paths to BFERs. An Aggregated-N table records the members
of each group using node-BPs (BS-N). Upon receiving a
multicast packet, the BFIR first looks up the Aggregated-N
table with the multicast address, and obtains BS-N indicating
the destinations (BFERs). The BFERs are used as inputs
to look up the Aggregated-P table, and we obtain the BS-
Ps. Then, we perform logical OR operations on these BS-
Ps to merge the forwarding paths, and concatenate the result
to the BS-N to obtain the complete BS. Finally, the BS is
encapsulated into the BIER-TE header of the packet.

We analyse the storage conservation on a BFIR. Recall that
there are |gb| groups whose sources are located at BFIR b.

Let l denote the multicast address length. The length of a
single BS-P is |E|, and the length of a single BS-N is |V |.
The storage cost before source aggregation is O(|gb| · (l +
|E| + |V |)), and the storage cost after source aggregation is
O(|gb| · (l + |V |) + |V | · (|V |+ |E|)) = O(|gb| · (l + |V |)), a
reduction of O(|gb| · |E|).

The above routing table arrangement solution has signif-
icantly reduced routing table storage overhead. To further
mitigate the table size bottleneck, we suggest two possible
strategies to be considered when necessary. First, in BIER-TE,
only the BFIRs of multicast groups need to store the multicast
routing tables. Therefore, when selecting BFIRs, switches with
more abundant table storage, i.e., ternary content addressable
memory (TCAM), should be preferred. Second, TCAM-based
rule caching systems [35], [36] can be adopted, which use
TCAM for high-speed caching of heavy-hitting rules and
RAM for the complete ruleset. These systems combine the fast
lookup characteristics of TCAM and the large storage capacity
(in the scale of gigabytes) of RAM.

V. MULTICAST TREE COMPUTATION

Though source aggregation improves the learning efficiency
of the DRL agent, it is still non-trivial for the DRL algorithm
to achieve good TE performance due to the complicated
spatial-temporal correlations. In Hawkeye, we sophistically de-
sign a DRL approach to facilitate multicast tree computation.

A. State, Action, and Reward

State. The state is represented as a sliding window of
historical requirements. In particular, a requirement reqt ∈ Rn

represents the bandwidth demand of each node at time slot
t. The state St ∈ Rn×w concatenates requirements in the
past w time slots in reverse chronological order, i.e., St =
(reqt−1, reqt−2, . . . , reqt−w). The window size w determines
the scope of historical information taken by the RL agent. A
larger window may facilitate the DRL agent to make better
decision at the expense of degraded training efficiency.

Action. To learn the relationship among consecutive re-
quirements, we prefer generating a multicast tree directly
within a single step, which poses two challenges to action
design. First, it is time-consuming for the DRL agent to
converge in the solution space for all possible multicast trees in
the topology. Second, the output dimension of valid multicast
trees varies with groups, which violates the requirement of
the fixed-dimension action space in DRL. To cope with the
two challenges, we adopt policy-based tree generation, which
uses the output action of the agent as sub-policies to assist the
generation of multicast trees. We define the output action of
the DRL agent at time step t as follows:

ρ(ei | st) = pit, i = 1, 2, . . . ,m, (5)

where st is the state, ei is an edge, and pit indicates the priority
of this edge. Having computed the priorities of all edges, the
multicast tree can be constructed as follows:
(1) Initialize a subgraph with all terminal nodes (i.e., the

source and destinations) according to the requirement,

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. X, NO. X, AUGUST 202X 8

use the source node as the starting node, and add all its
neighboring edges to the candidate edge set Ec.

(2) Choose an edge from Ec with the highest priority, add
this edge as well as its endpoint to the subgraph, and
update Ec by deleting this edge and adding neighboring
edges of the just added end node.

(3) If all the terminal nodes are connected, merge the shortest
paths from the source to destinations to generate a
multicast tree. Otherwise, back to step (2).

This procedure enables the agent to compute a multicast
tree given the destinations of a multicast requirement. To
proactively make a routing decision for upcoming multicast
request, we regard all nodes as potential terminal nodes in
step (1), and make the agent to generate a spanning tree in
advance. Then, routing rules generated from the spanning tree
can be installed in BFIRs at the beginning of the next time
slot, thus allowing fast response for arrived multicast requests.

Reward. The main reward is the bandwidth cost of the
current multicast tree generated at each step. Meanwhile, the
dynamic cost is accumulated from the start of an episode. If the
dynamic cost exceeds the pre-defined threshold, this episode is
terminated, and returns a negative reward (−10) as a penalty.
Moreover, the dynamic cost is also added to the reward with
a small weight α. This leads the agent to reduce the dynamic
cost to satisfy the capacity constraint, thereby speeding up the
training process. The reward is represented as

r(st, ρ) = −(costst
t + α · costdy

t), (6)

where costst
t denotes the bandwidth cost of the tree, costdy

t

denotes the dynamic cost with respect to step t.
The dynamic cost of the aggregated requirement may be

inconsistent with that of the original requirements, which
violates the dynamic capacity constraint (4). To address this
problem, we use a stricter calculation for dynamic cost,

costdy
t =

{
0, for t = 1,∑

d∈Dt
g∪Dt+1

g
|delaydt − delayd

t−1|, otherwise.
(7)

Different from the original dynamic cost defined in (4),
which considers the destinations in the intersection of Dt

g and
Dt+1

g , Eq. (7) considers the destinations in the union of Dt
g and

Dt+1
g . Such a design establishes the relation of the multicast

trees before and after source aggregation. As will be proved in
Theorem 1, Eq. (7) actually defines the upper bound of original
dynamic cost, which can be used to ensure the feasibility of
DRL solutions. Specifically, if this upper bound exceeds the
predefined threshold, the original dynamic cost constraint is at
the risk of violation. In this case, the training process should
be cut off to discourage the agent to make such decisions.

Theorem 1: Let r and rA be the original and aggregated
requirements, respectively. The destination sets of r for two
consecutive time slots t and t + 1 are denoted as Dt and
Dt+1. Similarly, those of rA are denoted as Dt

A and Dt+1
A .

Let ∆dcd denote the dynamic cost variation of destination d
for simplicity. Then, we have∑

d∈Dt∩Dt+1

∆dcd ≤
∑

d∈Dt
A∪Dt+1

A

∆dcd. (8)

Train

DemandsTopology

Cost
Evaluator

Stop?

Environment

NoTree
Actor

Critic

Agent

(a) Training process

Ac
tio
n

Critic

Actor

TCN

Va
lu
e

St
at
e

(b) Actor-Critic Network
Fig. 6. DRL design of Hawkeye.

Proof: Assume there are n destinations in Dt ∩ Dt+1,
{d1, d2, . . . , dn}. Without loss of generality, we can divide
Dt ∩ Dt+1, {d1, d2, . . . , dn}, into four subsets, D1, D2, D3

and D4 as follows.
D1 contains destinations belong to both Dt

A and Dt+1
A , i.e.,

d ∈ Dt
A and d ∈ Dt+1

A , ∀d ∈ D1. All the paths of destinations
in D1 are extracted from the aggregated multicast tree, so we
have

∑
d∈D1

∆dcd ≤
∑

d∈Dt
A∩Dt+1

A
∆dcd.

D2 contains destinations that appear in Dt+1
A but not in

Dt
A, that is, d /∈ Dt

A and d ∈ Dt+1
A , ∀d ∈ D2. From t to

t+1, the destinations in D2 switch from the shortest paths to
those generated from the RL agent. The dynamic cost of D2

is controlled by
∑

d∈D2
∆dcd ≤

∑
d∈Dt+1

A \Dt
A
∆dcd.

Similarly, D3 contains destinations that appear in Dt
A but

not in Dt+1
A , that is, d ∈ Dt

A and d /∈ Dt+1
A , ∀d ∈ D3. We

have
∑

d∈D3
∆dcd ≤

∑
d∈Dt

A\Dt+1
A

∆dcd.
D4 contains destinations belongs to neither Dt

A nor Dt+1
A ,

that is, d /∈ Dt
A and d /∈ Dt+1

A , ∀d ∈ D4. Destinations in
D4 use the shortest paths in both time slots t and t + 1, so∑

d∈D4
∆dcd = 0.

Let X = Dt∩Dt+1, Y = Dt
A∪Dt+1

A , Z = D1∪D2∪D3∪
D4, and W = (Dt

A ∩Dt+1
A) ∪ (Dt+1

A \Dt
A) ∪ (Dt

A \Dt+1
A).

Finally, we can sum up all the dynamic costs as∑
d∈X

∆dcd =
∑
d∈Z

∆dcd ≤
∑
d∈W

∆dcd =
∑
d∈Y

∆dcd. (9)

B. Training

We leverage Proximal Policy Optimization (PPO) [37],
which is a policy-based algorithm designed for continuous
control. PPO strikes a good balance between learning ef-
ficiency and structure simplicity, thereby satisfying the re-
quirements of fast response and high robustness for multicast
routing. It consists of two neural networks, actor πθπ (ρ | s)
and critic Vθv (s). Fig. 6a shows the training process. At time
step t, a sequence of historical requirements are gathered as
st. The agent takes st as input and outputs a sub-policy ρt,
which is used to generate a multicast tree. The environment
integrates the topology information and multicast requests to
evaluate the static and dynamic cost of the tree. Then, it returns
a reward used by the critic to update the neural networks
through backpropagation. Before transferring to the next state
st+1, it decides whether to terminate the episode at this step

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. X, NO. X, AUGUST 202X 9

by comparing the cumulative dynamic cost. If this is the case,
the episode is cut off and a new one is initiated.

We use the clip version of PPO, where the loss of actor is

L = min (ωθA(s, ρ), clip (ωθ, 1− ϵ, 1 + ϵ)A(s, ρ)) , (10)

ωθ =
πθ(ρ | s)
πθold(ρ | s)

. (11)

ωθ represents the difference between the current policy under
updating and the old policy used for action sampling. The
clip operation prevents the policy from changing dramatically,
where the clip ratio ϵ sets the upper bound of the loss. A(s, ρ)
represents the advantage of ρ, calculated using GAE-λ [38].

C. Neural Network Architecture

We use a TCN [39] to encode the series of requirements
as a state embedding in the actor-critic network. TCN is
essentially a convolutional network with specific designs for
temporal sequence modeling, which has been reported to
achieve better performance than RNN [40]. Through 1D-
convolution, it extracts the temporal features of sequences
and model the internal relationship across different time slots.
Owing to dilation, its receptive field increases exponentially
with depth, enabling efficient long sequence process. Math-
ematically, given the state with w multicast requirements
st = St−1:t−w = (reqt−1, . . . , reqt−w) and a filter f with
size K, the output of the TCN is represented as

(S ⋆ f)(t) =

K−1∑
i=0

f(i)S(t− d× i), (12)

where d is the dilation factor controlling the convolution
interval. As illustrated in Fig. 6b, the state is firstly processed
by a 2-layer TCN with filter size K = 2, and then forwarded
to the actor and critic. The actor and critic networks are
both Multi-Layer Perceptrons (MLPs) which extract the spatial
relationship among nodes in the topology.

VI. FAILURE HANDLING

Failure handling is a crucial component of network opera-
tions, ensuring robust performance when failures occur, such
as node disruptions caused by power outages or hardware
failures. It can also step in when a node or a link is strained
beyond its bandwidth capacity. In this paper, we discuss the
failure detection and recovery mechanisms in Hawkeye. Some
failure recovery methods for multicast [41], [42] use redundant
trees for reliable multicast, where packets are transmitted along
several disjoint paths towards each destination. Such solutions
induce excessive bandwidth consumption, i.e., at least two
times of the original multicast tree. Another kind of solutions
use backup paths for failure recovery [43], [44]. However,
they either rely on other protocols to report failure or borrow
unicast fast reroute mechanism to handle failure, causing high
configuration complexity.

Designing an efficient failure recovery mechanism in the
context of BIER-TE faces several challenges. First, because
multicast trees are computed by the controller, generating a
new path to bypass the found failure requires communication

S

C

B

A

(a) Topology

S

C

B

A

(b) Plan A

S

C

B

A

(c) Plan B
Fig. 7. An example of no backup path with TE.

S

C

D

E

B

A

S

C

D

E

B

A

Default tree Failed link Backup path

Fig. 8. An example of redundant transmission with unicast reroute.

between the source router and the controller, resulting in high
response latency. Second, even if we pre-install backup path
rules to protect against failures, under the demand of TE,
simple methods like disjoint trees are difficult to obtain. For
example in Fig. 7, assume node S is the source and C is
the destination. If we use the shortest path S–B–C as the
default path from S to C, the backup disjoint path could be
S–A–C, as shown in Fig. 7(b). However, if we use S–B–
A–C as the default path for TE purpose, there is no disjoint
path for failure protection, as shown in Fig. 7(c). Third, due to
the routing information in BSs, local recovery with low-level
unicast-based mechanism may cause redundant transmissions.
Assume we use unicast reroute for failure recovery in Fig.
8. When the link S–B fails, the backup path from S to B
is S–A–C–B. However, after node B receives the tunneling
packet from C, it will still transmit a packet copy to node A
along B–C–A according to the BS encapsulated in the header,
resulting in redundant transmission at B–C and C–A.

In Hawkeye, the source routers maintain the multicast tree
information of all multicast groups, and can collect feedbacks
from failed destinations (e.g., NACK). Inspired by this, we
propose a source-driven failure handling mechanism, which
detects and recovers single failure at the source router using
only the feedback from BFERs and backup rules at the
BFIR. The proposed mechanism detects single failure using
only feedback of destinations, thus releases dependence on
other detection mechanisms, and conserves the simplicity and
reliability of the system. Besides, it recovers from failure
solely by the BFIR and BFRs, without involving the controller,
and therefore can ensure low latency.

A. Failure Detection

1) Single Link Failure Detection: Algorithm 1 shows the
proposed single link failure detection. To locate the failed link,
we monitor the feedback of some requirements at the source
router. We choose the monitored requirements R randomly.
Other selection methods can also be used. We initialize the
accused link set BPF to include all links in the topology (Line

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. X, NO. X, AUGUST 202X 10

Algorithm 1 Source-driven Failure Detection
Input:

Monitored requirements R, Network link set E.
Output:

Accused links BPF .
1: Initialize accused link set BPF = E
2: for r in R do
3: Get destinations of r as Dr

4: Get failed destinations Df of r
5: Get normal destinations Dn = Dr \Df

6: Initialize candidate failed link set BPf = E
7: for d in Df do
8: Get link set of the path to d as BSPd

9: BPf = BPf ∩BSPd

10: end for
11: Initialize normal link set BPn = ∅
12: for d in Dn do
13: Get link set of the path to d as BSPd

14: BPn = BPn ∪BSPd

15: end for
16: BPF = BPF ∩ (BPf \BPn)
17: end for
18: return BPF

1). Then, we examine the feedback of each requirement in the
monitored set R (Line 2-15). For requirement r, we get its
destinations as Dr. According to the feedback of r, we identify
its failed destinations Df and the normal ones Dn (Line 3–5).
Since the paths to destinations in Df are disconnected, the
failed link must be one of their common links. Therefore, we
obtain a candidate failed link set BPf , which must contain
the failed link, by calculating the intersection of their link sets
(Line 6–10). For destinations in Dn, all paths are normally
connected, indicating that the failed link is not in any of these
paths. Therefore, we obtain a set of normal links BPn by
calculating the union of the links in these paths (Line 11–
15). Finally, we update the accused link set BPF by the
difference between BPf and BPn, i.e., the set of all accused
links according to r’s feedback with evidenced normal links
excluded (Line 16). By repeating the above process for all
monitored requirements, we get the final accused link set
BPF . Given this set, we can process the accused links for
failure recovery. Under single link failure assumption, the
smaller the set BPF is, the more precise the result is. If there
is only one link in BPF , it must be the failed one.

Fig. 9 shows an example of the detection algorithm. The
topology in Fig. 9(a) consists of nodes A ∼ G and the source
node S. There are 2 requirements in R, r1 with members D
and F, and r2 with members E and G, whose multicast trees
are shown in Fig. 9(b) and Fig. 9(c), respectively. Assume
a link failure affects both requirements. For r1, based on
feedback, S finds that node F is a failed destination and D is
a normal destination. We have BPf = {S−A,A−B,B−F}
and BPn = {S − A,A − D} and the BPF is set to
{A−B,B−F}. Similarly, for r2, links {S−A,A−B,B−E}
are suspected because they are on the path of the disconnected
node E. By taking the intersection of the results of r1 and

S

A B

D

C

E F G

(a) Topology

S

A B

D

C

E F G

(b) r1

S

A B

D

C

E F G

(c) r2

S

A B

D

C

E F G

(d) r1 with failure

S

A B

D

C

E F G

(e) r2 with failure

S

A B

D

C

E F G

(f) Accused link
Fig. 9. An example of failure detection algorithm.

r2, the final accused link set BPF is obtained as {A − B},
indicating the failed link is A−B.

Since links are represented by bits in BSs, we can simplify
Algorithm 1 by replacing the set operations by bit opera-
tions. For example, intersection and union operations can be
replaced by bitwise AND and bitwise OR, respectively. The
time complexity of Algorithm 1 is O(|R||N |), where |N | is
the number of nodes in the topology. In Hawkeye, the source
router already maintains paths to all destinations in BSs, and
has enough information to locate single link failure using
Algorithm 1 without the assistance of controller. Moreover,
this algorithm introduce no storage overhead at the source.
The only costs arises from collecting feedback for monitored
multicast requirements and running the detection algorithm.

The performance of Algorithm 1 depends on the topology,
the selected requirements R, and their member distribution.
We can adjust the performance by changing the number of
requirements and the selection method of R. As will be
shown in Section VII-E, the number of accused links in
BPF decreases dramatically as the number of monitored
requirements increases, and only a small number of monitored
requirements is enough to accurately locate the failed link even
under large topology and random selection.

2) Single Node Failure: Single node failure detection can
be achieved by a simple modification to Algorithm 1: we
use the possible failure set BPF in Algorithm 1 to record
the successor nodes of the accused links, instead of the links
themselves. The reason why the above modification realizes
single node failure detection is as follows. A multicast tree can
be formulated as a directed tree, where each node’s in-degree
equals 1, except the source node. Thus, the representation
of a single node failure can be considered as the incoming
link failure. In turn, under single node failure, the failed node
must appear in the successor nodes of the accused links using
the above algorithm. Because the source is unaware of which
two nodes a link connects by default, we need to store this
information at the source router to map links to their successor
nodes, requiring a storage overhead of O(|E|).

B. Failure Recovery
Classic multicast failure recovery mechanisms, including

tree protection, path protection, and link protection, offer

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. X, NO. X, AUGUST 202X 11

TABLE I
HAWKEYE HYPERPARAMETERS

Parameters Value Parameters Value
Max steps per epoch 1000 Max epochs to train 3200

PPO-clip ratio ϵ 0.2 Discount factor γ 0.99

Actor learning rate 0.0003 GAE lambda λ 0.97

Critic learning rate 0.001 MLP hidden layers 16x16

State window size w 4,8,16,32 Input network type TCN/MLP

PLV weight α 0, 0.01, 0.1, 0.5, 1

protection granularities spanning from low to high. Tree pro-
tection calculates backup trees in advance against possible
failures. The backup tree can be link- or node-disjoint to
improve reliability. Upon failure, the source node can transmit
multicast packets to both the default and backup trees or
switch to the backup tree. This method suffers from the highest
bandwidth consumption, especially with node disjoint backup
tree. Sometimes there may have no usable backup tree due
to the topology. Path protection backups paths for failure
recovery. The backup path can also be link- or node-disjoint.
In multicast, even a single link failure may cause many
disconnected destinations. Thus, the bandwidth consumption
performance of path protection can be as bad as tree protec-
tion under the worst case. Link protection bypasses failures
by slightly adjusting the default paths, for example, finding
another path to the next-hop for link failure protection, and to
the next-next-hop for node failure protection. Theoretically,
this method yields least modification to the multicast tree.
However, it needs the precise failure location and plenty of
backup rules for all possible failures.

As will be elaborated in the evaluation in Section VII-F,
link protection methods work the best for Hawkeye among the
three. First, it works well in different topologies, as new paths
only bypassing the failed links are relatively easy to find. In
fact, tree protection could barely work in the tested topologies,
with a success rate of less than 2%, and path protection also
fails more frequently than link protection. Second, link protec-
tion achieves the best bandwidth performance among the three.
Especially, link protection incurs less bandwidth consumption
than path protection in large topologies. Third, link protection
is relatively easy to implement in Hawkeye by distributing
the backup rules at routers locally. The precursor node of
the failed link can rewrite the BS of packets with BIER-
TE headers to switch them to the backup path. In contrary,
we must maintain at least a backup BS for every possible
destination at the source router for path protection, even with
source aggregation. As a result, the storage overheads of path
protection can be 4 times or even 10 times higher than those
of link protection in tested topologies.

VII. EVALUATION

We implement the PPO algorithm based on the SpinningUp
[45] framework. We find the algorithm insensitive to most
hyperparameters, so we use the default setting of SpinningUP
as listed in Table I, and others are evaluated in Section VII-C.
ILP models are solved using the Gurobi Optimizer [29] with

0.0 0.2 0.4 0.6 0.8 1.0
Aggregation ratio

1.0

1.1

1.2

No
rm

al
ize

d
BW

C

Ori Aggr Aggr-ori

(a) BWC

0.0 0.2 0.4 0.6 0.8 1.0
Aggregation ratio

0

1

2

3

No
rm

al
ize

d
PL

V

Ori Aggr Aggr-ori

(b) PLV

0 800 1600 2400 3200
Epochs

−3.5

−3.3

−3.1

Re
wa

rd
 p

er
 st

ep

1e−1
Aggr Ori

(c) Learning curve

0.000 0.025 0.050
CPU time(s)

0.0

0.5

1.0

CD
F

Aggr-DRL
Ori-DRL
Aggr-ILP
Ori-ILP

(d) Time for decision making
Fig. 10. Performance of source aggregation.

a 16-core 2.3 GHz CPU. We use four real-world topologies
from SNDlib [46], namely Abilene, Geant, Germany50 and
GtsCe. Abilene is a small topology with 11 nodes and 14
bidirectional links. Geant has 23 nodes and 37 bidirectional
links, Germany50 has 50 nodes and 88 bidirectional links, and
GtsCe has 149 nodes and 193 bidirectional links.

The multicast requests are generated based on real-world
data. For Abilene, we use a dataset derived from Facebook
[47]. It provides two-week public live video requests, includ-
ing the locations of online streamers and the viewers. We treat
each video as a multicast group, allocate its users to each node
by their locations, and update its status every 5 minutes. There
are about 500 groups for each source with dynamic mem-
bership. For Geant, Germany50 and GtsCe, we use a typical
multicast traffic model to simulate the dynamic membership
[26], where the requirements changes with locations and time,
proportional to the total traffic obtained from SNDlib.

In this section, we first evaluate the source aggregation
mechanism and DRL-based routing algorithm of Hawkeye,
and the effect of its hyperparameters. Then, we test the
incremental deployment and failure handling mechanisms.

A. Source Aggregation

We compare the performance of OPT before and after
source aggregation under different aggregation ratios. The ratio
controls the number of group members after aggregation. If the
ratio is 0, all the members appearing in the original require-
ments would be taken into the aggregated requirement. As the
ratio increases, the nodes with lower bandwidth demands are
removed. Finally, only nodes with the maximum bandwidth
demands are taken when it equals 1.

In Fig. 10, Aggr means the optimal multicast tree of
the aggregated requirement, and Ori means that of original
requirements without aggregation. Aggr-ori represents the
performance of Hawkeye, which builds trees for original
requirements based on the optimal tree of the aggregated
requirement. Fig. 10a indicates the extra BWC induced by
source aggregation is less than 10% comparing Aggr-ori with

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. X, NO. X, AUGUST 202X 12

Ori when the aggregation ratio is less than 0.4, with the
minimum BWC gap less than 1%. As the aggregation ratio
increases, the tree of Aggr-ori gradually regresses into the
shortest path tree so its BWC converges to that of SPT.
Besides, the PLV of Aggr-ori is always less than that of Aggr
as shown in Fig. 10b, which is consistent with the design of
(7) that preserves the feasibility of source aggregation.

Next, we measure how the agent perform with and without
source aggregation. In Fig. 10c, the Aggr agent learns faster
and better, while Ori cannot converge within the same training
iterations. We also measure the CPU time usage for 200 time
slots comparing ILP solver with DRL (GPU disabled) in Fig.
10d. Ori has to make decisions for every group and Aggr
only focuses on the aggregated requirement and then applies
the solution to original requirements. At the start of a time
slot, Aggr need to aggregate requirements, make a decision
for the aggregated requirement, and transform the solution to
original ones. The operation of aggregation and transformation
takes nearly fixed time, and the overall time usage remains low
compared with Ori. This suggests that source aggregation can
accelerate the response speed significantly especially for the
DRL agent, which takes no more than 5ms in Abilene.

B. Performance of Multicast Trees

To measure the efficiency and stability of multicast routing,
we use the bandwidth cost (BWC) as the static cost, and the
path latency variation (PLV) as the dynamic cost. We choose
four multicast routing algorithms for comparison1.
(1) SPT. The shortest path tree connects the source and each

destination with the shortest path.
(2) OPT. The optimal solution connects the source and des-

tinations with the minimum BWC under PLV constraints.
(3) RL-TG. The tree generated by a DRL-based algorithm

[48]. It simply builds a tree for every instant requirement
without the consideration of path stability.

(4) HST. A heuristic computes multicast trees proactively
where the upcoming requests are estimated with the av-
erage traffic demand of the past hour. Routing decisions
are made by the ILP model with source aggregation.

We compare the cumulated BWC and PLV of each method
in four topologies, shown in Fig. 11, where the dashed line
Max represents the maximum PLV allowed in the network. For
all topologies, the BWC of SPT is the highest among all the
methods, while PLV shows an opposite trend. This is because
SPT always uses the shortest paths to build each multicast tree,
which remain unchanged with dynamic membership, resulting
in high bandwidth consumption. In contrast, OPT optimizes
the global BWC under PLV constraints, which presumes an
precise future vision towards the upcoming requests, providing
the best but impractical performance. Meanwhile, without
the help of DRL, HST fails to make full use of historical
experience, resulting in sub-optimal BWC and inferior PLV
in all four topologies.

1Some multi-tree static and dynamic multicast routing algorithms, as
discussed in Section VIII, are not included in this study because the path
length variation is not considered in those approaches and OPT provides the
optimal solution for the considered problem.

70 100 130 160 190
Time slots

0.5

0.8

1.1

1.4

1.7

2.0

No
rm

al
ize

d
BW

C Hawkeye
SPT
HST
OPT
RL-TG

(a) BWC in Abilene

70 100 130 160 190
Time slots

0

1

2

No
rm

al
ize

d
PL

V Hawkeye
SPT

HST
OPT

RL-TG
Max

(b) PLV in Abilene

70 100 130 160 190
Time slots

0.5

0.8

1.1

1.4

1.7

2.0

No
rm

al
ize

d
BW

C Hawkeye
SPT
HST
OPT
RL-TG

(c) BWC in Geant

70 100 130 160 190
Time slots

0

1

2

No
rm

al
ize

d
PL

V Hawkeye
SPT
HST

OPT
RL-TG
Max

(d) PLV in Geant

70 100 130 160 190
Time slots

0.5

0.8

1.1

1.4

1.7

2.0

No
rm

al
ize

d
BW

C Hawkeye
SPT
HST
RL-TG

(e) BWC in Germany50

70 100 130 160 190
Time slots

0

2

4

No
rm

al
ize

d
PL

V Hawkeye
SPT

HST
RL-TG

Max

(f) PLV in Germany50

70 100 130 160 190
Time slots

0.5

0.8

1.1

1.4

1.7

2.0

No
rm

al
ize

d
BW

C SPT
HST
RL-TG
OBSTA
Hawkeye

(g) BWC in GtsCe

70 100 130 160 190
Time slots

0
1
2
3
4
5
6
7

No
rm

al
ize

d
PL

V

SPT
HST

RL-TG
OBSTA

Hawkeye

(h) PLV in GtsCe
Fig. 11. Performance of multicast trees in four topologies.

In Abilene, a small network, dynamic membership has a
limited impact, resulting in similar BWC for methods other
than SPT, as shown in Fig. 11(a). However, the PLV of OPT
is only 37% of HST, indicating more stable routing can be
achieved with a neglectable BWC increase. Hawkeye’s BWC
and PLV performances closely match OPT, with a difference
of less than 5%, showcasing its effectiveness in small-scale
topologies. The BWC in Geant are similar, but the PLV of
RL-TG exceeds the limit while that of Hawkeye remains low.
For SPT, the BWC grows with the topology scales, which
indicates that SPT is not efficient in large network.

In topologies with more nodes, e.g., Germany50 and GtsCe,
the ILP model of OPT cannot be solved in a reasonable
time, so its results are omitted. Hawkeye achieves the lowest
BWC while maintaining a low PLV in both Germany50 and
GtsCe. Due to the large search space, RL-TG fails to find
the optimal trees, and consequently results in BWCs and

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. X, NO. X, AUGUST 202X 13

0 800 1600 2400 3200
Epochs

−3.5

−3.1

−2.7

Av
g

re
wa

rd
 p

er
 st

ep

1e−1
TCN-G50
MLP-G50

TCN-Gnt
MLP-Gnt

TCN-Abl
MLP-Abl

(a) TCN vs. MLP

0 800 1600 2400 3200
Epochs

−3.5

−3.1

−2.7

Av
g

re
wa

rd
 p

er
 st

ep

1e−1
w= 4
w= 8

w=16
w=32

(b) Window size

0 3000 6000 9000 12000
Episodes

3.5

4.0

4.5

Av
g

BW
C

pe
r s

te
p

1e4
α=0
α=0.01
α=0.1

α=0.5
α= 1

(c) Impact of α on BWC

0 3000 6000 9000 12000
Episodes

0

5

10
Av

g
PL

V
pe

r s
te

p α=0
α=0.01
α=0.1

α=0.5
α= 1

(d) Impact of α on PLV
Fig. 12. Impact of Hawkeye hyperparameters.

PLVs that degrades dramatically in these two topologies. SPT
is once again the most bandwidth-inefficient one among all
methods, although it maintains a relatively low PLV. HST
performs incompetitively in both Germany50 and GtsCe for
BWC and PLV, as it cannot effectively capture the temporal
patterns of multicast requests and fails to account for changes
in path lengths during decision-making. We also compare the
performance of Hawkeye with OBSTA [14] in GtsCe topology.
OBSTA is designed to reduce tree costs while maintaining
route stability. It computes nodes’ stability indices and priori-
tizes routes to more stable nodes when establishing multicast
trees. As shown in Fig. 11(g) and Fig. 11(h), Hawkeye
demonstrates notable advantages over OBSTA in both BWC
and PLV. This is because Hawkeye employs a more rigorous
and comprehensive method to learn and extract patterns from
multicast request dynamics than OBSTA, making it more
effective in optimizing long-term performance.

These experiments demonstrate that Hawkeye is able to
adjust multicast trees to satisfy stability requirements while
keeping low bandwidth cost in topologies of different sizes.

Hawkeye is designed to avoid the complexity explosion
problems seen in traditional approaches by incorporating
BIER-TE, source aggregation and DRL. In practical scenarios,
for very large topologies, if necessary, we can also divide
the network into smaller, more manageable subdomains. This
division aligns with the fact that BIER-TE support multiple
subdomains. For scenarios involving a large number of multi-
cast groups, source aggregation inherently enhances scalability
by combining multiple groups into aggregated traffic. If nec-
essary, multicast groups rooted from the same source can be
further divided into smaller batches, with source aggregation
applied to each batch.

C. Hyperparameters

1) TCN vs. MLP: Fig. 12(a) shows the learning curves
with TCN/MLP of three topologies abbreviated as Abl, Gnt,

1 5 9 13 17 21
core nodes

0.8

1.2

1.6

2.0

No
rm

al
ize

d
BW

C SPT-NGP
SPT

ST-NGP
ST

(a) b = 1

1.8

2.0

2.2

2 4 6 8 10 12 14 16

1.0

1.2

b

No
rm

al
ize

d
BW

C SPT-NGP
SPT

ST-NGP
ST

(b) # core nodes = 16
Fig. 13. Bandwidth consumption of different multicast tree computation and
overlay network construction methods w/wo good path in Geant.

and G50. For Abilene, TCN and MLP converge to the same
reward, suggesting the DRL algorithm is able to solve such
problems in simple networks. TCN converges slower due to
more complex structure. In Geant, the reward improves slowly
with MLP and finally stops at a less optimal level. In Ger-
many50, MLP cannot converge while TCN performs stably.
To summarize, MLP is too simple to model the complicated
temporal relationship in large networks.

2) State Window Size w: The window size w determines
how far the agent looks back, thereby affecting the learning
process. We measure the rewards during training under differ-
ent w in Germany50, as shown in Fig. 12(b). If the window is
too short (e.g. w = 4), the reward remains low due to a lack
of information, while an overly large window may mislead
the agent since the input state becomes too complicated. The
overlapping results of w = 8 and 16 suggest the agent can
achieve good performance within a reasonable range of w.

3) PLV Weight α: The PLV weight α in (6) controls the
relative importance of PLV versus BWC. Fig. 12 shows the
average BWC and PLV during training in Germany50. When
α = 0, the agent only focuses on BWC, and the BWC slowly
converges to the lowest at the expense of a high PLV. As α
increases, the agent pays more attention to PLV constraints,
PLV decreases more rapidly, but the performance of BWC
degrades. This parameter serves as a knob for exploration-
exploitation trade-off. A smaller α encourages more explo-
ration, potentially leading to a lower BWC.

D. Incremental Deployment

First, we evaluate the BWCs obtained by different multicast
tree computation and overlay network construction methods,
with or without good path, as shown in Fig. 13. SPT and ST
represent shortest path trees and Steiner trees, respectively.
The NGP suffix indicates the “good path” concept is not
used when constructing the overlay topology, i.e., we use
the path as long as it exists, regardless of whether or not it
is a good path. The results are normalized by BWC of the
shortest path trees in the underlay network. In Fig. 13(a), we
set b = 1, i.e., every marginal node is only connected to the
nearest core node. As the number of core nodes increases,
the BWCs of all methods decrease in the beginning because
of richer topology information. However, the BWCs of SPT-
based methods increase when the number of core nodes
becomes larger. This is because this heuristic routing method

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. X, NO. X, AUGUST 202X 14

0.2 0.4 0.6 0.8 1.0
Core node ratio

0.8

1.0

1.2

1.4

No
rm

al
ize

d
BW

C Abl-SPT
Gnt-SPT
G50-SPT

Abl-ST
Gnt-ST
G50-ST

(a) b = 1

1 10 20 30 40 50
core nodes

1.0

1.2

1.4

1.6

1.8

No
rm

al
ize

d
BW

C b = 1 b = 2 b = 3

(b) Germany50 with ST
Fig. 14. Routing performance with different overlay construction settings.

focus on optimizing the path length to each destination but
not the global bandwidth consumption. With less core nodes,
there are less usable paths between nodes, and the shortest
paths are forced to overlap with each other, resulting in less
packet duplication and hence less BWC. In contrast, ST always
searches for the global optimal solution in terms of BWC in
the network, so its BWC keeps improving as the number of
core nodes increases. Besides, the BWCs of ST and ST-NGP
are similar, which means the use of good path has little effects
on the bandwidth consumption for fully optimized methods.

Fig. 13(b) shows BWC under different b, with 16 core
nodes. The tests are terminated if the results keep unchanged
with increasing b. As can be seen, using good path makes
the BWC converge faster for both SPT and ST. Conversely,
without good path, there are always new solutions as b
increases, which may provide similar or even worse perfor-
mance. In addition, the BWCs of SPT-based methods show
an increasing trend, which corroborates that more redundant
topology information tends to degrade the performance of SPT.

Second, we evaluate the impacts of the core node ratio,
i.e., the ratio of core nodes among all nodes in the topology,
and the diversity factor b when constructing overlay networks.
As illustrated in Fig. 14(a), for all three tested topologies,
BWCs of ST decrease as the ratio increases while those of
SPT fluctuate descend first and then ascend. Overall, when
b = 1, a larger ratio leads to better routing performance.

Fig. 14(b) shows the impact of tree diversity factor b on
BWC of ST in Germany50. As can be seen, b affects how
fast BWC decreases with increasing number of core nodes.
Particularly, the BWC descends faster when b = 2 than b = 1.
When b = 1, more than 45 core nodes (90%) are needed
to achieve the optimal performance while when b = 2, only
around 36 are needed (72%). However, the difference between
b = 2 and b = 3 is negligible, which suggests the core node
ratio no longer bring more benefits to the BWC after 2.

E. Failure Detection

We evaluate the failure detection accuracy of Algorithm 1 in
5 topologies, including extra 2 large ones, GtsCe (149 nodes,
193 links) and Cogentco (197 nodes, 243 links). We simulate
uniform random failure in each topology for 1000 times, with
randomly chosen group size and destination nodes. Fig. 15(a)
and Fig. 15(b) show the average numbers of accused links
and nodes. Regardless of the topology, the average numbers
of both accused links and nodes decrease rapidly as the number

TABLE II
NORMALIZED BWC OF DIFFERENT RECOVERY METHODS

Abilene Geant Germany50
SPT 1.000 1.000 1.000

SPT-LP 1.031 (8%) 0.998 1.003
SPT-PP 1.026 (11%) 1.003 0.995

MST 0.909 0.807 1.050
MST-LP 0.955 (8%) 0.813 1.050
MST-PP 0.951 (37%) 0.877 (28%) 1.040

RL 0.956 0.917 0.884
RL-LP 0.991 (8%) 0.909 0.890
RL-PP 0.989 (27%) 0.918 0.894

of monitored requirements increases, and become 1 when the
number of monitored requirements exceeds 6, indicating the
failure is located precisely. Fig.15(c) shows the 99th percentile
number of accused link, i.e., extreme case performance for link
failure. The 99th percentile also decreases significantly as the
number of monitored requirements increases, and converges
to 1 when the number of monitored requirements exceeds 6,
regardless of the scale of topology. The result for node failure
is similar, and is omitted here due to limited space.

Fig. 16 shows the minimal number of requirements needed
to locate all single link failures accurately, i.e., the maximal
number of accused links in all 1000 times tests equals 1,
under different Destination Number Ratio (DNR). DNR is the
ratio of the destination number of the minimal group in R
to the number of nodes in the topology, e.g., DNR = 0.5
means that the minimal group in R has ⌊0.5N⌋ members,
where N is the number of nodes in the topology. As DNR
increases, the monitored groups become larger, and there are
more destinations in a group to provide information for failure
detection, so less requirements are needed. Note that even if
the DNR is 0.1, the required size of R is less than 20. As
real networks usually have hundreds or more requirements, we
could say our algorithm is efficient for single failure location
even with random requirement selection; a well-designed
selection method could further enhance its performance.

F. Failure Recovery

Table II presents the average normalized BWCs of different
failure recovery methods under single link failure. We adopt
3 basic multicast tree computation methods, shortest path
tree (SPT), minimum spanning tree (MST), and reinforcement
learning (RL), and 2 recovery methods, link protection (LP)
and path protection (PP). While the cost of the backup path
is usually larger than that of the original ones in unicast, the
use of backup path in multicast may result in less replication
and bandwidth waste. The BWCs achieved by PP and LP
are similar in most cases. BWC of LP is slightly better in
Geant with MST and RL. This is because MST and RL focus
more on bandwidth utilization optimization while SPT does
not. So the use of backup path in SPT may promote better
overall bandwidth performance. Overall, considering both the
performance of bandwidth consumption and stability, LP is
still a better choice than PP.

Note that the recovery process may sometimes fail due to
the characteristics of topology and multicast tree. The recovery

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. X, NO. X, AUGUST 202X 15

1 2 3 4 5 6 7 8 9 10
requirements

1
5

10

15

20

25

30

ac
cu

se
d

lin
ks

Abilene
Geant
Germany50

GtsCe
Cogentco

(a) Mean for link failure

1 2 3 4 5 6 7 8 9 10
requirements

1
5

10

15

20

25

30

ac

cu
se

d
no

de
s Abilene

Geant
Germany50

GtsCe
Cogentco

(b) Mean for node failure

1 2 3 4 5 6 7 8 9 10
requirements

1

30

60

90

120

150

ac

cu
se

d
lin

ks

Abilene
Geant
Germany50

GtsCe
Cogentco

(c) P99 for link failure
Fig. 15. Performance of failure detection algorithm.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Destination number ratio

5

10

15

20

re

qu
ire

m
en

ts Abilene
Geant

Germany50
GtsCe

Cogentco

Fig. 16. Failure detection performance under varying group size.

failure rate (if any) is indicated by a percentage in parentheses.
Recovery failure is more likely to occur in smaller topologies
because there are less possible backup paths. Abilene cannot
always guarantee successful recovery, and the failure rate of
PP is higher compared with LP because it is more difficult
to find all disjoint paths than bypassing a single link. PP also
experiences a significant failure rate with MST in Geant, while
LP always succeeds in Geant and Germany50.

VIII. RELATED WORK

Stateful multicast protocols require frequent distributed state
updates and SDN is a promised mechanism to solve the prob-
lem. Mohammadi et al. [11] use a nature-inspired optimiza-
tion algorithm to compute the minimum cost tree regarding
the end-to-end delay. Huang et al. [12] designed multicast
traffic engineering for multiple trees in SDN, which targets
at minimizing bandwidth consumption under node and link
capacity constraints. However, these methods are designed for
static multicast and are not suitable for intertemporal choice
problems, where earlier routing decisions can impact later
available routing choices and long-term performance. Chiang
et al. [14] designed a traffic engineering solution to reduce
bandwidth consumption and rerouting costs for single-tree
scenarios with dynamic requests. They introduced the notions
of budget and deposit to account for the temporal correlation
of trees, determining how aggressively to construct a more
bandwidth-efficient tree within each time slot. Additionally,
they utilized a Reference Tree to stabilize routing decisions
for frequently used paths. Chiang et al. [15] jointly optimize
bandwidth cost and rerouting overhead in dynamic multicast
with multiple trees by accommodating minor changes through
partial rerouting, and only performing a complete rerouting
of the tree when significant deterioration happens. However,

these studies rely on simple heuristics in a reactive manner,
not adequately capturing the underlying patterns of dynamic
requests that manifest over a sufficient time scope, and thus,
long-term performance may not be fully optimized.

Explicit Multicast [49] is a traditional stateless protocol
where the packet header carries IP addresses of all destina-
tions, which inherently cannot work with many concurrent
group members. Cheng et al. [50] propose a source routing
method based on bloom filter, which also uses a BS to mark
destinations but may cause unnecessary bandwidth waste due
to false positives. Khaled et al. [51] design a label-based
system to support multicast forwarding with general graphs,
which still poses high overhead at ingress routers. Hawkeye
adopts efficient source aggregation to provide both flexible
traffic control and better scalability at source routers.

DRL has been widely used for the unicast traffic manage-
ment. Li et al. [52] leverage multi-objective DRL to generate
optimal policies for all possible routing preferences. Geng et
al. [16] use multi-agent DRL to achieve distributed TE for
global objective optimization. Liu et al. [18] design an online
routing algorithm for multiple QoS requirements. DRL applied
in multicast is mostly limited in wireless networks with objec-
tives about resource allocation, such as interference mitigation
[53], capacity limitation [54] or energy consumption [17],
[55]. These methods are mainly designed for ad hoc networks,
which is difficult to generalize to arbitrary topologies. In
addition, existing DRL-based research for multicast routing
focuses mainly on simple objectives without constraints [56].

IX. CONCLUSION

We present Hawkeye, a dynamic multicast system based
on BIER-TE. Hawkeye adopts source aggregation for efficient
training and source router storage saving, and designs a TCN-
based DRL framework for high-performance multicast tree
computation. Incremental deployment and failure handling
are also designed to improve Hawkeye’s compatibility and
robustness. Evaluation results show that Hawkeye produces
near-optimal solutions for multicast routing with dynamic
membership, provideing more stable multicast trees with lit-
tle additional bandwidth consumption. Furthermore, it makes
proactive routing decisions based on the traces of historical
requirements to ensure real-time responses, which overcomes
the slow convergence issue of traditional multicast methods.
In future research, we aim to further enhance the performance

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. X, NO. X, AUGUST 202X 16

of our multicast framework in resource-constrained scenarios
by exploring dynamic rate adjustment and congestion control
strategies.

REFERENCES

[1] “Cisco annual internet report - (2018–2023) white paper,”
https://www.cisco.com/c/en/us/solutions/collateral/executive-
perspectives/annual-internet-report/white-paper-c11-741490.html.

[2] B. Fenner, M. J. Handley, H. Holbrook, and L. Zheng, “Protocol
Independent Multicast - Sparse Mode (PIM-SM): Protocol Specification
(Revised),” Internet Engineering Task Force, Request for Comments
RFC 7761, 2016.

[3] M. Hosseini, D. T. Ahmed, S. Shirmohammadi, and N. D. Georganas, “A
survey of application-layer multicast protocols,” IEEE Commun. Surv.
Tut., vol. 9, no. 3, pp. 58–74, 2007.

[4] I. Wijnands, E. Rosen, A. Dolganow, T. Przygienda, and S. Aldrin,
“Multicast Using Bit Index Explicit Replication (BIER),” RFC Editor,
Tech. Rep. RFC8279, 2017.

[5] J. Zhang, X. Zhang, and M. Sun, “Two-level decomposition for multi-
commodity multicast traffic engineering,” in 2017 IPCCC, Dec. 2017,
pp. 1–2.

[6] S. Yang, C. Xu, L. Zhong, J. Shen, and G.-M. Muntean, “A QoE-Driven
Multicast Strategy With Segment Routing—A Novel Multimedia Traffic
Engineering Paradigm,” IEEE Trans. Broadcast., vol. 66, no. 1, pp. 34–
46, Mar. 2020.

[7] R. Singh, S. Agarwal, M. Calder, and P. Bahl, “Cost-effective Cloud
Edge Traffic Engineering with Cascara,” in NSDI 21, 2021, pp. 201–
216.

[8] G. Bernárdez, J. Suárez-Varela, A. López, B. Wu, S. Xiao, X. Cheng,
P. Barlet-Ros, and A. Cabellos-Aparicio, “Is Machine Learning Ready
for Traffic Engineering Optimization?” in 2021 ICNP, 2021, pp. 1–11.

[9] T. Eckert, M. Menth, and G. Cauchie, “Tree Engineering for Bit
Index Explicit Replication (BIER-TE),” Internet Engineering Task Force,
Internet Draft draft-ietf-bier-te-arch-13, 2022.

[10] R. M. Karp, “Reducibility among combinatorial problems,” in Complex-
ity of Computer Computations. Springer US, 1972, pp. 85–103.

[11] R. Mohammadi, R. Javidan, M. Keshtgari, and R. Akbari, “A novel
multicast traffic engineering technique in SDN using TLBO algorithm,”
Telecommun. Syst., vol. 68, no. 3, pp. 583–592, 2018.

[12] L.-H. Huang, H.-C. Hsu, S.-H. Shen, D.-N. Yang, and W.-T. Chen,
“Multicast traffic engineering for software-defined networks,” in IEEE
INFOCOM, 2016, pp. 1–9.

[13] X. Jia and L. Wang, “A group multicast routing algorithm by using
multiple minimum steiner trees,” Computer Communications, vol. 20,
no. 9, pp. 750–758, 1997.

[14] S.-H. Chiang, J.-J. Kuo, S.-H. Shen, D.-N. Yang, and W.-T. Chen,
“Online multicast traffic engineering for software-defined networks,” in
IEEE INFOCOM, 2018, pp. 414–422.

[15] J.-J. Kuo, S.-H. Chiang, S.-H. Shen, D.-N. Yang, and W.-T. Chen, “Dy-
namic multicast traffic engineering with efficient rerouting for software-
defined networks,” in IEEE INFOCOM, 2019, pp. 793–801.

[16] N. Geng, T. Lan, V. Aggarwal, Y. Yang, and M. Xu, “A multi-agent
reinforcement learning perspective on distributed traffic engineering,” in
IEEE ICNP, 2020, pp. 1–11.

[17] R. Raghu, M. Panju, V. Aggarwal, and V. Sharma, “Scheduling and
power control for wireless multicast systems via deep reinforcement
learning,” Entropy, vol. 23, no. 12, p. 1555, 2021.

[18] C. Liu, M. Xu, Y. Yang, and N. Geng, “DRL-OR: Deep reinforcement
learning-based online routing for multi-type service requirements,” in
IEEE INFOCOM, 2021, pp. 1–10.

[19] L. Lu, Q. Li, D. Zhao, Y. Yang, Z. Luan, J. Zhou, Y. Jiang, and M. Xu,
“Hawkeye: A dynamic and stateless multicast mechanism with deep
reinforcement learning,” in IEEE INFOCOM, 2023, pp. 1–10.

[20] Y. Xiao, Q. Zhang, F. Liu, J. Wang, M. Zhao, Z. Zhang, and J. Zhang,
“NFVdeep: Adaptive online service function chain deployment with
deep reinforcement learning,” in 2019 IEEE/ACM 27th International
Symposium on Quality of Service (IWQoS), 2019, pp. 1–10.

[21] N. He, S. Yang, F. Li, S. Trajanovski, F. A. Kuipers, and X. Fu, “A-
DDPG: Attention mechanism-based deep reinforcement learning for
NFV,” in 2021 IEEE/ACM 29th International Symposium on Quality
of Service (IWQOS), 2021, pp. 1–10.

[22] N. Geng, M. Xu, Y. Yang, C. Liu, J. Yang, Q. Li, and S. Zhang,
“Distributed and adaptive traffic engineering with deep reinforcement
learning,” in 2021 IEEE/ACM 29th International Symposium on Quality
of Service (IWQOS), 2021, pp. 1–10.

[23] C. Yu, J. Lan, Z. Guo, and Y. Hu, “DROM: Optimizing the Routing in
Software-Defined Networks With Deep Reinforcement Learning,” IEEE
Access, vol. 6, pp. 64 533–64 539, 2018.

[24] A. Valadarsky, M. Schapira, D. Shahaf, and A. Tamar, “Learning to
Route,” in Proceedings of the 16th ACM Workshop on Hot Topics in
Networks, New York, NY, USA, Nov. 2017, pp. 185–191.

[25] N. Vesselinova, R. Steinert, D. F. Perez-Ramirez, and M. Boman,
“Learning combinatorial optimization on graphs: A survey with applica-
tions to networking,” IEEE Access, vol. 8, pp. 120 388–120 416, 2020.

[26] K. Almeroth and M. Ammar, “Collecting and modeling the join/leave
behavior of multicast group members in the MBone,” in Proc. 5th IEEE
Int. Symp. High Perform. Distrib. Comput., 1996, pp. 209–216.

[27] J. Tadrous, A. Eryilmaz, and H. E. Gamal, “Proactive resource allo-
cation: Harnessing the diversity and multicast gains,” IEEE Trans. Inf.
Theory, vol. 59, no. 8, pp. 4833–4854, 2013.

[28] B. Cain, S. E. Deering, B. Fenner, I. Kouvelas, and A. Thyagarajan,
“Internet Group Management Protocol, Version 3,” Internet Engineering
Task Force, Request for Comments RFC 3376, 2002.

[29] “Gurobi - the fastest solver - Gurobi,” https://www.gurobi.com/.
[30] Y. Guo, W. Wang, H. Zhang, W. Guo, Z. Wang, Y. Tian, X. Yin, and

J. Wu, “Traffic Engineering in Hybrid Software Defined Network via
Reinforcement Learning,” Journal of Network and Computer Applica-
tions, vol. 189, p. 103116, Sep. 2021.

[31] Z. Luan, L. Lu, Q. Li, and Y. Jiang, “EPC-TE: Explicit Path Control
in Traffic Engineering with Deep Reinforcement Learning,” in GLOBE-
COM, Dec. 2021, pp. 1–6.

[32] B. Ren, D. Guo, Y. Yuan, G. Tang, W. Wang, and X. Fu, “Optimal
Deployment of SRv6 to Enable Network Interconnection Service,”
IEEE/ACM Transactions on Networking, vol. 30, no. 1, pp. 120–133,
Feb. 2022.

[33] S. Chen, J. Zhang, and Q. Gao, “An efficient hybrid routing based on
contact history in delay tolerant networks,” in 2010 Seventh Interna-
tional Conference on Wireless and Optical Communications Networks -
(WOCN), Sep. 2010, pp. 1–6.

[34] Z. Zhang, S. Ding, X. Wang, N. An, Z. Luo, W. Zhang, S. Yin,
and S. Huang, “A Hybrid Switching Strategy Based on Betweenness
Centrality in SDM Optical Transport Network,” in 2022 IEEE 8th
International Conference on Computer and Communications (ICCC),
Dec. 2022, pp. 215–219.

[35] N. Katta, O. Alipourfard, J. Rexford, and D. Walker, “Cacheflow:
Dependency-aware rule-caching for software-defined networks,” in Pro-
ceedings of the Symposium on SDN Research, ser. SOSR ’16. New
York, NY, USA: Association for Computing Machinery, 2016.

[36] Z. Luan, Q. Li, Z. Zhang, Y. Jiang, M. Chen, Y. Wang, and K. Li,
“Awesome-cache: Dependency-free rule-caching for arbitrary wildcard
patterns in tcam,” in 2023 IEEE 31st International Conference on
Network Protocols (ICNP). Los Alamitos, CA, USA: IEEE Computer
Society, oct 2023, pp. 1–12.

[37] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Prox-
imal policy optimization algorithms,” arXiv:1707.06347 [cs], 2017.

[38] J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel, “High-
dimensional continuous control using generalized advantage estimation,”
arXiv:1506.02438 [cs], 2018.

[39] C. Lea, M. D. Flynn, R. Vidal, A. Reiter, and G. D. Hager, “Temporal
Convolutional Networks for Action Segmentation and Detection,” in
2017 CVPR, 2017, pp. 156–165.

[40] S. Bai, J. Z. Kolter, and V. Koltun, “An Empirical Evaluation of Generic
Convolutional and Recurrent Networks for Sequence Modeling,” Apr.
2018.

[41] A. Fei, J. Cui, M. Gerla, and D. Cavendish, “A ”dual-tree” scheme for
fault-tolerant multicast,” in ICC 2001. IEEE International Conference
on Communications. Conference Record (Cat. No.01CH37240), vol. 3,
Jun. 2001, pp. 690–694 vol.3.

[42] D. Kotani, K. Suzuki, and H. Shimonishi, “A Design and Implementation
of OpenFlow Controller Handling IP Multicast with Fast Tree Switch-
ing,” in 2012 IEEE/IPSJ 12th International Symposium on Applications
and the Internet, Jul. 2012, pp. 60–67.

[43] D. Li, M. Xu, Y. Liu, X. Xie, Y. Cui, J. Wang, and G. Chen, “Reliable
Multicast in Data Center Networks,” IEEE Transactions on Computers,
vol. 63, no. 8, pp. 2011–2024, Aug. 2014.

[44] J. Chen, F. Yan, D. Li, S. Chen, and X. Qiu, “Recovery and Recon-
struction of Multicast Tree in Software-Defined Network: High Speed
and Low Cost,” IEEE Access, vol. 8, pp. 27 188–27 201, 2020.

[45] “Welcome to Spinning Up in Deep RL! — Spinning Up documentation,”
https://spinningup.openai.com/en/latest/.

[46] “SNDlib,” http://sndlib.zib.de/home.action.

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. X, NO. X, AUGUST 202X 17

[47] E. Baccour, A. Erbad, M. Guizani, and M. Hamdi, “FacebookVideo-
Live18: A live video streaming dataset for streams metadata and online
viewers locations,” in ICIoT, 2020, pp. 476–483.

[48] H.-J. Heo, N. Kim, and B.-D. Lee, “Multicast Tree Generation Tech-
nique Using Reinforcement Learning in SDN Environments,” in Smart-
World/SCALCOM/UIC/ATC/CBDCom/IOP/SCI, Oct. 2018, pp. 77–81.

[49] R. Boivie, Y. Imai, W. Livens, and D. Ooms, “Explicit Multicast (Xcast)
concepts and options,” RFC Editor, Tech. Rep. RFC5058, 2007.

[50] G. Cheng, D. Guo, L. Luo, and Y. Qin, “Optimization of multicast
source-routing based on Bloom Filter,” IEEE Commun. Lett., vol. 22,
no. 4, pp. 700–703, 2018.

[51] K. Diab and M. Hefeeda, “Yeti: Stateless and generalized multicast
forwarding,” in NSDI, 2022, pp. 1093–1114.

[52] X. Li, F. Tang, L. T. Yang, and L. Chen, “AUTO: Adaptive congestion
control based on multi-objective reinforcement learning for the satellite-
ground integrated network,” in USENIX ATC 21, 2021, pp. 611–624.

[53] P. Gong, C. Wang, J. Sheu, and D. Yang, “Distributed DRL-based
Resource Allocation for Multicast D2D Communications,” in 2021
GLOBECOM, 2021, pp. 01–06.

[54] S. O. Somuyiwa, A. György, and D. Gündüz, “Multicast-aware proactive
caching in wireless networks with deep reinforcement learning,” in IEEE
SPAWC, 2019, pp. 1–5.

[55] X. Zhang, P. Yu, L. Feng, F. Zhou, and W. Li, “A DRL-based resource
allocation framework for multimedia multicast in 5G cellular networks,”
in 2019 BMSB, Jun. 2019, pp. 1–5.

[56] J. Chae and N. Kim, “Multicast tree generation using meta reinforcement
learning in sdn-based smart network platforms,” KSII Trans. Internet Inf.
Syst., vol. 15, no. 9, pp. 3138–3150, 2021.

Qing Li received the B.S. degree (2008) from Dalian
University of Technology, Dalian, China, the Ph.D.
degree (2013) from Tsinghua University, Beijing,
China; both in computer science and technology.
He is currently a full professor at Peng Cheng
Laboratory, Shenzhen, China. His research interests
include reliable and scalable routing of the Inter-
net, software defined networking, network function
virtualization, in-network caching/computing, edge
computing, traffic scheduling, transmission control,
video delivery, etc.

Lie Lu received the B.S. degree (2020) and M.S.
degree (2023) from Tsinghua University, China. He
is currently with Alibaba Cloud, Alibaba Group,
Hangzhou, China. His research interests include
network routing and the application of Artificial
Intelligence in routing optimization.

Dan Zhao is currently an assistant researcher with
Peng Cheng Laboratory, Shenzhen, China. She was
a Postdoctoral Researcher with School of Electronic
Engineering, Dublin City University. Dr Dan Zhao
obtained her bachelor’s degree from Beijing Uni-
versity of Posts and Telecommunications in 2011,
and Ph.D. degree from Queen Mary University of
London in 2015. Her research interests include net-
work routing, in-network intelligence and network
security.

Zeyu Luan received the B.S. and M.S. degrees from
Tianjin University in 2015 and 2018, respectively.
He obtained the Ph.D. degree in computer science at
Tsinghua Shenzhen International Graduate School,
Tsinghua University, in 2024. He is currently a Post-
doctoral Researcher in Pengcheng Laboratory, Shen-
zhen, China. His research interests include software-
defined networking, traffic engineering, and deep
reinforcement learning.

Yuan Yang received the B.Sc., M.Sc., and Ph.D.
degrees from Tsinghua University. He was a Visiting
Ph.D. Student with The Hong Kong Polytechnic
University. He is currently an Associate Researcher
with the Department of Computer Science and Tech-
nology, Tsinghua University. His major research
interests include computer network architecture and
routing protocols.

Yong Jiang received the B.S. degree (1998) and
the Ph.D. degree (2002) from Tsinghua Univer-
sity, Beijing, China, both in computer science and
technology. He is currently a full professor at the
Graduate school at Shenzhen, Tsinghua University.
His research interests include the future network
architecture, the Internet QoS, software defined net-
works, network function virtualization, etc.

Jingpu Duan received his B.E. degree from
Huazhong University of Science and Technology
in 2013, and his Ph.D. degree from The Univer-
sity of Hong Kong in 2018. He is currently an
assistant researcher in the Department of Broadband
Communiation, Pengcheng Laboratory. His research
interests include designing and implementing high-
performance networking systems.

Ruobin Zheng received the B.Eng degree (1996) in
Electronic Engineering and the M.Sc degree (1999)
in Radio Physics all from Xiamen University, China
and the second M.Sc degree (2003) in Wireless
Communication from Univ. of Waterloo, Canada. He
has been with Huawei Technologies for more than
twenties years and is currently a technical expert at
the Huawei’s 2012 Labs. He is the inventor of over
two hundred patents which cover both wired and
wireless communication areas. His research interests
include broadband access, compute networking and

service routing.

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. X, NO. X, AUGUST 202X 18

Shaoteng Liu received the B.S. and M.S. degrees
in Microelectronics from Fudan University, Shang-
hai, China and the Ph.D. degree in electronic and
computer system from the KTH Royal Institute of
Technology, Sweden. Currently, he is a technical
expert and scientist in Huawei. His research inter-
ests include electronic systems, networks-on-chip,
network coding, network topology, machine learning
and etc.

Dingding Chen received his B.Sc. degree in Com-
puter Science from Faculty of Information Engi-
neering and Automation of Kunming University
of Science and Technology, Kunming, China, in
2015, and the Ph.D. degree in Computer Science at
Chongqing University, Chongqing, China, in 2022.
He is currently a Senior Engineer with the Network
Technology Lab, Central Research Institute, Huawei
2012 Labs. His research interests include constraint
programming, coding theory and machine learning.

