
IEEE TRANSACTIONS ON MOBILE COMPUTING 1

A Cooperative Caching System in
Heterogeneous Edge Networks

Junkun Peng, Qing Li, Member, IEEE, Xun Tang, Dan Zhao, Chuang Hu and Yong Jiang, Member, IEEE

Abstract—Recently, the rapid growth of video content and the increasing demand for high Quality of Experience (QoE) have
significantly strained the backbone network. Edge caching is a promising approach to alleviate the strain by caching content closer to
users. However, it confronts challenges stemming from the low capability of individual edge nodes and the high density of their
distribution, resulting in low hit ratios and unbalanced workloads. In this paper, we conduct in-depth analyses of these challenges and
formulate a typical cooperative edge caching problem. Based on the insights, we introduce MagNet, a cooperative edge caching
system featuring two key mechanisms: Automatic Content Congregating (ACC) and Mutual Assistance Group (MAG). ACC improves
hit ratios by intelligently guiding requests to their optimal edges, thereby facilitating content aggregation. Complementing this, Quick
Cache is implemented to accelerate this congregation process by prefetching content and optimizing cache space, effectively boosting
hit ratios. MAG, on the other hand, achieves workload balance by dynamically forming groups to augment edge capabilities and
redistribute requests on overloaded edges. To elucidate the design principles of MagNet, we conduct detailed component-level
comparisons and quantitative analyses. To validate the overall performance, we compare it with various caching solutions using
real-world datasets, demonstrating significant performance improvements.

Index Terms—Edge computing, cache, cooperative, workload balance, embedding

✦

1 INTRODUCTION

IN recent years, the backbone network has faced severe
pressure. According to the Cisco and Sandvine report,

video streaming constitutes a significant portion of all In-
ternet business traffic and is consistently increasing [1],
[2]. This mainly arises from the rapid growth of the net-
work users, the upgrade of video quality from traditional
1080P high-definition content to 4K and 8K levels [3], and
the emerging of sophisticated human-computer interactions
like 360 videos [4], VR [5], and AR [2].

One unique property of the traffic is that content requests
are highly concentrated [6]. Thus, the caching technology
is an essential solution [7] to alleviate the pressure. It can
reduce requests’ latency, which can significantly improve
users’ Quality of Experience (QoE) [8], and relieve the heavy
burden of the network transmission [9]. There are two types
of caching solutions: 1) mature Content Delivery Network
(CDN) [10], [11] solutions; and 2) edge caching solutions.
CDN solutions consist of some super-powerful nodes, each
of which can serve a large number of requests in a wide-
range area. However, the super-powerful nodes are limited,
even for giant companies, e.g., Akamai and Google [12], [13].
Thus, as shown in Figure 1a, all requests must be aggregated

• Junkun Peng and Yong Jiang are with the Shenzhen International Grad-
uate School, Tsinghua University, Shenzhen, Guangdong 518055, China,
and also with Peng Cheng Laboratory, Shenzhen, Guangdong 518055,
China (e-mail: pjk20@mails.tsinghua.edu.cn, jiangy@sz.tsinghua.edu.cn).

• Qing Li and Dan Zhao are with Peng Cheng Laboratory, Shenzhen,
Guangdong 518055, China (e-mail: liq@pcl.ac.cn, zhaod01@pcl.ac.cn).

• Xun Tang is with Sun Yat-Sen University, Shenzhen, Guangdong
518107, China (e-mail: tangx66@mail2.sysu.edu.cn).

• Chuang Hu is with Wuhan University, Wuhan, Hubei 430072, China
(e-mail: handc@whu.edu.cn).

Manuscript received xxx. (Corresponding author: Qing Li.)

to the central node, which causes high latency [14] and low
QoE [15].

The edge technology [16] provides a new perspective
for content delivery and caching [9]. Edges can be used
to significantly reduce the distances between contents and
users, which can save enormous transmission traffic in the
backbone and lower the latency effectively [17]. However, as
the distribution of edges is dense and their serving areas are
small, requests are scattered to different edges, resulting in
a low hit ratio. In addition, edges suffer from unbalanced
workloads due to the highly dynamic requests made by
users with diverse distribution, content preferences, and
habits. The limited and heterogeneous capacities of edges
make the workload balance even worse.

To address the two challenges of edge caching solutions
discussed above, we formulate a typical cooperative edge
caching problem which jointly optimizes the latency, traffic,
and workload balance. The problem is proved to be an
NP-complete problem and is difficult to solve directly. To
this end, we propose a heuristic approach, MagNet, to
solve this problem 1. Through cooperation between edges,
more and more user requests can be guided to the optimal
edges. Each edge node is like a magnet, forming the entire
magnetic network. MagNet has two innovative mechanisms
to address the two challenges: 1) the Automatic Content
Congregating (ACC) mechanism. First, the ACC utilizes
a neural embedding algorithm to generate vectors for all
contents, which tries to capture underlying patterns of
historical requests. Second, a novel clustering algorithm is

1. This work was presented in part at the 2022 ACM Web Con-
ference (WWW) [18]. This extended version integrates significant en-
hancements, including the Quick Cache and the enhanced workload
balance mechanism, accompanying several more in-depth experimental
analyses.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3336955

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on December 27,2023 at 06:35:14 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON MOBILE COMPUTING 2

TABLE 1: Datasets

Name Time Range Amount Area
Dataset1 13 days 50 million Beijing City
Dataset2 50 days 12 billion Anhui Province

designed to cluster the vectors into some types. Third, the
ACC guides requests to their optimal edges by type so
that requests of the same type tend to congregate in the
same edges. As a result, each edge accumulates contents
of one dominant type more than other types. Then, more
requests of this type are attracted to the edge. This process
forms a virtuous circle between edges and requests, which
eventually leads to a high hit ratio. Besides, we also design
the Quick Cache within the ACC mechanism. The Quick
Cache includes the Hot Content Prefetch (HCP) and the
Access Rule (AR), which improve the cache efficiency by
populating the cache with trending content in place of the
evicted unpopular content. In this way, the virtuous circle
can be further accelerated. 2) the Mutual Assistance Group
(MAG) mechanism. When an overloaded edge emerges, the
MAG finds some nearby idle edges to form a temporary
group to assist the overloaded edge. The group runs in a
master-worker mode where the master, i.e., the overloaded
edge, shifts some of its workloads to the workers, i.e.,
idle edges, according to their capacities to balance their
workloads. In extreme situations where none of the nearby
edges are eligible for assistance, the MAG will mitigate the
workload by reducing the number of attracted requests. The
group dismisses when the overload problem is eliminated.

To evaluate the MagNet performance, we conduct exper-
iments from three different perspectives using a real-world
dataset. We compare MagNet with some benchmark caching
solutions, including classical, ML-based, and cooperative
solutions. The result shows that MagNet can improve the
hit ratio from 40% and 60% to 78% for non-cooperative
and cooperative solutions, respectively, and significantly
balance the edges’ workloads. Additionally, we also conduct
experiments to analyze components in MagNet including
the Quick Cache and the clustering algorithm. We prove the
contribution of the Quick Cache to the overall performance
through ablative analysis. Apart from the FCA used in
MagNet, we also design two other clustering algorithms and
evaluate the performance of the three algorithms in hit ratio
and workload balance through comparative experiments.

2 DATA ANALYSES AND CHALLENGES REVEAL

In this section, two real-world datasets are analyzed to re-
veal the challenges of edge caching solutions, and further, to
help find the underlying insights. As summarized in Table 1,
both datasets contain amounts of content requests collected
from the Chinese top content providers. For Dataset1, each
request contains a user ID, timestamp, latitude, longitude,
and content ID. For Dataset2, each request contains a request
IP, timestamp, content ID, and a boolean value indicating
whether this request hit.

2.1 Low Hit Ratio Challenge
As illustrated in Figure 1, in contrast with a CDN node that
serves a large area, each edge’s serving area is small since

CDN

High Latency

High Hit Ratio

"All in CDN"
"Far"

RequestUserCDN Result In

(a) CDN caching solution.

Heterogeneous

Workloads

Low Hit Ratio

IdleOverloaded

Low Latency

"Close""Scattered to edges"

RequestUser Result InOverloaded

Edge

Idle
Edge

Normal
Edge

(b) Edge caching solution.

Fig. 1. The CDN caching and the edge caching solution.

dense distribution and limited caching capacity. As such,
each edge aggregates fewer requests, which results in a low
hit ratio of edge caching solutions.

To reveal the low hit ratio challenge, we compare the
edge caching method and the CDN method on Dataset1.
A classical CDN solution which uses one powerful node to
handle requests, as Figure 1a shows, is used to represent the
CDN method. A primary edge caching solution where re-
quests are sent to only its closest edge, as Figure 1b shows, is
used to represent the edge caching method. In Dataset1, we
filter out one day’s requests in a 20KM×20KM experiment
area of Beijing, and get 1,220,720 requests. These requests are
sent orderly based on their timestamps. For both methods,
we assume all their nodes have enough caching capacity to
cache all the requested contents.

For the CDN solution, a hit ratio of 91.7% can be
achieved as all requests are directed to the single CDN
node. For the edge caching solution, we assume there are
edges distributed 1KM apart from each other, which means
there are 400 edges distributed evenly in the experiment
area. Even if edges have enough caching capacity, the edge
caching method has a hit ratio of only 55.99%. The big gap in
the hit ratio, about 35.7%, reveals the edge caching method
has the serious challenge of low hit ratio.

Compared to CDN solutions where all requests are
directed to only one node, in edge solution, requests are
scattered to the nearest edge to each user. This may seem
reasonable from certain perspectives such as latency and
content preference. However, this inflexible rule can cause
a low hit ratio in some situations. For instance, some re-
quests may not find the cached content in the closest edge
which could be present in the sub-nearest edges nearby. In
such scenarios, providing requests with more edge choices
instead of confining them to only the closest edges could
theoretically yield a high hit ratio. To prove this idea, here
we utilize a quantitative method to analyze the relationship
between the hit ratio and search area from the perspective
of each request, which is represented by the Maximum
Hit Ratio (MHR) and the Search Distance Threshold (SDT),
respectively.

First, we give the definition of MHR. For a request rit,l
, i, t, l stand for its content ID, request timestamp and loca-
tion, respectively. Let rit,l denote the Potential Hit Request
(PHR) phrit,l . It exists only if there is another request rjt′,l′
which satisfied conditions in all three dimensions: 1) in

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3336955

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on December 27,2023 at 06:35:14 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON MOBILE COMPUTING 3

the content dimension, i = j, which means their content
IDs should be the same; 2) in the temporal dimension,
0 < t − t′ < TT , which means rjt′,l′ must exist before rit,l
but not early than Time Threshold (TT); and 3) in the spatial
dimension, distance (l, l′) < SDT , which means their
distance should be less than the Search Distance Thresh-
old (SDT). More specifically, this distance is the network
distance. For Dataset1, we use the geographical location
to calculate the distance, as we can find a strong positive
correlation between geographical distance and network dis-
tance. For Dataset2, we use the IP differences, as most IP
segmentation are made considering their network distance
[19]. After defining the PHR, the MHR (MHRt0,TP

TT,SDT)
can be calculated with the two datasets. For MHRt0,TP

TT,SDT
, its PHR should be satisfied with the SDT and the TT, and
the request range continues for a Time Period (TP) from t0.
The total request is TRt0,TP which also starts from t0 , and
continues for the TP. It can be formulated as:

MHRt0,TP
TT,SDT =

∥∥∥{phrit,l | phrit,l ∈ TRt0,TP

}∥∥∥
∥TRt0,TP ∥

. (1)

(a) SDT-MHR in Dataset1. (b) SDT-MHR in Dataset2.

Fig. 2. Relationship between SDT and MHR.

MHR represents the best hit ratio that an edge solution
can achieve under specific parameters. When analyzing
Dataset1, t0 is set to be 17:00, and TP is set to be six hours,
since the requests amount of this period is the highest in the
whole day, which will be proved in Section 2.2. It is easy to
explain that these six hours are off work time, and people
want to relax. In these six hours, the network is under high
pressure, which drives us to analyze this period and reduce
the network pressure. When analyzing the relationship, the
requests in the whole Beijing city are all included to get a
universal result. Besides, TT is set as one hour and SDT is
set from 1KM to 20KM. The analysis result shown in Figure
2a shows that the MHR increases as the SDT becomes bigger
in general. It is also obvious that the trend of MHR becomes
flat when the SDT is greater than 7KM. When the TT is fixed
as 60 minutes, only if the SDT is bigger than 7KM, the hit
ratio has a chance to be greater than 70%.

Next, Dataset2 is used to continue the analysis. For
geographic area, the whole Anhui province’s requests are
used. Similarly to the analysis of Dataset1, t0 is also set to
be 17:00 and TP to be six hours here for the high-pressure
feature. To understand the impact of the SDT, it is set from
8 bits to 24 bits, where we use IP difference as the distance
tool. More specifically, the XOR method is used to quantify
the binary IPV4 address distance with the below equation:

distance (IP1, IP2) =
32∑
i=1

(IP1i ⊕ IP2i) (2)

Figure 2b shows a consistent result that the MHR firstly
increases and then becomes flat as the SDT increases. Only
if the SDT is greater than 17 bits, the MHR is possible to be
greater than 60% in the condition of TT as 60 minutes.

The above analyses of two datasets first demonstrate that
there exists a high MHR, indicating a great potential for
edge solutions to achieve a high hit ratio. Furthermore, the
analyses also show that a large SDT is essential for achieving
a high MHR. This confirms our previous hypothesis that
providing more edge choices, rather than limiting requests
to only the closest edge, can improve the hit ratio perfor-
mance. However, providing more edge choices for each user
request further raises a question: how to find the optimal
edge among these edge choices to reach the best hit ratio?
In this paper, we propose to address this issue through
cooperation between edges.

2.2 Unbalanced Workloads Challenge

Edge caching solutions also suffer unbalanced workloads
due to the limited and heterogeneous capacities and dy-
namic requests. First, most edges are limited in caching and
computational capacities [9], [20], making them more sensi-
tive to caching solutions. The limited caching capacity leads
to competition between popular contents. The limited com-
putational capacity causes excessive requests to be blocked.
Therefore, it is necessary to allocate an appropriate number
of requests for each edge. Moreover, users have varying
location distributions, preferences, and habits, which re-
sults in their requests being unevenly distributed over time
and space [21]. Through our analyses, this can be proved
from a spatial perspective that the requests’ number varies
significantly in different edge serving areas. Additionally,
dynamic changes in the time dimension further aggravate
the unbalance of the entire situation.

(a) Request number histogram. (b) Request number in one day.

Fig. 3. Request distribution in one day.

We use Dataset1 to analyze the uneven distribution over
space. We randomly choose one day and count the number
of requests served by these 400 edges during the entire
day. Figure 3a shows that the number of requests served
by different edges is quite different. Among these edges, the
highest number of requests severed by a single edge per day
can reach more than 7,000, while the lowest is only 10. These
significant differences show the unbalanced workloads for
these 400 edges in one day.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3336955

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on December 27,2023 at 06:35:14 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON MOBILE COMPUTING 4

Fig. 4. Workload of 400 edges in one day.

In the temporal dimension, we have a more fine-grained
analysis with both Dataset1 and Dataset2. First, Figure 3b il-
lustrates the request number fluctuates significantly across a
whole day. Then, Figure 4 measures every hour’s workload
for these 400 edges in one day using the Workload Standard
Deviation (WSD). In addition, the requests’ number of the
most overloaded edge is also counted in each hour. As can
be seen, the WSD is always high except for 6:00 and 7:00.
There are 21 hours in a day with a WSD of more than 14.
The period from 22:00 to 23:00 is the requests’ peak time
for the 400 edges, while its dynamic is also very high. Only
several hours in the early morning are relatively workload-
balanced.

3 SYSTEM DESIGN

In this section, we first introduce the network topology and
formulate a typical cooperative edge caching problem. Then,
we propose MagNet which is a cooperative edge caching
system, and present its framework.

3.1 Problem Formulation

3.1.1 Network Topology.
The considered system includes a cloud server e0 containing
all the contents, E edges, C contents, and U users. Let
E = {e1, e2, · · · , ei, · · · , eE} denote the set of edges. Let
fi denote the finite caching capacity of edge ei. Edges can
exchange caching information with the surrounding edges
called ”neighbors”. LetNi =

{
ei1 , ei2 , · · · , eimi

}
denote the

neighbors of edge ei, where mi is the number of neighbors
and Ni ⊂ E . Let C = {c1, c2, · · · , cj , · · · , cC} denote the set
of contents and sj be the size of transmission with content
cj . Especially, let s0 denote the size of transmission without
any content. Let U = {u1, u2, · · · , ug, · · · , uU} denote the
set of users.

3.1.2 Load Constraint Modeling.
We consider a system operating over a finite time horizon.
The requests R = [r1, r2, · · · , rp, · · · , rR] are generated by
users in order, where R is the number of requests. Let ep′
2 denote the home edge which is the closest edge to the
user of rp. And let cp′′ and up′′′ denote the content and the
user of rp. In this Edge Caching problem, the request rp is

2. For consistent using the edge symbol ei, the content symbol cj , the
user symbol ug , and the request symbol rp, the p′, p′′ and p′′′ are used
to denote the indexes of the home edge, the content and the user of this
request rp, respectively.

sent firstly to its home edge ep′ . If it hits, i.e., content cp′′

is cached in ep′ , then cp′′ is returned by ep′ ; otherwise, ep′

sends rp to some neighbors in Np′ . If it still misses at the
neighbor edge ep′

m
, the request is sent to e0 to fetched cp′′ ,

which then will be cached in ep′
m

and sent back to user
up′′′ . To measure the workload of ei, the set of requests sent
to ei is denoted as Ri =

[
ri1 , ri2 , · · · , riRi

]
, where Ri is the

number of requests received by ei.
In this paper, we use LRU [22] as the default cache

replacement strategy for edges 3.
Given the caching capacity fi and the edge’s history

requests [ri1 , ri2 , · · · , rik], the current edge caching con-
tents is given as LRU (fi, [ri1 , ri2 , · · · , rik]) = UNIQy∗ ,
where UNIQ is the set of unique request elements,
UNIQy =

{
rx|rx ∈

[
riy , riy+1

, · · · , rik
]}

and y∗ =
min {y||UNIQy| ≤ fi}. Let l (a, b, s) be the latency function
of the element a and b where a, b ∈ {e0}∪E ∪U , and s is the
size of the content. Let ypi ∈ {0, 1} denote whether rp hits in
ei:

ypi =

{
1 if cp′′ ∈ LRU (fi, [ri1 , ri2 , · · · , rik])
0 else

. (3)

The edge ei has limited caching capacity, therefore

|LRU (fi, [ri1 , ri2 , · · · , rik]) | ≤ fi,∀ei ∈ E . (4)

The cloud server e0 contains all the contents, therefore

yp0 = 1,∀rp ∈ R. (5)

Let SCST denote the size of the Cache Summary Table (CST)
that is exchanged between edges to notify each other their
cache summaries. Let EUP denote the period that an edge
exchange the CST with its neighbors. Let RT denote the
running time of the system.

Latency. The latency occurs during the following 3 steps.
Step 1: When a request rp is sent to its home edge ep′ , it
either hits (ypp′=1) or miss (ypp′=0). The latency of this step is
lhhome = l (up′′′ , ep′ , sp′′) if it hits, or lmhome = l (up′′′ , ep′ , s0)
if it does not hit. Step 2: When the request is sent to
neighbors one by one, if it hits in one neighbor ep′

m
, the

latency of this step is

lhnei = q0

 ∑
ei∈Np′
ei ̸=ep′

xp
i l (up′′′ , ei, s0) + l (up′′′ , ep′ , sp′′)

 . (6)

, where q is the number of neighbors that rp is sent to.
Let xp

i ∈ {0, 1} denote whether rp is sent to ei. q satisfies∑
ei∈Np′

xp
i = q and

0 ≤ q ≤ |Np′ | < E. (7)

If it does not hit in any neighbor, the latency of this step
is given as lmnei = q0

∑
ei∈Np′

xp
i l (up′′′ , ei, s0) . In particular,

q = 0 indicates rp is not forwarded to any neighbor.
Whether rq hits or not in neighbors can be formulated as
hnei =

∏
ei∈Np′

xp
i y

p
i . Step 3: If rp is sent to the cloud server by

3. Other replacement strategies can also be used. A comparison of
replacement strategies is presented in Section 3.2.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3336955

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on December 27,2023 at 06:35:14 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON MOBILE COMPUTING 5

neighbor ep′
m

, the latency of this step is le0 = l (ei, e0, sp′′)+
l (ei, up′′′ , sp′′). Summing up the latency incurred in the
above 3 steps, the total latency of request rj is given as: lj =
ypp′ lhhome+

(
1− ypp′

) (
hneil

h
nei + (1− hnei) (l

m
nei + le0)

)
. The

sum latency L of all requests in a period is L =
∑
j∈R

lj .

Traffic. There are two types of traffic in the sys-
tem, the Backbone Traffic (BT) and the Local Traffic
(LT). The BT only occurs when contents need to be
fetched from the cloud server e0, given as BT =∑
p∈R

(
1− ypp′

)
(1− hnei) sp′′ . The LT is given as LT =∑

p∈R
sp′′ + (RT/EUP)

∑
ei∈E

∑
eim∈Ni

SCST .

Workload Balance. The Workload Standard Deviation
(WSD) is calculated in the following four steps to measure
the workload balance status:

• Step 1: because the number of requests varies
over time, normalize request numbers into [0,100]
interval by the min-max normalization: R′

i =
Ri−min(Ra)

max(Rb)−min(Ra)
∗ 100,∀a, b ∈ E .

• Step 2: calculate the average capacity: favg =

∑
ej∈E

fj

E .
• Step 3: because of edges’ heterogeneous capacities,

normalized numbers are processed considering ca-
pacities:
R′′

i =
R′

i
fi

favg

.

• Step 4: calculate WSD:

WSD =

√√√√√√ ∑
ei∈E

(
R′′

i −
∑

ek∈E
R′′

k

E

)2

E
. (8)

3.1.3 Cooperative Edge Caching Problem

Problem 1. Given α, β,γ, θ, R, E , C, U , s0, SCST and RT ,
find xp

i and q to jointly minimize latency, traffic and WSD
as follows:

min : αL+ βBT + γLT + θWSD

subject to : (3) , (4) , (5) and (7) .
(9)

3.1.4 Complexity Analysis

To analyze the complexity of Problem 1, we first consider
Problem 1′, a simplified case of Problem 1 where we assume
requests’ orders are already settled down. In this case, if
a specific solution is given, the overall result of Problem
1 can be calculated in a polynomial time. Moreover, the
main contribution of this problem is to choose the neighbor,
which can be represented by ypp′

m
. This simplified problem

can be converted to the Helper Decision Problem [23] in
a polynomial time. As the Helper Decision Problem has
been proved as an NP-complete problem, the Problem 1′

is an NP-complete problem. Therefore, the more complex
Problem 1 is at least an NP-complete problem. For now,
there is no efficient polynomial solution for this problem.
In this paper, we try to solve it heuristically and propose a
novel solution named MagNet.

Fig. 5. The Framework of MagNet.

3.2 MagNet Framework

MagNet is a cooperative edge caching system. This system
can guide requests to their optimal edges and achieve a high
hit ratio and balanced workloads. The guidance is based
on content type, called the Guidance Type (GT). MagNet
clusters all contents into some GTs, which can be done
offline and periodically, e.g., per day.

In MagNet, each edge maintains its own Cache Sum-
mary Table (CST), which records the cached size of each GT
in the edge. At runtime, the edge exchanges its CST with
its neighbors periodically to update the cashing information
in its neighbors. Based on its and neighbors’ CSTs, the edge
builds and updates a table named Edge Candidate Table
(ECT). In ECT, the edge designates the Top-k Neighbor
Edges (Top-k NEs) for each GT, where k represents the
number of edge candidates with the largest GT sizes. As
illustrated in Figure 5, here Top-3 NEs are maintained for
each GT in ECT. The selection of k values can be customized
to accommodate different system needs. It involves trade-
offs between hit ratio and latency, which will be analyzed
detailedly in Section 5.3.3.

Every request in MagNet is processed in the following
three stages:

• Stage 1: the user sends it to the home edge, the
closest edge to the user. If the home edge contains the
requested content, the content is returned directly to
the user. Otherwise, the home edge suggests the user
the Top-3 NEs to try next based on the content’s GT,
and the request goes to Stage 2.

• Stage 2: the user sequentially sends requests to the
neighbor edges recommended by the home edge. If
any of these neighbor edges contains the requested
content, this traverse process is terminated and the
content is promptly returned to the user. If none of
the suggested neighbor edges possess the requested
content, the request proceeds to Stage 3.

• Stage 3: the third suggested NE fetches the content
from the cloud server, which stores all contents.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3336955

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on December 27,2023 at 06:35:14 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON MOBILE COMPUTING 6

Then, the third suggested NE caches the content
locally 4 and sends it back to the user.

Over every two minutes, each edge counts the number
of received requests and updates its status. Particularly,
we define two threshold, i.e. IE-NE threshold and NE-OE
threshold. If the number of received requests is over IE-NE
threshold times the expected service quantity, it is treated
as an Overloaded Edge (OE); if the number of received
requests is less than NE-OE threshold times the expected
service quantity, it is treated as an Idle Edge (IE); otherwise,
it is treated as a Normal Edge (NE). The expected service
quantity is set considering each edge’s caching and compu-
tational capacities. When an OE appears, it tries to ally with
some Idle Edges (IEs) to form a temporary Mutual Assis-
tance Group (MAG) to alleviate the overloaded situation.

We evaluate the impacts of different IE-NE thresholds
and NE-OE thresholds on WSD, under the experimental
setup introduced in Section 5.1. Figure 6a illustrates that the
best overall system performance is achieved when the IE-NE
threshold is set to 1.5 and the NE-OE threshold is set to 0.67.
In the rest of this paper, we adopt these two thresholds. It
is worth noting that these two thresholds can be adjusted to
meet the requirements of different circumstances. Influence
factors include varying request volumes within different
regions, the total number of edges in the system, as well
as the caching capabilities of each edge node.

0.3
7

0.4
7

0.5
7

0.6
7

0.7
7

0.8
7

0.9
7 1.2 1.3 1.4 1.5 1.6 1.7 1.8

IE-NE NE-OE

12

14

16

18

W
SD

(a) IE-NE/NE-OE thresholds.

0 5 10 15 20
Hours in One Day

0.3
0.4
0.5
0.6
0.7
0.8

Hi
t R

at
io

MagNet-LRU
LRU
MagNet-FIFO
FIFO
MagNet-LFU
LFU

(b) Different caching strategies.

Fig. 6. Impacts of different IE-NE/NE-OE thresholds and
different caching strategies.

The proposed MagNet framework is, in essence, agnos-
tic to cache replacement strategies, making it modular in
design. Various replacement strategies can be seamlessly in-
tegrated into MagNet, including Least Recently Used (LRU)
[22], Least Frequently Used (LFU) [24], and First In First Out
(FIFO). Notably, as a cooperative caching solution, MagNet
consistently exhibits exemplary system performance across
different replacement strategies. In Figure 6b, we evaluate
three classical replacement strategies and compare the hit
ratio performances before and after their integration into
MagNet. It is evident that MagNet consistently maintains
a significant performance advantage, though LRU slightly
outperforms the other two strategies. In this paper, LRU is
employed in edges as the cache replacement strategy.

4 TWO MECHANISMS OF MAGNET

In this section, we introduce the two key mechanisms in
the MagNet system: the Automatic Content Congregating

4. All visited NEs will fetch and cache content locally based on the
Access Rule, while the third suggested NE is responsible for sending
back the requested content to the user.

(ACC) and the Mutual Assistance Group (MAG).

4.1 Automatic Content Congregating (ACC)

As discussed in Section 2, the low hit ratio caused by limited
edge choices is a challenging problem in edge caching
solutions. The ACC is designed to guide requests to their
optimal edges among multiple edge choices based on coop-
eration between edges.

4.1.1 Cluster Contents

In the ACC, contents are clustered and tagged with GT. The
gist of clustering is to cluster the contents of consecutive
requests into different GTs. As such, the ACC can use
the GT to divert consecutive requests to different edges
evenly. In the process, as illustrated in Figure 7, the history
requests are used to generate the vector for each content
using embedding technology. Then, the vectors are clustered
into some sets, which means the corresponding contents are
clustered into some GTs.

Timestamp

Content ID

User ID

History Traces
Embedding

Clustering
AlgorithmVideo Vectors

[a1,a2...]

[b1,b2...]

[c1,c2...]

[d1,d2...]

Clustering Process

GT_ A

GT_ B

GT_ C

Fig. 7. Contents clustering process.

Content Embedding. The critical step of clustering is to
capture the underlying pattern of the history requests. To
this end, we use the embedding technology [25] to get the
vector for every content [26]. The embedding technology
utilizes a neural embedding algorithm to conduct collabora-
tive filtering [27].

This content embedding process only requires user ID,
content ID, and timestamp as input features since it uses col-
laborative filtering to get the implicit relationship between
contents. This facilitates the adaptability of MagNet.

Furthest Clustering Algorithm (FCA). Clustering the
vectors generated by the embedding layer is essential, as
clustering algorithms generate different GTs and then affect
the content guidance. Under the assumption 5 that popular
contents are divided into the same GT, the popular contents
tend to compete for the limited caching capacity, causing
excessive requests guided to a small number of edges,
which results in unbalanced workloads. To avoid intra-GT
competition, the FCA is proposed. The FCA makes vectors
that are far apart from each other clustered in the same GT.
This means that contents of the same GT are less likely to
be requested consecutively. Because the distance between
two vectors is inversely proportional to the probability of
the two contents being requested consecutively, reducing
the probability is equivalent to maximizing the distance
between the same-GT vectors. The process of the FCA can
be described by Algorithm 1, where NGT is the Number of
GT.

5. We design another clustering algorithm with this assumption in
Section 5.3.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3336955

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on December 27,2023 at 06:35:14 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON MOBILE COMPUTING 7

Algorithm 1. Furthest Clustering Algorithm

Input: vectors of contents, NGT
Output: GTs

Initialize: GTs← [] [], i← 0
1: while |vectors| ≠ 0 do
2: for j = 0 to NGT do
3: v ← GetMaxDistanceV ector (vectors,GTs [j])
4: GTs [j] [i++]← v
5: Remove (vectors, v)
6: end for
7: end while
8: return GTs

GT C (5 MB)

RequestUserOverloaded

Edge

Idle
Edge

Normal
Edge

GT D (35 MB)
GT A (20 MB)

GT F (30 MB)

GT D (30 MB)
GT A (35 MB)

GT F (25 MB)
GT D (25 MB)
GT A (25 MB)

GT F (30 MB)

GT C (15 MB)

GT H (10 MB) GT B (10 MB)
GT E (5 MB)

(a) Without ACC.

GT C (20 MB)

request
(GT=A)

GT A (80MB)

GT D (90MB)

GT H (10MB)

request
(GT=D)

GT F (85 MB)

GT B (10 MB)

GT E (5MB)

request
(GT=F)

request
(GT=A)

Request Edge-Edge Link
Edge User

(b) With ACC.

Fig. 8. Automatic Content Congregating (ACC).

4.1.2 Guide Requests By GT
With the assistance of the Edge Candidate Table (ECT),
when a request misses at the home edge, the user can receive
a suggestion of edges to try next based on the request’s GT.
Among numerous neighbor edges, they are considered to
have the highest potential for fulfilling the user’s request.

This process leads to an interesting phenomenon. Ini-
tially, when requests for a particular GT frequently appear
in an area, the edge accumulates more contents of this
GT compared to other GTs. Consequently, a dominant GT
(DGT) gradually emerges within this edge, occupying a
relatively large portion of the total cache capacity. The edge
with this DGT becomes the primary consideration when
recommending requests for the corresponding GT at the
neighbor edges. In return, more requests of this GT are
directed to the edge, further increasing the cached size of
this DGT and establishing the edge’s unique advantage.
Eventually, each edge accumulates contents that are specific
to its DGT and attracts requests of that GT like a magnet.
This virtuous cycle between user requests and the size of
DGT leads to a high hit ratio.

4.1.3 ECT Update Algorithm
In addition to establishing competitive hit advantages, it is
also essential to spreading these advantages among neigh-
bor edges. This enables each edge to perceive the dominant
GTs of its neighbors. The ECT plays a necessary role in
disseminating these hit advantages and is kept updated by
exchanging CSTs with neighbor edges. It’s crucial to choose
the appropriate cooperative scope, which is controlled by

Algorithm 2. ECT Update Algorithm

Input: CSTs from neighbors, ECT , k
Output: ECT

1: for each GT in ECT do
2: Initialize ECT [GT].NEQ and ECT [GT].sizeQ as

min-priority queues
3: end for
4: for each CST in CSTs do
5: for each entry in CST do
6: if entry.size > ECT [entry.GT].sizeQ.top() or

ECT [entry.GT].sizeQ.size() < k then
7: ECT [entry.GT].NEQ.push(CST.edge)
8: ECT [entry.GT].sizeQ.push(entry.size)
9: if ECT [entry.GT].NEQ.size() > k then

10: ECT [entry.GT].NEQ.pop()
11: ECT [entry.GT].sizeQ.pop()
12: end if
13: end if
14: end for
15: end for

the Number of Exchanging Neighbors (NEN). A scope that
is too narrow can lead to a low hit ratio, as demonstrated
in Section 2.1, while an excessively broad scope may result
in heavy traffic between edges. The impact of NEN on the
performance of MagNet is discussed in Section 5.3.

At each ECT Updating Period (EUP), an edge fetches
its neighbors’ CSTs and updates its own ECT according to
Algorithm 2. During this update process, for each GT, the
Top-k NEs that have the greatest cached GT size are selected.
By utilizing the GT and a well-maintained ECT, requests
can be efficiently directed toward the edges that have great
potential to yield a hit.

4.1.4 Quick Cache

To further accelerate the formation of DGT and unleash
the virtuous circle, we propose the incorporation of the
Quick Cache within the ACC mechanism. The Quick Cache
comprises two essential components (see Figure 10): Hot
Content Prefetch (HCP) and Access Rule (AR).

Hot Content Prefetch (HCP). Instead of merely caching
the requested content passively, HCP proactively caches
content that is likely to be popular. As illustrated in Algo-
rithm 3, taking GT-A as an example, each edge examines the
cached size of its largest GT periodically. If GT-A occupies
more than a certain proportion (e.g., 10%) of the edge’s
total cache capacity, it is deemed as having the potential
to become the DGT. This also indicates that the content
associated with GT-A is likely trending or in high demand
within the edge’s coverage area. At this point, the HCP is
executed in two phases on the edge. First, HCP actively
purges the cache of less popular content. Specifically, the
edge actively removes the cached content of several GTs
with the smallest proportion, each occupying less than 3%
of the total cache capacity. As analyzed later in Figure 9, the
majority of requests for such content are unlikely to recur.
This implies that caching these contents does not contribute

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3336955

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on December 27,2023 at 06:35:14 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON MOBILE COMPUTING 8

101 103 105

Rank

100

101

102

103

104

Fr
eq

ue
nc

y

Requests for
 New Content
Requests for
 Old Content

Fig. 9. Long-tail distribution
of requests in Dataset1.

Fig. 10. HCP and AR in the
Quick Cache.

to the overall hit rate but instead occupies valuable cache
space. Subsequently, with the freed cache space, the edge
fetches and locally caches the content of GT-A from the
cloud, populating the cache with trending content in place
of the evicted unpopular content. Within the MagNet frame-
work, HCP identifies trending content according to the
cache size of GTs and then expands the size of the biggest
GT. In this way, HCP ensures the relevance of the prefetched
content (within the same GT), meanwhile accelerating the
formation of the DGT. By leveraging the strengths of the
ACC mechanism, it further attracts similar user requests,
thereby boosting the hit ratio.

Access Rule (AR). As depicted in Figure 9, we first con-
duct an analysis of the occurrence frequency of user requests
in Dataset1. The x-axis represents the logarithmic rank of
requests and the y-axis shows the logarithmic frequency
of these requests. This log-log diagram indicates a distinct
long-tail distribution of the request occurrence frequency. In
this diagram, “new content” refers to content that has never
been requested in the past week, possibly fresh content
emerging on the Internet. Conversely, “old content” per-
tains to content that has been previously requested, likely
denoting content that has been available online for some
time and has garnered a certain degree of popularity. The
analytical findings from Figure 9 reveal that 61% of requests
for new content only occur once, while 13% of requests for
old content will not appear for the second time. This can be
explained by the fact that users might casually browse fresh
content, while classic content is more likely to be revisited
multiple times.

However, conventional cache replacement strategies,
such as LRU and LFU, would overlook these differences.
As a result, these strategies might inadvertently allocate
precious cache space to less popular content, consequently
diluting the cached size advantage of the DGT. To solve
this issue, we formulate the Access Rule (AR) to selectively
choose which content to locally cache beyond cache replace-
ment strategies. To ensure that AR will not disrupt the
edge’s caching function, its execution is bifurcated based
on the progression of DGT formation. Initially, when DGT
has yet not formed in the edge, AR specifies that the edge
caches new content only after its request appears twice on
the same day. However, once DGT is formed in the edge,

Algorithm 3. Hot Content Prefetch Algorithm

Input: edge, ClearNumber
1: while Every two minutes do
2: GT A← edge.GetLargestGT ()
3: if GT A.size > 0.1 ∗ edge.Capacity then
4: leastGTs← edge.GetLeastGTs(ClearNumber)
5: for each GT in leastGTs do
6: if GT.size < 0.03 ∗ edge.Capacity then
7: edge.EvictCache(GT)
8: end if
9: end for

10: end if
11: SpareSize← edge.Capacity − edge.CacheSize
12: edge.FetchfromCloud(GT A, SpareSize)
13: end while

to safeguard the DGT cache from being compromised, AR
specifies that the edge does not cache any content upon its
first appearance. Thus, HCP effectively precludes content
that appears only once from occupying limited cache space,
thereby fostering the formation of the scale of DGT.

4.2 Mutual Assistance Group (MAG)

E2

E1

GT Size

GT1 s1

GTn sn
Cache Summary Table

... ...

GT Size

GT1 c1

GTn cn
Cache Summary Table

... ...

RequestUser
Idel

Edge
Overloaded

Edge

(a) Without MAG.

worker

master

GT Size

GT1 s1+ c1

GTn 0
Cache Summary Table

... 0E1

E2 GT Size

GT1 0

GTn 0
Cache Summary Table

... ...MAG

Normal

Edge

RequestUser Edge-Edge
Link

(b) With MAG.

Fig. 11. Mutual Assistance Group (MAG).

Balanced workloads facilitate a stable and robust sys-
tem. However, user requests are unevenly distributed both
timely and spatially as previously analyzed in Section 2.2.
This causes different workloads on different edges, which
may eventually lead to some of them being overloaded
while others may be idle, as illustrated in Figure 11a. This
situation causes a waste of resources and degraded QoE. In
order to address this problem, MagNet designs the Mutual
Assistance Group (MAG). MAG consists of two stages to
allocate appropriate workloads to different edges according
to their capacities.

In Stage 1, each OE tries to find some IEs for assistance
in its neighbor edges and form a temporary MAG according
to Algorithm 4. A MAG runs in a master-worker mode
where the original OE is the master that records all the
caching information of all the workers. Workers in the MAG
help to handle requests together according to their different
capacities. IEs are added to a MAG one by one until the

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3336955

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on December 27,2023 at 06:35:14 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON MOBILE COMPUTING 9

Algorithm 4. MAG Running Procedure

Input: edge, workload
1: while Every two minutes do
2: edge.status← UpdateStatus(edge, workload)
3: if Stage == 1 then
4: if edge.status == OE then
5: while edge.status ̸= NE and ExistNeighbor(IE)

do
6: ie← FindIE() in edge.neighbors
7: JoinMAG(ie)
8: UpdateMAG()
9: end while

10: if edge.status == OE then
11: Stage← 2
12: end if
13: else if edge.status == IE then
14: while edge.status ̸= NE and edge.workers ̸=

null do
15: ReleaseWorker()
16: UpdateMAG()
17: end while
18: end if
19: else if Stage == 2 then
20: GT, size←MAG.GetCachedGTSize()
21: V isibleSize← UpdateVisibleSize(size, edge)
22: UpdateCST(GT, V isibleSize)
23: end if
24: end while

original OE of the MAG becomes an NE, or there is no IE
left around its neighboring scope. The MAG appears as a
whole to the outside, as if all contents are cached in the
master edge while the workers have none. As illustrated in
Figure 11b, the master’s Cache Summary Table (CST) shows
it contains all the contents of the MAG, while the worker’s
CST shows it contains nothing. Therefore, the neighbors and
users do not even know it is a MAG, which helps maintain
the system’s consistency. As a result, the master attracts all
feasible requests and then distributes them to the workers.
To avoid a MAG occupying too much caching capacity to
become a ”CDN”, each MAG is restricted to cache one GT
content. The workers in a MAG will be released once the
master becomes an IE.

Considering latency and bandwidth factors, during
Stage 1, the formation of MAG is restricted to seeking IEs
within the neighboring scope of the OE as workers. How-
ever, considering dynamic request distribution, there might
be situations where no IEs are available to assist within
the neighboring area of an OE. This leaves the overloaded
situation unresolved, which leads to the initiation of Stage 2
of the MAG mechanism.

In Stage 2, MAG’s objective is to alleviate overload
pressure by reducing the number of requests it attracts. This
challenge stems from the ACC mechanism within MagNet,
which guides user requests to optimal edges based on GT
size. As a result, edges with larger caches for a particular GT
naturally tend to draw more requests. To mitigate this, MAG
strategically decreases the visible cached size of the GT

Algorithm 5. Visible Size Updating Algorithm

Input: RealSize, status, discount
Output: V isibleSize

1: Initialize discount as 1
2: if status is OE then
3: size← GetMidValue(0, RealSize ∗ discount)
4: else
5: size← GetMidValue(RealSize∗discount,RealSize)
6: end if
7: discount← size/RealSize
8: if discount ≥ 0.9 then
9: V isibleSize← RealSize

10: Stage← 1
11: else
12: V isibleSize← size
13: end if
14: return V isibleSize

within the group. This adjustment in cached visibility results
in fewer incoming requests, thereby easing the workload.
Specifically, the master edge determines the visible cached
size to be showcased to other edges during CST exchanges
according to Algorithm 5. Drawing inspiration from the bi-
nary search concept [28], if the current master edge remains
overloaded, the visible cached size is consistently set at half
of the actual cached size. If the master edge is no longer
overloaded, the visible cached size is re-calibrated to the
median of the previous round’s visible size and the current
actual size. Once the visible cached size recovers to more
than 90% of the actual cached size, it is believed that the
overloaded situation has been substantially alleviated. MAG
then exits Stage 2 and resumes the process in Stage 1.

5 EVALUATION

In this section, we first conduct experiments on the real
dataset to evaluate the performance of MagNet. The re-
sults show MagNet’s superiority in terms of the hit ratio
and workload balance over the classical, learning-based,
and cooperative edge caching solutions. Then we conduct
experiments to analyze several components in MagNet.

5.1 Methodology
Dataset. Throughout this section, we use Dataset1 described
in Table 1 as the data set of the experiments. For Dataset1,
each request contains a user ID, timestamp, latitude, longi-
tude, and content ID, which identify when and where the
user requested which specific content. We divide Dataset1
into two parts: 1) data from the first 12 days, which is used
for training and analyzing purposes, and 2) data from the
last day, which is used for testing and evaluation purposes.

Testbed. Since the spatial area of Dataset1, i.e., the whole
Beijing city, is too big for experiment purposes, we choose
a 20KM × 20KM target area in Beijing with 400 edges
deployed. Since files can be divided into units of the same
size in caching environment, we assume all contents have
the same unit size. Each edge is set to have the same caching
capacity to cache 135 files by default. NEN is set to be a

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3336955

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on December 27,2023 at 06:35:14 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON MOBILE COMPUTING 10

0 5 10 15 20
Hours in One Day

0.3
0.4
0.5
0.6
0.7
0.8

Hi
t R

at
io

LRU
ARC
LeCar
CacheUs
CCSP-0
CCSP-1
CCSP-2
CCSP-3
MagNet

(a) Hit ratio performance.

0 5 10 15 20
Hours in One Day

0
25
50
75

100
125
150
175
200

W
SD

ARC
CCSP
MagNet

(b) Workloads’ standard deviation.

0 5 10 15 20
Hours in One Day

200
400
600
800

1000
1200

M
AX

RN ARC
CCSP
MagNet

(c) Max requests’ number.

0 5 10 15 20
Hours in One Day

0
20
40
60
80

100
120

M
IN

RN

ARC
CCSP
MagNet

(d) Min requests’ number.

Fig. 12. Performance in one whole day.

0.0 0.5 1.0 1.5 2.0
Edge Density (edges/km2)

0.3
0.4
0.5
0.6
0.7
0.8

Hi
t R

at
io

LRU
ARC
LeCar
CacheUs
CCSP-0
CCSP-1
CCSP-2
CCSP-3
MagNet

(a) Hit ratio performance.

0.0 0.5 1.0 1.5 2.0
Edge Density (edges/km2)

10
12
14
16
18
20
22
24
26

W
SD

ARC
CCSP
MagNet

(b) Workloads’ standard deviation.

0.0 0.5 1.0 1.5 2.0
Edge Density (edges/km2)

10k

30k

50k

70k

90k

M
AX

RN

ARC
CCSP
MagNet

(c) Max requests’ number.

0.0 0.5 1.0 1.5 2.0
Edge Density (edges/km2)

0

4k

8k

12k

16k

M
IN

RN

ARC
CCSP
MagNet

(d) Min requests’ number.

Fig. 13. Performance under different edge densities.

default value of 154, which is the number of edges in a 7KM-
radius circle. We set EUP as 6 minutes by default to maintain
the balance between the timeliness and traffic overhead. We
set the Number of GT (NGT) as 621. We use Java [29] to
implement MagNet with object-oriented programming [30].
It runs on a computer with one GeForce GTX 1660 TI GPU,
one Intel i7-9700 CPU and 16GB memory. Additionally, we
build a multi-edge caching experiment platform. It accepts
a prepared dataset to simulate parallel sending requests to
edges. It can measure edges’ hit ratios and workloads. In
the experiments, we use Dataset1 and set 400 edges in the
platform.

Baseline Solutions. To evaluate the MagNet perfor-
mance, classical, ML-based and cooperative solutions are
used for comparison.

• ARC [31]. It is a self-tuning and low-overhead
caching solution. It combines the advantages of LRU
and LFU, which enables it to be flexibly adjusted in
different scenarios.

• LeCaR [32]. It is a caching framework that uses
reinforcement learning and regrets minimization to
adjust the usage of LRU and LFU dynamically.

• CACHEUS [33]. It is an adaptive caching algorithm
which uses online reinforcement learning to take ad-
vantage of some state-of-the-art caching algorithms,
including ARC, SR-LRU, CR-LRU [31] and LIRS [34].

• CCSP [35]. It is a cooperative caching scheme. It
chooses some central nodes which retrieve caching
summaries from their neighbors and provide caching
information for other normal nodes. Each request in
it can try four edges at most.

Evaluation Metrics.

• Hit ratio: is calculated by dividing the total number
of hits by the total number of requests.

• Workload SD: WSD is calculated according to Eq.(8)
to observe the workload balance of the system.

• Max Requests’ Number of A Single Edge (MAXRN):
the maximum served requests’ number of one edge
in the 400 edges.

• Min Requests’ Number of A Single Edge (MINRN):
the minimum served requests’ number of one edge
in the 400 edges.

Since the same edge in different non-cooperative solutions
receives the same amount of requests, we use the ARC
solution as a representative in WSD, MAXRN, as well as
MINRN.

5.2 Overall Performance

We conduct experiments from three different perspectives
to evaluate the overall performance of MagNet.

Performance in One Whole Day. In this case, we use the
default standard setups. In Figure 12a, we find MagNet has
a significantly higher hit ratio than the others, exceeding
75% in the most time of one day. In Figure 12a, CCSP-0
represents CCSP where each request can try only its home
edge; CCSP-1, CCSP-2 and CCSP-3 represent CCSPs where
each request can try at most one, two and three more edges,
respectively, except its home edge. Compared with CCSP,
MagNet enjoys about a 20% higher hit ratio than the CCSP-
3. This outstanding hit ratio performance is because the
ACC helps guide requests to their optimal edges. Figure 12b
shows the WSD of each hour, where MagNet has lower WSD
than others in most hours, especially in the request-intensive
hours (13:00 to 24:00, as shown in Figure 4), meaning it has
the most balanced workload. Figure 12c and Figure 12d in-
dicate that no edge is under excessive pressure and MagNet
utilizes edges efficiently. This case proves that MagNet has

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3336955

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on December 27,2023 at 06:35:14 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON MOBILE COMPUTING 11

a higher hit ratio and a more balanced workload than others
in most time of one day.

Different Edge Densities. Next, we investigate the
impact of different edge densities on the performance of
MagNet. In this 20KM × 20KM target area, we set the
number of edges from 4 to 900. As indicated in Figure 13a,
the hit ratio decreases as the edge number increases for all
caching solutions. Because as the density increases, requests
are served by more edges and then the hit ratio decreases,
which is consistent with the result from the data analyses
in Section 2.1. The hit ratios of all non-cooperative solutions
decrease drastically by about 35%. The CCSP solution has a
better hit ratio performance than non-cooperative solutions,
but its hit ratio still decreases significantly by 25%. In
contrast to other solutions, MagNet achieves an excellent
hit ratio result, which only decreases less than 5%. Figure
13b , 13c and 13d show that the workload balance of all
solutions is better as the edge density increases, while the
edges’ workloads are reduced. Moreover, MagNet has the
best workload balance performance than the others from
all three metrics. This case proves that MagNet has an
outstanding hit ratio performance and prominent workload
balance in various edge-density areas.

Different Capacities’ Standard Deviation. In this case,
we set the 400 edges with different caching capacities. In
real-world scenarios, the capacities of different devices are
generally different, which challenges the adaptability and
flexibility of the solution. We use the capacities’ standard
deviation (SD) to control the capacities’ difference degree. In
Figure 14a, with the increase of capacities’ SD, the MagNet’s
hit ratio steadily remains at a high level, while the hit ratios
of the other solutions show a significant downward trend.
Figure 14b reveals that MagNet achieves a more balanced
workload. In this case, the WSD values are quite prominent
because the WSD considers the differences of capacities in
Eq.(8). This case proves that MagNet is more flexible and
adaptable under the environment of heterogeneous edges’
capacities.

50 150 250 350
Capacities' SD

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Hi
t R

at
io

LRU
ARC
LeCar
CacheUs
CCSP-0
CCSP-1
CCSP-2
CCSP-3
MagNet

(a) Hit ratio performance.

50 150 250 350
Capacities' SD

0
200
400
600
800

1000
1200
1400

W
SD

ARC
CCSP
MagNet

(b) Workloads’ standard deviation.

Fig. 14: Different capacities’ standard deviation.

Quantitative Analyses of System Overhead. Finally,
we analyze MagNet’s overhead and compare it with other
solutions. As a cooperative edge caching solution, Mag-
Net requires periodic information exchange between edges,
generating measurable overhead. In our experiments, each
edge communicates with 154 NEs to exchange CSTs every
six minutes. The CST, recording types and sizes of GTs
cached at each edge (up to 135 types), incurs a maximum
overhead of approximately 3.69kbps per edge. This is sig-
nificantly lower than other cooperative caching solutions.

For instance, in DIMA [36], each edge’s DRL agent network
parameters are exchanged among all edges in each time
slot. Considering the network architecture, transmitting one
network parameter per edge is estimated to require at least
257kbps, based on a hidden layer with 128 neurons. In
another example, [37] reports that each edge must exchange
a tuple of observation, action, and reward space data for
DRL agents in each time slot. This includes extensive data
volumes such as requested multimedia content, delivery
deadline, and content priority. The overhead for this ex-
change far exceeds that of MagNet. Additionally, MagNet’s
information exchange is confined to a limited neighboring
area, thus not burdening the backbone network. Given the
significant performance benefits due to edge cooperation,
MagNet’s overhead is deemed acceptable.

5.3 Components Analysis Study
5.3.1 Comparative Analysis of Clustering Algorithm
In MagNet, we design the FCA to do content clustering. The
clustering is the crucial step of the ACC. To find a better
way, we also design two other clustering algorithms: The
Huffman-based algorithm and the KMeans-based clustering
algorithm.

13

7

4

2

1 1

2

1 1

3

2 1

6

3 3

a b

c d

e f g h

(a) Huffman Coding.

4

2

1 1

2

1 1

3

2 1

3 3

a b

c d

e f g h

GT_A GT_B GT_C GT_D

NGT = 4

(b) Clustering-HF.

Fig. 15. Content clustering inspired by Huffman Coding.

MagNet-HF. The MagNet-HF stands for the MagNet
Framework with the Huffman-Based clustering algorithm,
which is inspired by the Huffman coding. Huffman coding
assigns shorter codes for more frequent words and longer
codes for less frequent words. In MagNet-HF, we give more
resources and attention to the more frequent contents and
vice versa (as indicated in Figure 15). The clustering process
is treated as the combining process of the Huffman coding,
which stops until the number of combined trees equals the
NGT. Then, the contents in one tree are divided into one GT,
making the GTs have different numbers of contents. This
algorithm can protect the popular contents from being re-
placed due to intra-GT competition. The difference between
the Huffman-based clustering algorithm and the FCA is that
the former enforces each GT to have the same frequency,
while the latter focuses more on the sequence of requests
and tries to avoid the sequential requests requesting con-
tents in the same GT.

MagNet-KMN. The MagNet-KMN stands for the Mag-
Net Framework with the K-means based clustering algo-
rithm. In Section 4.1.1, the FCA is designed to disperse the
contents of consequential requests. From another perspec-
tive, clustering the contents of consequential requests into
one GT can make consequential requests to be guided to
the same edge. For this reason, the K-means algorithm [38]

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3336955

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on December 27,2023 at 06:35:14 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON MOBILE COMPUTING 12

is used to cluster closer vectors into one GT. We use the
KMeans approach from sklearn python package [39] to do
the clustering.

Hit Ratio Comparison. First, to observe the impact of
NEN, we compare the MagNet-KMN, the MagNet-HF and
the default MagNet on the hit ratio. In Figure 16a, it can
be found that as NEN increases, the hit ratio increases
significantly at the beginning and then stays at a stable
level. For different NEN, the neighboring scope of an edge
is different. More importantly, when NEN is large enough,
same-GT requests within a 7KM radius can be aggregated
into one edge, which is the necessary condition for a high
hit ratio, as revealed in Section 2.1.

(a) Hit ratio under different nei-
ghboring scopes.

(b) Hit ratio under different edge
cache capacities.

Fig. 16. Hit ratio performance.

The stationary point of NEN happens at around 154,
which is also consistent with NEN calculated based on
a 7KM radius circle and 1 edge/KM2 density. Second,
we analyze three MagNet framework based approaches
on the different caching capacities. When caching capacity
increases, three approaches’ hit ratios all go up. The hit
ratio difference between the MagNet-KMN and MagNet is
not significant, while the MagNet-HF has about 5% lower
hit ratio than them. This is because the MagNet-HF only
focuses on the balance of GTs’ requests.

10 12 14 16 18 20 22
Time

10
12
14
16
18
20
22

W
SD

MagNet-HF
MagNet-KMN

MagNet

(a) Workloads’ standard dev-
iation in high pressure time.

10 12 14 16 18 20 22
Time

200

250

300

350

400

M
AX

RN

MagNet-HF
MagNet-KMN

MagNet

(b) Max request number of one
edge in high pressure time.

Fig. 17. Workload compare in high pressure time.

Workload Comparison. Figure 17 shows the WSD and
the Max Requests’ Number of A Single Edge (MAXRN)
in high-pressure time, from 10:00 to 24:00, for the three
algorithms. It shows that the MagNet-KMN has a higher
WSD and MAXRN than the other two, which means it
performs the worst in terms of workload balance. Because
the MagNet-KMN clusters consequential contents in one
GT, which can enhance the locality effects and improve the
hit ratio. However, the popular contents in one GT may

attract excessive requests, which makes the workload unbal-
anced. The MagNet-HF has a lower MAXRN than the other
two because it balances the requests’ number of each GT.
On the whole, MagNet has excellent performance on both
the hit ratio and the workload balance as it disperses the
consequential requests to avoid the intra-GT competition.

5.3.2 Ablative Analysis of Quick Cache

0 5 10 15 20
Hours in One Day

0
5

10
15
20
25
30

Nu
m

be
r o

f D
GT

w/o HCP+AR
MagNet

w/o AR

(a) Formation of DGT number.

0 5 10 15 20
Hours in One Day

0%
20%
40%
60%
80%

100%

Si
ze

 o
f M

ax
 D

GT

w/o HCP+AR
MagNet

w/o AR

(b) Formation of max DGT size.

Fig. 18. DGT formation in one whole day.

To accelerate the formation of the Dominant Guidance
Type (DGT), we introduce the Quick Cache within the ACC
framework. Here we conduct experimental ablation to vali-
date the contribution of the Quick Cache on DGT formation.
As shown in Figure 18, we compare MagNet without Hot
Contents Prefetch (HCP), MagNet without both HCP and
Access Rule (AR), and the complete MagNet system in terms
of DGT formation. We assess the formation of DGT from
two perspectives: the number of DGT formed in the system
and the cache proportion of the DGT with the biggest cache
size. Here DGT is defined as GT that occupies more than
20% of the edge’s cache capacity. As demonstrated in Figure
18b, the Quick Cache plays an essential role in rapidly
increasing the number of DGT and maintaining them at
a consistently high level. Besides, Figure 18b indicates the
substantial effect of the Quick Cache on expanding the scale
of DGT, with the largest DGT almost occupying the entire
cache space. In summary, the results from the above ablation
experiments provide compelling evidence that the Quick
Cache effectively accelerates DGT formation in MagNet.

5.3.3 Parameter Variation Analysis of Top-k NEs
As illustrated in Section 3.2, in MagNet, if users’ requests
don’t hit in home edges, users are recommended to route
their requests to the Top-k Neighbor Edges (NEs). To further
investigate the optimal k value that can achieve the best
system overall performance, here we conduct experiments
to compare both hit ratio and latency performance under
different k parameter values.

Hit Ratio Comparison. As shown in Figure 19a, we first
analyze the impact of different k values on the hit ratio.
When the value of K is 0, the hit ratio is significantly low,
around 40%. And there is a substantial gap in the hit ratio
between the k value being 0 and 1. When the k value exceeds
1, the hit ratio gradually increases with k increasing, and
the rate of increase tends to plateau. In addition to setting
the value of NEN at 154, we also investigate the impact
of k values on hit ratio when NEN is set to 100 and 200
respectively.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3336955

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on December 27,2023 at 06:35:14 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON MOBILE COMPUTING 13

0 1 2 3 4 5 6
Values of K

0.4

0.5

0.6

0.7

0.8
Hi

t R
at

io

NEN = 154
NEN = 100
NEN = 200

(a) Hit ratio performance.

1 2 3 4 5 6
Values of K

2
4
6
8

10
12
14

La
te

nc
y

Latency-HE
Latency-NE
Latency-Cloud

(b) Latency performance.

Fig. 19. Performance under different k values.

Latency Comparison. Next, we analyze the impact of
different k values on the latency. As mentioned in Section
3.1, the total latency consists of three parts: latency from
the user to the home edge (Latency-HE), latency during the
user’s traversal of Top-k NEs (Latency-NE), and latency to
fetch content from the cloud (Latency-Cloud). The latency
between any two nodes is directly proportional to the dis-
tance between them. To better analyze the influence of k
values on the latency, we compare the variations in latency
from different parts under different k values. As shown in
Figure 19b, as the k value increases, Latency-HE remains
unaffected, while Latency-NE continuously increases, due
to traversing more neighboring edges. However, Latency-
Cloud (assuming 100km distance between users and the
cloud) gradually decreases as the k value increases. This
phenomenon occurs because the improvement in the hit
ratio enables users’ requests to be fulfilled from nearby edge
nodes, rather than retrieving content from distant clouds.

1 2 3 4 5 6
Values of K

18

19

20

21

22

La
te

nc
y

Total Latency

(a) Cloud distance: 50KM.

1 2 3 4 5 6
Values of K

29

30

31

32

La
te

nc
y

Total Latency

(b) Cloud distance: 100KM.

1 2 3 4 5 6
Values of K

50
52
54
56
58

La
te

nc
y

Total Latency

(c) Cloud distance: 200KM.

1 2 3 4 5 6
Values of K

71

75

79

83

La
te

nc
y

Total Latency

(d) Cloud distance: 300KM.

Fig. 20. Latency performance under different k values.

Considering that the two components of total latency
exhibit opposite trends as the k value changes, we further
investigate the impact of the k value on latency performance
under different distances between the cloud and users (see
Figure 20). We observe that as the cloud distance increases,

the optimal k value (considering only from the latency
perspective) also gradually increases. For example, when
the cloud distance is 100KM, the total latency is lowest
under Top-3 NEs, whereas when the cloud distance is
300KM, the total latency is lowest under Top-5 NEs. A
greater distance to the cloud implies a higher time cost of
fetching the content from the cloud if the edges fail to satisfy
the requests. Thus, improving the hit ratio will lead to a
larger compensatory latency performance. Therefore, when
dealing with scenarios with long distances to the cloud,
traversing more edges and improving the hit ratio would
be a better choice.

6 RELATED WORK

6.1 Hit Ratio Improving

In recent years, some caching solutions have been proposed
to improve the hit ratio. The Least Recently Used (LRU) [22]
and the Least Frequently Used (LFU) [24] are widely used in
the industry. Considering the temporal locality of requests,
the LRU selects the least recently used items for eviction.
While the LFU considers items with the least frequency
as the first candidate for eviction. In addition, there are
advanced algorithms such as Adaptive Replacement Cache
(ARC) [31] and CLOCK with Adaptive Replacement (CAR)
[40]. These algorithms aim to combine the advantages of
both LRU and LFU. The ARC employs a self-tuning algo-
rithm that learns and adapts to the workload, while the
CAR is based on the clock replacement policy, providing
a simpler yet equally effective alternative to ARC. How-
ever, these above classical caching solutions are based on
assumptions regarding static request patterns, such as the
frequency and recency. These solutions are only expected to
be optimal under limited circumstances and are difficult to
adapt to highly dynamic requests.

With the rapid development of Machine Learning (ML),
some ML-based caching solutions have been proposed to
address the dynamic challenge. The LeCaR [32] utilizes
reinforcement online learning with regret minimization to
learn the patterns in the workload and adapt the cache
replacement strategy accordingly. The CacheUs [33] intro-
duces four workload primitive types. Inspired by LeCaR, it
also uses ML to identify which eviction strategy is currently
suitable based on these workload primitive types. The Cock-
tail [41] utilizes an ensemble method to deal with the highly
dynamic workloads and caching configurations. A Deep Re-
inforcement Learning (DRL) agent is trained to adaptively
select the best constituent caching policy based on their
merits. The CACA [42] combines the video category and
the author’s information of a video to predict the video’s
popularity, but it is restricted in the environment with video
category and author attributes. In [43], a dynamic online
learning method is proposed to solve the non-stationary
caching problem. Their method is proved to achieve nearly
optimal by a proposed online optimization framework.
These solutions leverage the characteristics of requests to
select appropriate cache admission and cache replacement
strategies, thereby improving the hit ratio of individual
nodes. However, compared with the CDN, the edge has
limited caching and computational capacities, which brings

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3336955

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on December 27,2023 at 06:35:14 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON MOBILE COMPUTING 14

new challenges to improve the performance of the edge
caching system.

Some cooperative caching solutions have been proposed
to promote the hit ratio by edges’ cooperation. The CCSP
[35] elects representative edges for small areas. These repre-
sentative edges summarize the cache information of at most
four neighbor edges in the area. Hence, The CCSP allows
requests to reach all cached contents in the neighboring area
with the help of the representative edge. The DIMA [44]
models the cooperative caching problem as a Markov deci-
sion process (MDP) and proposes a DRL solution. Caching
and replacement decisions in edges are made through a
distributed double dueling deep Q-network (D3QN). The
MacoCache [45] proposes a multi-agent deep reinforcement
learning (MADRL) based solution. Independent Q-learning
(IQL) is used in each agent to learn its own best policy
and other agents are considered as part of the environment.
Meanwhile, the Long Short Term Memory network (LSTM)
is integrated for time series dynamics and diversities. In
[37], the cooperative cache replacement problem is mod-
eled as a Partially Observable Markov Decision Process
(POMDP) and solved also by MADRL. A Multi-Agent Re-
current Deep Deterministic Policy Gradient (MARDDPG)
algorithm is proposed to decide whether to evict the re-
quested content based on global states. Nevertheless, these
solutions cost enormous computational capacities in edges
which have limited computational capacities.

6.2 Heterogeneous Capacities Utilizing
Some cooperative edge caching solutions have also been
proposed to utilize heterogeneous capacities. As discussed
in Section 2, edges have heterogeneous caching and com-
putational capacities. Therefore, researchers have conducted
studies on how to leverage these heterogeneous capacities.
There are two types of solutions to organize cooperative
edge caching systems: 1) centralized cooperative solutions
[35], [46], [47], [48], which use some central edges to record
and manage the information. In [46], for example, edges
in the system are divided into small clusters. A central
storage device is selected for each cluster and keeps its own
cache data as well as a synchronized database of all other
nodes in this given cluster. These solutions make the central
edge a key and high-pressure part of the system, resulting
in poor robustness. Additionally, synchronizing all edges’
cache information with the central edge becomes intractable
as cache replacements happen frequently. 2) decentralized
cooperative solutions [45], [49], which manage edges in a
distributed way. In [49], the cooperative caching problem is
modeled as a multi-agent multiarmed bandit problem and
Q-learning is used to learn how to coordinate the caching
decisions between different edges. In [45], agents in different
edges can also be joint action learners and learn caching
decisions in conjunction with heterogeneous edges. These
solutions forward requests to many of their neighbors in-
discriminately, which linearly increases edges’ burden with
the increased number of forwarding.

7 CONCLUSION

In this paper, we analyze the challenges of edge caching
solutions and propose a decentralized and cooperative edge

caching system named MagNet. MagNet has two innovative
key mechanisms. The ACC mechanism uses the neural em-
bedding technology and novel clustering algorithm to clus-
ter contents and then guides requests to their optimal edges
to enhance the hit ratio. The MAG mechanism combines
the overloaded edges and the idle edges into temporary
groups to enhance the workload balance. Experiments are
conducted to analyze the contributions of these components
in MagNet. To evaluate the overall performance of MagNet,
we compare it with the classical, ML-based and cooperative
caching solutions from three different perspectives using a
real dataset. The results prove that MagNet significantly
outperforms other solutions in terms of both hit ratio and
workload balance.

8 ACKNOWLEDGMENTS

This work is supported in part by the National Key
R&D Program of China under Grant No. 2022YFB3105000,
the National Natural Science Foundation of China un-
der Grant No. 61972189, and the Shenzhen Key Lab
of Software Defined Networking under Grant No.
ZDSYS2014050917295998. Preliminary results in this paper
are presented at the ACM Web Conference, 2022 [18].

REFERENCES

[1] Sandvine, “The global internet phenomena report. 2023,” 2023.
[Online]. Available: https://www.sandvine.com

[2] Cisco, “Cisco annual internet report (2018–2023)
white paper,” 2020. [Online]. Available:
https://www.cisco.com/c/en/us/solutions/collateral/executive-
perspectives/annual-internet-report/white-paper-c11-
741490.html

[3] L. Van Ma, V. Q. Nguyen, J. Park, and J. Kim, “Nfv-based mobile
edge computing for lowering latency of 4k video streaming,”
in 2018 Tenth International Conference on Ubiquitous and Future
Networks (ICUFN). IEEE, 2018, pp. 670–673.

[4] A. Tang and O. Fakourfar, “Watching 360 videos together,” in Pro-
ceedings of the 2017 CHI Conference on Human Factors in Computing
Systems. ACM, 2017, pp. 4501–4506.

[5] A. Lécuyer, F. Lotte, R. B. Reilly, R. Leeb, M. Hirose, and M. Slater,
“Brain-computer interfaces, virtual reality, and videogames,” Com-
puter, vol. 41, no. 10, pp. 66–72, 2008.

[6] J. Choi, A. S. Reaz, and B. Mukherjee, “A survey of user be-
havior in vod service and bandwidth-saving multicast streaming
schemes,” IEEE Communications Surveys Tutorials, vol. 14, no. 1, pp.
156–169, 2012.

[7] A.-T. Tran, D. S. Lakew, T.-V. Nguyen, V.-D. Tuong, T. P. Truong,
N.-N. Dao, and S. Cho, “Hit ratio and latency optimization for
caching systems: A survey,” in 2021 International Conference on
Information Networking (ICOIN). IEEE, 2021, pp. 577–581.

[8] S. Podlipnig and L. Böszörmenyi, “A survey of web cache replace-
ment strategies,” ACM Comput. Surv., vol. 35, no. 4, p. 374–398,
2003.

[9] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey on
mobile edge computing: The communication perspective,” IEEE
Communications Surveys Tutorials, vol. 19, no. 4, pp. 2322–2358,
2017.

[10] A.-J. Su, D. R. Choffnes, A. Kuzmanovic, and F. E. Bustamante,
“Drafting behind akamai: Inferring network conditions based on
cdn redirections,” IEEE/ACM transactions on networking, vol. 17,
no. 6, pp. 1752–1765, 2009.

[11] C.-F. Lin, M.-C. Leu, C.-W. Chang, and S.-M. Yuan, “The study
and methods for cloud based cdn,” in 2011 International Conference
on Cyber-Enabled Distributed Computing and Knowledge Discovery.
IEEE, 2011, pp. 469–475.

[12] Google, “Google cloud cdn locations,” 2021. [Online]. Available:
https://cloud.google.com/cdn/docs/locations

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3336955

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on December 27,2023 at 06:35:14 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON MOBILE COMPUTING 15

[13] Akamai, “Media delivery network map,” 2021. [Online]. Avail-
able: https://www.akamai.com/visualizations/media-delivery-
network-map

[14] X. Fan, E. Katz-Bassett, and J. Heidemann, “Assessing affinity
between users and cdn sites,” in International Workshop on Traffic
Monitoring and Analysis. Springer, 2015, pp. 95–110.

[15] P. Casas, A. D’Alconzo, P. Fiadino, A. Bär, and A. Finamore, “On
the analysis of qoe-based performance degradation in youtube
traffic,” in 10th International Conference on Network and Service
Management (CNSM) and Workshop. IEEE, 2014, pp. 1–9.

[16] Q.-V. Pham, F. Fang, V. N. Ha, M. J. Piran, M. Le, L. B. Le, W.-J.
Hwang, and Z. Ding, “A survey of multi-access edge computing in
5g and beyond: Fundamentals, technology integration, and state-
of-the-art,” IEEE Access, vol. 8, pp. 116 974–117 017, 2020.

[17] K. Kumaran and E. Sasikala, “Learning based latency minimiza-
tion techniques in mobile edge computing (mec) systems: A
comprehensive survey,” in 2021 International Conference on System,
Computation, Automation and Networking (ICSCAN). IEEE, 2021,
pp. 1–6.

[18] J. Peng, Q. Li, X. Ma, Y. Jiang, Y. Dong, C. Hu, and M. Chen, “Mag-
net: cooperative edge caching by automatic content congregating,”
in Proceedings of the ACM Web Conference 2022, 2022, pp. 3280–3288.

[19] C. Guo, Y. Liu, W. Shen, H. J. Wang, Q. Yu, and Y. Zhang, “Mining
the web and the internet for accurate ip address geolocations,” in
IEEE INFOCOM 2009. IEEE, 2009, pp. 2841–2845.

[20] M. Satyanarayanan, “The emergence of edge computing,” Com-
puter, vol. 50, no. 1, pp. 30–39, 2017.

[21] M. Leconte, G. Paschos, L. Gkatzikis, M. Draief, S. Vassilaras, and
S. Chouvardas, “Placing dynamic content in caches with small
population,” in IEEE INFOCOM 2016. IEEE, 2016, pp. 1–9.

[22] H. Johnson and J. Larson, “Data management for microcomput-
ers,” in 1979 Compcon Fall. IEEE, 1979, pp. 191–192.

[23] K. Shanmugam, N. Golrezaei, A. G. Dimakis, A. F. Molisch, and
G. Caire, “Femtocaching: Wireless content delivery through dis-
tributed caching helpers,” IEEE Transactions on Information Theory,
vol. 59, no. 12, pp. 8402–8413, 2013.

[24] D. Lee, J. Choi, J.-H. Kim, S. H. Noh, S. L. Min, Y. Cho, and C. S.
Kim, “On the existence of a spectrum of policies that subsumes the
least recently used (lru) and least frequently used (lfu) policies,”
in Proceedings of the 1999 ACM SIGMETRICS international conference
on Measurement and modeling of computer systems, 1999, pp. 134–143.

[25] P. Goyal and E. Ferrara, “Graph embedding techniques, applica-
tions, and performance: A survey,” Knowledge-Based Systems, vol.
151, pp. 78–94, 2018.

[26] O. Barkan and N. Koenigstein, “Item2vec: neural item embedding
for collaborative filtering,” in 2016 IEEE 26th International Workshop
on Machine Learning for Signal Processing (MLSP). IEEE, 2016, pp.
1–6.

[27] X. Su and T. M. Khoshgoftaar, “A survey of collaborative filtering
techniques,” Advances in artificial intelligence, vol. 2009, 2009.

[28] A. Lin, “Binary search algorithm,” WikiJournal of Science, vol. 2,
no. 1, pp. 1–13, 2019.

[29] J. Gosling, “The feel of java,” Computer, vol. 30, no. 6, pp. 53–57,
1997.

[30] N. Kobayashi and A. Yonezawa, “Type-theoretic foundations for
concurrent object-oriented programing,” ACM SIGPLAN Notices,
vol. 29, no. 10, pp. 31–45, 1994.

[31] N. Megiddo and D. S. Modha, “Arc: A self-tuning, low overhead
replacement cache,” in Fast, vol. 3, no. 2003. USENIX Association,
2003, pp. 115–130.

[32] G. Vietri, L. V. Rodriguez, W. A. Martinez, S. Lyons, J. Liu,
R. Rangaswami, M. Zhao, and G. Narasimhan, “Driving cache
replacement with ml-based lecar,” in 10th USENIX Workshop on
Hot Topics in Storage and File Systems (HotStorage 18). USENIX
Association, 2018.

[33] L. V. Rodriguez, F. Yusuf, S. Lyons, E. Paz, R. Rangaswami,
J. Liu, M. Zhao, and G. Narasimhan, “Learning cache replacement
with CACHEUS,” in 19th USENIX Conference on File and Storage
Technologies (FAST 21). USENIX Association, Feb. 2021, pp. 341–
354.

[34] S. Jiang and X. Zhang, “Lirs: An efficient low inter-reference
recency set replacement policy to improve buffer cache perfor-
mance,” ACM SIGMETRICS Performance Evaluation Review, vol. 30,
no. 1, pp. 31–42, 2002.

[35] A. Larbi, L. Bouallouche-Medjkoune, and D. Aissani, “Improving
cache effectiveness based on cooperative cache management in

manets,” Wireless Personal Communications, vol. 98, no. 3, pp. 2497–
2519, 2018.

[36] H. Tian, X. Xu, T. Lin, Y. Cheng, C. Qian, L. Ren, and M. Bilal,
“Dima: Distributed cooperative microservice caching for internet
of things in edge computing by deep reinforcement learning,”
World Wide Web, vol. 25, no. 5, pp. 1769–1792, 2022.

[37] M. K. Somesula, R. R. Rout, and D. V. Somayajulu, “Coopera-
tive cache update using multi-agent recurrent deep reinforcement
learning for mobile edge networks,” Computer Networks, vol. 209,
p. 108876, 2022.

[38] K. Krishna and M. N. Murty, “Genetic k-means algorithm,” IEEE
Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics),
vol. 29, no. 3, pp. 433–439, 1999.

[39] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg,
J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot,
and E. Duchesnay, “Scikit-learn: Machine learning in Python,”
Journal of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

[40] S. Bansal and D. S. Modha, “Car: Clock with adaptive replace-
ment.” in FAST, vol. 4, 2004, pp. 187–200.

[41] T. Zong, C. Li, Y. Lei, G. Li, H. Cao, and Y. Liu, “Cocktail edge
caching: Ride dynamic trends of content popularity with ensemble
learning,” in IEEE INFOCOM 2021. IEEE, 2021, pp. 1–10.

[42] Y. Guan, X. Zhang, and Z. Guo, “Caca: Learning-based content-
aware cache admission for video content in edge caching,” in
Proceedings of the 27th ACM International Conference on Multimedia.
ACM, 2019, p. 456–464.

[43] S. Zhou, Z. Wang, C. Hu, Y. Mao, H. Yan, C. Wu, S. Zhang,
and W. Zhu, “Caching in dynamic environments: A near-optimal
online learning approach,” IEEE Transactions on Multimedia, 2021.

[44] H. Tian, X. Xu, T. Lin, Y. Cheng, C. Qian, L. Ren, and M. Bilal,
“Dima: distributed cooperative microservice caching for internet
of things in edge computing by deep reinforcement learning,”
World Wide Web, pp. 1–24, 2021.

[45] F. Wang, F. Wang, J. Liu, R. Shea, and L. Sun, “Intelligent video
caching at network edge: A multi-agent deep reinforcement learn-
ing approach,” in IEEE INFOCOM 2020, 2020, pp. 2499–2508.

[46] E. E. Ugwuanyi, S. Ghosh, M. Iqbal, T. Dagiuklas, S. Mumtaz, and
A. Al-Dulaimi, “Co-operative and hybrid replacement caching for
multi-access mobile edge computing,” in 2019 European Conference
on Networks and Communications (EuCNC). IEEE, 2019, pp. 394–
399.

[47] C. Zhong, M. C. Gursoy, and S. Velipasalar, “A deep reinforcement
learning-based framework for content caching,” in 2018 52nd
Annual Conference on Information Sciences and Systems (CISS). IEEE,
2018, pp. 1–6.

[48] H. Zhu, Y. Cao, W. Wang, T. Jiang, and S. Jin, “Deep reinforcement
learning for mobile edge caching: Review, new features, and open
issues,” IEEE Network, vol. 32, no. 6, pp. 50–57, 2018.

[49] W. Jiang, G. Feng, S. Qin, T. S. P. Yum, and G. Cao, “Multi-agent
reinforcement learning for efficient content caching in mobile d2d
networks,” IEEE Transactions on Wireless Communications, vol. 18,
no. 3, pp. 1610–1622, 2019.

Junkun Peng received his B.S. degree in In-
formation Management and Information Sys-
tems from Shanghai University, Shanghai,
China, in 2015. He is currently pursuing a
Ph.D. in Computer Science at Tsinghua Uni-
versity. His research focuses on in-network
caching/computing, and robot learning.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3336955

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on December 27,2023 at 06:35:14 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON MOBILE COMPUTING 16

Qing Li (Member, IEEE) received the B.S. de-
gree in computer science and technology from
the Dalian University of Technology, Dalian,
China, in 2008, and the Ph.D. degree in com-
puter science and technology from Tsinghua
University, Beijing, China, in 2013. He is cur-
rently an Associate Researcher with the Peng
Cheng Laboratory, Shenzhen, China. His re-
search focuses on network function virtualiza-
tion, in-network caching/computing, intelligent
self-running networks, and edge computing.

Xun Tang is currently a junior in intelligent sci-
ence and technology from Sun Yat-Sen Uni-
versity, ShenZhen, China. His research inter-
ests include real-time video transport, in-network
caching, and UAV swarm intelligence.

Dan Zhao is currently an Assistant Researcher
with Peng Cheng Laboratory, Shenzhen, China.
She was a Postdoctoral Researcher with School
of Electronic Engineering, Dublin City University.
Dr Dan Zhao obtained her bachelor’s degree
from Beijing University of Posts and Telecom-
munications in 2011, majored in Telecommuni-
cations. In 2015, she graduated from Queen
Mary University of London with a Ph.D. degree
in Electronic Engineering.

Chuang Hu received his BS and MS degrees
from Wuhan University in 2013 and 2016. He
received his Ph.D. degree from the Hong Kong
Polytechnic University in 2019. He is currently
an Associate Researcher in the School of Com-
puter Science at Wuhan University. His research
interests include edge learning, federated learn-
ing/analytics, and distributed computing.

Yong Jiang (Member, IEEE) received the B.S.
and Ph.D. degrees from Tsinghua University,
Beijing, China, in 1998 and 2002, respec-
tively. He is currently a Full Professor with the
Division of Information Science and Technol-
ogy, Tsinghua Shenzhen International Gradu-
ate School, Shenzhen, China, and the Peng
Cheng Laboratory, Department of Mathematics
and Theories, Shenzhen. He mainly focuses on
the future internet architecture, the Internet of
Things, edge computing, and AI for networks.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3336955

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on December 27,2023 at 06:35:14 UTC from IEEE Xplore. Restrictions apply.

