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Abstract— Edge-cloud collaborative video analytics is trans-
forming the way data is being handled, processed, and trans-
mitted from the ever-growing number of surveillance cameras
around the world. To avoid wasting limited bandwidth on
unrelated content transmission, existing video analytics solu-
tions usually perform temporal or spatial filtering to realize
aggressive compression of irrelevant pixels. However, most of
them work in a context-agnostic way while being oblivious to
the circumstances where the video content is happening and
the context-dependent characteristics under the hood. In this
work, we propose VaBUS, a real-time video analytics system that
leverages the rich contextual information of surveillance cameras
to reduce bandwidth consumption for semantic compression.
As a task-oriented communication system, VaBUS dynamically
maintains the background image of the video on the edge with
minimal system overhead and sends only highly confident Region
of Interests (Rols) to the cloud through adaptive weighting and
encoding. With a lightweight experience-driven learning module,
VaBUS is able to achieve high offline inference accuracy even
when network congestion occurs. Experimental results show that
VaBUS reduces bandwidth consumption by 25.0%-76.9% while
achieving 90.7% accuracy for both the object detection and
human keypoint detection tasks.

Index Terms—Edge-cloud collaborative computing, seman-
tic compression, video analytics, task-oriented communication
system.

I. INTRODUCTION

HE recent advances of deep learning techniques boost
the performance of many computer vision applications,
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such as object detection, semantic segmentation and keypoint
detection. These advances facilitate the commercialization of
video analytics applications including traffic control [1], video
surveillance [2], and safety anomaly detection [3]. In order
to make video analytics technologies ready to use, three
main concerns need to be addressed: latency, bandwidth and
accuracy. First, analytics applications require very low latency,
as typically the output is used to immediately notify humans
or an actuator control system [4], [5], [6]. Second, high-
definition (HD) videos require large bandwidth for transmis-
sion. Streaming the entire video from cameras to cloud might
be infeasible, especially when available bandwidth is limited
[4], [7]. Finally, deep learning models for video analytics
need massive computing resources that are usually limited on
cameras. Inferring with state-of-the-art models usually incurs
unacceptable latency, while simplified models can cause dete-
riorated results on edge devices. A recent experiment shows
that EfficientDet-DO0, a lightweight object detection model [8],
achieves an Fl-score of only 50% (when using EfficientDet-
D7 as the ground truth) with 34ms latency, whereas a high
performance model EfficientDet-D7 has higher latency at
1636ms, on an NVIDIA Jetson Xavier NX [9] device with
GPU support and TensorRT acceleration.

To address these problems, edge-cloud collaborative video
analytics have emerged in recent years. Unlike the client-server
model that needs a large amount of network bandwidth to
transmit all data for central processing and suffers from sin-
gle point of failure [10], edge-cloud collaborative computing
offloads part of computation tasks to the edge to alleviate the
pressure on networks and improve the system robustness. As a
typical edge-cloud real-time video analytics pipeline, the edge
device sends only partial video content to the cloud server,
which runs deep learning models and returns the inference
results [11], [12], [13], [14], [15]. For these solutions, one
of the key factors to consider is the nontrivial bandwidth
consumption. According to [16], Singapore aims to have more
than 200,000 police cameras by at least 2030. And the number
of all cameras in the world is estimated to be somewhere
between 10 and 100 billion in 2030 [17]. Considering the
bitrate of 2 Mbps for a typical HD video feed compressed
by the H.264 codec [18], 200,000 cameras would need a
bandwidth of 400 Gbps, which would impose heavy pressure
on the network infrastructure. Unlike traditional human-centric
video streaming that aims to accurately recover original video
frames, machine-centric video streaming targets at accurate
analysis results (e.g., detection of humans/cars). This discrep-
ancy allows discarding analysis-unrelated visual information
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for significant bandwidth saving. As a result, the demands on
bandwidth resources for transmitting video data are lowered
significantly to achieve a more sustainable communication
network.

By exploiting the redundancy in video frames, extensive
works have been proposed to perform spatial and temporal
filtering for bandwidth saving. Temporal filtering solutions
(e.g., [13], [14], [19], [20], [21], and [22]) aim to remove
a video frame that is duplicated or does not contain any inter-
esting objects. In contrast, spatial filtering solutions (e.g., [11]
and [12]) allocate more bits for pixels in the Rols during
encoding and transmitting. Unfortunately, most of them [12],
[13], [14], [15] adopt context-agnostic approaches (i.e., treat-
ing incoming frames as independent images instead of a con-
tinuous flow of frames from one camera) during streaming, and
more contextual information remains under-explored, e.g., the
background of the scene, unequal probability of observing
objects across different regions of the frame, and the size of
objects occurring at the same location.

In this work, we explore the contextual information of
video data from surveillance cameras. Since surveillance cam-
eras generate video frames with fixed viewing angle, certain
characteristics tend to persist over time, such as regions that
may observe objects and the size of occurred objects at the
same location. By exploiting these context-dependent charac-
teristics, we design VaBUS, a new real-time Video analytics
system based on Background Understanding and Subtraction.
Specifically, VaBUS first reconstructs the background from
camera video feeds in the cloud and transfers the background
image to the edge with minimum overhead, then the edge
sends the cloud with only useful and optimized foreground
pixels that may contain interesting objects for inference.
Ideally, Rols in a video frame only contain objects to be
detected, and the bits for remaining regions will not be pushed
into the network, i.e., the Rols are optimally compressed on
the semantic aspect. This stems from the idea of semantic
communication [23], which aims at the successful transmission
of semantic information conveyed by the source rather than the
accurate reception of each single symbol or bit regardless of its
meaning. As a result, VaBUS is able to support a large number
of cameras for accurate and real-time analysis by leveraging
edge-side computing resources.

Although removing redundancies between frames is a
common approach in existing codecs (e.g., motion esti-
mation and motion compensation in H.264/AVC [18] and
H.265/HEVC [24]), VaBUS is able to further improve the
compression ratio in two aspects: 1) The fluctuations of
background pixel values are eliminated by removing the
background from Rols; 2) Lower encoding quality is set
to regions that occur large objects without impacting the
inference accuracy. In other words, VaBUS is an enhance-
ment to existing compression codecs, which further eliminates
redundancy from the semantic level to achieve better compres-
sion performance. To the best of our knowledge, the context
characteristics of static background for surveillance cameras
has not yet been systematically exploited by prior works in
the real-time video analytics scenario.

However, the edge-cloud collaborative video analytics based
on background understanding and subtraction is not a trivial
task in the real-world scenario. There are mainly three chal-
lenges to tackle before practical deployment.

« First, we need a lightweight approach to effectively recon-
struct the static background image from videos under
the edge-cloud collaborative framework, such that we
can eliminate these redundant pixels on the edge before
transferring the video to the cloud. On one hand, per-
forming background reconstruction on the edge, though
possible, usually fails to meet the latency target and
induces high system overhead due to limited computing
resource. According to [25], background reconstruction
for an RGB image of 1080 x 1920 on an Nvidia Jetson
AGX Xavier requires 75ms on average when using CPU,
which is far from being real-time. On the other hand,
reconstructing the background image on the cloud faces
the challenge of ensuring efficient and effective back-
ground synchronization on the edge due to changes of
video illumination conditions or camera viewing angle.

o Second, we need a robust approach to generate accurate
Rols (i.e., the foreground pixels that contain interest-
ing objects) on the edge. Accurate Rol is the key to
save huge bandwidth without impacting the inference
accuracy. Simple pixel-wise difference between incoming
frames and the background image contains considerable
detection noise. Misdetection of Rol (i.e., too few pixels
sent) risks missing interested objects while false alarm of
Rol (i.e., too many pixels sent) contains meaningless-for-
inference pixels, causing extra bandwidth waste.

o Third, we need to design a bandwidth-aware mecha-
nism to dynamically balance the accuracy and delay
of inference tasks under variable network conditions.
An offline estimation strategy is required to deal with
unexpected network interruptions, which estimates the
inference results on the edge when it fails to receive
results from the cloud within the required time frame.
Accurate estimation of inference results with lightweight
but low-latency approach on the edge side is a challenging
task.

To validate the feasibility of VaBUS, we implement a
prototype (available at https://github.com/kongyanye/VaBUS)
based on Python and C++. With the prototype, we con-
duct comprehensive experiments on four real-world datasets.
Results show that VaBUS 1) reduces bandwidth consumption
by 25.0%-76.9% while achieving 90.7% accuracy, 2) incurs
only 477.5ms latency and 10% CPU usage overhead compared
to a baseline approach, and 3) achieves 68% offline estimation
accuracy which outperforms both the optical flow [21] and
motion vector-based methods [11].

The contributions of this paper can be summarized as
follows:

o We are the first to utilize background understanding and
subtraction in edge-cloud collaborative video streaming
for analysis purposes.

o We designed a background reconstruction scheme under
the edge-cloud collaborative framework. The cloud
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effectively reconstructs the background image with par-
tial frames sent by the edge, and the edge efficiently
maintains the background image with a dynamic overlay
mechanism to reduce bandwidth consumption.

o We further increased the video compression ratio by
proposing an adaptive weighting module and an adaptive
Rol encoding strategy. By learning from historical detec-
tion results and frame pixel values, the adaptive weighting
module assigns greater weights to regions that are more
likely to appear objects, and the adaptive Rol encoding
strategy assigns imbalanced encoding quality to the frame
according to distribution of object size across regions.

o We improved offline inference accuracy by designing a
novel experience-driven learning module, i.e., mapping
estimator that automatically learns shifting and scaling
mapping functions from previous detection results to pro-
duce accurate estimations even when network congestion
occurs.

The rest of the paper is organized as follows. Related work
is presented in Section 2, followed by the system overview
and design details of VaBUS in Section 3. Section 4 shows
the experimental results. Section 5 discusses the limitation and
future work of VaBUS and Section 6 concludes the paper.

II. RELATED WORK
A. Real-Time Video Analytics System

Although surveillance camera applications have been stud-
ied in the past decade, real-time video analytics system on
edge device is a new topic. A series of techniques have been
proposed to apply real-time video analytics within the edge-
cloud continuum. Previous works have explored DNN-specific
optimization techniques including model distillation [26],
splitting [27], sharing [28] and cascading [29], adaptively
tuning a set of control knobs to constantly meet accuracy
and latency requirements [7], [30], [31], optimized information
pruning techniques [11], [12], [13], [14], etc.

Among them, VaBUS focuses on a single aspect of the
design space, i.e., information pruning. Existing works typ-
ically discard irrelevant information from the temporal per-
spective by frame filtering or from the spatial perspective
by assigning uneven encoding quality across the frame. For
example, FilterForward [13] (i.e., from temporal perspective)
deployed microclassifiers on edge devices to only detect
relevant events and frames that are to be transmitted to cloud
servers. DDS [12] (i.e., from spatial perspective) constantly
sent a low-quality stream and resent high-quality partial
images based on feedback from the server. VaBUS shares the
same concept of performing imbalanced encoding quality on
the frame, while in a more aggressive approach by subtracting
the background and assigning lower quality to large objects.
As a consequence, VaBUS is able to save more bandwidth
while achieving high accuracy.

To allow Rol generation to assign different encoding quality
with the purpose of video analytics, a number of works have
been proposed [11], [12], [32], [33]. EAAR [11] used the
candidate Rols from last frame to determine the encoding
quality of the next frame. DDS [12] generated Rols by utilizing

the information returned by the server-side DNN. AccMPEG
[32] trained a low-cost quality selector model to decide the
appropriate quality level for a macroblock. EIf [33] employed
a recurrent region proposal prediction algorithm to estimate the
possible locations of objects for partitioning and offloading.
VaBUS differs from them by leveraging characteristics of
surveillance videos, i.e., subtracting the static background
image and refining Rols by historical detection results.

B. Background Reconstruction and Subtraction

Background reconstruction and subtraction have been exten-
sively studied in the last decade [34]. Its goal is to detect
moving objects in the scenes when the camera is static,
i.e., segmentation of foreground and background. Existing
approaches can be divided into two categories: traditional
methods and deep learning-based methods. Popular techniques
used in traditional methods include parametric method such
as GMM [35], non-parametric method such as kernel density
estimation [36], traditional machine learning method [37] and
hybrid methods with multi-modal data [38] and model fusion
[39], etc. Deep learning-based methods can be classified into
supervised and unsupervised methods. Supervised methods
typically adopt 2D- or 3D- CNN and ConvL.STM models [40],
[41], [42], [43], and concentrate on scene-specific or scene-
agnostic scenarios. Unsupervised models based on GANs and
Autoencoders, have also emerged as new approaches in recent
years [44], [45]. In VaBUS, we modify existing approaches
for background reconstruction (i.e., GMM) to adapt to the
edge-cloud collaborative framework and propose a novel adap-
tive weighting module for accurate background subtraction.

Background reconstruction and subtraction has been widely
adopted as a tool to remove redundancy between frames for
video compression in previous works [46], [47], [48], [49],
[50]. These works focus on improving the compression per-
formance within a codec, by leveraging the characteristics of
surveillance video. VaBUS differs from previous works mainly
in that the scenario is different. Instead of aiming to recover
the original frames for user-perceived Quality of Experience
(QoE), VaBUS aims to achieve high inference accuracy for
analysis purposes, where background reconstruction is only
one of the tools we use for scene understanding. The scenario
discrepancy also leads to the difference in focus. Unlike
previous works that focus on using the least bits to recover
the best quality of frames, VaBUS focuses on the design of a
whole system, including other criteria like inference accuracy
and network failure handling.

C. Computer Vision Applications

A large number of deep learning models have been proposed
for various vision applications, including image classification
[51], instance segmentation [52], object detection [53], face
recognition [54], image captioning [55], etc. Recent works
show that it is inefficient to perform inference for every video
frame. Alternatively, augmentation of inference results should
be applied via the usage of tracking or temporal prediction
models [21]. For real-time video analytics, several techniques
have been proposed to meet the latency requirement via
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local tracking on the edge devices. Glimpse [21] used the
optical flow method to estimate the detection results of next
frame based on previous frame. EAAR [11] adopted a more
lightweight method by leveraging motion vector information
from the codec. Unlike traditional (such as optical flow and
motion vector-based) methods that can only estimate subtle
location changes with fixed object size, VaBUS is able to
deal with more drastic objection location and size change
by leveraging context-dependent information, i.e., previous
inference results.

As a mid-level task in computer vision, Multiple Object
Tracking (MOT) paves the ground for high-level tasks such
as pose estimation, action recognition, and behavior analysis.
The task of MOT is partitioned into locating multiple objects,
maintaining their identities, and yielding their individual tra-
jectories given an input video [56]. Based on whether a
detection model is adopted, MOT algorithms can be grouped
into two sets: Detection-Based Tracking (also referred to as
tracking-by-detection) [57], [58] and Detection-Free-Tracking
[59], [60]. By first detecting target objects with a detection
model, Detection-Based Tracking links the same object across
frame into trajectories. In VaBUS, we use the existing MOT
algorithm (i.e., SORT [57]) to track the detected objects for
dynamic overlay of static objects and updating of mapping
function.

I1I. VABUS

In this section, we start with the design principles of VaBUS
and how it operates at a high level. Then, we present the details
of each component in VaBUS.

A. Design Principles and Overview

1) Principles of Designing VaBUS: The design rationale
of VaBUS is to find a favorable tradeoff between bandwidth
consumption and latency/accuracy. We compromise small
degradation of latency and accuracy performance for huge
bandwidth saving. Our objective is to design a real-time edge-
cloud video analytics system that saves as much bandwidth
as possible while still achieving high inference accuracy and
low latency. To achieve this goal, we leverage the contextual
information of video feeds and take the following principles
into consideration.

o Accuracy. Provide 90% accuracy. In VaBUS, we only
send partial video frames with degraded encoding quality
for bandwidth saving, which inevitably causes a drop in
inference accuracy. We deem 90% is of high accuracy and
it is a typical target accuracy used in many previous works
related to video analytics [14], [61], [62], [63], [64].

o Latency. Achieve the latency of one second. This is
based on our observations: 1) Performing inference
with state-of-the-art models directly on the edge fails
to meet the real-time requirements; 2) Streaming all
raw video frames to the cloud overwhelms the network
infrastructure when the camera number surges [16], [17].
Under the edge-cloud collaborative framework, we deem
that the second-level end-to-end latency is appropriate
for typical real-time video analytics applications. This
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Fig. 1. System Overview of VaBUS.

is consistent with previous works [4], [5], [6], [19],
[65]. Suppose the camera gets a batch of frames at
time ¢1, the edge receives the returned results and finished
postprocessing at time to. The latency is defined as to—2.

o Bandwidth. Reduce bandwidth consumption. When
accuracy and latency meet the requirements, VaBUS
tries to save as much bandwidth as possible.

o Handling Network Variance. Provide alternatives
in poor network conditions. When network variance
suddenly increases, e.g., due to network congestion,
the system shall have an alternative solution to provide
immediate yet less accurate estimation results for the
task, so as to avoid blocking the system.

2) VaBUS Overview: Figure 1 illustrates the overall archi-
tecture of VaBUS and indicates its life cycle. The operation
process can be summarized as the following steps:

o The edge device receives incoming frames and generates
raw Rols by subtracting the background through a differ-
ence detector (referred to as diff detector).

o The raw Rols are further refined by the adaptive weight-
ing module to only contain interesting objects.

¢ Once ready, the Rols will be encoded into a video using
an adaptive Rol encoding (referred to as adaptive Rol
Enc) module, which assigns imbalanced encoding quality
considering object size in different regions of the frame.

o After receiving the video, the cloud will first decode the
Rols from it and then recover original frames with a
frame recovering module.

o Upon the frames are successfully recovered, the inference
model (referred to as infer. model) will be run to generate
results. At the same time, the background reconstructor
(referred to as bg reconstructor) will continuously learn
to reconstruct the background and send the latest one
to the edge when necessary. Besides, an extra object
tracking model (referred to as MOT model) is also run in
the cloud to recognize static objects.

o The edge receives inference results (referred to as infer.
results) as well as object tracking results (referred to
as OT results), which will be used to update various
modules. The inference results are used to update the
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adaptive weighting, adaptive Rol Enc and mapping esti-
mator module. The tracking results are used to update the
bg overlay and mapping estimator module on the edge.
In general, the edge device constantly generates accurate
Rols, while the cloud is responsible for model inference
and module updating through video context analysis. As a
result, the edge grasps a better understanding of the scenario
where the video is happening with minimal overhead and
huge bandwidth saving is realized while achieving the ultimate
goal. In the rest of this section, we discuss the details of
each module and focus on how they are designed to meet
the aforementioned principles.

B. Background Understanding and Learning

After receiving Rols from the edge, the frame recovering
module is firstly used to recover the original frames on the
cloud. The bg reconstructor continually learns the background
from recovered frames in the cloud and selectively updates the
background at the edge. By recognizing static objects with
a fast multiple-objects tracking model (referred to as MOT
Model), non-object background are overlaid with static objects
to create new temporary background which further reduces
the size of generated Rols on the edge. The whole pipeline is
illustrated in Figure 2.

1) Frame Recovering and Background Updating: The back-
ground reconstructor aims to learn a static non-object scene
image by removing foreground objects from video frames,
where a background estimation model (referred to as bg
model) lies in the core. Given a sequence of frames X =
X1,---, Xy of ascene showing moving objects (e.g., cars and
pedestrians), the goal of a background estimation model is to
recover a clean image of the background of this scene, without
any moving objects. Here the pixels of moving objects are
referred to as foreground, and the remaining as background.

In VaBUS, we use the classic model proposed by [66] and
implemented in OpenCV [67] as the backbone background
estimation model. Note that although we only use a simple
model in our implementation, more complicated and advanced
background estimation model, e.g., deep learning-based mod-
els, can be used since it is deployed in the cloud with almost no
resource limit. The procedures of reconstructing and updating
the background are shown in Algorithm 1.

- g

(a) Maer (b) Mirack
-
L gl
[ |
() My, (d) My

Fig. 3. Example images for Mget, Mplack, Mbg and M.

The recovering and reconstruction phase takes Rol I and
bounding box D for a single frame as inputs. Since the Rol
only contains a part of the original frame, reconstructing
the background from Rol might cause wrong background
estimation. Instead, we feed into bg model the frame recovered
Irec using both background image B with mask of My, and
Rol I with mask of M, (Line 13). My, represents the pixels
to be taken from the background image, which is the logical
AND of Mg (i.e., detected regions in current Rol) and Mpjacx
(i.e., eliminated background regions in current Rol) (Line 7).
After obtaining My, the My, (i.e., the pixels to be taken from
the Rol) can be easily calculated by taking the photographic
negative of My, (Line 11). Example images for Mge, Mplack,
Myg and My, are shown in Figure 3. The rationale behind this
is twofold: removing detected objects before reconstruction
avoids reconstructing the objects as background, while filling
erased pixels in Rol with existing background explicitly inhibit
the re-estimation of these regions. To avoid server-side com-
puting resource waste, we only reconstruct the background
when the ratio of detected to valid pixel number (i.e., non-
black regions in Rol) is lower than a specific threshold Mg
(Line 10). In the updating phase, a renewed background
image is considered for updating only when the last sent
background is substantially different with the current one,
i.e., over threshold Ache. And it would be sent to the edge only
when at least \gyp, batches have elapsed since the last update
(Line 18-21), which avoids sending updates to the edge too
frequently and further reduces the communication overhead of
background transmission.

2) Dynamic Overlay on Non-Object Background: The bg
reconstructor proposed in Section III-B.1 aims to reconstruct
non-object part of the video feeds, e.g., roads, trees, etc. How-
ever, detected objects could also be part of the background,
e.g., cars in parking lots, standstill humans on roads. In order
to save the bandwidth of transferring static detected objects
in the Rol, we design a dynamic overlay mechanism to add
these objects onto the background for Rol generation at the
edge. It takes the bounding boxes of static objects tracked on
the cloud and the original frames as inputs, then dynamically
generates new background images by overlaying these static
objects.

The key of identifying static objects is to track each
individual object over multiple frames and check whether
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Algorithm 1 Frame Recovering and Background Updating

1: Inputs: Rol I and bounding boxes D for a single frame,
image width W and height H, A,;: background pixel
threshold, \ge: detect ratio threshold to update Bg model,
Achg: threshold to determine whether the background is
substantially changed, Agap: minimum updating interval

2: Outputs: Background estimation model M, background
image B

3: Step 1: Recovering and Reconstruction Phase

4: Initialize background image B, estimation model M

1, if pixel in D

5. Myl — ,
0, otherwise

. @] ]" if Zi:l Ii,j,c < >\roi

& Mrjack = {O, otherwise

ik Mbg — Myer OR Myjack

8: ndet < number of detected pixels in D

9: Nyoi <— number of non-zero pixels in [

10: if ndet/nmi < Aget then

11: Mgy «— NOT My,

12: Ity < I AND Myy; Iy, <+ B AND My,

130 Iree — SUM(Itg, Itg)

14 M « update with I

15: B « get new background image from M

16: end if

17: Step 2: Updating Phase

18: d — 257> [|B — Blagt|| (Bust: last sent background
image to the edge)

19: if d > Mg and B haven’t been updated for Agy, rounds
then

20: update B on the edge

21: end if

their corresponding locations have changed or not. To this
end, we use an existing online and real-time MOT algorithm,
i.e., SORT [57] in the cloud to track detected objects. For
each object, if the location remains the same across a certain
number of frames (e.g., a batch), the object is considered as
static. The ID and bounding boxes of static objects are then
sent to the edge for further processing.

When a new static object O appears, the incoming frames
are compared with the existing background image to generate
Rols (note that O is in the Rols at this moment). Once
the cloud receives the Rols from the edge and finishes the
inference, the inference results are used by the MOT model to
recognize the static object O and the static objects information
as well as inference results are returned to the edge. After
the edge receives the inference results and static objects
information, the background image is updated by overlaying
the static object O. At the same time, the detection results
of object O are cached for future use. If the location of static
object O remains unchanged in later incoming frames, it would
be successfully removed from the Rols to save bandwidth.
Note that the recognition of static objects is done on the cloud
instead of edge, which means the static objects are still in the

previously sent Rols during the initial batches of frames since
it appears.

Since these static objects could be temporary, we need to
remove them from the background when they are no longer
static (i.e., start to moving). This can be achieved by examining
the Rols at the edge. If the generated Rols overlap with regions
of an overlaid object, it means the object has moved. Then
the background is reset to be the non-object one (i.e., before
overlaying) and the cached detection results are also cleared.
Otherwise, the object is still static and its detection results
could be used as part of inference results. In addition, when
the edge receives new background image from the cloud, the
overlay information will also be cleared (i.e., to the state of
not containing static objects).

Dynamically overlaying objects on non-object background
acts as an efficient way to generate background while reduc-
ing the communication overhead of background transmission
between the edge and cloud. The edge only needs to know
which object is static in order to add them to the background,
and the overhead of transmitting these information is negli-
gible. Overlaid objects are automatically removed once they
move by checking the Rols at the edge. Note that the MOT
model in the cloud operates on the object level, we only
implement background overlay for the object detection task.
However, the idea of overlaying the background with static
objects can be generalized to other tasks. For example, we can
use a multiple keypoints tracking model to overlay objects for
the human keypoint detection task.

C. Adaptive Rol Generation

After receiving background image B from the cloud, each
input frame is compared against B for Rol generation. How-
ever, generating accurate Rols is difficult due to inevitable
background reconstruction noise. In this paper, we propose a
lightweight adaptive weighting module that learns from past
inference results to generate accurate Rols. To further reduce
the bandwidth consumption of transferring Rols, we take the
object size in Rols into consideration and adopt adaptive Rol
encoding.

1) Difference Detector: Rol generation is essential for band-
width saving. It adopts the idea of only transferring the fore-
ground in a frame while removing the background to reduce
encoded video size, hence saving bandwidth consumption. The
background part (e.g., roads and grasses) of a video, though
perceived as remaining the same by human eyes, are constantly
changing (i.e., the pixels are fluctuating within a small range)
due to its luminance/chrominance variation. Despite these
pixel differences have to be encoded in traditional codecs in
order to accurately recover the original frames, they can be
neglected in video analytics. By eliminating the fluctuations
of background pixels (i.e., set to the same value of zero),
the frames can be optimally encoded by existing compression
codecs. Similar approaches have been proposed in [12], which
used server feedback to determine high quality Rols in the
second run. In VaBUS, we leverage the characteristic of fixed
background to remove pixels unrelated to the task in one run.
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Fig. 4. Adaptive weighting learning process.

Given a background image B and video frame I, the mask
of Rol can be computed as

1, if d(I, B)" > Ao
0, otherwise

Ml = M
where d(I, B) = |conv2d(I) — conv2d(B))|, conv2d denotes
the convolution operation and A is the distance threshold to
determine whether a pixel is the same as in background or
not. The convolution operation creates a smooth version of B
and [ to remove noise and also decreases the computation cost
of later procedures on the edge device. We further perform a
morphological operation (i.e., dilation) on M,;, to ensure the
object of interest is fully visible in the Rol. With M, we can
take Rols from frames I using M., while setting remaining
pixels to be black.

2) Adaptive Weighting: Since the reconstructed background
image contains noise and the pixel value for background region
is unlikely to be identical across frames, simply generating
Rols using pixel-wise image difference as in Equation 1 would
produce a number of false-alarmed regions. Therefore, we pro-
pose an adaptive weighting module to boost the accuracy of
Rols. Specifically, we add a weight to d(I, B) as

d(I,B) = w(I) * |conv2d(I) — conv2d(B))| 2)

where the calculation of w(I) is described below.

Firstly, we maintain a Count matrix C' of h x w (initialized
as zero matrix, h and w is the height and width of the image
after the conv2d operation) to record the number of rounds
since the last detected object occurring at each pixel location.
A lower value in C' means that the specific pixel location
observes objects more recently. For each image, the values
of C locating in detected regions are decreased by 71, and
remaining values are increased by 2. In our implementation,
we choose 71 > 72 to enable the value of regions which
recently observed objects to increase more gradually. Under
this setting, once a region (x1,y1,22,y2) ((x1,y1) denotes
the coordinate of upper-left corner and (z2,y2) denotes the
coordinate of lower-right corner) observes a detected object
(i.e., Clyr = y2, @1 @ x2]— = 1), it will take more than one
round (i.e., batches of frames) to increase the values in Cly; :
Y2, 21 : 2] to zero. The count matrix C' is used to calculate
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Fig. 5. Learning adaptive Rol encoding parameters.

the weight w through a mapping function f that we will cover
shortly.

For each incoming frame I, we also maintain a Std
matrix S, which calculates the standard deviation of pixel
values at each location in a sliding window manner. When
generating weights w(I) from the count matrix C, pixels in
C where S; ; is larger than threshold Ayq and C; ; > 0 will be
reset to zero. The reason to do so is that high variance of pixel
values (i.e., S; ; > Agq¢) may indicate the occurrence of new
objects. This ensures pixels being suppressed (i.e., C; ; > 0)
can be reactivated when large value fluctuation occurs, thus
avoiding miss-detection of objects that occurs in these sup-
pressed pixels.

Finally, the weight matrix for a given image [ is calculated
as w(l) = f(C) where f(z) = [1 — z/\])? is a linear
mapping function which is clipped in the range [0, A2]. A; is a
positive number, controlling the suppressing speed of regions
where no objects are observed. Ao (also a positive number)
determines the maximum highlighting ratio. The weight matrix
w monotonously decreases with the increase of C, enabling
regions with no objects occurred and pixel value unchanged to
be suppressed, while regions that continually observe objects
to be highlighted. The process is illustrated in Figure 4.

3) Adaptive Rol Encoding: Encoding with unbalanced qual-
ity levels across the frame has been shown to be an effective
approach of reducing bandwidth consumption in prior works
[11], [12]. For compression codecs, different regions of the
frame are treated equally during encoding. In the video analyt-
ics scenario, however, objects of different sizes have different
impacts on the inference results, i.e., small objects require
higher encoding quality for accurate detection compared to
large objects. By encoding regions that require fewer details
(e.g., regions with large objects) with lower quality, the
inference result is the same while the bandwidth consumption
is reduced. In VaBUS, background subtraction and overlay
work as the first step to assign unbalanced encoding quality,
i.e., setting background pixels to black which can then be
optimally compressed. To further reduce the size of encoded
videos, we take the object size in frames into consideration
and propose adaptive Rol encoding, as shown in Figure 5.
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Fig. 6. Offline experience-driven learning.

The key of adaptive Rol encoding is to assign higher encod-
ing quality to regions with small objects and lower quality to
regions with large objects. When the object is large in size,
deep learning models could produce accurate inference results
despite of low encoding quality. However, when the object is
small, deep learning models are susceptible to quality levels
and might fail to detect the objects when encoding quality
drops. For each frame in the cloud, we keep a size matrix
Z to log the size of detected object per pixel location. For
example, given an object with bounding box (z1,y1,x2,y2),
Z is updated with Zjy .y, 210 = (1 = @) % Z1y, g 21i00] +
a* (xe — 1) * (y2 — y1) where « is the updating ratio. When
generating Rol encoding parameters, we first classify values in
Z to either large or small size using a threshold \g,.. Regions
whose values are smaller than A, are enclosed in rectangles
to be set with higher encoding quality while the remaining with
lower quality. The Rol encoding parameters are periodically
sent to the edge device, to encode incoming frames.

Algorithm 2 Mapping Function Update

1: Inputs: tracked bounding box Df (i.e., 7™ object in i

frame), updating rate a (e.g., 0.8), expanding ratio (
(e.g., 1.05)
: Outputs: local mapping cache S, Sy, and £
: Initialize mapping matrix S, S, and E as zero matrix
: for bounding box (x1,y1,22,2) in D] do
(x/lv yﬂa x/2a yIQ) - Dzj‘—l
my, — (2 +23)/2; my, — (y1 +y5)/2
My — (1 +22)/2; my — (y1 +y2)/2
Selyr s y2, 21 2] — (1 —a) * Szfyr : Yo, 21
ax (mgy —ml)
9: Sy[yl L Y2,q - 1'2]
(my — m/y)
10: 7 — (32 — @) /(2 — 1) * (Y2 — 1)/ (y2 — 1) * B
1: Elyr :y2, 21 :x2) — (1—a)* Ely1 : y2, 21 : 2] +ax*r
12: end for

e S S ol

2$2]+

— (1—a)*Sy[y1 : y2, @1 : 2] + aux

D. Offline Estimation

The mapping estimator module works as an alternative
approach to generate estimated inference results when the edge
fails to receive response from the cloud server within the given
time frame. Unlike traditional approaches that estimate infer-
ence results based on motion vectors or optical flow [11], [21],

we propose a new lightweight experience-driven method to
learn from previous inference results. First, the cloud runs a
MOT model (same as in §III-B.2) to track each object and
sends the tracking information to the edge. Then the edge
device learns a mapping from the last bounding box to the
current one for each individual object. When the cloud fails
to deliver inference results on time, the edge would produce
estimated results based on local mapping cache. The pipeline
is illustrated in Figure 6.

1) Mapping Function Update: The details of updating local
mapping cache based on detection results are shown in Algo-
rithm 2. We use matrix S, S, to record the shift on x- and
y-axis direction respectively and E to record scaling ratio per
pixel location. For each individual object, the shifts on x- and
y-axis direction are calculated as the corresponding difference
of center point from two adjacent frames (line 6 - 9). Scaling
ratio is defined as the ratio of current bounding box size
to the previous one, multiplied by an expanding ratio [ to
slightly enlarge the region (line 10). For smooth changing of
parameters, we update each parameter with the rate of a.

2) Bounding Box Estimation: Given an initial bounding box
By for frame I, the mapping estimator module tries to predict
the inference results of n consecutive frames using the local
mapping cache S, Sy, and F, as shown in Algorithm 3. For
each bounding box (x1,y1, 2, y2), we first take the average of
Se, Sy, and E from the same region as the shifting and scaling
ratio (line 5 - 6). To avoid error accumulation, we compensate
the shifting and expanding ratio in each round (line 7 - 8).
Finally, the bounding boxes of the previous frame are shifted
and scaled to generate new bounding boxes for the current
frame (line 9 - 13).

Our mapping estimator is based on the premise that objects
at the same location follow the same moving pattern, i.e., the
direction and speed of objects at the same pixel location is
similar in adjacent frames. This pattern is commonly observed,
e.g., cars on the same lane have similar trajectory. In addition
to predicting shifts on the x- and y-axis direction as in
traditional methods, the mapping estimator is also able to
predict scaling ratio, resulting in more accurate estimation.

1V. EXPERIMENTAL RESULTS
A. Implementation

1) Experimental Setup: In the hardware setup, we use a Dell
Precision 7920 Workstation Desktop Tower with a GeForce
RTX 3090 GPU as the cloud server, and an Nvidia Jetson
Xavier NX connected with a CSI camera as the edge device.
Jetson Xavier NX is a typical edge intelligence device used
in many previous works for video analytics [68], [69], [70],
[71]. The cloud server and edge device are connected with
a TP-LINK TL-SG1008D switch through a 1Gbps Ethernet
cable. The operating system of cloud server and edge device
are Ubuntu 20.04 and Ubuntu 18.04 respectively.

In the software setup, we implement the cloud part as an
HTTP server which receives encoded videos from the edge
device and returns inference results. On Jetson, we use the
Multimedia [72] API for real-time video encoding where the
setROIParams function [73] is used to set different Rol regions
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Algorithm 3 Bounding Box Estimation

1: Inputs: initial bounding box Dy, prediction step n, map-
ping cache S, S, and E, shrinking rate 5, (e.g., 0.99) and
expanding rate O3> (e.g., 1.01)

2: Qutputs: estimated bounding box Dy, Do, --- , D,

3: for i" round in 1,2,--- ,n do _

4 for (z1,y1,72,y2) of jM object in B!, do

5: Sa <—_Sx[y1 DY2, T1 t Loy Sy — Syly1 : Y2, 21 ¢ x2)
6 e «— Ex_[yl Do, Ty arg_]

T se e Bl s s, o Bxs,

. <_{1nax(1,5{*e),ife>1

min(1, 34 * e), otherwise

9: F1— w1+, —(e—1) % (x2 —x1)/2
10 Tog — Zo+ 8y + (e —1) % (x2 —21)/2
I e yrtsy—(e—1)*(y2 —y1)/2
122 gp—yatsy+(e—1)*(y2—y1)/2
130 B — (&1,%2,71,72)

14:  end for

15: end for

and QP delta value as in [11]. Besides, GStreamer [74] API is
used for real-time video frame capture. In the cloud, we decode
the video to frames using the VideoCapture function [75] in
OpenCV. In order to improve the efficiency of the system, the
various modules of VaBUS is running in pipelines and multi-
threads. For deep learning inference in the cloud, the models
are accelerated by TensorRT with FP16 precision. VaBUS is
implemented in Python and the video encoder on Jetson is
implemented in C++.

2) Tasks: To demonstrate the effectiveness of VaBUS,
we evaluate the system with two different tasks: object
detection (referred to as OD) and human keypoint detection
(referred to as KD). For object detection, we use YOLOv3
[76] to detect two kinds of objects (i.e., persons and vehicles)
and measure the accuracy by Fl-score. Note that Fl-score
is a classification metric so we need to specify an IoU
(i.e., Intersection over Union) threshold over which the bound-
ing box detection is assumed as correct otherwise wrong
before calculating the F1-score. For human keypoint detection,
we use OpenPifPaf [77] and also measure the accuracy with
F1-score. Similar to IoU in the object detection case, we use
OKS (i.e., Object Keypoint Similarity) to determine whether
the detected keypoint for a human is correct or not. Unless
stated otherwise, we use the threshold of 0.5 for both IoU
and OKS in our experiments. Although we use YOLOv3
and OpenPifPaf for the following experiments, the design of
VaBUS is decoupled from the backend inference model, which
means any other models can be plugged in for usage now that
it finishes the same task.

3) Datasets: To evaluate VaBUS with various video illu-
mination, resolution, object intensity, size, speed, etc, we use
datasets from four public sources representing a number of
real-world scenarios. (1) We obtain highway traffic videos
from top results on YouTube [78] by searching the keyword
‘highway traffic videos’. Videos not captured by surveil-
lance cameras, e.g., dashcam videos, are removed manually.

TABLE I
SUMMARY OF DATASETS

Name Task Length (s) # frames # videos # objs
YouTube OD 7,157 201,768 7 2,264,926
VIRAT oD 2414 71,097 8 778,822
MuPoTs-3D KD 89 2,669 4 8,370
Human3.6M KD 743 22,291 5 23,163
TABLE II

OVERALL PERFORMANCE OF VaBUS ON FOUR DATASETS

Task Dataset Fl-score Precision Recall Compress. Latency
oD VIRAT 88.9% 94.7% 85.2% 57.5% 1084 ms
YouTube 92.6% 95.7% 91.6% 26.8% 1160 ms

KD MuPoTs-3D 86.8% 86.5% 88.8% 25.0% 1154 ms
Human3.6M 94.6% 94.4% 96.1% 76.9% 1200 ms

(2) We select a subset of videos from the VIRAT Video
Dataset [79], which is a video surveillance dataset contain-
ing videos spanning across diverse resolution, background
clutter, scenes and human activity/event categories. (3) We
choose a subset of videos from the MuPoTs-3D Dataset [80],
[81], which is a large scale dataset showing real images of
sophisticated multi-person interactions and occlusions. (4) We
choose a few videos from the Human3.6M Dataset [82], [83],
which captures the poses of professional actors in various of
scenarios, including discussing, eating, exercising, greeting,
etc. The YouTube and VIRAT datasets are evaluated with
object detection task, while the other two are with human
keypoint detection task. Unless stated otherwise, we only
use the first 10 minutes of the videos for the purpose of
performance evaluation. A summary of datasets can be found
in table I.

B. Overall Performance

VaBUS is able to achieve high accuracy while considerably
reducing the transmission size of video data. For reproducible
experiments, we evaluate the overall performance of VaBUS
on four datasets by extracting raw frames as camera input.
Specifically, the frames are resized to 720 x 406 and fed into
the edge device with the batch size of 15 and the frame rate
of 15FPS. To measure the detection accuracy, we calculate
the Fl-score between the inference results of VaBUS and the
ground truth results of extracted frames (which are resized
to the same resolution) from videos. The reason to choose a
frame rate of 15FPS is to ensure enough computing resources
are available for other modules. The input frame rate is a
parameter that can be adjusted according to the actual task
to perform and more experiments about it can be found in
Figure 13. Since the frames are processed in batches in favor of
video encoding, the latency is calculated as the time difference
between a batch of frames is ready and the detection results
are postprocessed on the edge device.

Table II shows the overall performance of VaBUS with two
tasks on the four datasets. Compression ratio (i.e., Compress.)
is calculated as the ratio of the reduced transmission data
size in VaBUS over the baseline, which represents the extent
of these original frames are compressed to. In the object
detection case, it can be observed that VaBUS achieves an
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Fig. 7. Bandwidth consumption and latency composition of VaBUS.

F1-score of 88.9% and 92.6% while reducing the transmission
data size by 57.5% and 26.8% on the VIRAT and YouTube
dataset respectively. In the human keypoint detection case, the
Fl-score is similar (86.8% and 94.6%) but the compression
ratio of Human3.6M is much higher (76.9%). The precision
is much higher than recall in the OD task, while they are
more balanced in the KD task. The reason might be that
the KD task is more complicated than the OD task. For
OD, an object is less likely to be miss-detected once it is
shown in the Rols while a keypoint could be easily missed
due to inaccurate location. The latency of OD and KD tasks
on four datasets is around 1100ms (1149.5ms on average),
which meets our latency requirement in §III-A. Note that the
latency is actually controllable by tuning various configuration
parameters including resolution, frame rate and batch size.
More analysis about their effects on latency can be found in
§IV-E Impact of resolution and Impact of batch size and frame
rate. The results show that VaBUS is able to effectively reduce
bandwidth consumption and maintain high accuracy and low
latency at the same time.

Figure 7 shows the detailed composition of bandwidth
consumption and latency of VaBUS. In Figure 7a, Rol rep-
resents encoded video size sent from Jetson to the cloud
server after background subtraction and adaptive Rol encod-
ing. Background is the total size of transferred background
images. Raw shows the size of baseline approach where
the frames are encoded without any processing. It is shown
that Background occupies only a negligible amount of trans-
ferred size compared to Rol, which means the background
reconstruction module causes few overhead on bandwidth.
The bandwidth consumption of KD task (i.e., MuPoTs-
3D and Human3.6M) is higher than OD task (i.e., VIRAT
and YouTube). The reason is that human keypoint detection
requires higher encoding quality in order to correctly detect the
keypoints, while lower quality can be used to find bounding
boxes in object detection. In Figure 7b, we show the latency
experienced by each component of VaBUS. get_roi measures
the preprocessing time for generating Rols from input frames.
send_roi is the total time of encoding Rols to videos and
streaming time from the edge device to cloud server. decode
measures the time for decoding videos to frames in the cloud
server, and infer measures the inference time of deep learning
models. postproc. (short for postprocessing) mainly includes
the time of background overlay (§III-B.2). Note that since
background overlay is only implemented for the OD task
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Fig. 8. Bandwidth consumption on two datasets for the object detection task
(Base. stands for Baseline).

in our experiments, the postprocess time is zero for the KD
task. It can be observed that the latency is mainly caused by
get_roi (340ms on average), send_roi (328ms on average) and
infer (341ms on average). In our experiments, video encoding
is already hardware-accelerated, but Rol generation is not
optimized. Besides, deep learning model inference can be
further accelerated using distributed or parallel computation
techniques. Considering that the latency of Rol generation
and deep learning inference latency account for 30.3% and
30.4% of the total latency respectively, an optimization room
of 60.7% latency (681ms in total) can be explored. We leave
the further optimization of VaBUS for future work.

C. Ablation Study

To understand each component’s impact on VaBUS, we per-
form ablation study by examining each functioning part.
We measure the accuracy (i.e., Fl-score) of object detec-
tion task in four approaches: 1) the baseline solution (Base-
line), 2) enabling background subtraction (BS) which includes
background reconstruction and overlay, 3) enabling adap-
tive weighting (AW) and 4) enabling adaptive Rol encoding
(RoIE). The baseline approach stands for the system using
merely conventional codecs, which follows the straightforward
pipeline of encoding, decoding and inferring all frames without
any processing. Other experimental settings remain the same
as §IV-B.

Table III shows the results of ablation study on VIRAT and
YouTube datasets. It can be observed that enabling background
subtraction (BS) substantially decreases the compression ratio
(52.4% and 17.0%) while the accuracy only has a slight drop
(6.4% and 2.4%). The AW module has different effects on
different datasets (compared with Baseline+BS). On VIRAT
dataset, the Fl-score maintains about the same (88.4% and
88.1%) while the compression ratio is further increased (from
52.4% to 58.1%). On YouTube dataset, the compression ratio
is rarely affected (17.0% and 16.9%) but Fl-score is boosted
from 92.7% to 93.6%. This is due to that the characteristics
of the two datasets are different. YouTube has a larger object
intensity so compression ratio is less affected, but the F1-score
is increased since generated Rols become more accurate. After
adding the RolE module, the compression ratio is increased
for YouTube dataset from 16.9% to 26.8% while maintaining
about the same for the VIRAT dataset (58.2% and 57.5%). The
reason might be that the compression ratio of VIRAT is already
very high (i.e., compressed by more than half compared to

Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on December 27,2023 at 06:44:55 UTC from IEEE Xplore. Restrictions apply.



100

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 41, NO. 1, JANUARY 2023

TABLE IIT
PERFORMANCE OF VABUS ON TWO DATASETS FOR THE OBJECT DETECTION TASK

Dataset Approaches Fl-score = Compress. Latency CPU
Baseline 94.8% 0% 635 ms 23.2%
VIRAT Baseline + BS 88.4% 52.4% 1048 ms  31.6%
Baseline + BS + AW 88.1% 58.1% 1062 ms  31.7%
Baseline + BS + AW + RolE 88.9% 57.5% 1084 ms  31.3%
Baseline 95.1% 0% 654 ms 25.1%
YouTube Baseline + BS 92.7% 17.0% 1362 ms  44.4%
Baseline + BS + AW 93.6% 16.9% 1268 ms  42.5%
Baseline + BS + AW + RolE 92.6% 26.8% 1160 ms  36.3%
Baseline) and it’s difficult for RolE to find target low quality mmA Fi-socre
regions in order to further save bandwidth. The average latency 100 o oy  aeny
for baseline approach is 644.5ms and adding the modules 0'75 = ]
(i.e., BS, AW and RolE) in VaBUS increases it to 1122ms, . Ft
. . . 0 0.50 £
with a rise of 477.5ms on average. Besides, our proposed © g
. . . 0.25 5]
modules (i.e., Baseline+BS+AW+RoIE) require 8.1% and d
11.2% more CPU resource (9.6% on average) than the baseline B ko s s
F1-score Approach

approach. Note that although Jetson Xavier NX is equipped
with a 384-core NVIDIA Volta GPU, our implementation does
not leverage the on-board GPU resources for two reasons:
1) Most surveillance cameras are manufactured with limited
computing resources [14], [84], [85]. Therefore we assume
GPU support is not available for a general design; 2) For
system optimization on specific devices (e.g., accelerating
image-related operations with GPU), we leave it for our future
work.

To further demonstrate the improvements of VaBUS over
the baseline approach (i.e., conventional codecs), we show the
detailed bandwidth consumption for each approach on two
datasets (i.e., VIRAT and YouTube) on the object detection
task in Figure 8. By enabling background subtraction (BS)
to eliminate fluctuations of background pixel values from the
semantic level, substantial bandwidth can be saved for most
of the videos. The AW module is designed to refine the Rols
generated by BS, therefore it has only slight improvements
for bandwidth consumption. By enabling the RolE module
to assign different encoding quality across the frame with
the help of historical object size information, the bandwidth
consumption is further dropped. It can be observed that there
is a huge variance in the compression ratio for different videos
(from 5.5% to 83.8%) on object detection tasks. The reason
is that the actual compression ratio depends on the percentage
of foreground area as well as the object size, and detailed
analysis can be found in §IV-E Impact of video genres.

D. Offline Estimation Performance

The Mapping Estimator (ME) module of VaBUS is
designed to estimate inference results of current batch of
frames based on last batch. Figure 9 shows the performance
of ME module. In Figure 9a, we compare the F1-score and
estimation latency of six approaches on a sample dataset to
estimate 20 batches of frames (i.e., 300 testing frames in total).
The Worst curve is the lower bound of accuracy when there’s
no inference result (the Fl-score is greater than zero since
some frames contain no object to detect). The Best curve refers
to the upper bound of accuracy which uses the detection results

(a) F1-score distribution

(b) Accuracy, CPU and latency

Fig. 9. Performance of mapping estimator (ME) module. 1-Worst, 2-ME,
3-MvOT, 4-OF, 5-MvOT+ME, 6-Best.

as estimation. The ME curve represents our proposed map-
ping estimator module in VaBUS. The MvOT curve reflects
results of the motion vector-based object tracking method
in [11]. In the optical flow-based (referred to as OF’) approach,
we use the dense optical flow algorithm proposed by Gunnar
Farneback [86] to calculate the optical flow for all points in
the frame. Since the motion vectors can be obtained in the
video encoding phase with almost no computation overhead,
we further boost the performance of ME based on estimation
results of MvOT (i.e., MvOT+ME). From Figure 9a, it can be
observed that there are no statistically significant differences
between MvOT and OF. ME, though achieving lower accuracy
(42%) than MvOT (57%) and OF (58%) when solely used, can
be used to boost the accuracy a lot when combined with MvOT
(i.e., 68% in the MvOT+ME case). In Figure 9b, it is shown
the latency of ME is only Sms per image on average while OF
is as large as 171ms. Besides, ME can be faster when fewer
objects need to be estimated, while OF requires computation
of the whole image even though there is only one object to
estimate.

E. Sensitivity to Application Settings

1) Impact of Video Genres: Figure 10 shows per-video
bandwidth consumption and Fl-score of fours datasets on
the object detection and human keypoint detection task.
In Figure 10a, it can be seen that different dataset has different
distribution of compression ratio. VaBUS saves the most band-
width on Human3.6M while shows the least on MuPoTs-3D.
From Figure 10b, it can be observed that although the F1-score
achieves around 90%, the compression ratio shows a large
variability between videos (from —6.8% to 83.8%, —6.8%
means the transmission data size is increased by 6.8%). The
reason is that the compression ratio of VaBUS mainly depends
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Fig. 10. Distribution of per-video bandwidth consumption and F1-score for
four datasets. (a) CDF of per-video compression ratio. (b) Compression ratio
and F1-score distribution.
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Fig. 11. Effects of per-image foreground area and per-object foreground area
on compression ratio for two datasets with the object detection task.

on the area of background filtered by the diff detector module
($III-C.1). For videos that show changes only in a small part
of the whole frames, VaBUS is able to save as large as 83.8%
bandwidth. But for videos with moving objects distributed
across the whole frame, VaBUS has few gains and may even
cost slightly more bandwidth than the baseline approach due
to the transmission of background image.

To elaborate on the cause of the large variance on the
compression ratio between videos, we show the effects of
per-image foreground area and per-object foreground area on
compression ratio for two datasets with the object detection
task in Figure 11. Per-image foreground area is calculated as
the percentage of the covered area of all target objects in one
image on average. It represents the minimal Rol region we
need to generate, and usually smaller per-image foreground
area means higher compression ratio (i.e., by subtracting
the background). Per-object foreground area is calculated as
the percentage of the covered area of a single object over the
whole image on average. It represents the object size in the
video, and usually larger per-object foreground area means
higher compression ratio (i.e., by assigning lower encoding
quality with the RolE module). The compression ratio is
influenced by both per-image area and per-object area. When
per-object area is on the same level (i.e., the object size
is about the same, e.g., Video #1,2,5,6,7,8 in Figure 1la
and Video #1,2,4,5,6,7 in Figure 11b), the compression ratio
increases along with the decrease of per-image area. However,
when the per-object area is much larger (i.e., object size is
much larger, e.g., Video #3,4 in Figure 11a and Video #3 in
Figure 11b), the compression ratio can be higher even though
the per-image area is larger. In this case, the per-object area
dominates the performance on compression ratio.

2) Impact of Resolution: Frame resolution is a key factor to
consider when streaming videos. Figure 12 shows the impact
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Fig. 12.  System performance under various input resolution.
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Fig. 13. Time consumption under various batch size and frame rate. (Norm.:
Normalized). (a) Under various FPS. (b) Under various batch size.

of resolution on accuracy (i.e., Fl-score), CPU usage, total
transmission size (i.e., total size) and latency respectively
for the object detection task. From Figure 12a, it can be
observed that increasing the resolution from 203 x 360 to
812 x 1440 improves the accuracy by 53% while a little drop
(3.1%) occurs when the resolution further rises to 1080 x
1920. The reason might be that the system is too busy with
computationally intensive tasks such that it fails to get timely
feedback (e.g., the update of background image) from the
cloud server (Fig 12b). Besides, the input size of our object
detection model is set to be 416 x 416. Resolution larger
than this size has no benefit during inference. The increase
of resolution also significantly raises the transmission data
size. From 203 x 360 to 1080 x 1920, the total transmission
size is increased by 5.36 times (Fig 12b). When resolution is
203 x 360 or 406 x 720, the system runs in real time with a
latency of only around one second, while the latency surges
when the resolution is higher (Fig 12b). Similarly, the CPU
usage is saturated when resolution is higher than or equal to
812 x 1440. This means increasing the resolution does not
necessarily improve the system performance. It needs to be
adjusted in accordance with available computing resources on
the edge device and the actual application scenarios.

3) Impact of Batch Size and Frame Rate: Batch size and
frame rate are two key parameters controlling the latency
of VaBUS. The first one determines how fast the system
consumes the incoming data and the second one controls
the data input rate. Figure 13 shows the time consumed for
streaming 1,500 frames under various of batch size and frame
rate. Total Time measures the throughput of the system by
time elapsed for processing (including encoding, streaming
and inference, etc) all the frames, while Norm. Time (short for
Normalized Time) is the ratio of Total Time to purely streaming
time with corresponding frame rate (i.e., closer to 100% means
lower latency). In Figure 13a, it can be observed that elevating
frame rate from 15FPS to 30FPS increases the throughput of
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Fig. 14. Effects of background change to VaBUS.

the system and shortens the total running time (i.e., Total
Time). Besides, the system is working in real time when
frame rate is less or equal to 25FPS while significant latency
is observed when frame rate reaches 30FPS (i.e., 121.2%
normalized time). When frame rate is fixed to be 30FPS
(Figure 13b), simply increasing batch size does not improve
the performance. On the contrary, the total time increases when
batch size is lifted to be more than 20. And the latency is also
increased (i.e., 134.8% and 136.8% normalized time). To this
end, the batch size and frame rate shall be carefully chosen
according to the application scenario to consistently meet the
latency requirement.

4) Impact of Background Change: VaBUS is able to auto-
matically reconstruct the background image in the cloud
and send updates to the edge when necessary. In order to
investigate the effects of video background changes to VaBUS,
we manually merge two one-minute clip from two different
videos to simulate the sudden change of video background.
The results are shown in Figure 14. It can be observed that
the transmission data size (i.e., Size) of baseline approach and
VaBUS is the same in the first four seconds, since there are
no background learned to be subtracted on the edge. When
the background is successfully sent to the edge on the fifth
second, the Rol size is substantially reduced and keeps lower
than the baseline approach hereafter. When the background
changes (i.e., from Video 1 to Video 2 on the 60th second),
the transmission data size surges again, and then two new
background images are reconstructed and sent to the edge. For
every certain periods of time (10 seconds in this case, shown
as the vertical lines), the Rol encoding parameters are updated
to the edge for adaptive Rol encoding (§III-C.3). This is the
reason why the transmission data size of VaBUS for initial
frames from Video 2 is lower than the baseline approach.
Over the time frame of 2 minutes, VaBUS transferred only five
background images from the cloud to the edge and the sent Rol
size is consistently lower than the baseline approach. Besides,
changing the background does not impact the accuracy as
shown in the lower part of Figure 14. This can be explained
by that when the background is changed, the edge would fail
to subtract it from the input frames and streams the original
frames to the cloud for inference. The accuracy continuously
keeps high (94.4% on average) and latency stays between

1 second to 1.5 second, showing the superior performance
of VaBUS.

5) Impact of Inference Model: To show the impact of infer-
ence model on the accuracy and compression ratio of VaBUS,
we test three different deep learning models (i.e., YOLOV3,
EfficientDet-D0 and EfficientDet-D3) on a randomly selected
video from the YouTube dataset for the object detection task.
EfficientDet-D0 and EfficientDet-D3 are both from the Effi-
cientDet [8] series of object detection models, and both mod-
els are chosen to realize real-time inference with TensorRT
acceleration on our cloud server. To eliminate the difference
between different models, we use the inference results of
original frames for each model as the corresponding ground
truth for accuracy evaluation. Results show that EfficientDet-
DO achieves the accuracy of 92.7% and compression ratio of
17.3%, while EfficientDet-D3 achieves the accuracy of 92.9%
and compression ratio of 20.7%. These results are similar to
YOLOV3 where the accuracy is 94.0% and compression ratio
is 18.8%. This implies that the benefits of VaBUS are agnostic
to the inference model on the cloud.

F. Comparison With Other Approaches

Unlike other approaches that work for general video
datasets, VaBUS focuses on videos from surveillance cam-
eras and leverages the techniques of background subtraction
and adaptive Rol encoding to significantly reduce band-
width consumption. We compare the accuracy and latency
of VaBUS under various bandwidth budgets as well as the
CPU usage with three other information pruning approaches
(i.e., EAAR [11], DDS [12], EIf [33]) and the traditional
codec (i.e., baseline). The available bandwidth between the
edge and cloud is controlled by wondershaper [87] which uses
tc [88] under the hood. Note that VaBUS lies in the design
space of information pruning and is independent with video
analytics systems focusing on other aspects, e.g., bandwidth
adaption or inference acceleration. For DDS, we use QP 26 for
high-quality feeds and QP 36 for low-quality feeds as in
the original paper, which we observed to achieve a good
tradeoff between bandwidth consumption and latency. For
EAAR, we only use the dynamic Rol encoding module (other
modules like parallel streaming and inference are independent
with VaBUS) and enlarge the Rols from last detection result by
one macroblock (as in the original paper). For Elf, we train an
attention-based LSTM offline to converge on a set of different
videos from the same dataset (i.e., VIRAT) for recurrent Rol
prediction on the cloud server.

Figure 15 shows the bandwidth-accuracy and bandwidth-
latency tradeoff for five approaches (i.e., Baseline, EAAR,
DDS, EIf and VaBUS) on the VIRAT dataset with the
object detection (OD) task using a 2-minute clip for each
video. It can be observed that VaBUS achieves better
bandwidth-accuracy and bandwidth-latency tradeoff compared
to other four approaches. When the bandwidth is adequate
(e.g., larger than 300Kbps), the accuracy and latency of
VaBUS is similar to other approaches. However, with the
gradual drop of available bandwidth, VaBUS outperforms
other four approaches on both accuracy and latency, which
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Fig. 17. Performance change when scaling to multiple streams.
shows the advantage of VaBUS’s bandwidth saving. For CPU
usage (Fig. 16), VaBUS is similar to other approaches with
only negligible overhead.

In a nutshell, VaBUS achieves better bandwidth and accu-
racy/latency tradeoff than state-of-the-art video analytics sys-
tems with minimal CPU overhead.

G. Scaling to Multiple Streams

VaBUS builds on edge computing, which brings storage and
computing closer to data sources. Instead of establishing a
one-to-one connection between the device (i.e., camera) and
the cloud to process a single video stream, VaBUS supports
one-to-many connections for simultaneous analysis of multiple
video streams. To demonstrate the performance of VaBUS
when processing multiple streams, we evaluate the bandwidth
consumption, accuracy, latency and CPU usage of streaming
one video as well as streaming three videos simultaneously.
The experiments are conducted on a sample video from the
VIRAT dataset for the object detection task, and the results
are shown in Figure 17. It can be observed that scaling from
one stream to three streams has almost no impact on the
bandwidth consumption and accuracy. However, the latency of
analyzing three streams (2080ms) is higher than one stream
(1132ms) due to the increased computation burden on the edge
side. Similarly, the CPU usage for analyzing three streams
(91.2%) is much higher than one stream (31.6%). The latency
and the CPU usage can be further reduced from the system
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Fig. 18. Real-world deployment and qualitative results of VaBUS.

implementation aspect, which we leave for future work. This
shows that VaBUS successfully scales to analyses of multiple
video streams to better suit the scenario of edge-cloud video
analytics.

H. Real-World Deployment

To show the effectiveness under real-world application
scenarios, we test VaBUS’s performance under practical set-
tings. The edge device, i.e., Jetson Xavier NX, is connected
with a CSI camera to capture video frames in resolution of
406 x 720 and 15FPS. The cloud server is deployed behind a
remote VPS located in another city. The bandwidth between
Jetson and cloud server is 10 Mbps, measured by iperf [89].
Figure 18a shows the actual deployment of our experimental
hardware platform. Figure 18b represents the Rol sent from
Jetson after background subtraction, where we can see a
large number of pixels are erased and filled with black. The
reconstructed background image is shown in Figure 18c, which
is a clean street image. In the cloud server, we combine the
Rol and background image to recover the original frame and
perform inference, as shown in Figure 18d. It can be seen that
the vehicles are correctly detected. The latency is 1170ms and
CPU usage is 35.2%, which is consistent with our previous
experiments (e.g., Table III and Figure 12). The results show
VaBUS is able to effectively perform deep learning inference
tasks with insignificant resource overhead under real-world
settings.

V. LIMITATION AND FUTURE WORK
A. Surveillance Camera

The amount of bandwidth saved by VaBUS relies on the
assumption that the video comes from a surveillance camera.
Unlike other video analytics system, e.g., DDS and EAAR,
which is applicable for all videos, VaBUS focuses on a
specific set of it. Although surveillance videos with fixed
background account for only a proportion of existing video
streams, VaBUS degrades to Rol encoded streams without
background subtraction when running on videos captured by
moving cameras, e.g., dashcams or drones. And slightly more
bandwidth might be consumed due to the transmission of
background image.
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B. Tradeoff of Bandwidth Saving

Although VaBUS is able to save a large amount of band-
width with acceptable latency of around one second, there is a
tradeoff between bandwidth consumption and latency. Gener-
ating Rols on the edge device as well as processing frames in
batches inevitably increase the latency. The overhead VaBUS
imposes on the system may be overwhelming for low-end edge
devices with fewer available computing resources.

C. Future Work

VaBUS is designed to improve a single aspect of the
video analytics pipeline, i.e., saving bandwidth by transporting
only changed foreground regions of the frames. Therefore,
it can be combined with other independent systems to further
improve the performance, e.g., integrating AWStream [7] to
dynamically adjust streaming settings and adapt to available
bandwidth. Besides, more optimization can be applied on the
edge device to utilize the limited resources more efficiently,
e.g., implementing the system in a more high-performance lan-
guage like C++ instead of Python, and moving image-related
operations from CPU to the unoccupied GPU.

VI. CONCLUSION

Semantic compression has become essential in the deploy-
ment of real-time video analytics applications, and this work
shows that huge bandwidth savings can be realized by sending
only foreground of the video frames from the edge to the
cloud. We have demonstrated a concrete design of VaBUS to
leverage the rich contextual information of video feeds: learn
the background information in the cloud, generate accurate
Rol regions on the edge and utilize context-dependent charac-
teristics for lightweight experience-drive learning. We imple-
ment the task-oriented communication system with commodity
hardware, and demonstrate that 25.0%-76.9% bandwidth con-
sumption can be saved with less than 10% accuracy degraded
and about one second latency. We believe the development of
such system will not only benefit edge-cloud real-time video
analytics, but also facilitate a wide range of video-related
applications.
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