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Abstract—Neural networks (NNs) are widely used in classification-based networking analysis to help traffic transmission and system
security. However, there are heterogeneous network devices (e.g., switches and routers) in a network. Manually customizing NNs with
specific device requirements (e.g., max allowed running latency) can be time-consuming and labor-intensive. Furthermore, the diverse
data characteristics of different networking classification tasks add to the burden of NN customization. This paper introduces Loong, a
neural architecture search (NAS) based system that automatically generates NNs for various networking tasks and devices. Loong
includes a neural operation embedding module, which embeds candidate neural operations into the layer to be designed. Then, the
layer-wise training is used to generate a task-specific NN layer by layer. This layer-wise scheme simultaneously trains and selects
candidate neural operations using gradient feedback. Finally, only the important operations are selected to form the layer, maximizing
accuracy. By incorporating multiple objectives, including deployment memory and running latency of devices, into the training and
selection of NNs, Loong is able to customize NNs for heterogeneous network devices. Experiments show that Loong’s NNs outperform
13 manual-designed and NAS-based NNs, with a 4.11% improvement in F1-score. Additionally, Loong’s NNs achieve faster (7.92X)
speeds on commodity devices.

Index Terms—Neural network, automated design, traffic classification, attack detection.

✦

1 INTRODUCTION

N ETWORKING classification refers to the process of
categorizing network elements (e.g., byte streams or

domain names) into predefined classes. The outcomes of
networking classification can assist network administrators
in comprehending activities in the network and taking
appropriate actions to achieve various purposes, such as
enhancing system security and Quality-of-Service (QoS) [1].
Given the complexity of computer networks, we argue that
there are several characteristics of current networking classi-
fication. The first is the task diversity. Network administra-
tors are interested in classifying various network elements,
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such as the raw bytes [2], [3] or statistics [4], [5] in the
traffic, and the strings in URLs or DNS [6], [7]. The second is
the multiple deployment devices and objectives. A network
in the real world consists of different devices, including
gateways, routers, and switches that vary in memory and
computation performance. Therefore, besides the accuracy,
networking classification is expected to run efficiently on
these devices in terms of memory usage and latency [8]–
[10].

Recently, machine learning (ML) approaches, particu-
larly those based on neural networks (NNs), have been
proposed for networking classification [4], [11]–[13]. For
instance, the authors in [11] propose a hybrid convolutional
and recurrent NN to map byte streams to the applications
that generated them. In [12], a long short-term memory neu-
ral architecture is designed to determine whether domain
name strings are generated by Botnets. In addition to achiev-
ing high accuracy, network administrators may also con-
sider the memory/latency requirements. In [8], the authors
modify the NN architecture to address memory and com-
putation resource constraints by incorporating lightweight
ensemble autoencoders for low-latency attack detection on
routers. However, these manual-designed NNs require a
significant investment of time and human resources [14].
Procedures like evaluating the NNs consisting of multiple
candidate neural operations and debugging the improper
connections between neural operations are required [15]. Be-
sides, such procedures must be repeated for each individual
networking task. Even for the same task, the final selected
NN may still need to be frequently adjusted, due to the
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various memory and computation in network devices.
A promising solution to automatically design NNs for

networking classification is the Neural Architecture Search
(NAS) [16]–[20]. DARTS [17] focus on the possible neural
operations and their connections within a layer. Then, the
searched layer is stacked multiple times to form the final
NN. Nonetheless, DARTS does not consider the layer di-
versity [18], which may hurt the accuracy given the di-
verse networking classification tasks of different input data.
Also, DARTS does not consider the hardware characteristics
(e.g., memory and latency of network devices). Proxyless-
NAS [18], LightNAS [19], and [20] are hardware-aware
mainly in terms of running latency. But network devices like
routers have small memory (hundreds of MB), which makes
memory usage also critical [8], [10]. Besides, ProxylessNAS
models the latency as a soft constraint in the search loss,
which indicates that ProxylessNAS can only guide the NN
to be lightweight on latency but it cannot design the NN
to have a desired specific latency. More importantly, given
the diverse network devices, the NAS training of [18]–[20]
should be inefficiently repeated for each device.

In this paper, we propose Loong1, a hardware-aware
NAS-based system for networking classification, which con-
siders task diversity, multiple devices, and multi-objectives
(e.g., accuracy, latency, and memory). Loong allows design-
ing NNs of layers consisting of different neural operations,
improving the layer diversity within the searched NN to
handle a wide range of networking classification tasks. After
the one-shot automated design, Loong generates a series of
NNs varying in the number of layers. For multiple network
devices, each of them can be efficiently recommended an
accurate NN that meets the specific memory or latency
constraint. In summation, we make the following contri-
butions when designing Loong:

• We comprehensively review the state-of-the-art ML lit-
erature [21]–[28] and define far more candidate neu-
ral operations than previous solutions (25 operations
in total). By embedding these sufficient operations in
the neural layers to be designed, Loong is poised to
adaptively select the most suitable operations when
presented with varying characteristics of task data,
resulting in high-quality NNs.

• We propose a Layer-wise Training (LWT) approach
to design the optimal NNs progressively. Unlike
DARTS [17], our layers can choose neural operations
different from each other for accuracy gains on di-
verse networking tasks. However, naively including
all candidate operations of all layers can lead to GPU
memory explosion [18]. As such, we use a divide-and-
conquer manner, designing the NN layer by layer. In
designed layers, they only maintain the determined
operations of high importance. In the layer to be cur-
rently designed, each possible operation is assigned an
importance weight. The trainable parameters and the
importance weights of operations are updated based on
the gradients. By greedily exploring the layers instead
of constructing numerous possible layers and opera-
tions, Loong effectively reduces the GPU demand.

1. In Chinese mythology “Nine Sons of Loong”, Loong can give birth
to numerous children with different magics.

• We incorporate the multiple objectives and devices
in Loong. We utilize Objective Regularization (OR) in
Loong’s LWT as part of the loss function. The OR
is a weighted sum of the memory/latency costs of
candidate operations that are measured on one proxy
device. As we discussed ProxylessNAS previously, soft
constraints like OR cannot guide Loong to design the
NN to meet a specific hardware objective. To obtain
NNs for exact devices and objectives without repeated
NAS training like [17]–[20], we propose an objective-
based selection. That is, consecutive designed layers
can be arbitrarily selected as a NN for a device through
the running test on the device. This selection can be
accelerated by the binary search.

• We conduct intensive experiments to compare Loong
with 13 state-of-the-art NAS/handcrafted NNs on three
tasks of different input data, and also deploy Loong’s
NNs on three network devices2. To the best of our
knowledge, this is the first work to comprehensively
analyze the feasibility and effectiveness of hardware-
aware NAS in the field of networking. Our experiments
reveal that: 1) When compared with other schemes,
NNs generated by Loong increase accuracy by 3.94%
and F1-score by 4.11%. 2) Loong shows superior gen-
eralization on various networking tasks, achieving ac-
curacies of 94+% across all evaluated tasks. 3) Loong
succeeds in returning optimal NNs for given objectives.
E.g., for the max allowed latency of 0.25ms, the returned
NN can classify 9188.98 samples per second on the
device.

2 BACKGROUND

2.1 Networking Classification Diversity

Through the training, NNs can intelligently learn represen-
tative patterns from the observed data, and thus improve
the performance for many use-cases [14], [15]. As such, NNs
have been promising solutions for solving a multitude of
networking classification tasks [1]. These tasks are usually
associated with various types of data as follows.

Classification on Byte Streams. In network communica-
tion, packet delivery enables the exchange of information
between hosts. Network administrators can capture the
flowing packets, extract their raw bytes, and analyze the
communication for various purposes. In [2], the authors
propose DeepPacket, a convolutional classification frame-
work that handles tasks on traffic service classification
(packets are classified into application protocols including
FTP and P2P) and traffic application identification (packets
are classified into applications like Gmail and Skype). In [3],
the authors present BGRUA to identify the web services
running upon the packets. BGRUA uses a NN based on
the gated recurrent units and takes the first 2700 bytes of
each session as input for classification. Other related works
are [11], [29], [30].

Classification on Strings. In some scenarios, strings like
URLs and domain names play a significant role in delivering
information across networks and are valuable sources for
analysis. For example, in [6], the authors present a model,

2. The code will be open-source after the acceptance.
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CNN-MHSA, to detect phishing websites based on the
clicked URLs. The model is designed with a Convolutional
Neural Network (CNN) and takes URL strings as input.
On the other hand, domain names in the DNS packets are
often not monitored by firewalls, making them easier to be
tunnels for data leakage. Hence, the authors in [7] present
a model, BCNN, to identify whether a domain name is
used as a tunnel for private data exfiltration. Also, domain
names can be generated by families of domain generation
algorithms (DGA) for Botnet activities. Therefore, LSTM is
used for the DGA family classification in [12]. Other works
are [31], [32].

Classification on Flow Statistics. Network administra-
tors also gather various statistical features of a flow for
analysis. Typically, a flow is defined as a series of packets
that have the same five-tuple (i.e., source and destination IP
addresses, source and destination ports, and transmission
protocol number). Statistical features, such as the average
packet transmission rate and inter-packet arrival time, are
represented as floating-point numbers. In the study pre-
sented in [33], the authors propose a Feed-Forward Deep
Neural Network (FFDNN) and utilize 48 statistical features
of flows for anomaly detection. Similarly, in [4], [5], the
authors extract statistical features from IoT network flows
and feed them into either a Convolutional Neural Network
(CNN) or Recurrent Neural Network (RNN) model for cy-
ber attack detection. Additional studies leveraging statistical
features for network analysis include [13], [34], [35].

2.2 Multiple Devices and Objectives in Networking

In networking, classification accuracy is not the sole concern
for the variety of tasks at hand. Given the limited memory
and computation capacity of off-the-shelf network devices
like gateways, routers, and even programmable switches [8],
[9], network administrators must also consider the memory
usage and running latency of NNs for tasks on these het-
erogeneous devices [36]. This ensures that NNs can operate
efficiently across the network’s devices, enabling effective
network-wide tasks.

Selecting the proper NN according to desired memo-
ry/latency objectives is critical for network devices. For
instance, in resource-constrained routers, memory is scarce
(hundreds of MB) and should be often a shared resource,
used by multiple critical networking functions (e.g., routing
and network address transmission). If the designed NN
is too large in terms of memory consumption, it will be
failed to be deployed with other functions, dramatically
weakening the fundamental traffic transmission [8]. Also,
if the deployed NN is of high latency and runs slowly, even
though it is highly accurate, the reactions on the classified
traffic cannot be performed timely to guarantee the network
QoS or security (e.g., failing to block detected attack activ-
ities in time). These concerns highlight the importance to
design suitable NNs that should not only have high clas-
sification accuracy, but also meet specific memory/latency
objectives [30].

Unlike the accuracy, the memory/latency requirements
of an NN are related to both the neural architecture and
the hardware factors [16], [37]. As such, there are two
aspects to be considered for these objectives. First, during

the design, one should select the efficient neural operations
to build the NN. E.g., selecting the operations that require
less memory/latency but do not degrade the classification
performance dramatically. Second, after the design is com-
pleted, the designed NN is tested on the deployment device
to check whether or not it meets the objectives. If not, the
design process should be repeated or fine-tuned.

2.3 Neural Architecture Search

As networking classification varies in the tasks and objec-
tives, previous solutions that require researchers to tailor
appropriate NNs for specific requirements are too expen-
sive in time and human resources [14], [15]. A promising
solution to these obstacles is the Neural Architecture Search
(NAS) technique, which aims to automate the generation of
NNs [16]–[20], [38]–[40].

At the early stage, NAS is based on Reinforcement
Learning (RL) or Evolution Algorithm (EA). In [38], the
authors use an RL-based agent to replace the manual effort
of designing NNs. At first, the agent generates numerous
candidate NNs and trains them from scratch. Then the eval-
uated performance of these NNs is used as the reward to
train the agent’s NN-generation strategy. In [39], the authors
randomly produce a large number of NNs as a population
and then use the EA to evolve the population. That is, train-
ing all NNs, removing the ones that are below the accuracy
threshold, and then using the survivors to produce new
NNs. Nevertheless, RL and EA solutions train candidate
NNs discretely and are computationally expensive [16].

Recently, the more efficient differentiable NAS has been
proposed, which explores all possible neural operation con-
nections in a differentiable architecture. DARTS [17] regard
a neural layer (aka cell) as a directed acyclic graph (DAG)
where edges in the DAG are candidate neural operations.
The training in DARTS is to find several important op-
erations to form the layer. The final NN is formed by
stacking this layer multiple times. However, DARTS does
not consider the layer diversity [18], which may degrade the
NN performance given the task diversity in networking. Be-
sides, DARTS does not incorporate hardware characteristics.
Solutions [18]–[20] are hardware-aware. ProxylessNAS [18]
records operations’ latencies in a lookup table (LUT). Then,
values in the LUT are weighted and summed as a soft
constraint to guide the operation selection in the training.
This soft constraint, however, can not find an NN of a
desired latency. Instead, [19], [20] use special neural models
to predict the NN latency of a device during the training
so as to design NNs of specific latency. But these schemes
require inefficient repeat to design NNs for multiple devices.
Besides, the mentioned hardware-aware methods do not
consider the vital memory constraints in network devices.

As these methods are not specifically designed for net-
working and cannot well meet the requirements in Sec-
tion 2.1 and 2.2, we want to design a new generic NAS
system, which can yield high accuracy on the various net-
working tasks and efficiently generate NNs for multiple
network devices and objectives (memory/latency).
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3 LOONG OVERVIEW

3.1 Problem Statement
The generic multi-objective neural automation is to build
an approach to automatically generate (design and train
together) NNs for various networking classification tasks,
devices, and objectives, while the approach itself should be
computationally efficient in GPU memory/time. Network
administrators can organize data via the pair of (x, y) where
x is the data fed to the NN and y is the class label. Also, an
extra input z is accepted to indicate the allowed max mem-
ory usage or running latency of the desired NN on network
devices, i.e., the objectives. The approach will output NNs
satisfying the provided objectives with high accuracy.

3.2 Framework Overview

Fig. 1: The framework of Loong.

The framework of Loong is presented in Fig. 1. After the
network administrator provides the dataset (x, y) and the
objective z, Loong can be run on a powerful server of GPUs
to generate NNs, and then recommends suitable NNs to run
on network devices (e.g., routers, programmable switches)
with the objective z.

The Neural Operation Embedding (detailed in Sec-
tion 4) embeds the candidate operations into the layer by
a directed acyclic graph. This means that the layer to be
designed (e.g., Layer #2) consists of several inner nodes
n1, . . . , nk. The nodes represent the processed intermediate
data, and each node is connected by several directed dashed
edges from its predecessor nodes. These dashed edges rep-
resent the candidate operations. For each edge (operation),
besides the trainable built-in parameter p, an importance
weight w is assigned.

The Layer-wise Training (detailed in Section 5) trains
and designs the NN layer by layer. The parameter p and the
importance weight w of each edge (operation) are updated
via the bi-level gradient. The first gradient is computed from
the cross-entropy (CE) loss between the predictions and the
true labels in y, and is used to train p of all existing layers.
The second gradient, which is computed from the sum of
CE and OR, is used to update w of the layer currently being

designed. After the bi-level gradient update converges, the
dashed edges of the directed node are eliminated, and only
the edge with the highest w is kept (e.g., the solid edge in
Layer #1).

The OR Comput. (detailed in Section 6) utilizes a lookup
table to compute the OR weighted by w. The lookup table
records three elements (O, M, L) per row, i.e, the opera-
tions (O) and the corresponding measured memory/latency
(M/L) on a network device. During the layer design, we
compute the OR by summing the results of w × M (or L).
Then, the OR is reflected in the gradient to penalize the
high importance w of unsuitable operations. When there
are numerous deployment devices, constructing a lookup
table for each device can be labor-intensive. Therefore, we
propose to utilize a lookup table of the proxy device in that
multi-device scenario.

The Objective-based Selection (detailed in Section 7)
runs tests on the target device, finding the NN (aka sub-NN)
that has the most consecutive generated layers while does
not exceed the objective memory/latency (as more layers are
more accurate). Finally, this sub-NN is returned to be the
device-selected one that satisfies the hardware constraints
and yields high accuracy on the given task. Moreover, we
also accelerate the sub-NN selection for multiple devices
based on a binary search.

With these delicate modules, Loong is able to generate
NNs for a wide variety of networking tasks, satisfying the
objectives of devices. Unlike previous NAS solutions (e.g.,
[38], [39]) which train and evaluate numerous NNs in vain,
Loong combines appropriate operations layer by layer to
greedily find the task-specific NN, reducing the required
GPU memory and time during the search.

4 NEURAL OPERATION EMBEDDING

4.1 Candidate Neural Operations

Previous solutions only repeat three or four kinds of neural
operations to build NNs, which reduces human resources
but may lead to poor generalization for different tasks.
To help Loong adapt well to various tasks, we provide a
set of sufficient candidate neural operations for each layer
to be designed. In summary, we consider operations from
three aspects: convolution block, pooling function, and skip.
In fact, the candidate operations in Loong are easy to be
extended (we will further study this in the future).

Like [4], [7], our convolution block consists of opera-
tions in the order of {convolution, activation function, batch
normalization}. The difference is that we explore more kinds
of convolutions and activation functions. Besides the ordi-
nary convolution, the newly proposed techniques are con-
sidered, including group convolution [22] and dilated con-
volution [21]. Additionally, the kernel sizes of convolutions
can be 3 or 5. As for the activation functions, we employ the
widely used ReLU [25] and its variants (LeakyReLU [23],
ELU [24]). The pooling functions are also of different types
(average [27], max [26], power-average [28]) and of different
kernel sizes (3 or 5). The skip is a special operation, indicat-
ing that there is no applied neural operation from the source
node to the destination node. In total, 25 neural operations
are defined in the candidate set as illustrated in Table 1.
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Table 1: The candidate neural operations in Loong.

 Description Sum 

Convolution 

Block 

Convolution 
Three 

Activation 

Functions 

One 

Normalization 
 Three 

Types 

Two 

Kernel 

Sizes 

Ordinary

, Group, 

Dilated 

3, 5 
ReLU, 

Leaky, ELU 

Batch 

Normalization 

3x2x3x1

=18 

 

Pooling 

Three Types Two Kernel Sizes  

Average, Max, 

Power-average 
3, 5 3x2=6 

 

Skip Apply no neural operation 1 

 

 

 System 
CPU 

RAM 
Type Clock Cores 

VM (Virtual 

Machine) 
Ubuntu 16.04 

Intel i7-

10875H 
1.2GHz 4 2GB 

 

EdgeCore 

(Wedge 

100BF-65X) 

Open 

Network 4.14 

Intel D-

1517 
1.6GHz 8 8GB 

 

H3C 

(S9850-32H) 

Open 

Network 4.14 

Intel D-

1527 
2.2GHz 8 8GB 

 

 

Solution 
#Params 

(M) 

Device Latency (ms) Accuracy 

(%) Raspi 4 VM EdgeCore H3C 

DARTS 0.07# 6.90# 12.69 2.58 1.65 54.30# 

ENAS 0.07# 6.90# 12.37 2.56 1.63 53.89# 

Loong(15) 0.37 13.15 22.04 4.14 2.66 91.89 

Loong(1) 0.01 1.82 3.12 0.62 0.40 67.17 

Loong*(1) 0.005 0.997 1.78 0.388 0.247 50.77 

#: Values from official NAS-Bench-201 and HW-NAS-Bench 

*: Train with latency objective regularization (LOR) 

 

 

4.2 Operations in a Layer

After providing the set O of candidate neural operations,
we embed O into the layer. We view the layer as a directed
acyclic graph. The inner nodes of the graph are intermediate
representations of the input data, i.e., the output of some
operation edges. For instance, for the data (node ni) and a
neural operation o ∈ O, the output (successor node nj) can
be obtained by nj = o(ni), where i ∈ [0, j).

For the layer to be designed, the computation of nj

is complex as we must consider all the combinations of
predecessor nodes 0 ≤ i < j and candidate operations
o ∈ O to find the optimality. That is,

nj =
∑

0≤i<j

∑
o∈O

SoftMax(wo
i,j)× o(ni), (1)

where wo
i,j is the trainable importance weight of operation o

directed from ni to nj . SoftMax(wo
i,j) =

exp(wo
i,j)∑

o′∈O exp(wo′
i,j)

is

a commonly used function (e.g., [29], [30]) to normalize its
input (wo

i,j) into some probability ∈ [0, 1]. In the following,
we refer to wo

i,j as the SoftMax(wo
i,j) for simplicity.

Fig. 2: Train and select the optimal operations in a being
designed layer.

As an illustration, Fig. 2 depicts a designed layer of
k = 2 inner nodes. The input (In) of this layer is regarded
as n0. The output (Out) of this layer is the concatenation
of all inner nodes (excluding n0). According to Eq. 1, the
neural operations (the dashed edges) are all applied on the
nodes in ❶. p is the trainable parameters of operations to
process data. Also, an extra trainable weight w is assigned
to each operation, denoting the processing importance of
the specific operation.

After the update of (p, w) converges (will be discussed
in the next Section 5), we select one optimal operation o∗
and the connected predecessor node ni∗ for n1 and n2 in
❷. In detail, this selection is done by finding the highest
importance w. That is,

(i∗, o∗) = argmax
0≤i<j, o∈O

wo
i,j . (2)

Recall that we define a special skip operation in the candi-
date set. If skip is selected, nj is regarded to be deleted as
skip reflects that there is no applied operation. By doing so,
skip empowers Loong to adaptively choose the final number
(k′) of inner nodes in a layer (i.e., k′ ≤ k is legal).

5 LAYER-WISE TRAINING

5.1 Bi-level Gradient

Through the NN design in Loong, our goal is twofold. The
first is to select the optimal operations (viewed as directed
edges) to connect the nodes. The second is to train the
parameters p of these operations.

We solve this via the bi-level gradient descent-based
optimization similar to [17]. After dividing the given task
data into a training dataset and a validation dataset, w and
p in a layer can be optimized with the following two steps:

1) Calculate the cross-entropy loss CEval on the valida-
tion data and update all w by descending ∇wCEval;

2) Calculate CEtrain on the training data and update all p
by descending ∇pCEtrain.

Here CE is a common loss used to train NNs [11], [29]. The
two steps are executed alternately to minimize the CEval

and CEtrain until the layer is converged (i.e., the loss stops
decreasing). During the bi-level gradient descent, p and w of
different neural operations are adjusted to fit the data. The
operation that contributes the most to reducing the loss (i.e.,
improving accuracy) is getting a higher w. Finally, only the
operation (with trained p) that has the highest importance
wo

i,j is selected to be applied between ni and nj . In the next
section, we will discuss how to adjust this gradient scheme
to consider the optimization of device objectives.

5.2 Overall Algorithm

The overall algorithm of the layer-wise update with bi-
level gradient is shown in Algorithm 1. The network ad-
ministrator provides the task data and the device objective
z. Then, the task data is divided into the training data
Dtrain (for updating p) and the validation data Dval (for
updating w). Both Dtrain and Dval have a pair of (x, y)
where x represents the data samples and y indicates the
corresponding class labels of the samples. The core ideas of
this algorithm are:

• In Lines 2∼4, we first check whether or not the number
of layers in the current NN has reached the max value
MAX . If so, we terminate the layer-wise training. Oth-
erwise, we continue to initialize a new layer for NN .
OpEmbed(k,O) is the operation embedding discussed
in Section 4 and Fig. 2, where all the candidate opera-
tions O are the directed edges, connecting the k inner
nodes.
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Algorithm 1 Layer-wise Training

Input: Dtrain = (x, y), Dval = (x, y), and objective z.
1: NNs = [ ];
2: while current NN.layer length ≤ MAX do
3: Initialize new layer with OpEmbed(k,O); //

Operation embedding of Section 4
4: NN.add new layer(layer);
5: while training NOT converged do
6: ŷ = NN(Dval.x);
7: CEval = CE(ŷ, Dval.y);
8: OR = ORCompute(layer); // Objective

regularization computation of Section 6
9: Update layer.w by ∇w(CEval +OR);

10: ŷ = NN(Dtrain.x);
11: CEtrain = CE(ŷ, Dtrain.y);
12: Update ∀p in NN by ∇pCEtrain;
13: end while
14: Eliminate redundant layer.op in NN by layer.w;
15: if fine-tuned NN improve accuracy then
16: NNs.add new NN(NN);
17: end if
18: Early stop if the accuracy is not improved twice;
19: end while
20: sub-NN = ObjSelect(NNs, z); // Objective-based

selection of Section 7
Output: The desired sub-NN .

• Lines 6∼9 update w. We first use NN to predict the
class labels ŷ on Dval. For the layers that have been de-
signed, their inner nodes use the optimized operations
to process the data in the prediction, i.e.,

nj = o∗(ni∗). (3)

For the layer being designed, its computation follows
the Eq. 1. Then, the loss CEval is derived via comput-
ing the difference between the predicted labels ŷ and
the true labels Dval.y. Notably, unlike the original bi-
level gradient scheme in Section 5.1, we also add OR
(will be discussed in next Section 6) to compute the
gradient, reflecting the objective influences of different
operations on the device.

• Lines 10∼12 update p of NN through descending the
gradient on CEtrain. In this update, parameters of all
layers in the current NN are updated, i.e., including
the already designed layers, and the currently being
designed layer.

• In Line 14, the training of the current NN finishes and
we reconstruct the newly added layer by eliminating
all the operations except for the optimal one for each
inner node (see Fig. 2). According to Eq. 2, in each inner
node, the optimal operation has the max importance
weight w.

• In Line 16, NNs records all the intermediate NN of
various consecutive layers. After the generation ends,
we select the optimal sub-NN in NNs according to the
provided objective z in Line 20. Actually, ObjSelect(.)
can return sub-NN for one or multiple devices (it is
detailed in Section 7).

• Line 18 is the quick stop for the loop of layer generation.
As the NN is generated layer by layer, we should guar-
antee the necessity of adding more layers. Therefore,
after a new layer is obtained, we fine-tune NN on the
training set and check its validation accuracy. If adding
consecutive two layers does not improve the accuracy,
we stop generating more layers.

6 OBJECTIVE REGULARIZATION COMPUTATION

6.1 Lookup Table and Proxy Device
Typically, Loong can design NNs for heterogeneous network
devices that have varying objective requirements. However,
it is time-consuming to interrupt Loong’s layer-wise training
to wait for the running cost (memory/latency) feedback
on the target device [19]. Similar to [18], [41], we also
build a lookup table to record the previously tested costs
of the candidate neural operations so that the feedback
computation in Loong can be fast. To build the lookup table,
we implement an automated script (based on standard APIs
in [42]) to run on devices, testing and recording the costs
of each operation. To make sure that the lookup table can
reflect the cost well, each operation is tested 10K times, and
then its average cost is recorded.

Nevertheless, given the diverse network devices, it may
still take some time for our script to run on each device. For-
tunately, as previously reported in [43], operations typically
exhibit correlated performance across different devices. As
such, with one device as the proxy, we can re-use its lookup
table for new target devices without losing optimality.

6.2 Objective Regularization
As many network devices are resource-constrained, the net-
work administrator may request lightweight NNs. Besides,
with the same accuracy, we prefer to select operations that
are more computationally friendly to reduce power and
time overhead. In such cases, we should take the device
costs of neural operations into account when updating their
importance weights in Loong.

Thus, we utilize OR to embed the potential device costs
in the loss. Given the layer being designed, we set

OR = ORCompute(layer)

=
∑
nj

∑
0≤i<j

∑
o∈O

wo
i,j × Lookup(o), (4)

where Lookup(.) reflects the function to check the opera-
tion o in the lookup table and obtain the operation mem-
ory/latency cost. Specifically, in Algorithm 1 Lines 8∼9,
we first compute OR and then update w with descending
∇w(CE + OR). By doing so, we can penalize the high-
value w of operations that have high memory or latency
costs and guide the NN toward a lightweight design. It
is important to note that this procedure is optional. If one
demands Loong to design NNs and is not concerned with
the potential device constraints, he can set OR = 0 in Lines 8
of Algorithm 1. Similar to ProxylessNAS [18], OR is a soft
constraint in the training loss. OR can guide the NN to be
lightweight, but it cannot reach a NN whose memory/la-
tency ≤ the given objective z. As such, the objective-based
selection is proposed in the next Section 7 to find the desired
NN for each device.
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7 OBJECTIVE-BASED SELECTION

7.1 Single Device Scenario

By using the lookup table from the same device, we can
obtain an array NNs that maintains multiple sub-NNs of
different consecutive layers in Algorithm 1. Nonetheless,
one obtained sub-NN can have varying memory/latency
values on different devices. Our concern is how to rec-
ommend the right sub-NN for a specific memory/latency
objective z of a device through ObjSelect(.) (Line 20, Al-
gorithm 1). Basically, ObjSelect(.) can be implemented by
running all sub-NNs on the specific device to find the
optimality sub-NN∗ such that

sub-NN∗ = argmax
sub-NN∈NNs

Layers(sub-NN),

Obj(sub-NN) ≤ z. (5)

That is, among all the sub-NNs that have a lower memo-
ry/latency requirement than z, sub-NN∗ is the one that has
the most layers (according to Algorithm 1, the NN of more
layers is more accurate).

7.2 Multi-Device Scenario

The NN selection becomes tricky as testing all sub-NNs
for each individual device is time-consuming. Due to the
neural monotonicity — NNs of more layers are expected to
be more accurate but consume more memory/latency, we
propose to utilize the binary search for the implementation
of ObjSelect(.) in the multi-device scenario. Fig. 3 shows
the example binary search on a given device to find the
sub-NN of specific latency. As illustrated, sub-NNs of the
NNs array ( Line 16, Algorithm 1) have been naturally
ordered: sub-NNs on the right side have more layers, better
accuracy, and higher latency. During this binary search, we
first test the middle 5-layer sub-NN of the array, testing
its actual latency on the device. As the actual latency is
larger than z, we continue to search the left half elements
in NNs and repeat this until the exact value (or the value
closest to z) is found. Finally, we only test two (instead of
all) sub-NNs to find the optimality in this example.

Fig. 3: The binary search example on a device to find the
sub-NN that satisfies a latency z = 1.0ms.

In summation, when multiple devices are waiting for be-
ing deployed, we can again consider the series of sub-NNs
with different memory/latency requirements without re-
running Loong. This is feasible for deployment devices of
the same task. When the task and the training data change,
we should run Loong again.

8 EVALUATION

8.1 Experimental Settings

Tasks and Datasets. According to Section 2.1, we lever-
age three networking classification tasks with data of byte
streams, domain name strings, and flow statistics: 1) The
UNIBS3 dataset contains packets of bytes captured in the
University of Brescia. We use the UNIBS for the traffic
application identification with six application classes. 2) The
3604 dataset consists of DNS strings generated by the DGA.
We conduct the DGA family classification (18 classes, 17
malicious families plus one benign class) on the 360. 3) The
NB155 dataset consists of statistics of flows from benign and
nine types of attacks. We conduct the attack detection on
the NB15. Each of these datasets is randomly divided into
three parts, with 40% of the data used for training, 40% for
validation, and 20% for testing.

Baselines and Platforms. Loong is compared with 13
manual and NAS designed NNs: CNN [4], BCNN [7],
FFDNN [33], LSTM [31], RNN [5], DeepLSTM [34],
LuNet [35], DeepPacket [2], CLSTM [32], and BGRUA [3] are
10 manual approaches; DARTS [17], ProxylessNAS [18], and
ENAS [40] are three NAS-based solutions. The 10 manual
approaches are reproduced by ourselves with PyTorch 1.10.
The NAS baselines are implemented by the Microsoft NNI
library6. NNI reproduces several NAS solutions according
to their papers. We just reset their search spaces to be the
same as Loong (Table 1). The training of NNs is conducted
on a server with CPU of Intel (R) Xeon (R) Silver 4210 CPU
@ 2.20GHz and GPU of NVIDIA RTX 2080 Ti (11GB). To test
the multi-objective deployment scenarios of NNs generated
by Loong, we further consider three network devices: a
virtual machine (VM), the EdgeCore Wedge 100BF-65X7,
and the H3C S9850-32H8 (as listed in Table 2). The VM (with
limited performance settings) serves as a representation of a
low-performance router, while EdgeCore and H3C are two
commodity programmable switches. The tests of NNs (in-
cluding Loong and compared schemes) on network devices
are facilitated by the use of MNN [42], a lightweight ML
library.

Table 2: Devices for the deployment of Loong’s NNs.

 Description Sum 

Convolution 

Block 

Convolution 
Three 

Activation 

Functions 

One 

Normalization 
 Three 

Types 

Two 

Kernel 

Sizes 

Ordinary

, Group, 

Dilated 

3, 5 
ReLU, 

Leaky, ELU 

Batch 

Normalization 

3x2x3x1

=18 

 

Pooling 

Three Types Two Kernel Sizes  

Average, Max, 

Power-average 
3, 5 3x2=6 

 

Skip Apply no neural operation 1 

 

 

 System 
CPU 

RAM 
Type Clock Cores 

VM (Virtual 

Machine) 
Ubuntu 16.04 

Intel i7-

10875H 
1.2GHz 4 2GB 

 

EdgeCore 

(Wedge 

100BF-65X) 

Open 

Network 4.14 

Intel D-

1517 
1.6GHz 8 8GB 

 

H3C 

(S9850-32H) 

Open 

Network 4.14 

Intel D-

1527 
2.2GHz 8 8GB 

 

 

Solution 
#Params 

(M) 

Device Latency (ms) Accuracy 

(%) Raspi 4 VM EdgeCore H3C 

DARTS 0.07# 6.90# 12.69 2.58 1.65 54.30# 

ENAS 0.07# 6.90# 12.37 2.56 1.63 53.89# 

Loong(15) 0.37 13.15 22.04 4.14 2.66 91.89 

Loong(1) 0.01 1.82 3.12 0.62 0.40 67.17 

Loong*(1) 0.005 0.997 1.78 0.388 0.247 50.77 

#: Values from official NAS-Bench-201 and HW-NAS-Bench 

*: Train with latency objective regularization (LOR) 

 

 

3. http://netweb.ing.unibs.it/∼ntw/tools/traces/
4. http://data.netlab.360.com/
5. https://research.unsw.edu.au/projects/unsw-nb15-dataset
6. https://github.com/microsoft/nni
7. https://www.edge-core.com/productsInfo.php?cls=1&cls2=5&

cls3=181&id=334
8. https://www.h3c.com/en/Products Technology/Enterprise

Products/Switches/Data Center Switches/H3C S9850/
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Hyper-parameters of Loong. The max number of inner
nodes per layer is k = 4, the max number of generated
layers is MAX = 10, and the candidate operation set O
has been discussed in Table 1. Other hyper-parameters (e.g.,
neural parameter initialization) are the default values sug-
gested by PyTorch. According to the fed task data, our layer-
wise training (Algorithm 1) allows Loong to adaptively
design neural layers with suitable candidate operations for
high accuracy. Hence, we no longer pay more attention to
the time-consuming hyper-parameter tuning (experiments
in Section 8.2 and 8.3 will show Loong’s superiority with the
same hyper-parameters on multiple tasks). Though tuning
hyper-parameters is time-consuming, it undeniably will also
yield further performance gains, and we leave this for future
work.

8.2 Classification Performance
As most compared NNs do not consider the device objec-
tives, in this section (and the following Section 8.3, 8.4), we
set OR = 0 (Lines 8, Algorithm 1) and select the generated
highest-accuracy NN (i.e., the last NN in the NNs array)
for the comparison with other schemes.

As shown in Fig. 4, the performance on different classi-
fication tasks is evaluated in terms of four metrics: average
accuracy, precision, recall, and F1-score. Although the con-
sidered networking task changes, Loong exhibits superior
performance compared to other solutions. As an illustration,
when compared with CLSTM on the traffic application
identification (in Fig. 4a), Loong improves the accuracy and
F1-score by 1.71% (92.90% vs. 94.61%) and 1.80% (92.89%
vs. 94.69%), respectively. When compared with ENAS on
the DGA family classification (in Fig 4b), Loong improves
the accuracy and F1-score by ∼3.94% (93.05% vs. 96.99%)
and ∼4.11% (92.83% vs. 96.94%). A main reason is that
after being run on each task, Loong is able to adapt the
neural operations to generate optimal NNs, achieving better
classification performance.

8.3 Task Generalization
As mentioned previously, there are various networking
classification tasks with different data characteristics, which
challenges the performance of NNs. To further demonstrate
the adaptability of Loong, Fig. 5 illustrates the four classifi-
cation metrics of each compared solution on different tasks.

As shown, with the exception of Loong, which shows
high performance on all tasks due to the design versatility
of NNs, achieving 94+% accuracy, the rest of the manual
NNs fail to generalize effectively to different tasks. For
instance, as shown in Fig. 5a, the accuracy of RNN is
unsatisfactory for the DGA family classification task, which
is only around 56.09%, a decrease of 40.86% compared to
its performance in the attack detection task. Similarly, in
Fig. 5c, the recall of BGRUA for the task of traffic application
identification is poor, with a value of approximately 42.04%,
which is a decrease of 52.10% compared to its recall for the
attack detection. The poor performance of these manually
designed neural networks highlights the limitations of a
fixed neural structure in handling diverse tasks. The ability
to automatically design NNs, as demonstrated by Loong, is
desirable when facing a range of tasks.

8.4 Training Resource Cost

In this experiment, we examine the average training re-
source consumption of different schemes. We depict the
training time and GPU memory cost in Fig. 6. As shown,
Loong takes more time and GPU consumption than man-
ually designed NNs. For instance, Loong consumes 3.93×
more GPU memory than DeepPacket (4.05GB vs. 1.03GB)
and takes 7.73× more time than BGRUA (11.05h vs. 1.43h).
This is reasonable, as Loong must evaluate numerous
possible neural combinations simultaneously. For a being-
designed layer with 4 inner nodes, there are 25 neural
operations in Table 1 that can be selected to connect these
nodes, resulting in 4! × 254 possibilities. Besides, Loong
will generate a series of NNs instead of only one. On the
contrary, handcraft schemes only require training one struc-
turally pre-determined NN. But researchers must invest a
lot of manual intervention before getting the determined
neural structures, which is much more expensive than the
automation in Loong.

When compared with other NAS schemes, Loong still
demonstrates advantages. The time and GPU memory of
Loong are 50.02% and 40.83% less than DARTS (11.05h
vs. 22.09h, 4.05GB vs. 9.92GB). Though ProxylessNAS and
ENAS have a lower GPU memory consumption, their clas-
sification performance is poorer than Loong (e.g., Fig. 4b).

8.5 Multiple Objectives of Devices

For a fair comparison with other approaches, the previous
experiments do not consider device objectives. In this sec-
tion (and the next Section 8.6), we discuss the effects of
the memory/latency objective regularization (OR) in Algo-
rithm 1. Notably, we conduct experiments on network de-
vices of Table 2 and use VM as the proxy device to construct
the lookup table for the OR computation in Section 6.

Fig. 7 demonstrates the effects of memory objective
regularization (MOR) on Loong’s NN generation on the VM
device. As shown, the MOR guides Loong to find more
lightweight NNs in terms of device memory consumption
while preserving better accuracy during the generation of
midway NNs. However, the MOR also limits the highest
accuracy that NNs can reach. A similar phenomenon is
revealed in the use of latency objective regularization (LOR)
in Fig. 8. That is, the LOR helps to reduce the device running
latency and yields higher accuracy on midway NNs but also
limits the final accuracy.

The reason for this interesting phenomenon can be ex-
plained by Fig. 9. By adding the OR, device constraints are
reflected in Loong’s operation selection and guide Loong to
prefer simple layers. For example, compared with Fig. 9c,
the layer in Fig. 9d has only two inner nodes, and several
operations (LeakyReLU, ordinary convolution of kernel 3
and 5) are missed. Though lightened NNs have less mem-
ory/latency, their representation capability is weaker which
causes the final accuracy reduction in Fig. 7 and 8. Another
interesting phenomenon is that the accuracy of Loong either
peaks before Layer10 or levels off near Layer10 on all
networking tasks (in both Fig. 7 and 8). Hence, fixing the
number of possible layers to 10 is reasonable for different
networking tasks.
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Fig. 5: The generalization performance of handcraft NNs and Loong on different task data.
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Fig. 8: NNs of DGA family classification with (or without) latency objective regularization (LOR) on three devices.
According to Algorithm 1, the NNs (layers) are added one by one.

8.6 Runtime Performance

After Loong generates a series of NNs in the NNs array, the
last mission of Loong is to return optimal NNs for a given
device objective. In this section, we ask Loong to return NNs
that have a max running latency of 0.25ms/0.50ms on the
three network devices for the hardware deployment test.

Fig. 10 depicts the tested running rates of the returned
NNs and the compared approaches. To satisfy the latency
objective of 0.25/0.50ms, the returned NN should classify at
least 4000/2000 samples per second on the tested device.
As shown, Loong successfully returns the right NN for

each device. On the contrary, the compared manual or NAS
solutions fail to run with the desired latency on the devices.
The results also demonstrate a clear speed advantage of
Loong’s generated NNs. In Fig. 10b, the NN generated
by Loong (≤0.25ms) can classify 9188.98 samples per sec-
ond on the EdgeCore, which is 7.92× faster than LuNet
(9188.98sample/sec vs. 1159.84sample/sec).

8.7 Experiments on NAS Benchmarks
We further compare Loong with previous NAS solutions
on NAS benchmarks of NAS-Bench-201 [44] and HW-NAS-
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Fig. 9: The layer visualization of different tasks and objective regularization (see Table 1 for operation details).
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Fig. 10: Inference rates on network devices. The latency objective regularization is used in Loong. We ask Loong to return
NNs that have a max running latency of 0.25ms/0.50ms, which indicates the returned NN should classify ≥ 4000/2000
samples per second and is as accurate as possible.

Bench [45]. NAS-Bench-201 defines a standard search space
(i.e., five candidate neural operations), and several hyper-
parameters (learning rate, epoch, optimizer, etc.). Then it
reproduces several cell-based NAS solutions (e.g., DARTS,
ENAS) to design NNs of 15 cells (layers), reporting NNs’
accuracies on image datasets of CIFAR-10, CIFAR-100, and
ImageNet. Besides, HW-NAS-Bench provides the latency
values of 15-layer NNs generated by NAS-Bench-201 on six
devices including Raspberry Pi 4 (Raspi 4), TPU, and ASIC.

To obtain Loong’s performance on benchmarks, we make
our training settings similar to NAS-Bench-201, and set the
max layer MAX = 15 in Algorithm 1. In NAS-Bench-
201, DARTS and ENAS each generate a 15-layer NN after
the NAS training. Differently, our Algorithm 1 will gener-
ate 15 NNs (consisting of 1∼15 cells, we denote them as
Loong(1)∼Loong(15)), which is more efficient for the multi-
device and multi-latency deployment. As Loong’s NNs can
have different layers instead of 15, we cannot find their re-
ported latencies on HW-NAS-Bench. Hence, we use devices
at hand for latency testing, including Raspi 4 (similar to HW-
NAS-Bench) and three network devices in previous Table 2.

Table 3: The performance on CIFAR-10.

Solution 
#Params 

(M) 

Device Latency (ms) Accuracy 

(%) Raspi 4 VM EdgeCore H3C 

DARTS 0.07# 6.90# 12.69 2.58 1.65 54.30# 

ENAS 0.07# 6.90# 12.37 2.56 1.63 53.89# 

Loong(15) 0.37 13.15 22.04 4.14 2.66 91.89 

Loong(1) 0.01 1.82 3.12 0.62 0.40 67.17 

Loong*(1) 0.005 0.997 1.78 0.388 0.247 50.77 

#: Values from official NAS-Bench-201 and HW-NAS-Bench 

*: Train with latency objective regularization (LOR) 

 

Table 3 shows the performance of NNs generated by
Loong and other NAS methods reported on NAS-Bench-
201’s CIFAR-10 dataset. The NN with 15 cells in Loong
(Loong(15)) yields higher accuracy than DARTS and ENAS.
Also, when trained with the latency objective regularization,
the NN with 1 cell in Loong (Loong∗(1)) has the fewest pa-
rameters and runs fastest on all tested devices. Additionally,
Fig. 11 shows the accuracy of another two datasets in NAS-
Bench-201, which also reveals the superiority of Loong.
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Fig. 11: The classification accuracy on NAS-Bench-201
datasets: CIFAR-100 and ImageNet.

8.8 Discussion on Kernel Sizes
In Loong, we set the kernel size of candidate convolutional
operations to be 3 or 5. Actually, several schemes [16], [18],
[41] prefer to choose kernel sizes of 3, 5, and 7. Fig. 12
demonstrates the effect of different kernel size choices. On
three networking tasks, adding more kernel size choices has
limited advantages. For example, after adding the kernel
size of 7, the max accuracy achieved by designed NNs on
the task of traffic application identification is only improved
by 0.02%. On the contrary, the training time is dramatically
incremented by 1.65× as Loong has to explore more possible
settings when designing the NN.
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Fig. 12: The kernel size effect in the candidate convolutions.

8.9 Comparison with Computation Mapping
To intuitively demonstrate the superiority of Loong over the
manual NN design, we assume that the manual designer
can try to map each designed NN on the device to find the
desired one. As the max layer of Loong is 10, and each layer
has 25 candidate operations to connect 4 inner nodes, the
possible NNs in our search space are

∑10
i=1(4! × 254)i. It is

hard for the manual designer to map and test every NN in
this space on the device, so we randomly select 10K NNs for
the manual mapping. By our testing on the device EdgeCore
(in Table 2), there are multiple candidate NNs meet different
latency requirements, i.e., 1938 NNs ≤ 0.5ms, 4218 NNs
≤ 1.0ms, and 6380 NNs ≤ 1.5ms.

The next step for the manual designer is to train these
candidate NNs and select the one with the highest accuracy.
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Fig. 13: The accumulated training time and GPU memory
usage of Loong and manual design.

Though manually checking each NN’s accuracy may find
a better NN than Loong, the training time and GPU costs
are expensive. Fig. 13 depicts the accumulated training
time and GPU memory for Loong and manual design. As
shown, manual design has huge time and memory costs. For
example, to select the NN ≤ 0.5ms, Loong is 21.26× ↓ (in
time) and 473.09× ↓ (in memory) than the manual design.

9 CONCLUSION

Though neural networks have been applied to several
networking classification tasks with promising accuracies,
given the diversity of networking tasks and devices in a
network, designing suitable neural networks remains a chal-
lenging problem for researchers. In this paper, we introduce
Loong, a generic automated system that designs and trains
NNs for various networking classifications with multiple
device objectives (e.g., memory/latency constraints). We
embed sufficient 25 neural operations in the layer to be
designed to face the task and data diversity. The NN design
follows a layer-wise strategy to reduce the GPU compu-
tation. Also, the memory and latency costs of deployment
devices are reflected in Loong by the objective-regularized
training and selection of NNs. Thorough experiments on
tasks with different data show the superiority of Loong, e.g.,
improving the accuracy and F1-score by 3.94% and 4.11%
when compared with other NNs. Besides, the deployment
evaluation of heterogeneous devices demonstrates that the
fastest NN generated by Loong can classify 16438.18 sam-
ples per second.
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