IEEE INFOCOM 2023 - IEEE Conference on Computer Communications | 979-8-3503-3414-2/23/$31.00 ©2023 IEEE | DOI: 10.1109/INFOCOMS53939.2023.10228869

Hawkeye: A Dynamic and Stateless Multicast
Mechanism with Deep Reinforcement Learning

Lie Lu*¥, Qing Li%, Dan Zhao®, Yuan Yangi, Zeyu Luan™$, Jianer ZhouT, Yong Jiang*§, and Mingwei Xut

“Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
SDepartment of Mathematics and Theories, Peng Cheng Laboratory (PCL), Shenzhen, China
“Department of Computer Science and Technology, Tsinghua University, Beijing, China
Institute of Future Networks, Southern University of Science and Technology, Shenzhen, China

Abstract—Multicast traffic is growing rapidly due to the
development of multimedia streaming. Lately, stateless multicast
protocols, such as BIER, have been proposed to solve the ex-
cessive routing states problem of traditional multicast protocols.
However, the high complexity of multicast tree computation and
the limited scalability for concurrent requests still pose daunting
challenges, especially under dynamic group membership. In this
paper, we propose Hawkeye, a dynamic and stateless multicast
mechanism with deep reinforcement learning (DRL) approach.
For real-time responses to multicast requests, we leverage DRL
enhanced by a temporal convolutional network (TCN) to model
the sequential feature of dynamic group membership and thus is
able to build multicast trees proactively for upcoming requests.
Moreover, an innovative source aggregation mechanism is de-
signed to help the DRL agent converge when faced with a large
amount of multicast requests, and relieve ingress routers from
excessive routing states. Evaluation with real-world topologies
and multicast requests demonstrates that Hawkeye adapts well to
dynamic multicast: it reduces the variation of path latency by up
to 89.5% with less than 12% additional bandwidth consumption
compared with the theoretical optimum.

Index Terms—multicast routing, DRL, BIER-TE

I. INTRODUCTION

Multimedia traffic produced by IPTV, online conferencing,
and live streaming grows rapidly and dominates the Internet
traffic in recent years. Cisco predicts that video traffic will
account for more than 70% of Internet traffic by 2023 [1]. Such
momentum continues due to the development of ubiquitous
digital devices and emerging applications like 4K/8K videos
and AR/VR. Consequently, a great challenge is imposed to
traffic engineering (TE) to efficiently use network resources
and accommodate user traffic. A number of studies have been
proposed to address this issue [2]-[5].

Multicast is promising for multimedia traffic in terms of
efficient usage of network resources because a large amount
of redundant transmission can be avoided. Unfortunately,
traditional network-layer multicast [6] incurs prohibitive con-
trol overheads due to per-flow state maintenance in routers.

This work is supported by the National Key Research and Development
Program of China under grant No. 2020YFB1804704, the National Natural
Science Foundation of China under grant No. 61972189, the Major Key
Project of PCL under grant No. PCL2021A03-1, Shenzhen Science and
Technology Innovation Commission: Research Center for Computer Network
(Shenzhen) Ministry of Education, and the Shenzhen Key Lab of Software
Defined Networking under grant No. ZDSYS20140509172959989.

Corresponding author: Qing Li. Email: lig@pcl.ac.cn

Application-layer multicast reduces traffic pressure on servers,
but the efficiency of network resources is not sufficiently opti-
mized [7]. Recently, IETF proposed a source routing paradigm,
Bit Index Explicit Replication (BIER) [8], to forward mul-
ticast traffic without the requirement of per-flow states in
intermediate nodes. On the basis of BIER, Tree Engineering
for BIER (BIER-TE) [9] is proposed as a multicast tree
construction mechanism, which inherits the advantages of
BIER and further enables flexible construction of multicast
trees. Although BIER-TE is promising for fine-grained path
control over multicast traffic, the problem of efficient multicast
tree computation still remains unsolved.

Unlike unicast-based TE that can be formulated as a multi-
commodity flow problem or other variants, multicast TE is
more complicated. Typically, multicast-based TE is formulated
as the Steiner Tree problem, which is NP-hard [10]. Worse
still, multicast-based TE with dynamic group membership is
even harder. Prior studies usually suffer from high computation
complexity even under the assumption of fixed group mem-
bership [11], [12]. Moreover, as these methods cannot learn
from the past, they only make shortsighted decision for each
incoming multicast request, without considering upcoming
demands. As such, existing approaches fail to achieve good
performance in the long term [13], [14].

We leverage deep reinforcement learning (DRL) to tackle
the above challenge. Owing to the ability of online decision
making and long-term reward optimization, DRL has been
introduced to solve TE related problems in various unicast
scenarios. Geng et al. [15] leverages the inference ability of
DRL to solve complex inter-domain TE problems, achieving
less congestion and better scalability than traditional methods.
Liu et al. [16], [17] take advantage of DRL’s adaptability to
dynamic environments for efficient online routing, thus pro-
viding near-optimal TE performance under changing network
statistics with multiple constraints.

We propose Hawkeye, a DRL-based multicast mechanism
built upon BIER-TE protocol to achieve real-time responses
to dynamic multicast requests. We first formulate multicast
TE as an optimization problem to minimize total network
cost under the constraint of path stability. Then, we leverage
DRL to learn the multicast traffic pattern from historical
requirements and make routing decisions proactively, pro-

Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on January 02,2024 at 06:55:48 UTC from IEEE Xplore. Restrictions apply.

viding near-optimal multicast TE performance. The design
of such a DRL-based dynamic multicast mechanism faces
two main challenges. First, unlike unicast with only O(n?)
possible source-destination pairs for routing, in multicast, the
combinations of O(2") multicast trees significantly exacerbate
the complexity of the problem. As such, the solution space
of DRL algorithm increases drastically with dynamic group
membership, making it difficult to converge, especially given
a large number of requests. Second, the hidden temporal
relationship among historical multicast requirements should
be effectively mined to facilitate the decision making of the
DRL agent. In this paper, we address the above challenges
with the following key ideas.

Targeting the convergence problem, we propose a source ag-
gregation mechanism to reduce the solution space of dynamic
multicast. Inspired by the observation that groups originating
from the same source can share a part of a same multicast tree
with little performance degradation, we design a source ag-
gregation method. It merges all multicast requirements rooted
from the same source into an aggregated requirement to cap-
ture the dominant traffic patterns. Then, the DRL agent only
needs to deal with the sequence of aggregated requirements
instead of the massive original requirements, thereby ensuring
faster convergence and response. Based on source aggregation,
we propose an efficient means to build trees, and a storage-
efficient method for routing table arrangement.

To capture the temporal relationship of multicast require-
ments, we design a temporal convolutional network (TCN)-
based DRL approach for multicast tree generation. It regards
the agent’s output as a sub-policy to build a multicast tree at
each step of a training episode. As such, the agent is able to
learn the temporal relationship of consecutive multicast trees.
Combining source aggregation with DRL, Hawkeye outputs
link weights, based on which proactive routing decisions can
be made. It implicitly takes the prospect of future major traffic
into consideration, thus ensuring not only real-time response
but long-term TE performance.

We evaluate Hawkeye with comprehensive simulations on
real-world topologies and multicast requests. The results show
that source aggregation can effectively accelerate convergence
speed and the DRL-based TE solution outperforms prior mul-
ticast methods in terms of bandwidth consumption and path
stability. In particular, Hawkeye reduces path latency variation
by up to 89.5% with less than 12% additional bandwidth
consumption compared with the optimal solution. Compared
with ILP-based heuristics, Hawkeye achieves not only faster
response but also better online performance.

II. BACKGROUND AND MOTIVATION
A. Background

1) BIER-TE: BIER-TE is a stateless path control mecha-
nism for multicast. It encodes a multicast tree as a Bit String
(BS) and encapsulates it in packet headers. Each Bit Position
(BP) in BS indicates an unambiguous adjacency of a router
in the network, which means an entity adjacent to the router.
A router receiving a multicast packet checks the BS in the

Group BS BP Adj
3 D1
{D1,D2} | ot 55 BP | Adj
. 5 1
(a) Ingress mapping ul decap
Adjacency | BS | BP | {011 1% D1
000001 | 1 AN
D1 decap 100/0/1'1 ..
D2 decap 000010 2 ~o
S — D1 000100 | 3 000011 ~»
u1 D2
S— D2 001000 4
S —ul 010000 5 BP Adj BP Adj
ul—D2 | 100000 6 6 D2 2 | decap

(b) Adjacency to BP/BS (c) Multicast packet forwarding

Fig. 1: An example of BIER-TE. (a) Ingress mapping of the
BFIR (node S). (b) Mapping from adjacencies to BPs. (c)
Forwarding process.

header, and then forwards (and also replicates if necessary)
the packet to an adjacency if the corresponding BP is set to
1. The router is called a Bit Forwarding Router (BFR). In
particular, an ingress router is called a Bit Forwarding Ingress
Router (BFIR) and an egress router is called a Bit Forwarding
Egress Router (BFER).

Fig. 1 shows an example of BIER-TE. There are two kinds
of BPs in Fig. 1(b), i.e., node-BP and link-BP. A node-BP (e.g.,
DI decap) is set if the node should decapsulate the packet
out of the BIER-TE domain. A link-BP (e.g., S-DI) is set if
the link is part of the multicast tree, i.e., the packet should
traverse this link. Assume a multicast packet enters the BIER-
TE domain from BFIR S towards BFERs D/ and D2, and
the multicast tree is {S—ul, ul-D2, S-DI}. First, the BFIR
receives the packet encapsulates a BIER-TE header into the it,
in which the BS is (110111) according to the ingress mapping.
Then, S updates the BS in the BIER-TE header as (100011)
by ANDing the original BS (110111) and a mask (100011),
which effectively rules out all adjacencies of S from the BS to
avoid loops. Since BPs 3 and 5 are set in the original BS, S
sends a copy of the packet along the adjacencies S-DI and S-
ul, respectively. When D1 receives the packet, it finds BP 1 in
the BS, which indicates node-BP D1 decap, so it decapsulates
this packet and passes its payload for higher layer processing.
Similarly, the other copy of the packet sent to u/ is forwarded
to D2 and D2 decapsulates and processes the packet locally.

2) DRL: Recently, deep neural networks have been widely
used in RL for value estimation and policy improvement [18].
This paradigm, called DRL, shows tremendous potential for
sequential decision-making problems, making it appropriate
for online routing optimization in the context of TE. For
example, it has been used to decide link weights [19], traffic
splitting ratios [15], and the next hops [17]. As discussed in
[20], using link-level presentation as the agent action pro-
vides high training efficiency and flexibility for routing policy
generation. This action form also benefits the construction of
multicast trees. In Hawkeye, we design the agent to observe
past multicast requirements and output link-level priorities for

Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on January 02,2024 at 06:55:48 UTC from IEEE Xplore. Restrictions apply.

future multicast trees generation.

B. Motivation

1) Why BIER-TE: Compared with traditional stateful mul-
ticast protocols, BIER-TE not only fits large-scale multicast
better but also provides flexible control of multicast trees for
TE. BIER-TE collects multicast requests with a centralized
controller and updates routing rules directly at the source
router. It can thus respond to multicast requests much faster,
consuming less network resources, than the traditional stateful
protocols. Moreover, by the specific designs of BS and BP, it
enables representations of arbitrary multicast trees with node-
BPs and link-BPs to control multicast traffic.

2) DRL for Multicast: In dynamic multicast, the multicast
tree is expected to change with dynamic group memberships.
Building efficient multicast trees following the real-time group
membership is a sequential decision-making problem, which
fits the logic of DRL. We summarize three major reasons why
DRL is appropriate for dynamic multicast routing problem.
Sequential decisions and delayed rewards. Dynamic multi-
cast routing requires a sequence of decisions that optimize the
long-term performance. Traditional methods, such as Integer
Linear Programming (ILP) models [21] and heuristics are
mainly designed for myopic offline optimization. As a result,
they provide local optima which may be far inferior to the
global optimum from a long-term perspective. In contrast, the
DRL agent evaluates the long-term effect of each decision with
the objective of improving the total return containing not only
current but also future rewards.

Predictable requirements. The number and location of users
in a multicast group have been found to follow some proba-
bilistic models, such as the Poisson distribution [22], [23]. In
dynamic multicast, however, the traffic pattern changes over
time, which makes it difficult for traditional statistical models
to fit the trend timely and accurately. Learning from the past
experience, DRL can take full advantage of the inherent char-
acteristics of requirements, and capture the trend of multicast
group membership, thus enabling proactive routing.

Readily available training data. The data needed for training
is relatively easy to obtain in multicast networks. On the one
hand, the network states and performance can be measured
easily. For example, multicast requests and join/leave events
are naturally collected by protocols (e.g., IGMP [24]), and
multicast trees generated by the agent can be evaluated using
network topology information. On the other hand, unlike
traditional methods that require exact information of the in-
coming requirements to make correct routing decisions, DRL
learns to route based on historical request data which can be
accumulated at any time.

III. DESIGN OVERVIEW

We present the high-level ideas of Hawkeye design. First,
we formulate the multicast routing with dynamic membership
as an optimization problem and explain why it cannot be
handled efficiently using ILP solvers. Then, we present the
overall workflow of Hawkeye, from DRL-based multicast tree
configuration to packet forwarding.

A. Problem Formulation

We model the network as a graph G = (V, E'), where V' and
FE denote node and edge sets, respectively. Multicast requests
arrive at discrete time slots ¢ = 1,2,...,T, with different
group memberships. Let I’ denote the set of multicast flows,
and each flow is bound to a group g whose bandwidth demand
is g4. At a specific time slot ¢, the set of members (destinations)
in group ¢ is denoted as Dg. There are two binary variables
Yg,et and @g g .+, Which indicate the state of edge e in group
g at time slot ¢. The former is set if e is in the multicast tree,
and the latter denotes whether e is in the path to node d. We
use two kinds of edge weights to calculate static and dynamic
costs of multicast trees, respectively. Specifically, ws' denotes
the cost per unit bandwidth and the static cost measures total
bandwidth consumption. w® denotes the edge latency and the
dynamic cost measures the stability of path latencies.

The problem of multicast tree construction with dynamic
membership can be formulated as follows:

T
SN gy e wl 0

min
gEF ecE t=1
s.t. Z d)g,d,e,t - Z ¢g,d,e,t - A(ga U),
e€l:se=u eeE:d.=u
t=1,2,....,T\Vge FueV,de D, (2)
d)g,d,e,t S ¢g,e,ta
t=1,2,....TVge F,de D,ec E 3)

T-—1
Yo > D (Sedettt — Sgaer) WP < CY,

t=1 deptND}t" e€E
Vg € F. (G))

Objective function Eq.(1). The objective is to minimize the
total static cost, including the trees of all groups at all time
slots, and the cost of a tree is the weighted sum of all its
link costs. The bandwidth consumption is a significant and
commonly-used metric for multicast routing.

Flow conservation constraint Eq.(2). Flows entering a node
u should also leave the node, i.e., the left traffic equals zero at
intermediate nodes, except that u is the source or a destination.
In this constraint, s, and d. denote the start-point and end-
point of a specific edge e. A(g,u) equals 1 if u is the source
of the group g, —1 if w is a destination, and 0 otherwise.
Tree constraint Eq.(3). It represents the relationship between
two decision variables ¢g 4.+ and g ¢. Since ¢g g+ and
1g,e,¢ are binary variables, 14 . equals 1 for group g if and
only if the edge e appears on the tree of g at any time slot £.
Dynamic cost constraint Eq.(4). It constrains the overheads
incurred by tree modifications. Multicast trees may change
with dynamic group membership, resulting in changed la-
tencies towards the destinations. Similar to unicast jitter, we
accumulate the variations of path latencies of the common
destinations between consecutive time slots as a metric, which
is limited by a predefined capacity C’Sy.

Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on January 02,2024 at 06:55:48 UTC from IEEE Xplore. Restrictions apply.

® Routing rule Hawkeye | DRL @ Request
update Controller | Agent collection
Rules @ Multicast tree Requests
BS-P computation Addr1 |Addr2| ...
BFER1 010--- BFER1 1 0
BFER2 = 011 BFER2 0 | 1
BFER3 | 100--- BFER3 1|1

Address | Payload BFIR BS Payload BFER1\ orERe
@ Packet encapsulation
BFER2
@) ©) ® ;
| 1 | | 3>
T T T >
t t+1 Timeline

Fig. 2: System overview.

This problem is NP-hard'. The optimal solution can be
obtained offline using ILP solvers (e.g., Gurobi [25]), with the
prior knowledge of destinations DZ of each group g at each
time. Nevertheless, future multicast requests are inaccessible
(or cannot be accurately predicted) at each time slot, making
ILP solvers impractical. Even worse, solving this NP-hard
problem is time-consuming especially in large topologies.

B. System Overview

Hawkeye adopts DRL for proactive dynamic multicast rout-
ing, which not only provides near-optimal decisions quickly
but also learns the inherent property of group membership
changes. However, the large number of concurrent multicast
groups prevents the DRL agent from efficiently learning. To
accelerate the learning process, we propose a source aggre-
gation mechanism, which abstracts the major traffic patterns
by aggregating all multicast requirements rooted at the same
source. The DRL agent only deals with the aggregated traffics
rather than the original ones.

In the following, we present the workflow of Hawkeye that
contains 4 phases spanning two consecutive time slots, as
illustrated in Fig.2. The Hawkeye controller performs phases
1-3 to generate multicast trees, and the final phase is to process
the multicast packet in the BFIR.

Phase 1: multicast request collection. At the beginning of
time slot ¢, the Hawkeye controller collects multicast requests
from all destinations for a specific source. We denote multicast
demands as a matrix. Each column in the matrix represents a
multicast group identified by a multicast address, and each
element equals 1 if there is a multicast request from a specific
BFER. Once the Hawkeye controller obtains all requests from
BFERs, it performs source aggregation to obtain an aggregated
requirement (detailed in Section IV-A.). Then, the controller
submits the aggregated requirement to the DRL agent.

Phase 2: multicast tree computation. The agent is designed
to make proactive routing decisions for upcoming require-
ments, i.e., it plans routes for time slot ¢ + 1 at ¢, so that

IThe Steiner tree problem can be reduced to this problem by setting the
weight wgy as 0, and the former is proven to be NP-hard [10].

the ingress packets can be delivered immediately instead of
experiencing time-consuming computation at ¢ + 1. However,
the multicast requirements of ¢ 4+ 1 are unavailable at time
t, and hence the destinations are unknown. So we compute
in advance a spanning tree connecting all the BFERs in the
network for £+ 1. In particular, the agent takes the aggregated
requirements in the past time slots as input and outputs link
priorities, based on which a spanning tree is generated. During
this process, the major multicast traffic patterns are implicitly
taken into consideration by training on historical requests.
Phase 3: routing rule update. At the beginning of the second
time slot ¢ + 1, the requests of ¢ 4+ 1 are collected and
then aggregated as an aggregated requirement. The controller
generates the routing table for these requests as follows.
First, the controller directly extracts paths for BFERs of the
aggregated requirement from the spanning tree generated in
Phase 2 to form a frunk that carries the majority traffic. Then,
the controller finds paths for other BFERs, i.e., BFERs not
involved in the aggregated requirement, using the weighted
shortest path algorithm (e.g., Dijkstra’s Algorithm). Given
these paths, multicast trees can be generated by merging
the paths of all involved BFERs. Particularly, paths on the
trunk always take precedence when conflicts of path segments
happen (detailed in Section IV-B). Finally, the paths are
translated to routing rules, sent to and installed in the BFIR.
Phase 4: packet forwarding. When a multicast packet en-
counters the first BFIR in the the domain, the BFIR looks up
the involved BFERs of this packet according to its multicast
address and sets corresponding BPs to generate the BS. Specif-
ically, each BS consists of both node-BPs of the destinations
and link-BPs of the links on the path to these destinations.
Then, the BFIR encapsulates a BIER-TE header encoded with
BS into the packet for multicast forwarding in this domain.

IV. SOURCE AGGREGATION

To optimize the routing policy in dynamic multicast sce-
narios, the DRL agent needs to explore the solution space
of all possible multicast requirements. However, the DRL
agent struggles to converge to the optimal solution due to
numerous multicast requests and dynamic group memberships.
Therefore, we design a pre-processing technique named source
aggregation to aggregate original multicast requirements, thus
reducing the solution space to be explored by the DRL agent.
Besides, source aggregation relieves the BFIR from excessive
storage overheads and improves the scalability of BIER-TE.

The proposed mechanism aggregates concurrent multicast
requirements rooted from the same source based on their
bandwidth requirements and group membership. In particular,
source aggregation is used in both training and inference of the
agent. During training, the historical requirements are aggre-
gated using the aggregation method described in Section IV-A,
and the aggregated requirements are taken as inputs instead of
the original ones to ensure fast convergence. During inference,
to keep consistency with the optimization objective used in
training, Hawkeye first aggregates the real-time requirements
and builds a multicast tree for the aggregated requirement.

Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on January 02,2024 at 06:55:48 UTC from IEEE Xplore. Restrictions apply.

Then, the multicast trees for the original real-time requests
are generated following the steps outlined in Section IV-B.

A. Aggregating original requirements

Recall that a BFIR is an ingress router of a multicast
domain, and the BFIR accommodates source nodes of different
multicast groups. We aggregate the bandwidth requirements of
these groups and create an aggregated bandwidth requirement
for this BFIR. Note that members of a multicast group may
differ from those of other groups, so we need to consider
possible members (i.e. BFERs) all at once.

Formally, let b € V denote a BFIR, and g, be the set of
multicast groups whose source nodes are located at b. For each
veEV and g € g, let d, 4 be a binary variable, which equals
1 if v is a member of group g, and vice versa. Recall that g,
is the bandwidth requirement of group g. Let f; ,, denote the
total bandwidth requirement that BFIR b needs to deliver to
BFER v. Then we have f;, , = Zgégb 0v,9qq- We organize the
total bandwidth requirements from all BFERs as a vector of
V| elements, i.e. fy = [fp.0]uev-

Note that the total bandwidth requirements from different
BFER v may be different from each other, which is not in
the form of a single multicast group requirement. We process
f{, in such a way that the aggregated requirement follows the
form of a single multicast group requirement and can be dealt
with our DRL agent more easily. We define aggregation ratio
A, which is a fractional constant between 0 and 1. Let n =
A max,cy fv.» be a threshold. For each v € V', we replace fj, ,,
in fb by 0 if f,, < 7, and obtain vector fb Then, we compute
the average of the non-zero elements in fb, and replace each
non-zero element in fb by the average. The resulting vector is
denoted by fb which represents the aggregated requirement.

We illustrate the above process by an example. Consider
a network with one BFIR b and three BFERs vy, v, v3, and
there are two multicast groups with the BFIR as source node.
The first group involves 4 units of bandwidth requirement,
and the members are vy and vs. The second group involves
6 units of bandwidth requirement, and the members are v
and v3. The total bandwidth requirement vector is then f;; =
[0+ 6,4+ 0,4+ 6] = [6,4,10]. Given the aggregation ratio
A = 0.5, the threshold is then 10 x 0.5 = 5. Thus, we obtain
flz = [6,0,10] by replacing the second element which is less
than the threshold by 0. The average of non-zero elements
of f;; is 8, so finally, we obtain the aggregated requirement
fl;A = [8,0,8]. We can see that this aggregated requirement
preserves some traffic patterns of the original requirements.

B. Building Trees for original requirements

Recall that Hawkeye uses DRL to build a multicast tree,

e., the trunk, for the aggregated requirement in Phases 2
and 3. Thus, an incoming user request arriving at a BFER
that is already in the trunk can be satisfied directly. However,
the trunk may not cover all possible BFERs, and we need to
generate routing rules for incoming requests arriving at the
uncovered BFERs.

D1 D.

N

06 & 06 © &

(a) Trunk (b) Paths (c) Multicast tree for

BFERs D1,D2,D3

Fig. 3: An example of multicast tree building based on source
aggregation. (a) The trunk. (b) Paths to each destination. (c)
The tree spanning DI, D2 and D3.

Aggregated-P

Default BS Table Aggregated-N

Multicast Address | BS BFER BS-P Multicast Address | BS-N
Addrl BSy : BFERy | BS-P; Addrl BS-Ny
Addrg BSg BFERn | BS-Pp, Addrg BS-Ng

Fig. 4: The BFIR table before and after aggregation.

We observe that with source aggregation and the con-
structed trunk, the majority of multicast traffic can be delivered
efficiently with little impact on the objective. Thus, it is
unnecessary to rebuild the whole multicast tree with the DRL
agent, and we take a simple heuristic to route the incoming
request. Following the notations used above, let b € V' be the
BFIR, o0 € V' be the BFER where a new request arrives, 1" be
the trunk rooted at b, and SP; ; denote the shortest path from
i to j. Then, we use SP,, directly as the forwarding path of
the new request if ’'NSP, , = ¢, or else, we let u be the node
on T'N SP,, that is nearest to o, and concatenate SP, , to
trunk 7" to obtain the forwarding path. This heuristic enables
a short latency from BFIR b to BFER o.

We use an example shown in Fig. 3 to illustrate the process
of constructing forwarding paths given the trunk. In Fig. 3(a),
the solid arrows indicate the trunk, which is rooted at BFIR
S and covers BFERs DI and D2. Thus, the paths from S
to D1 and D2 can be extracted directly. In particular, P; is
(S-ul-D1) and P; is (S-ul-u2-D2). Then, we compute the
forwarding path for BFER D3. We first compute the shortest
paths from S to D3, and obtain P; = (S-u2-D3), as shown
in Fig. 3(b). We see that P; intersects with the trunk at node
u2, and if we use Ps directly, there will be duplicated packets
when D2 and D3 are in the same group, which degrades the
performance. To address the issue, we concatenate sub-path
u2-D3 to T and obtain P{ = (S-ul-u2-D3). As a result, a
multicast tree containing any arbitrary subset of {DI, D2, D3}
can be generated. For example, the multicast tree for a group
with BFERs DI, D2, D3 is shown in Fig. 3(c).

C. Storage-efficient Routing Table Arrangement

Although we aggregate the majority of requirements and
construct a trunk to deliver traffic, routing rules should be
maintained for each group separately, because different multi-
cast groups may have different members. We propose storage-
efficient routing table arrangement to reduce the storage over-
head on BFIRs.

Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on January 02,2024 at 06:55:48 UTC from IEEE Xplore. Restrictions apply.

Under the default setting of BIER-TE, a BFIR maintains
a BS for each multicast group (see Default BS Table in Fig.
4). Each BS contains node-BPs and link-BPs indicating the
specific multicast tree. Based on source aggregation, there
is only one path to each destination, regardless of which
group the destination belongs to. We split the default BS
table into two tables. In particular, an Aggregated-P table
maintains only link-BPs (BS-P), which indicate forwarding
paths to BFERs. An Aggregated-N table records the members
of each group using node-BPs (BS-N). Upon receiving a
multicast packet, the BFIR first looks up the Aggregated-N
table with the multicast address, and obtains BS-N indicating
the destinations (BFERs). The BFERs are used as inputs
to look up the Aggregated-P table, and we obtain the BS-
Ps. Then, we perform logical OR operations on these BS-
Ps to merge the forwarding paths, and concatenate the result
to the BS-N to obtain the complete BS. Finally, the BS is
encapsulated into the BIER-TE header of the packet.

We analyse the storage conservation on a BFIR. Recall that
there are |g,| groups whose sources are located at BFIR b.
Let [denote the multicast address length. The length of a
single BS-P is |E|, and the length of a single BS-N is |V]|.
The storage cost before source aggregation is O(|g,| - (I +
|E| + |V])), and the storage cost after source aggregation is
Ollge| - U+ V) +[VI]- (IVI+E]) = Olgyl - (I + V), a
reduction of O(|g,| - |E|).

V. MULTICAST TREE COMPUTATION

Though source aggregation improves the learning efficiency
of the DRL agent, it is still non-trivial for the DRL algorithm
to achieve good TE performance due to the complicated
spatial-temporal correlations. In Hawkeye, we sophistically de-
sign a DRL approach to facilitate multicast tree computation.

A. State, Action, and Reward

State. The state is represented as a sliding window of
historical requirements. In particular, a requirement req; € R"
represents the bandwidth demand of each node at time slot
t. The state S; € R™ ™ concatenates requirements in the
past w time slots in reverse chronological order, i.e., S; =
(reqi—1,r€qi—2,...,7€qi—y). The window size w determines
the scope of historical information taken by the RL agent. A
larger window may facilitate the DRL agent to make better
decision at the expense of degraded training efficiency.

Action. To learn the relationship among consecutive re-
quirements, we prefer generating a multicast tree directly
within a single step, which poses two challenges to action
design. First, it is time-consuming for the DRL agent to
converge in the solution space for all possible multicast trees in
the topology. Second, the output dimension of valid multicast
trees varies with groups, which violates the requirement of
the fixed-dimension action space in DRL. To cope with the
two challenges, we adopt policy-based tree generation, which
uses the output action of the agent as sub-policies to assist the

generation of multicast trees. We define the output action of
the DRL agent at time step ¢ as follows:

p(ei|3t):p?§7 7::1727"'7m7 (5)
where s; is the state, e; is an edge, and p! indicates the priority
of this edge. Having computed the priorities of all edges, the
multicast tree can be constructed as follows:

(1) Initialize a subgraph with all terminal nodes (i.e., the
source and destinations) according to the requirement,
use the source node as the starting node, and add all its
neighboring edges to the candidate edge set E..

(2) Choose an edge from E. with the highest priority, add
this edge as well as its endpoint to the subgraph, and
update E. by deleting this edge and adding neighboring
edges of the just added end node.

(3) If all the terminal nodes are connected, merge the shortest
paths from the source to destinations to generate a
multicast tree. Otherwise, back to step (2).

This procedure enables the agent to compute a multicast
tree given the destinations of a multicast requirement. To
proactively make a routing decision for upcoming multicast
request, we regard all nodes as potential terminal nodes in
step (1), and make the agent to generate a spanning tree in
advance. Then, routing rules generated from the spanning tree
can be installed in BFIRs at the beginning of the next time
slot, thus allowing fast response for arrived multicast requests.

Reward. The main reward is the bandwidth cost of the
current multicast tree generated at each step. Meanwhile, the
dynamic cost is accumulated from the start of an episode. If the
dynamic cost exceeds the pre-defined threshold, this episode is
terminated, and returns a negative reward (—10) as a penalty.
Moreover, the dynamic cost is also added to the reward with
a small weight «. This leads the agent to reduce the dynamic
cost to satisfy the capacity constraint, thereby speeding up the
training process. The reward is represented as

r(s¢, p) = —(cost] + o - cost?), (6)

where cost}' denotes the bandwidth cost of the tree, costily
denotes the dynamic cost with respect to step t.

The dynamic cost of the aggregated requirement may be
inconsistent with that of the original requirements, which
violates the dynamic capacity constraint (4). To address this
problem, we use a stricter calculation for dynamic cost,

& , fort =1,
cost,’ = .

t e DruDLH |delay! — delay? |, otherw1se.()
Unlike (4), which uses the intersection of D; and D;H, the
dynamic cost here depends on the destinations in either D; or
DU, Using this upper bound of original dynamic cost, we
ensure the feasibility of DRL solutions.

B. Training

We leverage Proximal Policy Optimization (PPO) [26],
which is a policy-based algorithm designed for continuous

Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on January 02,2024 at 06:55:48 UTC from IEEE Xplore. Restrictions apply.

c
5 St41 g
:’Agent ‘ (/ Environment f b o i
|Actor |-—+{Topology| Pemands|: 3 '
1 i 1 I 7
1 A 1 1 ; g
S :rt : yTree No ! g
e 120 cost q@ : i
+|Critic ? ' | Evaluator : TCN

(a) Training process

Fig. 5: DRL design of Hawkeye.

control. PPO strikes a good balance between learning ef-
ficiency and structure simplicity, thereby satisfying the re-
quirements of fast response and high robustness for multicast
routing. It consists of two neural networks, actor mg_(p | s)
and critic Vp,(s). Fig. 5(a) shows the training process. At
time step t, a sequence of historical requirements are gathered
as sy. At time step ¢, a sequence of historical requirements
are gathered as s;. The agent takes s; as input and outputs a
sub-policy p;, which is used to generate a multicast tree. The
environment integrates the topology information and multicast
requests to evaluate the static and dynamic cost of the tree.
Then, it returns a reward used by the critic to update the neural
networks through backpropagation. Before transferring to the
next state s;41, it decides whether to terminate the episode at
this step by comparing the cumulative dynamic cost. If this is
the case, the episode is cut off and a new one is initiated.
We use the clip version of PPO, where the loss of actor is

L = min (wpA(s, p), clip (wg,1 —¢,1+€)A(s,p)), (8)

_ mlols)
7rGold(p | 5).

wp represents the difference between the current policy under
updating and the old policy used for action sampling. The
clip operation prevents the policy from changing dramatically,
where the clip ratio € sets the upper bound of the loss. A(s, p)
represents the advantage of p, calculated using GAE-\ [27].

)

C. Neural Network Architecture

We use a TCN [28] to encode the series of requirements
as a state embedding in the actor-critic network. TCN is
essentially a convolutional network with specific designs for
temporal sequence modeling, which has been reported to
achieve better performance than RNN [29]. Through 1D-
convolution, it extracts the temporal features of sequences
and model the internal relationship across different time slots.
Owing to dilation, its receptive field increases exponentially
with depth, enabling efficient long sequence process. Math-
ematically, given the state with w multicast requirements
sp = SUTHTY = (req;_q,...,7req;_y) and a filter f with
size K, the output of the TCN is represented as

K-1

(S*)t) =

i=0

F)S(t—d x i), (10)

TABLE I: Hawkeye Hyperparameters

Parameters Value Parameters Value
Max steps per epoch | 1000 Max epochs to train | 3200
PPO-clip ratio e 0.2 Discount factor ~y 0.99
Actor learning rate 0.0003 GAE lambda X\ 0.97
Critic learning rate 0.001 MLP hidden layers 16x16
State window size w | 4,8,16,32 | Input network type TCN/MLP
PLV weight o 0, 0.01, 0.1, 0.5, 1

where d is the dilation factor controlling the convolution
interval. As illustrated in Fig. 5(b), the state is firstly processed
by a 2-layer TCN with filter size /' = 2, and then forwarded
to the actor and critic. The actor and critic networks are
both Multi-Layer Perceptrons (MLPs) which extract the spatial
relationship among nodes in the topology.

VI. EVALUATION

We implement the PPO algorithm based on the SpinningUp
[30] framework. We find the algorithm insensitive to most
hyperparameters, so we use the default setting of SpinningUP
as listed in Table I, and others are evaluated in Section VI-C.
ILP models are solved using the Gurobi Optimizer [25] with
a 16-core 2.3 GHz CPU. We use three real-world topologies
from SNDIib [31], namely Abilene, Geant, and Germany50.
Abilene is a small topology with 11 nodes and 14 bidirectional
links. Geant has 23 nodes and 37 bidirectional links, and
Germany50 has 50 nodes and 88 bidirectional links.

The multicast requests are generated based on real-world
data. For Abilene, we use a dataset derived from Facebook
[32]. It provides two-week public live video requests, includ-
ing the locations of online streamers and the viewers. We treat
each video as a multicast group, allocate its users to each
node by their locations, and update its status every 5 minutes.
There are about 500 groups for each source with dynamic
membership. For Geant and Germany50, we use a typical
multicast traffic model to simulate the dynamic membership
[22], where the requirements changes with locations and time,
proportional to the total traffic obtained from SNDIib.

To measure the efficiency and stability of multicast routing,
we use the bandwidth cost (BWC) as the static cost, and the
path latency variation (PLV) as the dynamic cost. We choose
four multicast routing algorithms for comparison.

(1) SPT. The shortest path tree connects the source and each
destination with the shortest path.

(2) OPT. The optimal solution connects the source and des-
tinations with the minimum BWC under PLV constraints.

(3) RL-TG. The tree generated by a DRL-based algorithm
[33]. It simply builds a tree for every instant requirement
without the consideration of path stability.

(4) HST. A heuristic computes multicast trees proactively
where the upcoming requests are estimated with the av-
erage traffic demand of the past hour. Routing decisions
are made by the ILP model with source aggregation.

Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on January 02,2024 at 06:55:48 UTC from IEEE Xplore. Restrictions apply.

w

Ori —o— Aggr —=— Aggr-ori Ori —o— Aggr —#— Aggr-ori

OA/V'('//\A‘\‘\\A

00 02 04 06 08 1.0 0.0 02 04 06 08 1.0
Aggregation ratio Aggregation ratio

I
N
N

-
1.

Normalized BWC

Normalized PLV

=
=]

(a) BWC (b) PLV
a le—-1
% = Aggr Ori 1.0
=31 = Aggr-DRL
e i Ori-DRL
B 33 005 Aggr-ILP
© = = Ori-ILP
E o
z -
& -35 0.0
0 800 1600 2400 3200 0.000 0.025 0.050
Epochs CPU time(s)

(c) Learning curve (d) Time for decision making

Fig. 6: Performance of source aggregation.

A. Performance of Source Aggregation

We compare the performance of OPT before and after
source aggregation under different aggregation ratios. The ratio
controls the number of group members after aggregation. If the
ratio is 0, all the members appearing in the original require-
ments would be taken into the aggregated requirement. As the
ratio increases, the nodes with lower bandwidth demands are
removed. Finally, only nodes with the maximum bandwidth
demands are taken when it equals 1.

In Fig. 6, Aggr means the optimal multicast tree of the
aggregated requirement, and Ori means that of original re-
quirements without aggregation. Aggr-ori represents the per-
formance of Hawkeye, which builds trees for original require-
ments based on the optimal tree of the aggregated requirement.
Fig. 6(a) indicates the extra BWC induced by source aggrega-
tion is less than 10% comparing Aggr-ori with Ori when the
aggregation ratio is less than 0.4, with the minimum BWC gap
less than 1%. As the aggregation ratio increases, the tree of
Aggr-ori gradually regresses into the shortest path tree so its
BWC converges to that of SPT. Besides, the PLV of Aggr-ori
is always less than that of Aggr as shown in Fig. 6(b), which is
consistent with the design of (7) that preserves the feasibility
of source aggregation.

Next, we measure how the agent perform with and without
source aggregation. In Fig. 6(c), the Aggr agent learns faster
and better, while Ori cannot converge within the same training
iterations. We also measure the CPU time usage for 200 time
slots comparing ILP solver with DRL (GPU disabled) in Fig.
6(d). Ori has to make decisions for every group and Aggr
only focuses on the aggregated requirement and then applies
the solution to original requirements. At the start of a time
slot, Aggr need to aggregate requirements, make a decision
for the aggregated requirement, and transform the solution to
original ones. The operation of aggregation and transformation
takes nearly fixed time, and the overall time usage remains low
compared with Ori. This suggests that source aggregation can
accelerate the response speed significantly especially for the
DRL agent, which takes no more than 5 ms in Abilene.

g
=3

) == Hawkeye 2 —— Hawkeye —tr= HST RLTG
217 SPT > SPT OPT == Max
o = HST o
OPT °
E‘ L4 RLTG e
T11 ©
: :
gos S
05 0 RS
70 100 130 160 190 70 100 130 160 190
Time slots Time slots
(a) BWC in Abilene (b) PLV in Abilene
2.0
8 == Hawkeye —— Hawkeye OPT
=17 spT > SPT RLTG
2 e HST O 21 =~ HST —= Max
OPT o
-éé L4 RLTG 8
=11 © [IE < S S E T bl SIS E .
£ =
£
5]
§ 08 =2)_D,D—D—D——D—D—D—D’_D_D_D_(
05 0
70 100 130 160 190 70 100 130 160 190
Time slots Time slots
(c) BWC in Geant (d) PLV in Geant
2.0
== Hawkeye == Hawkeye =#— HST == Max
§ 1.7 SET. > ¢ SPT RLTG
o —4— HST o
8 1.4 RLTG 8 .
N N X
© 11 © 2 et
€ £ et
£ R ORI Y S S
gos S =
b————g—f—p—o—o—o—o—
0.5 0

70 100 130 160 190 70 100 130 160 190
Time slots Time slots

(e) BWC in Germany50 (f) PLV in Germany50

Fig. 7: Performance of multicast trees in three topologies.

B. Performance of Multicast Trees

We compare the cumulated BWC and PLV of each method
in three topologies, shown in Fig. 7, where the dashed line
Max represents the maximum PLV allowed in the network. For
all topologies, the BWC of SPT is the highest among all the
methods, while PLV shows an opposite trend. This is because
SPT always uses the shortest paths to build each multicast tree,
which remain unchanged with dynamic membership, resulting
in high bandwidth consumption. In contrast, OPT optimizes
the global BWC under PLV constraints, which presumes an
precise future vision towards the upcoming requests, providing
the best but impractical performance. Meanwhile, without
the help of DRL, HST fails to make full use of historical
experience, resulting in sub-optimal BWC and inferior PLV.

In Abilene, a small-scale network, the impact of dynamic
membership is limited, so methods except SPT have similar
BWC, as shown in Fig. 7(a). However, the PLV of OPT
is only 37% of HST, indicating more stable routing can be
achieved with a neglectable BWC increase. The performances
of Hawkeye on both BWC and PLV are close to OPT, where
the differences are less than 5%, which demonstrates that
Hawkeye performs well in small-scale topology. The BWC
results of Geant are similar, but the PLV of RL-TG exceeds
the limit while that of Hawkeye remains low due to its sepcific
design. For SPT, the BWC grows with the topology scales,
which indicates that SPT is not efficient in large network.

In Germany50, the ILP model of OPT cannot be solved in

Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on January 02,2024 at 06:55:48 UTC from IEEE Xplore. Restrictions apply.

le-1 le—1

% TCN-G50 == TCN-Gnt TCN-AbI 8- w=4 w=16
H —2.79 == MLP-G50 MLP-Gnt MLP-Abl B -27 w=8 w=32
e = r——
o [}
<% a /
° T |/
(gu -31 g -317
g o~ B
gs lﬂ'tl"‘\‘l“'"\"v-ll RAERY; g1
< 35k <354
800 1600 2400 3200 0 800 1600 2400 3200
Epochs Epochs

(a) TCN vs. MLP (b) Window size

led

=
=)

Q45 a=0 a=0.5 a a=0 a=0.5
[=001 me= = 1 Q @=0.01 — a= 1
i a=0.1 i — a=01
= —
g g,
Qa0 >
= z
@ o>
o
2 2
3.5+ o!
0 3000 6000 9000 12000 0 3000 6000 9000 12000
Episodes Episodes

(c) Impact of @ on BWC (d) Impact of o on PLV

Fig. 8: Impact of Hawkeye hyperparameters.

a reasonable time, so its results are omitted. Due to the large
search space, RL-TG fails to find the optimal trees whose
BWC and PLV degrades dramatically. Hawkeye also falls into
a local optimum where the PLV is only 17.2% of Max, which
means it could trade more PLV for less BWC. However, it
makes proactive routing decisions while ensuring expected
PLV, with excess BWC less than 12% of OPT in Abilene
and Geant, which still outperforms SPT and RL-TG. Different
from HST, Hawkeye adjusts multicast trees to satisfy stability
requirements while keeping low bandwidth cost.

C. Hyperparameters

TCN vs. MLP. Fig. 8(a) shows the learning curves with
TCN/MLP of three topologies abbreviated as Abl, Gnt, and
G50, respectively. For Abilene, TCN and MLP converge to the
same reward, suggesting the DRL algorithm is able to solve
such problems in simple networks. TCN converges lightly
slowly due to more complex structure. In Geant, the reward
improves slowly with MLP and finally stops at a less optimal
level. In Germany50, MLP cannot converge while TCN still
performs stably. To summarize, MLP is too simple to model
the complicated temporal relationship in large networks.
State Window Size. The window size w determines how far
the agent looks back, thereby affecting the learning process.
We measure the rewards during training under different w
in Germany50, as shown in Fig. 8(b). If the window is too
short (e.g. w = 4), the reward remains low due to a lack
of information, while an overly large window may mislead
the agent since the input state becomes too complicated. The
overlapping results of w = 8 and 16 suggest the agent can
achieve good performance within a reasonable range of w.
PLV Weight. The PLV weight « in (6) controls the relative
importance of PLV versus BWC. A larger « guides the agent
to pay more attention to PLV constraints. Fig. 8 shows how the
average BWC and PLV change during training in Germany50.
When a = 0, i.e., the agent only focuses on BWC, the BWC

slowly converges to the lowest at the expense of a high PLV. As
« increases, the PLV decreases more and more rapid, but the
performance of BWC degrades. To some extent, this parameter
serves as a knob for exploration-exploitation trade-off. With
a smaller «, the agent tends to explore more thus having the
potential to achieve a lower BWC.

VII. RELATED WORK

Stateful multicast protocols require frequent distributed state
updates and SDN is a promised mechanism to solve the
problem. Huang et al. [12] build multicast trees in SDN
under constraints of node and link capacity. Mohammadi
et al. [11] use a nature-inspired optimization algorithm to
compute the minimum cost tree regarding the end-to-end
delay. However, these methods are designed for static multicast
and do not work well with dynamic membership. Chiang et
al. [14] optimize the bandwidth cost and rerouting overhead
jointly in dynamic multicast. These studies are all short-sighted
heuristics and lack consideration of long-term performance.

Explicit Multicast [34] is a traditional stateless protocol
where the packet header carries IP addresses of all destina-
tions, which inherently cannot work with many concurrent
group members. Cheng et al. [35] propose a source routing
method based on bloom filter, which also uses a BS to mark
destinations but may cause unnecessary bandwidth waste due
to false positives. Khaled et al. [36] design a label-based
system to support multicast forwarding with general graphs,
which still poses high overhead at ingress routers. Hawkeye
adopts efficient source aggregation to provide both flexible
traffic control and better scalability at source routers.

DRL has been widely used for the unicast traffic manage-
ment. Li et al. [37] leverage multi-objective DRL to generate
optimal policies for all possible routing preferences. Geng et
al. [15] use multi-agent DRL to achieve distributed TE for
global objective optimization. Liu et al. [17] design an online
routing algorithm for multiple QoS requirements. DRL applied
in multicast is mostly limited in wireless networks with objec-
tives about resource allocation, such as interference mitigation
[38], capacity limitation [39] or energy consumption [16],
[40]. These methods are mainly designed for ad hoc networks,
which is difficult to generalize to arbitrary topologies. In
addition, existing DRL-based research for multicast routing
focuses mainly on simple objectives without constraints [41].

VIII. CONCLUSION

We present Hawkeye, a dynamic multicast system based
on BIER-TE. Hawkeye adopts source aggregation for efficient
training and source router storage saving, and designs a TCN-
based DRL framework for high-performance multicast tree
computation. Evaluation results show that Hawkeye produces
near-optimal solutions for multicast routing with dynamic
membership, provideing more stable multicast trees with lit-
tle additional bandwidth consumption. Furthermore, it makes
proactive routing decisions based on the traces of historical
requirements to ensure real-time responses, which overcomes
the slow convergence issue of traditional multicast methods.

Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on January 02,2024 at 06:55:48 UTC from IEEE Xplore. Restrictions apply.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

(12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

REFERENCES

“Cisco annual internet report - (2018-2023) white
https://www.cisco.com/c/en/us/solutions/collateral/executive-
perspectives/annual-internet-report/white-paper-c11-741490.html.
J. Zhang, X. Zhang, and M. Sun, “Two-level decomposition for multi-
commodity multicast traffic engineering,” in 2017 IPCCC, Dec. 2017,
pp. 1-2.

S. Yang, C. Xu, L. Zhong, J. Shen, and G.-M. Muntean, “A QoE-Driven
Multicast Strategy With Segment Routing—A Novel Multimedia Traffic
Engineering Paradigm,” IEEE Trans. Broadcast., vol. 66, no. 1, pp. 34—
46, Mar. 2020.

R. Singh, S. Agarwal, M. Calder, and P. Bahl, “Cost-effective Cloud
Edge Traffic Engineering with Cascara,” in NSDI 21, 2021, pp. 201-
216.

G. Bernardez, J. Sudrez-Varela, A. Lopez, B. Wu, S. Xiao, X. Cheng,
P. Barlet-Ros, and A. Cabellos-Aparicio, “Is Machine Learning Ready
for Traffic Engineering Optimization?” in 2021 ICNP, 2021, pp. 1-11.
B. Fenner, M. J. Handley, H. Holbrook, and L. Zheng, ‘“Protocol
Independent Multicast - Sparse Mode (PIM-SM): Protocol Specification
(Revised),” Internet Engineering Task Force, Request for Comments
RFC 7761, 2016.

M. Hosseini, D. T. Ahmed, S. Shirmohammadi, and N. D. Georganas, “A
survey of application-layer multicast protocols,” IEEE Commun. Surv.
Tut., vol. 9, no. 3, pp. 58-74, 2007.

I. Wijnands, E. Rosen, A. Dolganow, T. Przygienda, and S. Aldrin,
“Multicast Using Bit Index Explicit Replication (BIER),” RFC Editor,
Tech. Rep. RFC8279, 2017.

T. Eckert, M. Menth, and G. Cauchie, “Tree Engineering for Bit
Index Explicit Replication (BIER-TE),” Internet Engineering Task Force,
Internet Draft draft-ietf-bier-te-arch-13, 2022.

R. M. Karp, “Reducibility among combinatorial problems,” in Complex-
ity of Computer Computations. Springer US, 1972, pp. 85-103.

R. Mohammadi, R. Javidan, M. Keshtgari, and R. Akbari, “A novel
multicast traffic engineering technique in SDN using TLBO algorithm,”
Telecommun. Syst., vol. 68, no. 3, pp. 583-592, 2018.

L.-H. Huang, H.-C. Hsu, S.-H. Shen, D.-N. Yang, and W.-T. Chen,
“Multicast traffic engineering for software-defined networks,” in /IEEE
INFOCOM, 2016, pp. 1-9.

S.-H. Chiang, J.-J. Kuo, S.-H. Shen, D.-N. Yang, and W.-T. Chen,
“Online multicast traffic engineering for software-defined networks,” in
IEEE INFOCOM, 2018, pp. 414-422.

J.-J. Kuo, S.-H. Chiang, S.-H. Shen, D.-N. Yang, and W.-T. Chen, “Dy-
namic multicast traffic engineering with efficient rerouting for software-
defined networks,” in IEEE INFOCOM, 2019, pp. 793-801.

N. Geng, T. Lan, V. Aggarwal, Y. Yang, and M. Xu, “A multi-agent
reinforcement learning perspective on distributed traffic engineering,” in
IEEE ICNP, 2020, pp. 1-11.

R. Raghu, M. Panju, V. Aggarwal, and V. Sharma, “Scheduling and
power control for wireless multicast systems via deep reinforcement
learning,” Entropy, vol. 23, no. 12, p. 1555, 2021.

C. Liu, M. Xu, Y. Yang, and N. Geng, “DRL-OR: Deep reinforcement
learning-based online routing for multi-type service requirements,” in
IEEE INFOCOM, 2021, pp. 1-10.

V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wier-
stra, and M. Riedmiller, “Playing atari with deep reinforcement learn-
ing,” arXiv:1312.5602 [cs], 2013.

C. Yu, J. Lan, Z. Guo, and Y. Hu, “DROM: Optimizing the Routing in
Software-Defined Networks With Deep Reinforcement Learning,” IEEE
Access, vol. 6, pp. 64 533-64 539, 2018.

A. Valadarsky, M. Schapira, D. Shahaf, and A. Tamar, “Learning to
Route,” in Proceedings of the 16th ACM Workshop on Hot Topics in
Networks, ser. HotNets-XVI. New York, NY, USA: Association for
Computing Machinery, Nov. 2017, pp. 185-191.

N. Vesselinova, R. Steinert, D. F. Perez-Ramirez, and M. Boman,
“Learning combinatorial optimization on graphs: A survey with applica-
tions to networking,” IEEE Access, vol. 8, pp. 120388-120416, 2020.
K. Almeroth and M. Ammar, “Collecting and modeling the join/leave
behavior of multicast group members in the MBone,” in Proc. 5th IEEE
Int. Symp. High Perform. Distrib. Comput., 1996, pp. 209-216.

J. Tadrous, A. Eryilmaz, and H. E. Gamal, “Proactive resource allo-
cation: Harnessing the diversity and multicast gains,” IEEE Trans. Inf.
Theory, vol. 59, no. 8, pp. 4833-4854, 2013.

paper,”

[24]

[25]

[26]

[27]

[28]

[29]

[30]

(31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

B. Cain, S. E. Deering, B. Fenner, I. Kouvelas, and A. Thyagarajan,
“Internet Group Management Protocol, Version 3,” Internet Engineering
Task Force, Request for Comments RFC 3376, 2002.

“Gurobi - the fastest solver - Gurobi,” https://www.gurobi.com/.

J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Prox-
imal policy optimization algorithms,” arXiv:1707.06347 [cs], 2017.

J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel, “High-
dimensional continuous control using generalized advantage estimation,”
arXiv:1506.02438 [cs], 2018.

C. Lea, M. D. Flynn, R. Vidal, A. Reiter, and G. D. Hager, “Temporal
Convolutional Networks for Action Segmentation and Detection,” in
2017 CVPR, 2017, pp. 156-165.

S. Bai, J. Z. Kolter, and V. Koltun, “An Empirical Evaluation of Generic
Convolutional and Recurrent Networks for Sequence Modeling,” Apr.
2018.

“Welcome to Spinning Up in Deep RL! — Spinning Up documentation,”
https://spinningup.openai.com/en/latest/.

“SNDIib,” http://sndlib.zib.de/home.action.

E. Baccour, A. Erbad, M. Guizani, and M. Hamdi, “FacebookVideo-
Livel8: A live video streaming dataset for streams metadata and online
viewers locations,” in ICIoT, 2020, pp. 476-483.

H.-J. Heo, N. Kim, and B.-D. Lee, “Multicast Tree Generation Tech-
nique Using Reinforcement Learning in SDN Environments,” in Smart-
World/SCALCOM/UIC/ATC/CBDCom/IOP/SCI, Oct. 2018, pp. 77-81.
R. Boivie, Y. Imai, W. Livens, and D. Ooms, “Explicit Multicast (Xcast)
concepts and options,” RFC Editor, Tech. Rep. RFC5058, 2007.

G. Cheng, D. Guo, L. Luo, and Y. Qin, “Optimization of multicast
source-routing based on Bloom Filter,” IEEE Commun. Lett., vol. 22,
no. 4, pp. 700-703, 2018.

K. Diab and M. Hefeeda, “Yeti: Stateless and generalized multicast
forwarding,” in NSDI 22, 2022, pp. 1093-1114.

X. Li, F. Tang, L. T. Yang, and L. Chen, “AUTO: Adaptive congestion
control based on multi-objective reinforcement learning for the satellite-
ground integrated network,” in USENIX ATC 21, 2021, pp. 611-624.
P. Gong, C. Wang, J. Sheu, and D. Yang, “Distributed DRL-based
Resource Allocation for Multicast D2D Communications,” in 2021
GLOBECOM, 2021, pp. 01-06.

S. O. Somuyiwa, A. Gyorgy, and D. Giindiiz, “Multicast-aware proactive
caching in wireless networks with deep reinforcement learning,” in JEEE
SPAWC, 2019, pp. 1-5.

X. Zhang, P. Yu, L. Feng, F. Zhou, and W. Li, “A DRL-based resource
allocation framework for multimedia multicast in 5G cellular networks,”
in 2019 BMSB, Jun. 2019, pp. 1-5.

J. Chae and N. Kim, “Multicast tree generation using meta reinforcement
learning in sdn-based smart network platforms,” KSII Trans. Internet Inf.
Syst., vol. 15, no. 9, pp. 3138-3150, 2021.

Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on January 02,2024 at 06:55:48 UTC from IEEE Xplore. Restrictions apply.

