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Abstract—Aerial images from drones have been used to detect
and track suspects in the crowd for the public safety purpose.
However, using a single drone for human identification and local-
ization faces many challenges including low accuracy and long
latency, due to poor visibility, varying field of views (FoVs), and
limited on-board computing resources. In this paper, we propose
SkyNet, a multi-drone cooperative system for accurate and real-
time human identification and localization. SkyNet computes the
3D position of a person by cross searching from multiple views. To
achieve high accuracy in identification, SkyNet fuses aerial images
of multiple drones according to their legibility. Moreover, by
predicting the estimated finishing time of tasks, SkyNet schedules
and balances workloads among edge devices and the cloud server
to minimize processing latency. We implement and deploy SkyNet
in real life, and evaluate the performance of identification and
localization with 20 human participants. The results show that
SkyNet can locate people with an average error within 0.18m on
a square of 554m2. The identification accuracy is 91.36%. The
localization and identification process is completed within 0.84s.

Index Terms—multi-drone, person identification, localization,
task distribution, information fusion.

I. INTRODUCTION

Human tracking and identification technology [1], [2] has
been widely used to improve public safety [3]–[5]. Existing
solutions mainly rely on images captured by fixed-position
cameras [6], [7], which have limited field-of-views (FoVs) and
are inefficient for tracking moving objects. Benefiting from the
wide FoVs and high mobility, drone-based human identifica-
tion and tracking solutions can be applied in many application
scenarios, e.g., military actions and security services [8].

Recently, DNN-based face identification solutions have
achieved high accuracy, but it is on the premise of sufficient
amounts of face pixels [9], [10]. However, a single drone
often suffers from limited face pixels due to its high-flying
height and varying drone-person angles, which is revealed
in the motivational studies in Section II. DNN-based face
identification technologies also consume massive on-board
computing resources and bring high latency to the system,
which is not ideal for real-time identification.

To track a person in the crowd, most state-of-the-art lo-
calization technologies require RGB-D cameras or LiDAR on
drones, which are 10 times more expensive than conventional

¶ Corresponding author: Qing Li (liq@pcl.ac.cn)

Drone 1

Drone 2

Drone 3

Edge Device 
(Current DD)

Face Sub-images Scheduling Decisions

Fig. 1: SkyNet uses multiple drones and edge devices to
identify and locate the target person.

2D cameras. Moreover, in outdoor and long-distance scenarios,
the positioning accuracy and point cloud density of RGB-
D cameras and LiDAR drop dramatically, leading to poor
localization accuracy and a small working area [11], [12].

In this paper, we design SkyNet, a multi-drone cooperative
framework to achieve accurate and real-time identification and
localization. SkyNet provides a universal framework that can
be applied for person localization/identification. Taking the
former as an example, as shown in Figure 1, at a shooting
instant, each drone takes a picture of the crowd and uses on-
board person/face detection models to detect face sub-images,
which are sent to the designated device (DD) selected from
edges and the cloud server. Then the DD computes the 3D
location of each face and generates identification results by
jointly exploiting the images from multiple views.

To achieve SkyNet’s high-level design goals, several chal-
lenges need to be addressed. i) How to find a person’s 3D
position and align his/her face sub-images from multiple views
when there are only 2D images of him/her in different views?
In fact, forming a unified perception of the scene is a common
challenge faced by multi-drone/robot cooperation. ii) How to
take advantage of the face information offered by multi-view
images for much more accurate identification? iii) With the
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system taking pictures continuously, how to select the suitable
DD to ensure fast processing?

To address these challenges, in SkyNet, we propose an
innovative Multi-view Cross Search Algorithm to efficiently
find the 3D real-world location of a face and align his/her
multiple 2D sub-images. To improve identification accuracy,
we propose a novel Fusion Weight Network (FWN), which
generates fusion weight factors for a person’s face sub-images
from different FoVs, based on which these sub-images are
fused for inference. Moreover, we propose a Dynamic Task
Scheduling Algorithm to balance workloads over consecutive
shooting instants and reduce processing latency.

The key contributions of this paper are as follows.
• We design a multi-drone cooperative framework to

achieve real-time identification and localization.
• We propose an algorithm for accurately locating a person

in 3D real world using only conventional 2D cameras and
aligning face sub-images of one person from different
drone views. The algorithm allows multiple drones to
form a unified perception of the real-world scene.

• We design a novel fusion identification pipeline, which
takes advantage of images from different FoVs by fusing
them with weights that reflect legibility. The pipeline also
reduces processing latency by parallel computing.

• SkyNet reduces the latency of task processing to achieve
real-time execution through the cooperation of heteroge-
neous devices and dynamic task scheduling.

• We implement and deploy SkyNet in real life on four
drones, three edge devices, and a cloud server. We
not only test SkyNet with public datasets about drone-
based face identification but also conduct real-world
experiments with 20 human participants and obtain their
consent. The evaluation results show that SkyNet achieves
91.36% accuracy and the real-time latency of localization
and identification (within 0.84s).

II. MOTIVATIONAL STUDIES

In this section, we comprehensively analyze the impacts
of the drone view on human identification accuracy and
computational latency using a single drone.

We use the NVIDIA Jetson Xavier NX [13] as the edge
device to process the capturing images of the drone. The
identification pipeline consists of RetinaFace [14] for face
detection, and ResNet-based ArcFace [1] for face identifica-
tion. We use two model configurations, RetinaFace-2.5Gf &
ResNet18 and RetinaFace-10Gf & ResNet50, corresponding
to the light model configuration and the heavy model configu-
ration, respectively. We collect 567 drone images with the DJI
Mavic [15] at various distances, heights, drone-person angles,
and resolutions. By using these aerial images from the drone,
we mainly analyze the impacts of flight height, drone-person
angle, and image resolution on human identification accuracy
and computational latency.

The high-flying height offers a broad view scope but
degrades the face identification accuracy. Figure 2a presents
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(a) Impacts of drone height on
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on identification accuracy.
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(d) Impacts of image resolution on
computational latency.

Fig. 2: Identification service provided by a single drone.
Animated faces are used in the figures instead of real person
faces only for the double-blind review purpose.

the accuracy achieved at different heights. The horizontal dis-
tance between the drone and the target person to be identified
is fixed at 20 meters, and the images used are in 4K resolution.
We down sample these images according to the needs of
the experiment. As the drone flies higher, the identification
accuracy decreases significantly in both model configurations.
The accuracy is even less than 10% at the height of 25m since
fewer pixels are available for the target person.

The large drone-person angle results in low identifica-
tion accuracy. Figure 2b illustrates the accuracy achieved at
different drone-person angles (0◦: the drone exactly faces the
frontal face of the person, and 180◦: the drone exactly faces
the back of the head of the person). In this experiment, the
height is 5 meters, the horizontal distance is 10 meters and the
resolution is 4K. The result shows that as the drone-person
angle increases, the accuracy drops significantly and nearly
reaches zero at around 150◦.

The high image resolution boosts the accuracy but incurs
the high computational latency. Figure 2c and Figure 2d
show the identification accuracy and computational latency un-
der 9 photo resolution settings, i.e., 4000×3000, 2666×2000,
2000×1000, 1600×1200, 1333×1000, 1142×857, 1000×750,
888×400, 800×600. For both model configurations, the better
resolution leads to higher accuracy, while causing significantly
higher computational latency.

According to the above results, the higher the flight height,
the farther the distance between the drone and the target
person, and the steeper the drone-human angle, resulting
in fewer effective pixels available, which in turn leads to
lower accuracy. Furthermore, higher image resolutions lead
to larger transmission and inference latency, but lower reso-
lutions reduce the accuracy of face recognition. To this end,
using multiple drones instead of a single drone could be an
alternative solution for human identification.
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Fig. 3: Operational Flow of SkyNet in a nutshell.

III. SKYNET: OVERVIEW

We build a multi-drone cooperative framework to locate and
identify persons in a crowded scene, which consists of:

i) a group of drones with computing capabilities that can
capture images from different angles, run lightweight models,
and offload computation tasks to other devices.

ii) a group of interconnected edge devices, closer to drones,
can run models but with finite computing power. In SkyNet, a
stable edge device is selected as the home edge, which collects
status information from other edges and schedule tasks.

iii) a cloud server, farther from drones and edge devices, but
with sufficient computing power. If the workload of all edge
devices is too heavy, the computation can be offloaded to it.

The operational flow of SkyNet is illustrated in Figure 3.
In a crowded scene, SkyNet locates and identifies the human
target using the Multi-Drone Person Localization (MDPL) and
the Multi-View Fusion Identification (MVFI) modules. The
Dynamic Task Scheduling for Heterogeneous Devices (DTSH)
module is designed to schedule tasks among edge devices and
the cloud server to reduce latency and balance workload.

i) MDPL. On each drone, aerial images of the crowd are
first processed on-board by a person detection model and a
face detection model. This extracts face sub-images with their
bounding box locations and face landmarks and sends them to
the DD selected via the DTSH module. Then SkyNet runs the
MDPL module on the DD to locate each person’s real-world
location through a series of coordinate matrix transformations
and align his/her sub-images from multiple views.

ii) MVFI. After aligning the multi-view sub-images of a
person, SkyNet runs the MVFI module on the DD. The MVFI
first extracts face features from all face sub-images captured at
different angles. Second, to comprehensively utilize features
from these different angles, the FWN assigns a fusion weight
to each sub-image to reflect its legibility. Then, the fusion
layer generates the fused face feature by combining face

features from different views using fusion weights. The fused
face feature contains more details than those extracted from
a single image. Finally, the fused face feature is compared
with the facial feature of the target person by calculating their
feature distance. A person whose feature distance is within the
threshold is considered the target person to be found.

iii) DTSH. We define the entire operation flow of local-
ization and recognition as a task. At a shooting instant, each
drone takes a photo of the crowd. The detection part of one
task, i.e., face sub-image extraction in MDPL, is executed in
parallel on each drone. The remaining parts of one task need
to use images from all views simultaneously and thus can only
be done on one device, i.e., the DD. Therefore, the remaining
parts of one task are called the DD-side task, including the
localization sub-task, the fusion sub-task, and the identification
sub-task. In order to balance the workload of edge devices and
ultimately reduce the processing latency, selecting a suitable
DD for one DD-side task is the key. For this purpose, the
home edge first predicts the Estimated Finishing Time (EFT)
required by each edge device if it handles this DD-side task.
Then, it selects the device with the shortest EFT as the DD
for this task. If all the EFTs of edge devices are higher than
the shooting interval (e.g., 1s), it selects the cloud server as
the DD of this task. Finally, scheduling decisions are sent to
all drones, which offload data to the DD.

IV. MULTI-DRONE PERSON LOCALIZATION

In this section, we present the process of using multiple
drones for person localization. First, the face sub-image extrac-
tion model is designed. Then, a multi-view cross-localization
strategy is proposed to find the 3D position of each person
and align his/her sub-images from different views.

A. Face Sub-images Extraction
The first step of the MDPL module is to extract face sub-

images, their bounding box locations, and face landmarks on
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each drone. Because drones are far from the crowd, some faces
are too small to be recognized in images. We first use person
detection to find the full body of each person on images. Then,
we use face detection to detect each person’s face.

Considering the limited computational and power resources
of drones, we choose YOLOX-Tiny detector [16] as the person
detection network and RetinaFace detector [14] as the face
detection network because of their accurate detection rate [17],
[18] and fast processing speed [18], [19]. The person detection
network uses the DNN to generate the bounding box position
of each person in the original image, and the face detection
generates the bounding box position and facial landmark
position of each face. Next, on each drone, we can get the
bounding box location of each face and its face landmarks,
and then extract the face sub-images. Each drone then sends
this information to the DD, which is selected by the DTSH
module described in section VI for further processing, namely
localization, alignment, feature fusion, and identification.

B. Multi-View Cross Localization and Alignment

Face sub-images and bounding box locations from multiple
views are aggregated in the DD, but it is unclear which sub-
images from multiple drones belong to the same person. In this
subsection, we propose a multi-view cross search algorithm to
determine a person’s 3D real-world location and align face
sub-images of the same person from different drones by the
location. First, we randomly select a drone Di and use its view
as the primary view. Denote the center point of the face in the
pixel coordinates of the drone Di as Pi = [xi, yi]

T .
In order to find the 3D real-world position of this face,

denoted as PW = [xW , yW , zW ]T , we first establish the
transformation relationship between Pi and PW , as follows:

zCi

[
Pi

1

]
=

[
Ci

−→
0

] [ Ri Ti−→
0 1

] [
PW

1

]
, (1)

where Ci ∈ R3×3 denotes the camera internal matrix of
the drone Di, which can establish the mapping relationship
between the image pixel coordinates and the camera coor-
dinates for Di. Ri ∈ R3×3 and Ti ∈ R3×1 represent the
rotation matrix and translation matrix of the drone Di, which
could establish the mapping relationship between the camera
coordinates and the world coordinates for Di. Ri and Ti can be
obtained by the Perspective-N-Points (PNP) positioning1 [20]
and Ci can be obtained by the camera calibration technique
[21]. Following (1), PW is given as:

PW = R−1
i

[
zCi C−1

i Pi − Ti

]
. (2)

Due to the absence of depth information zCi , PW is still a
variable depending on zCi . Hence, we find the final piece of
the puzzle by exploiting information provided by the views of
other drones.

By varying zCi in (2), PW forms a line in 3D space, called
the inverse line, denoted as l. Without any other additional

1As SkyNet is designed to locate a person in a known space, it is feasible
to get known calibration points.
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(a) Space inverse transformation. (b) Cross check for a traverse point.
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Fig. 4: Multi-View Cross Localization.

information about zCi , we traverse the points on l using an
adaptive stride. We consider the highest and lowest possible
heights of a person in the real world, denoted as hmax and
hmin, and get the corresponding real-world locations PW

max

and PW
min by these two heights. The zCi corresponds to PW

max

and PW
min, denoted as zmax and zmin, respectively, can be

calculated according to (1). By restricting the inverse line l
with zmax and zmin, the search space l is further narrowed
down to a line segment, named the traverse segment. The
traverse stride of zCi is set as si = zmax−zmin

(hmax−hmin)/sW
, where

the sW is the fixed real-world height stride (e.g., 10 cm).
As shown in Figure 4, for each traverse point PW

tmp, we
conduct a cross-check by projecting it onto all other drones’
views using (1). On each view, if the projected point falls into
a face bounding box, we assert PW

tmp is the true point PW , i.e.,
the 3D real-world position of the face. Note that in this process
of cross-checking, the corresponding sub-images of the person
in all the different views are found, effectively accomplishing
the alignment. The pseudo code of the algorithm is shown
in Algorithm 1. By executing Algorithm 1, we can match all
the faces in the primary view with the faces in other drones’
views. If there are unmatched faces in other drones’ views,
it indicates that occlusion or missing detection has occurred
in the primary view. We change the primary view to the
drone containing unmatched faces and perform Algorithm 1 on
unmatched faces, in order to ensure that all faces in all views
are aligned. The more drones involved in the collaboration,
the higher the accuracy of the match.

V. MULTI-VIEW FUSION IDENTIFICATION

In this section, we detail our proposed multi-view fusion
recognition pipeline and algorithm, as well as a parallel
computing strategy aimed at speeding up processing.

A. Multi-view Face Feature Fusion

For each face sub-image, we use ArcFace [1] to extract
a 512-dimensional feature vector. In SkyNet, we fuse face
features from different angles according to the weights gener-
ated by FWN to achieve more accurate recognition. Because if
only the vector with the smallest distance from the target face
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Algorithm 1 Multi-view Cross Search Algorithm

Input: i, hmax, hmin, N , sW , Pi, for each drone:[R, T , C]
1: l← getInverseLine(Pi)
2: zmax ← set ZW of PW in (2) to hmax

3: zmin ← set ZW of PW in (2) to hmin

4: zCi = zmin, si = zmax−zmin

(hmax−hmin)/sW

5: while zCi ≤ zmax do
6: PW

tmp ← pixel2realworld(zCi , Pi)
7: result = true
8: for k in [1,N ]\{i} do
9: Pk = realworld2pixelview k(P

W
tmp)

10: if !pointInBoundingBox(Pk) then
11: result = false
12: end if
13: end for
14: if result is true then
15: PW ← PW

tmp

16: break;
17: end if
18: zCi ← zCi + si;
19: end while

feature is selected for recognition, the information of other
angle feature vectors will be wasted.

1) Fusion Weight Network: As demonstrated in Section II,
face angle and resolution can seriously affect the accuracy of
face recognition. To establish a reasonable fusion method for
images of different angles and qualities, we design the FWN.
As shown in Figure 5a, for each face image, the FWN takes its
resolution and landmarks of face features as input and outputs
the fusion weight of the image. This is achieved by networks
capturing the hidden relationships between landmark vectors,
resolution, and image legibility. Intuitively, face images that
are easier to identify should be given higher fusion weights.
To this end, weight loss for training FWN is defined as follows:

Lweight =
1

N

N∑
1

(
y − d

||ϕ(Face)− ϕ(Facebm)||2

)
, (3)

where N is the number of samples in a training batch, y
denotes the fusion weight of an input image generated by
the FWN, d denotes the dimension of the feature vector,
Face and Facebm are the input image and the benchmark
image (i.e., a frontal view image with sufficient effective
pixel) of the person, respectively, and ϕ(·) denotes the d-
dimensional face feature vector extracted by face feature
extraction. d

||ϕ(Face)−ϕ(Facebm)||2 is also called ground truth
weight. By minimizing the weight loss Lweight, an effec-
tive FWN can be trained to output fusion weights that can
accurately reflect the legibility of each image, as shown in
Figure 5b. We train the FWN on the CFP dataset [22]. Using
the trained FWN, we can generate the corresponding fusion
weights for the same person’s face sub-images from different
views, which are then normalized and fed into the fusion layer.
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Fig. 5: Fusion Weight Network

2) Fusion Layer and Identification Result: For each person,
the MVFI first uses the fusion layer to fuse his/her face
sub-image features from different views to obtain a fusion
feature, which is calculated by the weighted sum of all-view
features. The weights in the weighted sum are given by the
FWN. Then the fusion layer calculates the distance between
it and the target person’s face feature. After getting the
feature distances between each person and the target person,
the minimum feature distance is compared with the feature
distance threshold, and if the minimum feature distance is
lower than the threshold, the corresponding person is identified
as the target person.

B. Parallel Heterogeneous Computing

To guarantee real-time performance, we design a Parallel
Heterogeneous Computing (PHC) strategy. The PHC sets up
the thread pool to prepare for upcoming tasks. When face
sub-images of people from multiple views are passed to the
PHC, each sub-image is submitted to the thread pool as a
job. The thread pool creates a thread for each job to realize
multi-view parallel recognition. To further reduce the pipeline
latency, we employ heterogeneous computation within each
thread through CPU-GPU collaboration. Specifically, the FWN
is executed by the CPU, while the relatively heavy face feature
extraction model is executed by the GPU to fully utilize the
overall computing power of devices.

VI. DYNAMIC TASK SCHEDULING FOR HETEROGENEOUS
DEVICES

The scheduling of tasks is executed by the home edge.
When the home edge schedules a task, it selects the DD from
all edges and the cloud server to complete the DD-side task.
To predict the EFT, the following information related to the
states of devices needs to be considered: 1) the length of the
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current unfinished task queue for each candidate device; 2)
the computing power of each candidate device, such as CPU
and GPU resources; 3) the transmission latency between each
candidate device and drones. To this end, the home edge needs
to be up to date on all these three aspects of devices.

To avoid frequently obtaining information from all devices,
the DTSH sets a scheduling period (e.g., 1 minute), which
spans a series of tasks, denoted as Queuea, which can be flex-
ibly configured according to the system needs. The scheduling
process in one scheduling period includes the following three
steps.
1) Synchronization. At the beginning of each scheduling
period, the home edge obtains the latest device state informa-
tion from all edge devices, including queue lengths, available
GPU/CPU resources, and current transmission latency.
2) Scheduling. The scheduling decision of one scheduling
period made by the home edge includes selecting the suitable
DD for each task within the period. When a device is already
assigned multiple tasks, its queue length becomes longer, so it
is less likely to be selected again. The home edge selects DDs
for tasks one by one in chronological order of tasks because
there is a temporal dependency between tasks.
3) Schedule decision dissemination. After all tasks are
scheduled, the home edge sends the scheduling decision, i.e.,
the sequence of selected DDs, to all drones, edge devices, and
the cloud server.

In the following, we explain how to select the DD
for a task within a scheduling period. Consider N drones
D = {D1, · · · , Di, · · · , DN}, M edge devices E =
{E1, · · · , Ej , · · · , EM} and a cloud server, denoted as E0.
Suppose the current unfinished tasks queue of Ej is Queuej ,
and the CPU and GPU computing powers of device Ej are
CPUj and GPUj (unit: TOPS), respectively. The transmission
latency of Ej is calculated as the maximum transmission delay

between it and all drones Delayj = max
i∈[1,N ]

Delayj,i, where

Delayj,i is the transmission delay between Ej and Di.
For a task, the home edge selects the device with the

smallest EFT as the task’s DD. If the EFTs of all edge devices
for one task are higher than the shooting interval (e.g., 1s),
indicating all of them are busy, the cloud server is selected as
the task’s DD. The estimated finishing time EFTj of device
Ej can be predicted by an adaptive Multi-variable Linear
Regression (MLR) model:

EFTj =MLR(Delayj , ||Queuej ||, CPUj , GPUj)

=θ0 + θ1Delayj + θ2Queuej + θ3GPUj + θ4CPUj .
(4)

To train the MLR model (4), a trace pool is built to store the
real historical traces. Each trace is a pair of data that records
the MLR input vector (Delayj , Queuej , CPUj , GPUj) and
the real finishing time (ground truth). The MLR is updated
through training with the real traces in the trace pool in each
updating period (e.g. 2 minutes).

The training purpose of MLR is to find out a parameter set
θ̂ = (θ̂0, θ̂1, θ̂2, θ̂3, θ̂4), which is as close to the real parameter
set θ = (θ0, θ1, θ2, θ3, θ4) as possible. Because the real θ is
unknown, we cannot directly compare the two. To describe
how close θ̂ is to θ, we introduce a loss function:

Loss =
1

K

K∑
j=1

(EFTj − ˜EFTj), (5)

where K is the number of traces, EFTj is the real task
finishing time of a completed task, and ˜EFTj is the estimated
EFT. The pseudo code of DTS is shown in Algorithm 2.

VII. DATASET EVALUTION

A. Hardware Implementation and Dataset

Cloud server. We evaluate SkyNet on public datasets using
only the cloud server. The cloud server is implemented on a
server running an Ubuntu 18.04 system with Intel Xeno Silver
4210 @2.20GHz CPUs and NVIDIA RTX 2080Ti GPUs with
12 GB of memory. For detection, we use YOLOX-Tiny [16]
as the person detector and RetinaFace-10g [14] as the face
detector. We use ArcFace based on ResNet50 [1] as the feature
extractor. The FWN is implemented by Pytorch 1.8.0.
Dataset. We evaluate SkyNet on the following two public
datasets: i) CFP dataset [22], which provides a total of 7000
multi-view images of 500 identities, each with 10 frontal and 4
side images. ii) DroneFace dataset [23], contains 2057 images
of 11 objects, including 5 sets, 620 original images, 1364
frontal images and 73 portrait images. This dataset is chosen
because of the raw images captured from different distances
and depression angles to simulate the FoV of a drone.

B. Evaluation Results on Public Dataset

1) Evaluation on CFP dataset: Accuracy: SkyNet uses
3 input channels for person recognition, corresponding to 3
images of a person. We compare SkyNet with two baselines: i)
RetinaFace+ArcFace (1 image): it recognizes each image and
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Algorithm 2 Dynamic Task Scheduling Algorithm (DTS)

Input: Queuea, N , each Di, M , each Ej :[CPUj , GPUj ,
Queuej , Delayj]

1: while DTS is running do
2: assignments← {}
3: while Queuea is not empty do
4: taskId← Queuea.front()
5: for j in [1,M ] do
6: EFT taskId

j ←
MLR(Delayj , ||Queuej ||, CPUj , GPUj)

7: end for
8: if minEFT taskId

j < shooting interval then
9: DD ← argminj EFT taskId

j

10: else
11: DD ← E0

12: end if
13: push (taskId, DD) into assignments
14: push taskId into QueueDD

15: end while
16: for i in [1,N ] do
17: sync assignments with Di

18: end for
19: end while

gives a separate recognition result; ii) RetinaFace+ArcFace (3
images), it first calculates the feature distance between each
image and the target person image, and then for a person, only
the recognition result of the image with the smallest distance
is reserved as the recognition result of this person. This means
taking the best of the three recognition results for a person. In
the experiment, a person has three images, called an image set.
As shown in Figure 7a, the accuracy of SkyNet is higher than
the two baseline methods at all different distance thresholds.
When the distance threshold is set to 20, the accuracy of
SkyNet is 91.08%, which is 37.9% and 9.1% higher than the
two baselines, respectively. This shows that the multi-view
face fusion scheme captures more feature information of a
person’s face, which can improve face recognition accuracy.
Latency: We compare the computational latency of SkyNet
and the baseline under the different number of input channels,
i.e., the number of images in image set. Figure 7b shows that
the latency of SkyNet is only about half of the baseline. This
is because SkyNet benefits from the PHC and can efficiently
utilize the computing resources of devices.

2) Evaluation on DroneFace dataset: Accuracy: We com-
pare the performance of SkyNet with the baseline (Reti-
naFace+ArcFace) in recognizing images in the DroneFace
dataset. Figure 8a shows the accuracy of SkyNet and the
baseline on different image sets. On each set, SkyNet shows
better performance. Overall, SkyNet is 33% more accurate
than the baseline.
Latency: Similarly, we compare the latency of SkyNet and the
baseline. As shown in Figure 8b, the average latency of SkyNet
is 83.5% lower than the baseline, consuming only 0.043s.
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Fig. 7: Performance Evaluation on CFP dataset.
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Fig. 8: Performance Evaluation on DroneFace dataset.

VIII. REAL-WORLD EVALUATION

A. Hardware Implementation and Real-flight Experiment

Drones. We use four F450 quadcopters in the experiment.
Each drone is equipped with a PIXHAWK [24] 2.4.8 flight
control, an M8N GPS [25], a 4K action camera and an AI
edge computing platform, NVIDIA Jetson Xavier NX. For the
drone’s on-board pipeline, we use YOLOX-Tiny [16] as the
person detector and RetinaFace-10g [14] as the face detector.
Edge devices. We use three NVIDIA Jetson Xavier NX as the
three edge devices and ArcFace [1] as the feature extractor.
FWN is implemented using Pytorch 1.8.0. The implementation
of the cloud server is the same as Section VII. Data transfer
between devices via WLAN (WiFi protocol 802.11 ac) at 18
Mbps upload/download rate.
Real-flight Experiment. We deploy and evaluate SkyNet
on drones, edge devices, and the cloud server in real-world
experiments. In two scenes with 20 people moving freely
indoors at 81m2 and outdoors at 554m2, we use three drones
to capture 4K images and one drone to capture 1080p images,
and each experiment is performed for 5 minutes. The four
drones are located at the four corners of each scene, 5m
above the ground indoors and 10m above the ground outdoors.
We run a total of nine experiments, including five indoor
experiments and four outdoor experiments.

B. SkyNet Overall Performance

We first evaluate the overall performance of SkyNet. At a
once-per-second shooting instant, each drone takes a photo of
the crowd. We define the entire operation flow of locating and
recognizing the target person to be found as a task.

1) Baseline Methods:
• Baseline of single drone (B-D). This baseline runs Reti-

naFace for face detection and ArcFace for face recogni-
tion using a single drone with on-board computing power.
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Fig. 9: The Overall Performance of SkyNet.

(a) Drone view on 45◦ (b) Drone view on 225◦

Fig. 10: On-Board Computing Output Example.

• Baseline with full offloading (B-O). In this baseline, four
drones transmit images to an edge device. The edge
device then runs the identification model to find all the
people in the drone’s view and calculate the feature
distance between each person and the target person. If
the shortest feature distance is lower than the threshold,
the corresponding person is regarded as the target person.

• Baseline with down sampling (B-S). This baseline is
different from B-O because the drone transmits the down
sampled image (640×640) to the edge device.

• SkyNet with full offloading (S-O). SkyNet runs without
DTSH, i.e., the cloud server always serves as the DD.

2) Evaluation Metrics:
• Task Latency: the time spent executing a task, including

transmission latency and computational latency.
• Accuracy: Top-1 identification accuracy at a specific

False Accept Rate (FAR), e.g., FAR=10−6.
3) Evaluation Results: The overall performance evaluation

of SkyNet is shown in Figure 9.
Task Latency: The latency of SkyNet is much smaller than
all baselines. As shown in Figure 9a, SkyNet is 6.31 times
faster than the B-O baseline, which transmits 4K images with
a transmission latency of up to 4.154 seconds. SkyNet is also
2.91 times faster than the B-D baseline. Due to the limited
computing resources of drones, B-D has a large computational
latency, reaching 2.455s.

We further investigate the cost of each sub-task (i.e., detec-
tion, localization, recognition, and transfer) in the SkyNet task
pipeline. As shown in Figure 9b, among the computational
latency, the detection sub-task has the largest latency, while
the optimized localization and recognition sub-tasks have less
latency. It can be found that the transmission latency is greater
than the computational latency. SkyNet with task schedul-
ing effectively utilizes the computing resources of multiple
devices, thereby reducing the computational latency. More
importantly, because only face sub-images are transmitted, the
transmission latency is also greatly reduced.
Accuracy: As shown in Figure 9c, SkyNet has the highest
accuracy of 91.36%, which is 8.82%, 30.83% and 43.27%
higher than the B-O, B-D, and B-S baselines, respectively.
The accuracy of the B-S baseline is the lowest because it loses
much information during down sampling. Figure 10 shows two
images taken by two drones with the face bounding boxes
generated by drone on-board computations. In SkyNet, full-
resolution face sub-images are transferred to the DD. The
multi-view fused face feature provides more information than

any single-view face feature. Even if a person’s face cannot
be detected in a drone’s FoV (e.g., a person with his/her back
to the drone), his/her identity can still be identified because
other drones may be able to capture his/her face.

C. Evaluation of SkyNet’s Localization Performance

We evaluate the localization performance of SkyNet in 5
experiments with different numbers of people. We calculate
the localization error, i.e., the error between the MDPL output
position and the true position, and the latency in completing
the localization task.
Localization error: As shown in Figure 11a, the average
error of each task collection is about 18.65cm. Figure 11b
visually shows the comparison of the two real tracks of the
experimental participant and a series of consecutive positions
output by SkyNet in one minute.
Localization latency: As shown in Figure 11a, the latency
of MDPL increases with the number of people. The MDPL
latency for twenty people is 0.071 seconds.

D. Evaluation of SkyNet’s Scheduling Performance

We analyze the impact of the DTSH module to evaluate the
performance improvement brought by scheduling.
Latency: We compare the latency of SkyNet with and without
the DTSH module when processing different numbers of tasks.
As shown in Figure 12a, the latency of SkyNet with the DTSH
module is at least about 15% lower than that of SkyNet without
the DTSH module. Note that the average of this latency is
larger than the task latency because it includes both the task
latency and the queuing latency, and what the DTSH does is
reduce queuing latency.
Device queue length: Given 100 tasks, as shown in the figure
12b, if SkyNet runs without the DTSH module, all tasks are
assigned to the cloud server (device0 in the figure). If SkyNet
runs with the DTSH module, the 100 tasks are assigned almost
evenly to each device. Figure 12c shows the length of the task
queue for each device over time. When SkyNet runs with the
DTSH module, each device has a shorter task queue.

E. Effect of Different Parameters

We analyze the effect of the crowd size and the drone
number on SkyNet’s accuracy and latency. We run SkyNet
on different-sized crowds using different numbers of drones.
Latency: As shown in Figure 13a, using more drones leads
to higher task latency. As the number of people increases,
the end-to-end latency increases due to the increase in sub-
images to be processed and data to be transmitted due to
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computational offloading. task latency increases faster when
the crowd size exceeds 5 people.
Accuracy: As shown in Figure 13b, larger crowds lead to
lower accuracy due to mutual occlusion between people. Using
more drones can alleviate the problem of accuracy degradation
as more details are captured. When the number of drones
exceeds 3, the performance gain from adding drones decreases.
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Fig. 13: Effect of Different Parameters.

IX. RELATED WORK

A. Face Identification

Computer vision techniques have been applied to drones
to detect faces [26]. Erina et al. [27] propose a method for
face recognition from a drone view. Hwai-Jung Hsu et al.
[28] propose that Face++ are limited by the height, distance
and depression angle of drones. Triantafyllidou et al. [29]
design a lightweight CNN for face detection on drones. Amato
et al. [30] focus on the impact of face multi-resolution on
face recognition. There are some projects aimed at improving
the performance of face recognition in normal scenes and
completing high-precision face recognition [31].

One main challenge in face recognition using multiple
drones is aligning multi-view information [32]. Many studies
of multi-view object alignment use carefully selected feature
markers to extract object features and match them into another
view, such as SIFT [33], SURF [34], and HOG [35]. These
studies use machine learning models such as SVM [36], Ad-
aboost [37] for feature matching, and use the sliding window
technique [38] to search images of other views, with high
matching complexity and computational latency. These limit
their effectiveness and applicability.

B. Localization and tracking

Most 3D localization solutions acquire additional sensory
information through specialized devices such as stereo cameras
and LiDARs. Knoppe et al. [39] propose a drone system with a

stereo camera that collects spectral image patches. Wang et al.
[40] utilize the collaboration of drones equipped with multiple-
input multiple-output radar to locate marine targets based on
triangulation. ORB-SLAM [41] achieves tracking across video
frames by extracting feature points from sparse point clouds.
The reliance on specialized equipment makes these solutions
expensive and difficult to deploy widely.

Object tracking is critical for scenarios that require contin-
uous targeting of objects, such as capture and child searches.
Silva et al. propose a face recognition and tracking system
[42], in which the same person in different video frames is
re-identified based on the face embedding vectors obtained
through CNN. However, the target’s position is relative to
image coordinates rather than world coordinates, making it
difficult to accurately track targets in the real world.

X. CONCLUSION

In this paper, we propose SkyNet, a multi-drone coopera-
tion framework for accurate and real-time identification and
localization. SkyNet can accurately locate a person in 3D real
world using only conventional 2D cameras and can align the
face sub-images of one person from different drone views.
To improve identification accuracy, we design a novel fusion
identification pipeline, which exploits images from different
views by fusing them according to weights reflecting legibility.
SkyNet can achieve real-time localization and identification
through its ability of dynamic task scheduling. We implement
and evaluate SkyNet in real life, and the result shows that
SkyNet achieves 91.36% identification accuracy, less than
0.18m localization error, and less than 0.84s latency.

XI. CODE

To make it easier for readers to understand and de-
ploy SkyNet, we provide public access to the code at
https://doi.org/10.5281/zenodo.7467108.
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