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ABSTRACT
The rapid growth of video traffic imposes significant challenges on
content delivery over the Internet. Meanwhile, edge computing is
developed to accelerate video transmission as well as release the
traffic load of origin servers. Although some related techniques (e.g.,
transcoding and prefetching) are proposed to improve edge services,
they cannot fully utilize cached videos. Therefore, we propose a
Learning-based Fuzzy Bitrate Matching scheme (LFBM) at the edge
for adaptive video streaming, which utilizes the capacity of network
and edge servers. In accordance with user requests, cache states and
network conditions, LFBM utilizes reinforcement learning to make
a decision, either fetching the video of the exact bitrate from the
origin server or responding with a different representation from
the edge server. In the simulation, compared with the baseline,
LFBM improves cache hit ratio by 128%. Besides, compared with
the scheme without fuzzy bitrate matching, it improves Quality of
Experience (QoE) by 45%. Moreover, the real-network experiments
further demonstrate the effectiveness of LFBM. It increases the hit
ratio by 84% compared with the baseline and improves the QoE by
51% compared with the scheme without fuzzy bitrate matching.
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1 INTRODUCTION
Video streaming makes up a great portion of Internet traffic. Ac-
cording to a Cisco report [10], video streaming will take up 80%
of Internet traffic by 2022. Although the network infrastructure is
upgraded, the requirement for better user experience still brings a
significant challenge.

There are two significant factors influencing user experience
during the video transmission, i.e., network conditions and termi-
nal characteristics. Firstly, the content delivery of high-quality
videos (e.g., 4K/8K) calls for more network capacity. However, the
limited bandwidth and unstable network affect the user experience
which can be measured by objective metrics such as bitrate level,
bitrate switching, rebuffering time and startup delay. Secondly,
terminal characteristics (e.g., screen resolution and network access
mode) also play an important role in QoE. On the one hand, the
playback devices with different resolutions are compatible with
different video qualities. For example, if a high-quality video (e.g.,
1080P) is watched on a mobile phone with a screen of low resolution
(e.g., 720P), it will consume more network capacity for transmis-
sion with slight improvement in QoE. On the other hand, terminals
may have different network access modes, resulting in different
transmission rates and network dynamicity. For instance, mobile
phones, tablets and laptops access the Internet via a relatively un-
stable wireless connection and acquire lower transmission capacity.
Whereas, televisions and desktops usually access the Internet via a
relatively stable wired connections. These different features make
video transmission more challenging.

To optimize video transmission, researchers and developers ex-
plore and exploit edge computing. However, the storage capacity of
the edge is limited and not all the presentations of videos are cached.
Cache hit occurs only if the presentation with the requested bitrate
level is cached. In this paper, we argue that the cached video with a
different bitrate level (i.e., fuzzy bitrate matching) can also be used
to respond to user requests. For achieving better user experience,
the edge needs to decide whether to request the video with a precise
bitrate from the origin server or use the fuzzy-matching video in
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the cache, which is a significant challenge due to the dynamic user
requests, edge states and network conditions.

To fit into the dynamic network and be compatible with ter-
minal characteristics, we propose a Learning-based Fuzzy Bitrate
Matching scheme (LFBM) at the edge. The main contributions of
our work are as follows.

• We propose the fuzzy bitrate matching to reveal its benefit
from utilizing cached contents. It can avoid drastic bitrate
oscillation and improve hit ratio.

• We design a learning-based fuzzy bitrate matching (LFBM)
with user and edge states, to decide whether to respond with
a different representation of the requested video chunk.

• We utilize an LFBM-based cache policy to be compatible
with the proposed response scheme and verify the efficiency
of the comprehensive scheme.

To evaluate the performance of LFBM, we implement the proto-
type based on the open-source Apache Traffic Server (ATS) [2] with
around 3500 lines of added code that has been shared on Github
[3]. Based on the implemented prototype, we conduct the experi-
ments in the lab environment and further deploy it on the Internet.
In order to use the WAN path of the real Internet, we deploy the
origin and edge servers on Australian and North American nodes
on the Amazon EC2 cloud respectively. In addition, the clients are
deployed on the Planetlab [9]. In the simulation, compared with
the baseline, LFBM achieves 228% of cache hit ratio. Besides, com-
pared with the scheme without fuzzy bitrate matching, it improves
the QoE by 45%. Moreover, the real-network experiments further
demonstrate the effectiveness of LFBM, it increases the hit ratio
by 84% compared with the baseline and improves the QoE by 51%
compared with the scheme without fuzzy bitrate matching.

The rest of the paper is organized as follows. Related work and
motivation are respectively described in Section 2 and Section 3.
The framework and concrete design of LFBM is presented in Section
4. While the experiments and conclusions are provided in Section 5
and Section 6.

2 RELATEDWORK
Adaptive Bit Rate (ABR). The research on ABR for Dynamic
Adaptive Streaming over HTTP (DASH) can be divided into three
categories: 1) the rate-based schemes (e.g., [31]) that choose the
most appropriate bitrate according to the predicted available band-
width. The accuracy of prediction may impact bitrate selection and
finally influence QoE. 2) the buffer-based schemes (e.g., [19, 30]) that
make decision of bitrate selection according to the current buffer
occupancy at the client. These schemes rely on a manual tuning of
parameters. It may be difficult to adapt to highly dynamic network.
3) the hybrid schemes that take into account both network capacity
and client-side buffer occupancy [4, 40]. Reinforcement learning
is also applied to improve the hybrid scheme for its intelligent
decision-making ability [18, 26]. Generally, ABR algorithms may
lack a global view and be overdependent on the accurate estimation
of available bandwidth [23].

Transcoding. To exploit the computing resources at the edge,
transcoding is utilized [25, 29, 37] for saving network bandwidth.
Content providers transcode videos into multiple representations

and choose an appropriate one for the end user. However, this ap-
proach limits users to select bitrate levels from a given set, which
cannot adapt to the continuously changing network. Meanwhile,
most requests concentrate on a few videos while most computing
resources are consumed by massive rarely-requested videos. To
solve the problems mentioned above, online transcoding is devel-
oped. Some works [14, 20, 36] take network conditions and user
states into account for transcoding online. But online transcoding
requires great computing capability of both hardware and software.
So it is difficult to widely deploy the online-transcoding function
at the light-weight edges.

Prefetching. Prefetching can also optimize video transmission
[13, 15, 17, 27, 32, 39] by fetching the content in advance. Prefetch-
ing is mainly divided into two categories: space-based and time-
based. Space-based prefetching is generally applied to web objects
by hyperlinks [13, 39]. It also plays an important role in video rec-
ommendation. As for time-based prefetching, it utilizes the idle
network to prefetch corresponding content. The sequential and
chunk-based characteristics of DASH arewell fit into the time-based
prefetching. However, prefetching consumes additional bandwidth,
which may be a waste of transmission resources if the prefetched
content is not used.

Cache Schemes. To fully utilize the storage capacity of edge
servers or client-side devices, various cache policies are proposed,
e.g., the TTL-based scheme [21], the utility-based scheme [12] and
TLRU [6]. Some learning-based schemes, such as [5] and [41], are
designed to meet the needs of users adaptively. For ensuring the
QoE, some QoE-based cache schemes are developed such as [24]
and [35]. However, even if these solutions perform well, cache miss
may still occur due to the limited storage space. Besides, cache hit
may also bring bitrate oscillation.

3 MOTIVATION
3.1 Bitrate Oscillation
ABR algorithms adapt to dynamic network but may not react
promptly to the possible influence of edge cache. For example, Lee
et.al. [23] found that cache hit affects the throughput estimation of
video transmission. To explore the existence of bitrate oscillation,
we deploy the origin and edge on cloud servers. The video is accord-
ingly pre-encoded into five bitrate levels (i.e., 350, 600, 1000, 2000
and 3000 Kbps) with H.264/MPEG-4 codec [38]. The 1000-Kbps one
is cached at the edge in advance. If the client requests a 1000-Kbps
video chunk, it will bring cache hit. Besides, the bandwidth between
the origin and the edge is less than 2.0 Mbps.
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(b) Three bitrate levels
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(c) Two bitrate levels
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Figure 3: Rate of virtual hit
The client utilizes Google Chrome to play the video with the

default ABR in dash.js [1], an open source JavaScript library for
DASH. As Fig. 1 shows, firstly, the client requests the video chunks
with low bitrate levels to fill the buffer as soon as possible. The
client increases the request bitrate gradually and the cached one
triggers cache hit. Then the estimated throughput at the client will
be higher due to cache hit, which results in the requests for a higher
bitrate level. However, since the chunks with the bitrate higher than
1000 Kbps are not cached at the edge, they will be fetched from the
origin server. Meanwhile, the perceived throughput at the client
will decrease due to the low capacity of the backhaul path, which
forces the client to decrease the request bitrate. Consequently, the
continuous bitrate oscillation destroys QoE.

The experiment confirms that the client-side ABR combined with
a simple edge-side response policy fails to ensure the QoE. Because
the client chooses the representations according to the perceived
throughput without considering the cache states at the edge. As
Fig. 1 shows, the client requests a high bitrate level under cache hit
and turns to a low one under cache miss. So there is necessity to
consider client information, edge states and network conditions to
avoid the bitrate oscillation.

3.2 Virtual Hit
Here we define Virtual Hit to indicate the situation that the edge
server responds to clients with other bitrate levels instead of the
requested one. Opposite to Virtual Hit, the regular response with
the requested bitrate is Real Hit. To verify the feasibility of the
response policy based on Virtual Hit , we explore user requests
and calculate the proportions of Real Hit and Virtual Hit with the
utility-based cache policy. The cached video chunks at the edge are
of the highest utility related to benefit and cost. The benefit refers
to the requested frequency REQ(·) of a video. The cost indicates the
size SIZ (·) of the video. fm represents the video f with the bitrate
m. The utility of the video is formulated as follows.

utility =
bene f it

cost
=

REQ(fm )

SIZ (fm )
(1)

We set 80 clients to play the videos for 3600 seconds, following
a Zipf distribution. There are 100 testing videos encoded into five
bitrate levels (204GB totally) in the origin server. Besides, the edge
server with a 10GB cache executes the utility-based cache policy.
As Fig. 3 shows, there are four instances with different numbers
of the other optional representations. Fig. 3a depicts the request
proportion of Real Hit, cache miss and Virtual Hit, without limiting
the number of bitrate levels at the edge. While the other three

subfigures, Fig. 3b, 3c and 3d, depict that the edge can cache other
three, two and one optional representation(s) respectively. That is, if
cachemiss occurs, the edge server can use the other alternate bitrate
level(s) to serve end users. For example, Virtual Hit-2 means that
two alternate bitrate levels are cached and can be utilized. If the
edge server cannot respond with any cached content, i.e., cache
miss, it will directly fetch the content from the origin server.

It can be concluded that Virtual Hit contributes to cache hit.
Besides, if more representations are cached for the same content,
it will bring more Real Hit. The reason is that the clients adapt to
the dynamic network by requesting a more proper bitrate level as
the number of the available representations increases. However,
it also leads to less Virtual Hit and more cache miss. We regard
that it is of importance to keep a balance between Real Hit and
Virtual Hit, which plays a key role in fully utilizing edge resources
and ensuring QoE. So we propose a learning-based fuzzy bitrate
matching scheme to solve the problem.

4 DESIGN OF LFBM
4.1 Reinforcement Learning Edge
Based on the reinforcement learning, the edge decides whether to
respond with another cached representations, i.e., Virtual Hit. Or it
will fetch the exactly requested one from the origin server. The RL
edge consists of three layers as Fig. 4 shows: a base layer, a decision
layer and a record layer. The base layer defines the fundamental
functions of the edge server. It executes the command of responding
to users with the cached representations or fetching the content
from the origin server in case of cache miss. The decision layer is
the intelligent core of the system, making the decision of how to
respond based on the information collected from the record layer.
Regarding the record layer, it is an auxiliary to the decision layer,
collecting user states and network conditions. The workflow of the
LFBM-based edge is as follows.

(1) The HTTP request arrives at the edge server and will be
handled by the cache manager.

(2) The client information collector parses the request header
and extracts the playback information.

(3) The cache manager retrieves the requested content from the
cache store. Cache hit will trigger Step 10). Otherwise, Step
4) will be executed.

(4) If other representation(s) of the requested content is/are
cached, the cache states will be sent to the RL agent for
decision making.

(5) The client and network information collectors respectively
send user states and network conditions to the RL agent.
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(6) The RL agent decides whether to fetch the chunk from the
origin server by Step 7) or respond with a substitute repre-
sentation by Step 10).

(7) If there is no other bitrate level in the cache store or the RL
agent decides to fetch the chunk from the origin server, the
request will be sent to the origin server.

(8) The origin server sends back the requested content via the
backhaul path.

(9) The network information collector gathers the throughput
of each session and regards the maximum value as a mea-
surement of network condition (i.e., the throughput under
cache miss).

(10) The cache manager sends back the chunk from the cache
store or the origin server to the user.

(11) The output of the neural network model will be used to
calculate the QoE-related utilities for the cache replacement.

4.2 Regression-based Throughput Prediction
In our work, the throughput of delivering the same chunk under
both cache hit and cache miss is necessary for the learning process.
However, in one session, the client-side perceived throughput of
the same chunk is under either cache hit or cache miss, depending

Table 1: Term definition

Term Definition
MTP the throughput under cache miss at the client
HTP the throughput under cache hit at the client
SIZ the size of video chunks

totalMTP the total throughput under cache miss at the edge in
one period

maxMTP the maximum throughput under cache miss at the
edge in one period

avgMTP the average throughput under cache miss at the edge
in one period

reqCT the number of cache miss occurring at the edge in
one period

mTime the download time under cache miss
hTime the download time under cache hit
RTT the round trip time between the client and the edge

MTP
HTP SIZ

tot
alM

TP

max
MTP

av
gM

TP
req

CT

mTim
e
hT

im
e

RTT

MTP

HTP
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totalMTP

maxMTP

avgMTP
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Figure 5: The correlation coefficient between features

on the cache state at the edge. So we utilize regression methods
to calculate the other throughput under cache hit/miss in case of
one-time sessions. Before predicting the throughput, we conduct an
experiment of playing videos in the Internet to reveal the correlation
between the throughput and the other features that are listed in
Table 1. The analysis of the collected information helps us figure out
the feasibility of throughput regression. The Pearson correlation
coefficient ρ(·) is used to measure the correlation between two
variables, e.g., X and Y :

ρ(X ,Y ) =
cov(X ,Y )

σXσY
(2)

where σX and σY represent the standard deviation of X and Y
respectively.

Fig. 5 illustrates the correlation coefficients of any two features.
The lighter/darker color indicates the stronger negative/positive
correlation. Intuitively, MTP and HTP have the most positive corre-
lation, which assures the feasibility of calculating one of them from
the other. Besides, SIZ, hTime and mTime are also highly correlated
to MTP with the coefficients 0.57, -0.42 and -0.39, respectively. Be-
cause the throughput is an estimated value with the chunk size
and download time: TP = SIZ

T IME . Another four features are also
collected including totalMTP, maxMTP, avgMTP as well as reqCT,
to estimate the traffic volume under cache miss. In Fig. 5, reqCT is
negatively correlated toMTP with the coefficient -0.15. Because the
number of cache miss can show how fierce the competition among
the clients is. Meanwhile, the client-side throughput decreases due
to the competition among the clients. So it is presumable that reqCT
corresponds to MTP and HTP. Besides, the correlation coefficient
between RTT and MTP is -0.63, confirming that high latency leads
to low throughput. According to the analysis above, the following
five features should be taken into account for the throughput regres-
sion:mTime/hTime, SIZ, RTT, reqCT andMTP/HTP. Note that, when
MTP is the input of the regression-based throughput prediction,
HTP will be the output, and vice versa.
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There are multiple regression methods for the throughput pre-
diction. We conduct the experiments to evaluate the efficiency of
these methods. Table 2 and Table 3 present the regression effi-
ciency of predicting MTP and HTP respectively, including Mean
Square Error (MSE) and the convergence time of running 200 test
traces with/without RTT. As Table 2 shows, Light Gradient Boost-
ing Machine (LightGBM or LGBM) outperforms the other methods,
converging more quickly and obtaining higher precision. Because
it is a gradient boosting framework using the tree-based learning
algorithms to achieve higher efficiency [22]. XGBoost [8] also suf-
fers a low loss in precision but takes more time than LGBM does.
Although Lasso [33], Ridge [16], DNN and Linear have a faster con-
vergence speed, their results are of low precision. Table 3 shows
the similar results. Among these algorithms, XGBoost achieves the
lowest MES but converges very slowly. To balance MSE and con-
vergence time, we choose LGBM to predict the throughput under
cache hit & miss (as shown in Fig. 2), which is helpful to a more
reliable bitrate selection.

4.3 Intelligent Response
The fuzzy bitrate matching model is trained by Asynchronous Ad-
vantage Actor-Critic (A3C) based reinforcement learning, including
the actor and critic networks. A3C breaks the data association
through the asynchronous mode, which utilizes multiple threads to
execute multiple agents for exploring and maintaining one target.
It is time-saving and resource-efficient for utilizing the raw data
directly without processing the input features specifically.

State space. Fig. 6 illustrates the concrete operation process of
the intelligent response with fuzzy bitrate matching. The RL agent
takes the client information and network state as the input of two
neural networks, i.e., the actor and critic networks, at the moment
t corresponding to the kth chunk of the video. These inputs include
the currently requested bitrate Bk , the last requested bitrate Blk ,
the client-side buffer occupancy Bu fk , the throughput of download-
ing the last video chunk under cache hit Dthk , the throughput of
downloading the last video chunk under cache miss Dtmk and the
workload of the backhaul path Ldk . Note that the throughput is
predicted with LGBM. Ldk is the maximum throughput under cache

Table 2: The regression efficiency under cache miss

Algorithm LGBM XGBoost Lasso Ridge DNN Linear

MSE RTT 0.0349 0.0349 0.0483 0.0484 0.0509 0.0484
No RTT 0.0351 0.0352 0.0483 0.0484 0.0512 0.0484

Test time RTT 14.681 30.838 0.0019 0.0009 0.0028 0.0019
(s) No RTT 14.172 28.168 0.0009 0.0010 0.0027 0.0019

Table 3: The regression efficiency under cache hit

Algorithm LGBM XGBoost Lasso Ridge DNN Linear

MSE RTT 0.0629 0.0615 0.1790 0.1791 0.2894 0.1793
No RTT 0.2057 0.1909 0.2369 0.2371 0.3316 0.2375

Test time RTT 12.527 35.240 0.0002 0.0029 0.0023 0.0023
(s) No RTT 11.090 30.492 0.0017 0.0019 0.0025 0.0019
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Figure 6: RL model in fuzzy bitrate matching
miss of the backhaul path. These features are unified as a state vector
sk ∈ Sk that corresponds to st ∈ St = {Bk ,Bu fk ,Dt

h
k ,Dt

m
k ,Ldk }

at the moment t . Then the processed data are input into the neural
networks for training the prediction model.

Action. In accordance with st , the RL agent generates the action
at that benefits the client most. The action at ∈ A indicates whether
to respond with the exact requested bitrate (i.e., fetching from the
origin server) or the other cached representations. The agent will
choose the most appropriate bitrate if directly responding with the
cached contents. However, the action decision making is compli-
cated due to the necessity of balancing the interests of all parties. So
the executed actions are based on π (st |at ) ∈ [0, 1], indicating the
probability of taking the action a under the state s at the moment t .
π (·) is notated with the gradient parameter θ as π (at |st ;θ ) to reveal
the optimization process of the actor network. The actor network
is updated in accordance with the critic network till θ converges.
For more details about A3C, please refer to [26]. We do not traverse
all state-action combinations but use the generalization capacity of
neural network to evaluate different actions.

Reward. The critic network updates v(st ;ω) that denotes the
current state value to support the action decision making. The gra-
dient parameter ω is to reveal the optimization process of the critic
network. Besides, the historical decisions are of great importance
for the future prediction. So the previous action rewards are also
included in the learning process. Here, we details the definition
of reward. It is known that client-side video players commonly
evaluate ABR algorithms to promote their own QoE. From the
perspective of the edge server, cache hit ratio is important for im-
proving the response efficiency and finally optimizing the QoE.
Therefore, LFBM defines the reward of applying a certain action
for the kth video chunk as follows.

Rk = QoEk − I × (loд(
Bk

Bmin
) + d) (3)

where I is set to 0/1 under cache hit or miss respectively. It is more
stressful for the origin server to respond to users with a higher
bitrate level. Thus, the negative influence is regulated as loд( Bk

Bmin
).

Besides, d represents the punishment due to the cache miss of the
lowest bitrate level.

We consider a general QoE metric used in Pensieve [26] and
MPC [40]. In our definition, we consider the QoE contains three
parts, including the video quality, bitrate variation and rebuffering
duration. The QoE metric is defined as:

QoEk = loд(
Bk

Bmin
) − |loд(

Bk
Bmin

) − loд(
Bk−1
Bmin

)| − µTk (4)
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Where loд( Bk
Bmin

) indicates the quality of the video chunk with the
bitrate Bk comparing against the lowest-bitrate representation. Tk
is the rebuffering time during the playback of the kth chunk. µ
is rebuffering penalty compared with video quality decrease and
bitrate variation. The learning model can be modified and updated
according to the definition of QoE.

LFBM-based cache policy. In Section 3.2, we adopts a utility-
based cache policy. To improve the performance of LFBM, we pro-
pose a cache policy based on the probability distribution of actions
in reinforcement learning. We redefine the utility as follows.

utiity_RL =
bene f it

cost
=

∑S
s=1VAL(fm )

SIZ (fm )
(5)

TheVAL(·) is the accumulative probability of a bitrate level given
by the neural network model. When the neural network chooses the
action, VAL(·) denotes the possibility of selecting the correspond-
ing representation. Hence, the LFBM-based cache policy have the
abilities to capture the popularity and potential reward of content.
According to the utility, the videos are listed in a descending order
in one period. The cache replacement is executed in accordance
with the utility periodically. The results of the experiments in Sec-
tion 5 demonstrate that the presented cache policy improves the
QoE and hit ratio.

5 EXPERIMENT
5.1 Experiment Setup
To evaluate the performance of LFBM, we implement a prototype
based on the open source of Apache Traffic Server (ATS) [2]. Based
on the prototype, the experiments are carried out in the lab environ-
ment and the real Internet. LFBM is compared with four alternatives:
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• A policy without fuzzy bitrate matching (UTILITY)
• A lower bitrate matching approach (LOWER) [36]
• A closest bitrate matching approach (CLOSEST) [24]
• A highest bitrate matching approach (HIGHEST).

The testbed in the lab experiment takes 2000 network traces as
the input from HSDPA [28], FCC [11] and a self-collected dataset
EC2P. The trace of HSDPA is from the cellular network, whose
bandwidth is low and unstable. The FCC dataset is from the fixed
broadband, which is more stable and high-speed. We also construct
a dataset (EC2P) through collecting the throughput traces between
the server deployed on Amazon EC2 and the PlanetLab nodes [9].
The traces from FCC and HSDPA are used as the throughput under
cache hit, between the clients and the edge server. Accordingly, we
utilize regression methods to calculate the throughput under cache
miss, which will be applied into the training process and evalua-
tion experiments. Fig. 7 shows the differences of these bandwidth
traces. In another aspect, Fig. 7 also illustrates the bias between
the throughput under cache hit and that under cache miss. Finally,
we make a DASH video dataset with various types of videos. The
dataset contains 50 videos whose length are 5 to 45 minutes. These
videos are encoded into multiple representations with the size of
80GB. And the cache size of the edge server is set to be 10GB.

The bitrates of these representations include 350, 600, 1000, 2000
and 3000 Kbps, following the size distribution as Fig 8. Each video
chunk lasts for 4 seconds. Different chunks with the same bitrate
levels vary in size as Fig 8 shows. Zipf distribution is proved credi-
ble in the modeling of video popularity [7]. Therefore, we assume
the video popularity following the Zipf distribution, which means
that several popular videos contributes most of the requests. In
the experiment, the client sends video requests with a probability
in accord with the video popularity as Fig 10. On the client side,
we adopt a rate-based ABR algorithm which uses Harmonic Mean
for throughput prediction. The client buffer is able to contain up
to 30-second video. The video will not play until the player accu-
mulates 12-second video in the buffer. So the user experiences the
start-up phase. The CDF of RTTs between the users and edge is
shown in Fig. 9. The RTTs are varied depending on the distance
and bandwidth between the users and edge. So the schemes are
evaluated in diverse network conditions. The rebuffering penalty
in QoE is generally decided by video bitrate. In the experiment, we
set µ as 2.14, which is loд(Bmax

Bmin
). Bmax indicates the maximum

video bitrate, and is set to be 3000Kbps. Similarly, the minimum

Table 4: Comparison of different schemes

Scenario Metrics LFBM UTILITY CLOSEST HIGHEST LOWER

Lab

Bitrate 0.87 0.71 0.05 1.01 0.66
Rebuffer 0.004 0.0006 0.13 0.35 0.0005
Variation 0.05 0.07 0.02 0.03 0.03
Hit Ratio 0.59 0.18 0.63 0.64 0.24
QoE 0.74 0.47 0.51 0.14 0.45

Internet

Bitrate 1.13 0.84 1.06 0.97 1.06
Rebuffer 0.03 0.34 0.19 0.16 0.09
Variation 0.15 0.04 0.15 0.14 0.15
Hit Ratio 0.33 0.17 0.30 0.22 0.31
QoE 0.59 -0.08 0.39 0.29 0.44
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bitrate Bmin is set to be 350Kbps. Obviously, when the video bitrate
decreases from maximum to minimum, it exerts a similar negative
impact on QoE as one-second rebuffering does.

5.2 Evaluation
The results of different schemes are displayed in Table 4, including
the lab and real Internet scenarios.

5.2.1 Experiment in the Lab. We conduct two set of experiments
to evaluate LFBM and the compatible LFBM-based cache policy.
We analyze the results with multiple metrics, including bitrate
distribution, bitrate variation, rebuffering, hit ratio and QoE.

Bitrate Variation. Basically, bitrate plays a key role in video
transmission, which influences video quality, viewing smoothness,
link utilization, server workload, etc. Without LFBM-based cache
policy, LFBM exerts similar influence on the request pattern of
users’ as the other schemes do in Fig. 11a. Comparing Fig. 11a with
Fig. 12a, by and large, it can be concluded that clients prefer to
request higher bitrate levels after adopting the LFBM-based cache
policy. Exploiting the results of bitrate variation in both Fig. 11b
and Fig. 12b, all the schemes except UTILITY achieve zero-variation
by 90%. Although LFBM influences bitrate selection of users’, it
just brings the average 0.05Mbps bitrate variation. Besides, a little
bitrate variation is acceptable. For example, in one session, if two
successive requested chunks are 350Kbps due to the low capacity
of backhaul link, but only one of them is cached. Meanwhile, the
alternate 600Kbps chunk is already cached at the edge. In such a
case, it is reasonable to respond with the 600Kbps chunk regardless
of bitrate variation.

Rebuffering. Fig. 11c exhibits the rebuffering rate of the schemes
while Table. 4 includes the statistical rebuffering time in seconds.
It can be confirmed that CLOSEST does not well fit into the net-
work condition and user requirements. Except CLOSEST, the other
schemes suffer rebuffering by less than 2%. Compared Fig. 11c with
Fig. 12c, none-rebuffering of UTILITY increases from 98.4% to 100%.
The subtle improvement of none-rebuffering rate benefits the QoE
indeed. Therefore, the superiority of the LFBM-based cache policy
is also confirmed. To sum up, LFBM proves the efficiency of flexible
fuzzy bitrate response by achieving the lowest rebuffering rate.
LFBM-based cache policy also helps reduce rebuffering time.

Hit Ratio. Fig. 13a and Fig. 14a indicate the average hit ratio
for all the users, including Real Hit and Virtual Hit. Fuzzy bitrate
schemes do bring better hit ratio due to Virtual Hit. As the baseline,
fetching all the cache-miss content from the origin server, UTILITY
achieves the lowest hit ratio. Without LFBM-based cache policy, the
other four schemes achieve approximately 40% hit ratio, which is
average because of the relatively long period of cache replacement.
In Fig. 14a, LFBM-based cache policy does improve the total hit
ratio as well as Virtual Hit ratio for some response schemes, except
LOWER and UTILITY. Because LFBM-based cache policy is more
compatible with high-bitrate response schemes. Besides, the hit
ratio of LFBM in Fig. 14a is still inferior to CLOSEST and HIGH-
EST. The concrete hit ratio statistics are listed in Table. 4. Because
maximizing hit ratio is not the only optimization goal of LFBM.

QoE. We respectively plot the average QoE in Fig. 11d and
Fig. 12d and the CDF of QoE in Fig. 13b and Fig. 14b. In Fig. 11d, the
QoE of LOWER is inferior to that of LFBM but superior to that of the

other schemes due to the limited available bandwidth between the
clients and edge server. In such a case, lower bitrate levels can avoid
rebuffering, which finally improves QoE. Compared with UTILITY,
LFBM achieves 13% and 56% improvement in QoE respectively as
Fig. 11d and Fig. 12d show. Although higher bitrate levels may lead
to better QoE, HIGHEST is not in line with the expectation because
of the limited transmission capacity. Fig. 13b and Fig. 14b illus-
trate the QoE distribution for clients. Unlike LFBM, other response
schemes lead to a large number of users acquiring the low QoE
because of the unintelligent bitrate selection. Generally, LFBM and
LFBM-based cache policy do help some users acquire better QoE.

5.2.2 Deployment in the real Internet. To further analyze the feasi-
bility and performance of LFBM, we utilize Amazon cloud service
[34] in Sydney and Virginia, respectively serving as the edge and
origin server.

Fig. 15a shows that the most frequently requested bitrate level is
1000Kbps due to the estimated available bandwidth at the client side.
Compared with the other schemes, the users with LFBM requests
the 350Kbps and 600Kbps chunks less. Especially, about 20% of
the requests in UTILITY is 350Kbps, but only about 10% of the
requests in LFBM is 350Kbps. Because the users with UTILITY still
request the lower bitrate levels when the edge server has cached
the higher-bitrate chunks for the same content. To sum up, LFBM
flexibly responds with the cached content.

In Fig. 15b, the performance of LFBM is similar to the other
schemes. Because the dynamic network state and the difficulty of
accurate bandwidth estimation cause bitrate variation. UTILITY
suffers the highest bitrate variation because cache miss and low
bandwidth in the wild lead to drastic bitrate switching. In Fig. 15c,
LFBM achieves 98% none-rebuffering ratio, outperforming the other
schemes. CLOSEST and HIGHEST result in rebuffering because the
responded bitrate levels do not fit into the client-perceived network
capacity. LOWER leads to less rebuffering but cannot take full use
of the available bandwidth. The main reason for the inevitable re-
buffering is that the clients set in PlanetLab nodes are too scattered
and remote to the edge server.

The hit ratio of LFBM ranks first in Fig. 16a while UTILITY and
HIGHEST perform the worst. The low hit ratio of UTILITY should
be attributed to the difficulty of accurate bandwidth estimation
and the underutilization of the cached content at the edge, i.e., no
Virtual Hit.HIGHEST also achieves a relatively low hit ratio because
the edge with LFBM-based cache policy does not always cache the
high-bitrate chunks but the beneficial ones. As shown in Fig. 15d,
the overall QoE of LFBM is better than the other schemes. Although
the QoE of LFBM is relatively low due to the startup phase, it keeps
growing in the subsequent response process.

6 CONCLUSION
The great volume of network traffic calls for the optimization of
adaptive video streaming. Therefore, we propose the Learning-
based Fuzzy Bitrate Matching scheme (LFBM) at the edge for adap-
tive video transmission. LFBM makes the intelligent decision of
either fetching videos from the origin server or responding with the
cached content. Through the trace-based lab experiments and the
deployment in the Internet, we verify its efficiency and feasibility.
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Figure 11: With utility-based cache policy
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Figure 12: With LFBM-based cache policy
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Figure 13: With utility-based cache policy
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Figure 14: With LFBM-based cache policy
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