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ABSTRACT
Predicting the popularity of online videos has many real-world ap-
plications, such as recommendation, precise advertising, and edge
caching strategies. Despite many efforts have been dedicated to
the online video popularity prediction, there still exist several chal-
lenges: (1) The meta-data from online videos is usually sparse and
noisy, which makes it difficult to learn a stable and robust represen-
tation. (2) The influence of content features and temporal features
in different life cycles of online videos is dynamically changing,
so it is necessary to build a model that can capture the dynamics.
(3) Besides, there is a great need to interpret the predictive behav-
ior of the model to assist administrators of video platforms in the
subsequent decision-making.

In this paper, we propose a Knowledge-based Temporal Fusion
Network (KTFN) that incorporates knowledge graph representation
to address the aforementioned challenges in the task of online video
popularity prediction. To be more specific, we design a Tree Atten-
tion Network (TAN) to learn the embedding of online video entities
in knowledge graphs via selectively aggregating local neighbor-
hood information, thus enabling our model to learn the importance
of different entities under the same relation. Besides, an Attention-
based Long Short-Term Memory (ALSTM) is utilized to learn the
temporal feature representation. Finally, we propose an Adaptively
Temporal Feature Fusion (ATFF) scheme to adaptively fuse content
features and temporal features, in which a learnable exponential
decay function with the global attention mechanism is constructed.
We collect two large-scale real-world datasets from the server logs
of two popular Chinese online video platforms, and experimental
results on the two datasets have demonstrated the superiority and
interpretability of KTFN.
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1 INTRODUCTION
With the prevalence of Web 2.0 and mobile devices, an increas-
ing number of users are joining online video platforms such as
Youtube1, TikTok2, and Douyin3 for sharing and viewing. One of
goals of video popularity prediction is to infer the cumulative views
of a given video during a certain period in the future. This task
can not only help users filter information, but also support many
businesses of platform companies, such as precise advertising [6],
recommendation [2], and edge caching strategies [33].

Traditional feature-based methods mainly leverage user features
[30], content features [24], temporal features [20], and structural
features [9] to conduct popularity prediction. However, such ap-
proaches heavily depend on well-designed hand-crafted features,
which limits the models’ scalability. Tang et al. [25] and Rizoiu
et al. [23] performed video popularity prediction based on Hawkes
process [10]. Although such approaches do not require excessive
feature engineering, they usually make strong assumptions on fixed
parameters, which limits model expressiveness [5, 33].

Recently, a large number of deep learning-based models have
been proposed to improve the performance of popularity predic-
tion [1, 4, 14, 15, 31]. However, for video popularity prediction,
few works address the following three challenges simultaneously:
(1) The meta-data from online videos is usually sparse and noisy,

1https://www.youtube.com/
2https://www.tiktok.com/
3https://www.douyin.com/
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Figure 1: An example of video knowledge graph.
which makes it difficult to learn a stable and robust representa-
tion. (2) The influence of content features and temporal features
is dynamically changing over the different life cycles of videos,
which necessitates designing a flexible feature fusion scheme to
capture the dynamics. (3) Apart from the improvement of model
performance, it is also highly-demanded to design a model with
high interpretability, which is quite beneficial for administrators
of video platforms to make strategic decisions and manage their
platform resources better.

To better extract content features from the sparse and noise
meta-data and learn potential knowledge-level connections, it is
a remedy to introduce the knowledge graph into video popularity
prediction. A knowledge graph is a directed heterogeneous graph
that describes the facts, where nodes correspond to entities and
edges correspond to relations. Compared with traditional data for-
mats, knowledge graphs can provide a general and compact context.
Recently, researchers have successfully applied knowledge graphs
to recommendation systems [28], language representation learning
[17], and question answering [3].

Considering the aforementioned challenges of video popular-
ity prediction and inspired by the success of knowledge graphs
in different domains, we propose a Knowledge-based Temporal
Fusion Network (KTFN) to perform online video popularity pre-
diction. An example of video knowledge graph we constructed is
shown in Figure 1. Following [16, 28], we exploit embedding ap-
proaches to learn vector representation for entities and relations
in the knowledge graph. For a given video, we first search its set
of contextual entities in the knowledge graph (i.e., its immediate
neighbors in the knowledge graph). Then, we design a Tree Atten-
tion Network (TAN), which logically transforms a graph into a tree.
The TAN performs information propagation and aggregation with
the attention mechanism to learn the content feature vector of the
video. For time-series data, we employ an Attention-based LSTM
(ALSTM) [29] network to obtain the temporal feature vector of a
video. The previous study [15] shows that different features have
different impacts in different life stages of the video. To capture
this property, we further propose an Adaptively Temporal Feature
Fusion (ATFF) method. Specifically, we construct an information
valve based on a learnable exponential decay function to filter the
feature vector. And then the global attention mechanism is adopted
to fuse the filtered content feature vector with the filtered temporal
feature vector to obtain the final feature vector of the video. Our
contributions are summarized as follows:

• We incorporate knowledge graphs into online video popu-
larity prediction, which provides a compact context to learn
the video content features from sparse and noisy meta-data.

• We propose TAN, an architecture based on graph neural
networks, which converts graphs into trees to learn local
neighborhood information of entities while improving the
interpretability of the model.

• We construct a learnable exponential decay function and
combine the global attention mechanism to adaptively fuse
content features and temporal features.

• Extensive experiments on datasets collected from two large-
scale video-sharing platforms demonstrate the superiority
and interpretability of our porposed model.

The rest of this paper is organized as follows: Section 2 presents
the related work of popularity prediction. The framework of KTFN
is described in detail in Section 3. Experimental results and inter-
pretable instances are shown and analyzed in Section 4. Section 5
concludes this paper.

2 RELATEDWORK
The traditional popularity prediction methods are mainly divided
into two categories, namely, feature-basedmethods and point process-
based methods. Feature-based approaches have verified the predic-
tive effectiveness of features including user features [30], content
features [24], temporal features [20], and structural features [9],
which can provide us with a relatively preliminary understanding
and knowledge of predicting the popularity of items in the future.
However, the features involved in such methods are usually ex-
tracted by heuristics and the final prediction performance of the
model is highly dependent on the quality of these heuristics. The
point process-based method regards the information dissemination
process as an arrival process of the user’s forwarding behavior.
Zhao et al. [32] predicted the final number of retweets of a post
using a self-exciting point process. Rizoiu et al. [23] proposed a com-
bination of the Hawkes intensity process with exogenous stimuli
and endogenous trigger effects from Twitter and YouTube to pre-
dict the popularity of videos. The point process-based approaches
provide a well-defined generic framework for popularity prediction.
However, their reliance on certain specific assumptions limits their
generality and model expressiveness [5, 33].

In recent years, the prevalence of neural networks has inspired
many deep learning-based prediction models. A typical deep learn-
ing approach is to employ Recurrent Neural Networks (RNN) to
capture temporal dependencies [14, 19, 21]. Cao et al. [1] com-
bined Hawkes processes with deep learning methods for popularity
prediction to overcome the limitations of the simple parametric
form on the capability of point process models. Zhang et al. [31]
proposed a user-guided hierarchical attention network using the
attention mechanism to learn modalities content and user features
for image popularity prediction. The deep fusion of temporal pro-
cesses and content features network was proposed by Liao et al.
[15] to model multi-modal data for article popularity prediction.
Dou et al. [4] exploited the embedding of knowledge base entities
and their neighbors to enhance the popularity prediction based
on LSTM networks. However, there currently fails to exist a work
that leverages the sparse and noise meta-data of videos for pop-
ularity prediction. Moreover, many existing deep learning-based
popularity predictions ignore the interpretability of the models.

2880



Knowledge-based Temporal Fusion Network for Interpretable Online Video Popularity Prediction WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France

Figure 2: Illustration of the proposed KTFN model.

3 METHOD
In this section, we present the proposed KTFN model, whose frame-
work is shown in Figure 2. We first formulate the knowledge-graph-
based popularity prediction problem. Then we introduce the em-
bedding layer, the Tree Attention Network, the Attention-based
LSTM, and the structure of ATFF, respectively.

3.1 Problem Definition
We regard the knowledge-graph-based online video popularity pre-
diction task as a regression problem. We discretize continuous time
into time steps. For a given video i on the online video platform, its
popularity sequence in n time steps is X i = (x i1,x

i
2, ...,x

i
n ), where

x ij represents the number of views of video i at the j-th time step.
The prediction target yi =

∑n+m
t=n+1 x

i
t is the cumulative popularity

of video i inm time steps after time n. In addition, we organize the
meta-data of videos into knowledge graph G, which is a heteroge-
neous graph composed of entity-relation-entity triples. Formally, G
is presented as {(h, r , t)|h, t ∈ E, r ∈ R}, where E and R separately
denote the set of entities and relations in the knowledge graph. For
example, the triples (Fearless,album.artist ,TaylorSwi f t) states
the fact that Taylor Swift writes the album "Fearless". In particular,
a given video i is represented as one entity e ∈ E.

3.2 Embedding Layer
Knowledge graph embedding maps entities and relations into low-
dimensional representation vectors, in which the original graph
structure and semantic information is encoded. To train knowledge
graph embeddings, we use TransR model [16], which introduces a
projectionmatrixMr for each relation tomap an entity from its own
entity space to the corresponding relation space. For each triplet
(h, r , t) in the knowledge, whose representation vectors areh, r and

t , respectively, the embedding layer learns embeddings for entities
and relations by optimizing translation principlehr +r ≈ tr , where
hr = Mrh and tr = Mr t . Hence, for a triple (h, r , t), its plausibility
score is formulated as follows:

fr (h, t) = | |Mrh + r −Mr t | |
2
2 . (1)

The training of TransR considers both correct triples and incorrect
triples, and encourages their discrimination through the following
margin-based ranking loss:

LKG =
∑

(h,r,t )∈S

∑
(h′,r,t ′)∈S ′

max(0, fr (h, t)+γ − fr (h
′, t ′)), (2)

where γ is the margin, S is the set of correct triples and S ′ is the
set of incorrect triples.

3.3 Tree Attention Networks
Graph convolution network (GCN) [13] recursively propagates em-
beddings along high-order connectivity. Graph attention network
(GAT) [27] uses masked attention to generate attentive weights
for the first-order neighbors of the node. Despite the success of
GCN and GAT, they are not suitable for dealing with the knowledge
graph as it is a heterogeneous graph. To exploit the advantages
of both and be better for handling the knowledge graph, we pro-
pose a Tree Attention Network that propagates embeddings in a
bottom-up way.

3.3.1 Structure Transformation. For a given online video i , con-
sidering its corresponding entity hi in knowledge graph, we use
Gi = {(hi , r , t)|(hi , r , t) ∈ G} to represent the set of triples where
hi is the head entity, which is termed as ego-network [22]. We
convert relations of Gi into nodes and view neighbors under the
same relation as a group, thus forming a tree structure, denoted by
Ti , where hi is the root node.
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3.3.2 Information Propagation. Here, we use Nk to represent the
first-order neighbors of node k in Ti . To characterize the neigh-
boring topology of k , we calculate the linear combination of k’s
neighbors:

ek
Nk
=

∑
j ∈Nk

π (ek ,e j )e j , (3)

where ek and e j denote the embedding of node k and j respectively,
and π (ek ,e j ) is the normalized attention score that controls how
much information being propagated from node j to node k .

We implement π (ek ,e j ) via attention mechanism, which can be
computed in the following:

π (ek ,e j ) = LeakyReLU(W 1(W 2ek | |W 3e j )), (4)

where we follow the way in [27] to select LeakyReLU [18] as the
nonlinear activation function.W 1,W 2 andW 3 are trainable param-
eters. Note that we have introduced two different linear transforma-
tion matrices for ek and e j because they are different type nodes
(entity node, relation node). Hereafter, we normalize the attention
scores across all nodes connected with k by adopting the softmax
function:

π (ek ,e j ) =
exp(π (ek ,e j ))∑

s ∈Nk
exp(π (ek ,es ))

. (5)

3.3.3 Information Aggregation. This step is to aggregate the node
representation ek and its corresponding neighborhood representa-
tionek

Nk
as the new representation of nodek . Following [28], we use

three methods to implement the aggregation function f (ek ,e
k
Nk

).

• Sum aggregator sums two representations up and uses a
nonlinear transformation:

fsum = д(W 4(ek + e
k
Nk

)), (6)

where д is the nonlinear function such as LeakyReLU and
W 4 is the trainable weight matrix to transfer the current
representations into the common space for propagation.

• Concat aggregator concatenates the two representations be-
fore applying a nonlinear function:

fconcat = д(W 4(ek | |e
k
Nk

)), (7)

where | | is the concatenation operation.
• Bi-interaction aggregator takes into account two kinds of two
interactions between ek and ek

Nk
:

fBi−interaction = д(W 4(ek + e
k
Nk

)) + д(W 5(ek ⊙ ek
Nk

)), (8)

where ⊙ denotes the Hadamard (element-wise) multiplica-
tion, andW 5 is the trainable weight matrix.

3.3.4 Bottom-up Propagation. To obtain local neighborhood infor-
mation of root node hi and attention scores between each node,
we use a bottom-up propagation strategy, which propagates and
aggregates information from the leaf nodes to the root node of Ti .
TAN provides a fine-grained learning process, which allows our
model to emphasize the importance of different entities under the
same relation while improving the interpretability of our model.

3.4 Attention-based LSTM
There are two primary motivations for us to choose the Attention-
based LSTM [29] modeling the temporal evolution process of pop-
ularity. First, as the most widely used Recurrent Neural Network
(RNN) structure, LSTM [8] has the capability to model long-term
historical information of temporal sequences. Second, the attention
mechanism can not only capture important information of tempo-
ral sequences but also improve the interpretability of the model.
Attention-based LSTM network combines both advantages well.

We firstly feed X = (x1,x2, ...,xn ) into LSTM. With its gate
mechanism, including memory gate, input gate, and forget gate,
LSTM can remember what should be remembered and forget what
should be forgotten. Formally, each cell in LSTM can be computed
as follows:

it = σ (W ixt +U ict−1 +V ih
c
t−1 + bi ), (9)

ft = σ (W f xt +U f ct−1 +V f h
c
t−1 + bf ), (10)

ct = ft ∗ ct−1 + it ∗ tanh(W cxt +V ch
c
t−1 + bc ), (11)

ot = σ (W oxt +U oct−1 +V oh
c
t−1 + bo ), (12)

hct = ot ∗ tanh(ct ), (13)
whereW i ,W f ,W o and bi , bf , bc , bo are the trainable weight
matrices and biases, respectively. σ is the activation function sig-
moid. In addition, it represents input gate state, ft forget gate state,
ct cell state, ot output gate and hct the hidden layer output in the
current time-step.

After that, we obtain a hidden vector sequenceH = (hc1 ,h
c
2 , ...,h

c
n )

generated by LSTM. Then, we use the attention mechanism to select
important vectors in hidden vector sequences for learning more
informative contextual representations. The attention weight αci of
the i-th hidden vector inH and the output vector hC are computed
as:

aci = q
T tanh(Vc ∗ hci +vc ), (14)

αci =
exp(aci )∑n
j=1 exp(a

c
j )
, (15)

hC =
n∑
i=1

αci h
c
i , (16)

where V c and vc are projection parameters, and q is the query
vector.

3.5 Adaptively Temporal Feature Fusion
Let hC and hE denote the temporal feature vector learned from the
Attention-based LSTM, and the content feature vector learned from
the Tree Attention Network, respectively. Now, the critical question
is how to design an effective and stable feature fusion module. The
traditional early fusion schemes (such as concatenation and point-
wise addition) lack flexibility and cannot capture deep information.
Inspired by [15], we believe that as the age of the video increases,
the importance of content features gradually decreases, while the
importance of temporal features gradually increases. Based on the
above view, we propose an Adaptively Temporal Feature Fusion
scheme (ATFF), which dynamically fuses features with the current
temporal information (the age of video).
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The first part of ATFF is an information valve based on a learnable
exponential decay function, which controls the inflow of different
information at different times. The formula is expressed as follows:

h̃
E
= φ(∆t) ∗ hE , (17)

h̃
C
= (1 − φ(∆t)) ∗ hC , (18)

φ(∆t) = exp(−θ ∗ (W φ∆t + bφ )), (19)
where ∆t = tpredicted − tpublish , φ(·) is a learnable exponential
decay function used to simulate the importance of information
decay over time, and θ is a trainable parameter controlling the
decay rate of φ(·).

After dealing with external influences, we need to consider the
internal interactions between different features. The second part
of ATFF uses the attention mechanism [26] for internal interaction
between temporal feature representation and content feature repre-
sentation. We first apply a linear transformationW д to [̃h

E
, h̃

C
] to

obtain a global vector r . Then we calculate the dot product of the
global vector and each feature vector to obtain the attentionweights.
With the attentive weights, we can get the final representation F .

r = [̃h
E
, h̃

C
] ∗W д , (20)

αi =
exp(rT ∗ h̃

i
)∑

k ∈{E,C } exp(rT ∗ h̃
k
)

, (21)

F =
∑

i ∈{E,C }

αi ∗ h̃
i
. (22)

After that, we utilize a simple one-layer feed-forward neural net-
work to obtain the final popularity of the video, which is calculated
as follows:

ŷ = ReLU(W F F + bF ). (23)

3.6 Model Training
We define the loss function for video popularity prediction task as
follows:

LPP =
∑
i ∈D

∑
t ∈{ts ,ts+s,ts+2∗s, ...,te }

MSE(yit , ŷ
i
t ), (24)

where D is the training video set, t is the prediction time point, ts
is the time point at which the video is first predicted, te is the time
point at which the video is last predicted, s is the step size of the
sliding window (set as 24 in our experiment), ŷi is the predicted
value, and yi is the target value in the ground-truth.

4 EXPERIMENTS
In this section, we conduct comprehensive experiments on two
real-world datasets to answer the following questions:

• Q1: How does KTFN perform compared with other models?
• Q2: How do different components affect KTFN?
• Q3: How does the different information contribute to the
prediction performance?

• Q4: Can KTFN provide a reasonable explanation for the
prediction results?

4.1 Dataset
We collect a medium-video4 dataset and a micro-video5 dataset
from the server logs of Xigua6 and Douyin7, respectively, both of
them are online video-sharing platforms owned by ByteDance8.
Specifically, we randomly sample 72,372 videos published from
April 1, 2021, to April 14, 2021, as the test set. We firstly record
the authors of the videos in the test set, and then 408,202 videos
published by these authors from March 1, 2021, to March 31, 2021,
are further selected as our training set. For each video, the hourly
view information is available, so we collect these hourly views
and form a sequence according to the timestamp order, in which
each time point represents the number of views in one hour. For
the constructed sequence of each video, we then use the sliding
window algorithm to split them into multiple records, where the
size of the source window, the size of the target window, and the
step size are n = 24,m = 72, and s = 24, respectively. Then, we use
the same approach to process the dataset collected from Douyin.
Besides the time-series data, we need to construct the knowledge
graph for each dataset. In the video knowledge graph, the types of
entities include "Video", "Duration", "Keywords", "Category", "Pub-
lish hour", "Author", "Fans", and "Level of the author" in the internal
system. The basic statistics and distributions of the two datasets
and the knowledge graph are shown in Table 1, 2 and Figure 3, 4, 5,
respectively.

Table 1: Statistical information for two datasets.

Dataset # users Set # videos # records Publish date

Xigua 27, 063 Training 408, 202 5, 409, 563 3.1-3.31
Test 72, 372 795, 597 4.1-4.14

Douyin 50, 675 Training 383, 452 1, 736, 549 7.1-7.14
Test 70, 395 298, 294 7.15-7.21

Table 2: Knowledge graph information.

Dataset # entities # relations # triples
Xigua 697, 175 7 4, 236, 962
Douyin 638, 668 7 3, 538, 749

4.2 Experimental Setup
4.2.1 Metrics. To evaluate the performance of different methods,
we adopt three widely-used metrics: Mean Squared Error (MSE),
Mean Absolute Error (MAE), and Accuracy [4], where Accuracy
measures the proportion of videos correctly predicted for a given
error tolerance ϵ , defined as:

ACC =
1
N

N∑
i=1

|{|
yi − ŷi

yi
| < ϵ}|, (25)

where N is the size of test set, and we set ϵ = 0.2 in this paper.

4video duration from 1 minute to 30 minutes
5video duration within 1 minute
6https://www.ixigua.com/
7https://www.douyin.com/recommend
8https://www.bytedance.com/
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(a) Xigua (b) Douyin

Figure 3: Kernel density estimation plots of video duration.

(a) Xigua (b) Douyin

Figure 4: The distribution of video categories.

(a) Xigua (b) Douyin

Figure 5: The distribution of the total number of videos pub-
lished by authors

4.2.2 Baselines. To demonstrate the effectiveness of our model,
we choose to compare with the following baselines:

• MLR [20]. Multivariate Linear Regression takes the linear
combination of multiple variables as predictive values. To
make it suitable for our task, we take both time-series and
processed content features as inputs.

• SVR [11]. Khosla et al. employ a linear kernel Support Vector
Regression model that predicts popularity using time-series
data as features. We do the same pre-processing as MLR to
make the SVR suitable for our task.

• DA-RNN [21]. ADual-stage Attention-based Recurrent Neu-
ral Network is a time-series prediction model based on the
encoder-decoder model.

• LSTnet [14]. A Long-and Short-term Time-series network
is proposed for time-series prediction, which uses CNN to
model short-term dependencies and exploits a skip-RNN to
discover long-term patterns of time-series.

• KBPPN [4]. KB-enhanced Popularity Prediction Network
introduces knowledge bases into online content popularity
prediction and integrates content feature representation and
temporal feature representation of online items with a gate
mechanism.

Table 3: Comparison of different models.

Dataset Model MSE (↓) MAE (↓) ACC (↑)

Xigua

MLR [20]
SVR [11]

LSTnet [14]
DA-RNN [21]
KBPPN [4]

KTFN

2.323
2.067
2.024
1.842
1.129
0.646

1.001
0.896
0.851
0.812
0.683
0.496

0.300
0.362
0.407
0.412
0.438
0.502

Douyin

MLR [20]
SVR [11]

LSTnet [14]
DA-RNN [21]
KBPPN [4]

KTFN

1.778
1.473
1.321
1.149
0.861
0.466

1.044
0.908
0.872
0.762
0.627
0.424

0.311
0.401
0.429
0.436
0.468
0.529

4.2.3 Parameter setup. Hyper-parameters are updated based on
the 20% of the training set. For TransR model, we set the margin
γ = 4, the dimension of entity embedding and relation embedding
are both fixed to 128. In the TAN, we set function д as ReLU for
aggregators. The dimension of all hidden layers is set to 128. Except
that θ is initialized to 1.0, all other parameters are initialized with
Xavier [7]. And we optimize the model with Adam optimizer [12].
The batch size is set to 128. To avoid overfitting, we set dropout to
0.2.

4.2.4 Time and space complexity analysis. Suppose that |G|

is the number of nodes in the knowledge graph, d is the embedding
size, and n is the length of the input time-series. The space con-
sumption of our model comes from two parts: the storage of entity
and the relation embedding, and the storage of the weight matrix.
Therefore, the space complexity of our model is O(|G|d + d2).

For a given video i , its sub-graph in the knowledge graph is
Gi . Ti is the tree form of Gi (cf. Section 3.3.1). Let |Ti | and |Vi |

represent the number of nodes and edges of Ti , respectively. The
time-consumption for predicting the popularity of video i mainly
comes from three components. (1) The computational complexity
of the Tree Attention Network isO(|Ti |d2 + |Vi |d). (2) The compu-
tational complexity of the Attention-based LSTM isO(nd2 +nd). (3)
The ATFF has a linear computational complexity: O(d). Therefore,
the overall time complexity of KTFN isO((|Ti |+n)d2+(|Vi |+n+1)d).

The time cost in the inference phase is significant for online video
popularity prediction systems. For online prediction, the TAN of
KTFN only performs a single computation for each specific video,
while ALSTM and ATFF will be executed at each prediction time
point. We conduct experiments on GeForce RTX 3090 to see the
specific time consumption of KTFN. We find that the time cost of
LSTM, ALSTM and KTFN is 45ms, 57ms and 75ms, respectively, in
a single-step prediction experiment with the batch size of 128.

4.3 Results
In this part, we firstly report the performance of all methods on
two datasets and then investigate the impact of different factors
(i.e., the choice of feature fusion schemes, the choice of information
aggregators, different information missing, and hyper-parameter
settings) on our model.
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Table 4: Comparison of different feature fusion methods.

Dataset Fusion MSE (↓) MAE (↓) ACC (↑)

Xigua

Sum
Concat

Attention
ATFF

1.427
1.424
0.872
0.646

0.756
0.746
0.572
0.496

0.400
0.412
0.462
0.502

Douyin

Sum
Concat

Attention
ATFF

0.674
0.664
0.549
0.466

0.566
0.563
0.484
0.424

0.497
0.496
0.511
0.529

Table 5: Comparison of different aggregators.

Dataset Aggregator MSE (↓) MAE (↓) ACC (↑)

Xigua
Sum

Concat
Bi-interaction

0.747
0.688
0.646

0.533
0.512
0.496

0.482
0.489
0.502

Douyin
Sum

Concat
Bi-interaction

0.473
0.504
0.466

0.424
0.428
0.424

0.528
0.527
0.529

4.3.1 Comparison of differentmodels (Q1). Table 3 shows the
comparative results of the different models. By analyzing the results
from Table 3, we draw the following conclusions:

• MLR and SVR perform the worst on both datasets.We believe
that the feature-based regression method excessively relies
on the manually extracted features, while it is difficult to
capture the deep connection between different features.

• LSTnet and DA-RNN have similar resluts. They both model
popularity trends with LSTM, while they still lack predictive
capacity because they do not consider the content features.

• KBPPN is the strongest among all benchmarks, which utilizes
a gate mechanism to fuse the content features learned from
the knowledge base with the temporal features learned from
the LSTM. However, its fusion scheme ignores the influence
of different features at different prediction time points, and
it still lacks predictive capability.

• Compared with them, KTFN consistently yields the best
performance on both datasets. We believe there are two
main factors. (1) TAN can learn the local neighborhood in-
formation of entities extremely well. (2) Our proposed ATFF
enables features from outside and inside to interact with
each other via information valves and the global attention
mechanism, making the feature fusion more flexible.

4.3.2 Comparison among KTFN variants (Q2). Further, we
compare the variants of KTFN regarding the following two aspects
to demonstrate the effectiveness of the KTFN framework design:
the choice of feature fusion schemes and the choice of information
aggregators. The results are shown in Table 4 and 5, from which
we can draw the following conclusions:

• We find huge differences among the results obtained by dif-
ferent feature fusion schemes. Specifically, concatenation
and point-wise addition perform the worst, mainly due to

Table 6: Impact of different information.

Dataset Missing MSE (↓) MAE (↓) ACC (↑)

Xigua

No missing
Duration

Publish hour
Keywords
Category
Author

0.646
0.654
0.668
0.663
0.706
1.053

0.496
0.499
0.506
0.513
0.518
0.685

0.502
0.496
0.489
0.482
0.485
0.380

Douyin

No missing
Duration

Publish hour
Keywords
Category
Author

0.466
0.467
0.471
0.475
0.513
0.615

0.424
0.426
0.428
0.434
0.461
0.516

0.529
0.528
0.525
0.521
0.503
0.447

(a) Impact of hidden dimension (b) Impact of source window size

Figure 6: Parameter test results on Xigua. Performance
(MAE, ACC) of KTFNwith different hyper-parameters (n, d).

their lack of dynamism. The main reason for the improve-
ment of the attention mechanism [26] over them is that it
dynamically attends to the importance of different features.
However, the attention mechanism still lacks flexibility since
it ignores the amount of information contained in different
features at different prediction time points. In particular,
compared with the attention mechanism, ATFF improves
over the attention fusion method w.r.t. MSE by 25.9%, and
15.1% and w.r.t. MAE by 13.2%, and 12.4% and w.r.t. ACC
by 8.7%, and 3.5% in Xigua, Douyin, respectively. This ver-
ifies the validity of ATFF and also reveals that ATFF is an
inseparable part of KTFN.

• From Table 5 we can observe that the Bi-interaction aggrega-
tor is superior to the additive and concatenated aggregators.
The main why the Bi-interaction aggregator performs best
lies in that entities can fully interact with their neighbors’
information.

4.3.3 Impact of different information (Q3). In this section, we
explore the impact of different kinds of information on the predic-
tion results under the scenario of missing certain information in
the test phase, including: "Duration", "Publish hour", "Keywords",
"Category", and "Author". We conduct experiments with the trained
KTFN model, and Table 6 summarizes the experimental results. We
have the following observations:
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• As expected, the lack of any information decreases the per-
formance of KTFN, which indicates that the information we
used is all effective for the prediction task.

• By considering the three metrics (MSE,MAE,ACC) together,
We find that "Duration", "Publish hour", "Keywords", "Cate-
gory", and "Author" have a progressively increasing effect
on the performance of KTFN. We believe that most users
usually do not consider the duration of a video as a key fac-
tor in whether to watch it or not. If a video is published in
the middle of the night, it may receive fewer views, while
it may receive more views if it is published in the break
time, so "Publish hour" can influence the prediction results.
"Keywords" and "Category" have a greater impact on the
prediction results, the main reason is that people are more
eager to watch hot topics.

• Finally, we observe a sharp decrease in KTFN performance
by eliminating "Author" information, suggesting that author
information is critical in popularity prediction. The popular-
ity of videos is a long-tailed distribution, and videos posted
by authors with more fans are more likely to be seen by
people, leading to a winner-takes-all situation.

4.3.4 Impact of different hyper-parameters. In this section,
we investigate how the hidden dimension and source window size
influence the performance of KTFN on the Xigua dataset. The results
are shown in Figure 6. From Figure 6a, we can observe that KTFN
performs best when d = 128. Increasing d initially improves the
performance because a largerd can encode more information, while
a too-large d suffers from the detrimental effects of overfitting. From
Figure 6b, we find that the performance of KTFN keeps increasing
asn increases, because longer time-series contain more information.
We can certainly choose a larger n for prediction, but if n is too
large, it will cause storage pressure on the online system, and a
trade-off between prediction performance and storage needs to be
made according to the actual scenario.

4.4 Case Study (Q4)
To demonstrate the interpretability of KTFN, we randomly select
two predicted videos from the test set for visualization, as shown
in Figure 7. The left half of this sub-figure visualizes the results of
TAN, and the right half shows the attention scores of ALSTM. We
have the following observations:

• The TAN ensures similar attention scores in the relation-
level by stably learning the common information of different
entities (i.e. two different video entities in the same relation
have very close attention scores). This shows that TAN is
very effective in learning important features and filtering
out useless entities.

• The attention scores of video entities on the relations "Cre-
atedby", "Belongsto", "Contains", "PublishesIn" and "HasDu-
ration" decrease sequentially. This result aligns with our
knowledge and the experimental results in Section 4.3.3 that
the popularity of a video mainly depends on the author, the
category and the content of the video.

• By comparing the video with 28 hours of release to the video
with 5 hours of release, we find that ATFF is able to effectively
filter and integrate features according to the age of the video.

Figure 7: Attention diagram visualization of two examples
in test set of Xigua dataset.

We also find that the content features of the video play a
dominant role in the early release of the video for popularity
prediction, which indicates that a superior feature extractor
is crucial for popularity prediction.

5 CONCLUSION
In this paper, we introduce knowledge graphs into online video
popularity prediction and propose a Knowledge-based Temporal
Fusion Network (KTFN). KTFN consists of three components: Tree
Attention Network (TAN) for learning video content feature rep-
resentation, Attention-based LSTM (ALSTM) for learning video
temporal feature representation, and an Adaptively Temporal Fea-
ture Fusion (ATFF) module to integrate the above two features
dynamically. Specifically, TAN first converts graphs into trees and
then propagates and aggregates information by utilizing the graph
attention network (GAT) approach. It learns local neighborhood
information of entities in a fine-grained manner, which enables
our model to highlight the importance of different entities under
the same relation and enhances the interpretability of the model.
Then, we employ an Attention-based LSTM to learn the temporal
feature representations. Finally, we propose an Adaptively Tempo-
ral Feature Fusion Scheme (ATFF) to dynamically integrate con-
tent features and temporal features. Specifically, ATFF first filters
the feature vectors using a learnable exponential decay function
and then combines the global attention mechanism for feature fu-
sion. We collect a medium-video dataset and a micro-video dataset
from the server logs of Xigua and Douyin, respectively. Extensive
experiments on both datasets demonstrate the effectiveness and
interpretability of KTFN.
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