
Dryad: Deploying Adaptive Trees on Programmable
Switches for Networking Classification

Guorui Xie1,2, Qing Li2, Jiaye Lin1,2, Gianni Antichi3,4, Dan Zhao2, Zhenhui Yuan5, Ruoyu Li1,2, Yong Jiang1,2
1 International Graduate School, Tsinghua University, Shenzhen, China 2 Peng Cheng Laboratory, Shenzhen, China

3 Politecnico di Milano, Italy 4 Queen Mary University of London, UK 5 Northumbria University, UK

Abstract—Decision trees (DT) have been used for high-speed
networking classification on programmable switches. Most DT
solutions, however, are static and cannot be deployed once the
switch resource changes. In this paper, we propose Dryad to
fast reprogram tree models when resource budgets change. In
Dryad, we first develop a large and accurate “one-training-for-
all” DT (ODT) that can be quickly resized without computational
retraining. ODTs are deployed in switches using a progressive
search algorithm that searches the adaptations according to their
resources. To achieve high accuracy and low packet latency, the
adaptation leverages 1) innovative hard and soft pruning methods
to compress the ODT rapidly with minimal performance loss; and
2) P4 scaling operations of match-action table arrangement and
joint range-ternary match, which allow the switch to accommo-
date a larger (i.e., more accurate) ODT. Finally, an ODTCompiler
is proposed to automatically convert the adapted ODT into a
P4 program and then install it. Experimental results on three
commodity switches under different resource scenarios show that
Dryad achieves a higher classification F1-score (3.78% higher),
and completes the adaptation 161× faster than other solutions.

I. INTRODUCTION

Over the past few years, machine learning (ML) models
have been applied to many networking classification tasks,
e.g., malware detection [1]–[3], traffic classification [4]–[7],
and flow size prediction [8]. Usually, the conventional solu-
tions deploy models on high-performance X86 servers, which
cannot provide satisfactory processing latency and capac-
ity [9]. Modern programmable switches (e.g., P4 switches [10],
[11]) support Tbps-based custom packet processing, which
provides new alternatives for ML models, i.e., in-network in-
telligence [12]. Programmable switches are typically equipped
with two types of chips (CPUs and ASICs). The CPU can run
control APIs to configure network applications, e.g., compiling
and installing P4 programs to the ASIC. The ASIC (e.g.,
Tofino [13] and FlexCore [14]) is of Tbps and follows a match-
action paradigm. Match-action tables form the P4 program and
are spread on the ASIC pipeline. Each table maintains a set of
key-action entries. When a packet (e.g., its header) is matched
by a table entry, the associated action can conduct simple
operations like assignment or integer addition/subtraction.

The decision tree (DT) model naturally coheres with such
an ASIC’s match-action paradigm due to its inherent rule-
matching nature in the classification [15]–[17]. As such, the

Corresponding author: Qing Li (liq@pcl.ac.cn)

DT has now become prevalent in in-network intelligence
solutions [9], [18]–[21]. Even though existing works have
made significant progress, they do not focus on one important
requirement: rapid adaptation to changes in switch resources.
In our view, switches distributed in the network can have
differing resource requirements. For example, switches can
run applications such as NAT and routing at the same time.
The corresponding switches should allocate different resources
for such applications, resulting in changes in the resource
budget for the DT deployment. Even if the budget for a
switch is set, it may still change later. Consider the DT
deployed for measurement applications like ESketch [22],
ESketch recommends that the memory allocated be increased
dynamically with the number of observed flows. This also
affects the available resources for the DT.

A naive approach to adapt a DT to the available resources
is to maintain different DT models for different resource
constraints at a central controller. But such an approach can
be inefficient and slow. Retraining different DT models on the
massive training dataset is inefficient in both computation and
storage. Furthermore, the communication latency between the
switch and the controller can be non-negligible when more
switches request different adaptations. To quickly adapt the
running P4 programs to the resources with less overhead, one
can use control APIs on switch CPUs, e.g., the fast refresh
in Tofino (< 50ms) [23], or new runtime architectures like
FlexCore [14] and IPSA [24]. However, this is not sufficiently
fast for in-network intelligence which has to first adjust the
DT and then reprogram it as a P4 program.

In this paper, our key insight is that instead of maintaining
different DT models for different resource constraints, we can
augment a trained DT with the statistical distribution of various
classes at each node. We refer to this augmented DT as a “one-
training-for-all” DT (ODT). To adapt to different resource
constraints, we prune this augmented DT to derive a DT that
can achieve good performance under a given set of resource
constraints. We implement our approach in a system called
Dryad1. Dryad is fast, because we only need to train the ODT
on our dataset once. Thereafter, we derive the required DT
model by pruning the ODT without the need to process the
dataset again. Dryad is accurate, as we not only adjust the
model size for resource constraints, we also implement scaling

1Dryad is the tree nymph (spirit) in Greek mythology.979-8-3503-0322-3/23/$31.00 ©2023 IEEE

20
23

 IE
EE

 3
1s

t I
nt

er
na

tio
na

l C
on

fe
re

nc
e

on
 N

et
w

or
k

Pr
ot

oc
ol

s (
IC

N
P)

 |
 9

79
-8

-3
50

3-
03

22
-3

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
 D

O
I:

10
.1

10
9/

IC
N

P5
92

55
.2

02
3.

10
35

56
29

Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on January 02,2024 at 07:06:07 UTC from IEEE Xplore. Restrictions apply.

operations in P4 to allow us to fit deeper DT models to increase
accuracy at the cost of slightly increased latency. Moreover,
the Dryad pipeline is fully automated. The entire process
of model tuning, P4 program generation, and installation is
automatically completed inside the switch CPUs to boost the
adaptation efficiency. In summary, we make the following
contributions:

• We propose the “one-training-for-all” DT (ODT), where
we augment each node of a DT to summarize the ob-
served statistics of the dataset during the training (i.e.,
tree growing). Based on these statistics, the size of the
ODT can be efficiently pruned on switch CPUs, without
any additional computation or retraining on the dataset.

• We propose a progressive search algorithm. Subject to
available resource constraints, the algorithm traverses all
feasible combinations of the pruning (to reduce the de-
mand) and P4 scaling operations (to squeeze the supply)
to find the adaptation that obtains the max reward on both
classification accuracy and processing latency.

• We implement an ODTCompiler to automate the de-
ployment. According to the optimal ODT adaptation, the
ODTCompiler generates the desired P4 code (i.e., match-
action tables along with table entries) and finally calls the
built-in control APIs to directly install the P4 code on the
switch ASIC pipeline.

We implement Dryad2 and test it on three commodity
switches [25]–[27]. Our experimental results reveal that: 1)
Our pruning-based resizing is cost-effective. Compared with
retraining using the full data set, the pruning-based ODT
adaptation is 161× faster; 2) The progressive search algorithm
scales well and can find the optimal adaptations for different
switches. We demonstrate that the adaption process can be
finished on switch CPUs within 1.61s in Python (which can
likely to reduced to ∼55ms in C++ [28]).

II. BACKGROUND

A. Traditional Learning-based Networking Classification

Machine learning (ML) algorithms have long been applied
to various classification problems in networks. In [1], the
authors present KitNET, a malicious traffic detection solution
that uses an ensemble of neural networks to collectively
differentiate the benign and malicious traffic. The work in [2],
[3] exploits learning algorithms (e.g., support vector machine,
fully-connected neural network) for malicious traffic detection.
In [4], the authors design a learning-based system for the
traffic characterization and the application identification tasks
using deep learning models, i.e., convolution neural network
(CNN) and stacked auto-encoders (SAE). In [5], the authors
present the byte segment neural network (BSNN), which is
based on the bidirectional recurrent neural network (RNN),
for network traffic classification. Also targeting the problem of
traffic classification, [6], [7] leverage deep learning algorithms
such as one-dimensional CNN and self-attention mechanism.
In [8], the authors address the flow size prediction problem

2The code is available at https://github.com/xgr19/Dryad.

by employing learning models such as Gaussian process
regression (GPR) and neural network (NN).

Although these ML-based networking applications have
outperformed traditional solutions, they are generally trained
and deployed on powerful X86 servers. As a result, the
time and capacity costs associated with collecting traffic and
analyzing it on these devices are unacceptable [9], [12].

B. Characteristics of the P4 Switch

Unlike X86 servers, programmable switches, e.g., the P4
switches, support customized packet processing logic with low
latency [10], [11], showing the promise of empowering these
ML-based solutions on the data plane. Generally, each P4
switch contains two types of processors. One is an ordinary
CPU, which acts as a local controller and can be responsible
for the management of the switch’s data plane. The network
administrator can install P4 programs and table entries through
control APIs on the CPU. In addition, switch architectures
such as FlexCore [14], IPSA [24], and Tofino [13] also
provide new APIs to fast reconfigure running P4 programs in
milliseconds or even runtime, with minimal traffic disruption.

Fig. 1: The P4 switch data plane.

The other is a high-speed ASIC (e.g., Tofino), acting as
the data plane of Tbps [13]. Fig. 1 illustrates the key com-
ponents of an example Tofino data plane. Incoming packets
are first mapped into Packet Header Vectors (PHV) by the
parser. Then, the PHVs are passed to the pipeline consisting
of several stages. At each stage, headers in the PHV may
match (M) a given table entry stored in the memory (Mem)
block, triggering the associated action (A), i.e., the match-
action paradigm. Note that stages are the basic resource units.
Memory is uniformly distributed amongst different stages, and
no stage can access a memory block in another. Finally, the
modified PHVs are reorganized into packets by the deparser.
Two important types of matches for the packets are: 1) range
match. The key value should fall between a lower limit and
an upper limit specified by a rule; 2) ternary match. Each rule
is associated with a pair of (Mask, Value). The key value is
first ANDed with the Mask, and then compared with the Value
for equality. Nevertheless, to guarantee high-speed processing,
instructions in actions are strictly limited to integer operations
like addition/subtraction or assignment, which hinders the
switches’ programmability with sophisticated learning models
like neural networks [29], [30].

Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on January 02,2024 at 07:06:07 UTC from IEEE Xplore. Restrictions apply.

C. DT Techniques and In-network Intelligence

Unlike other complex models, tree models are rule-based
classifiers and naturally suit the match-action in P4 switches.
There are several DT variants, e.g., ID3 [15], C4.5 [16], and
CART [17]. One main difference among these variants is the
node/dataset splitting criterion in the training. For example,
C4.5 uses the normalized information gain while CART pro-
poses the Gini index. For the sake of convenience, several in-
network approaches [9], [18]–[21] are proposed to completely
deploy the CART model on switch ASICs to achieve line-
speed classification, as CART has been well-implemented in
the famous scikit-learn library [31], [32].

The authors in [9] design IIsy to convert a DT into a P4
program via a feature-decision manner. For a DT with k input
features, IIsy utilizes k+1 tables for the conversion. Each of
the first k feature tables checks the value of a specific feature
via the match paradigm, and then encodes the match result
into a metadata field in the PHV by the action paradigm. For
the last table (aka decision table), the metadata fields are used
as keys to finally output the classification results. In [19], the
authors propose SwitchTree to deploy the DT in a level-table
manner. In SwitchTree, each pipeline stage allocates a table to
embed a particular level of the DT. Similar to IIsy, SwitchTree
also uses metadata fields in the PHV to act as both the
match results and match keys in subsequent level tables. Some
other works that also attempt to deploy trees on the switch
ASICs are [20], [21]. These DT-based approaches have made
significant progress, but one area that needs critical discussion
is the quick reconfiguration of the DT based on the changing
switch resources. Due to different network management tasks,
switches may run different applications together with the DT
(e.g., NAT, routing, and measurement), which leads to varying
resources on pipeline stages and rule capacity. Although the
recently extended version [18] of IIsy also considers the
resource constraints in the design, the extended IIsy is still
a static solution to deploy a fixed-size model on all devices,
which may not scale well on switches of varying resources.

One may reconfigure the DT by retraining numerous DTs
for different resource requirements on a central controller.
However, retraining various models on massive traffic data
(e.g., the UNSW-NB15 dataset [33] consists of 100GB traffic)
is time-consuming and computationally expensive [34]. Also,
it would increment the switch-controller communication over-
head and delay the response when multiple switches are con-
currently requesting different adaptations. To make network
applications quickly reconfigurable for varying resources, the
switch CPUs have already supported control APIs [14], [23],
[24] to reprogram the P4 program. Hence, it may be possible to
also offload the model resizing (especially the pruning-based
DT resizing) to individual switches for efficiency gains. The
idea of DT pruning is not new, e.g., [17], [35]–[37]. However,
most of these solutions prune trees on the dataset. The post-
pruning in [35] employs test cases in the dataset to estimate
if the pruning of a node will reduce the accuracy. The authors
in [36] use all samples in the training dataset to tailor the

DT. Also, they are heuristics algorithms and cannot control
the tree size (e.g., depth) precisely. In our view, a suitable
pruning should be independent of the dataset to reduce switch
overheads. Besides, we would like to be able to prune the tree
to an arbitrary size to better meet different resource constraints.

III. AUGMENTING THE DT FOR EFFICIENT PRUNING

As mentioned in §II-C, there are many DT variants avail-
able. For example, the CART [17] in scikit-learn [31], [32]
is often used in in-network solutions [9], [18], [21]. While
there are existing pruning techniques to limit DTs to a given
maximum depth, we want to do more than limit the depth of
a deployed DT to the number of stages in a P4 switch. By
employing recirculation, we can effectively support DTs at a
depth deeper than the number of pipeline stages available.

To support a pruning strategy that can take advantage of
this feature, we augment the CART by adding statistical dis-
tributions of the various classes to each node during training.
We refer to this augmented DT as a “one-training-for-all” DT
(ODT). Once an ODT is trained, it can be pruned efficiently on
all switches instead of repeating the training process with the
dataset, thus significantly saving the computation and storage
on switches. Also, the performance of the pruned ODT can be
easily estimated from statistics in the pruned DT (see §IV-B).

A. ODT Training

The training (or generation) of the ODT is similar to a
regular CART [17], as shown in Algorithm 1. The training
dataset D consists of m samples, each in the form of (xi, yi).
xi ∈ Rk represents sample i’s feature values on the feature
set F , and yi is the class label of sample i. The goal of the
training is to produce a DT that will partition the dataset into
a set of leaves that have a unique class label. What we do
differently from the regular DT training is that for each node
n, we augment it by adding an attribute values. n.values
records the number of samples from each class for the samples
seen at node n (see line 2).

The training algorithm is a recursive function applied to the
training samples at each node as follows:

• If all samples in the node have the identical class label
C, then this node is considered as a leaf with class label
C, see lines 3∼5.

• A node is also identified as a leaf if all samples have
the same value on every feature, even if not all the
samples have the same class label. In this case, the class
label of this leaf is set as the class with the majority of
samples (implemented with the function MajorVote(.), see
lines 6∼8). Note that Dryad does not limit the depth d of
the tree during the training process to achieve maximal
accuracy, without considering constraints on the model
size.

• Otherwise, this means that not all the samples have the
same value on every feature and we need to determine
the optimal feature f∗ and its threshold f∗

t with which
to partition the samples into nodes at the next level.

Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on January 02,2024 at 07:06:07 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1: ODT Training
Input: Train set D = {(x1, y1) , . . . , (xm, ym)};

Feature set F = {f1, . . . , fk}; Tree limited
depth d.

Function: ODTGENERATE(D,F, i = 0)
1 Generate tree node n;
2 Summarize the number of samples ai of each class i

in D: n.values = [a1, . . . , aj];
3 if samples in D ALL belong to the same class C then
4 n.class← C; return
5 end
6 if samples ALL have the same value on each feature

of F OR depth i = d then
7 n.class← MajorVote(n.values); return
8 end
9 Find the optimal splitting feature f∗ and its threshold

f∗
t : n.thresh← f∗

t ;
10 Create two child nodes of n: left−child and

right−child;
11 for n′ ∈ {left−child, right−child} do
12 if n′ = left−child then
13 Dn′ ← {(x, y) | x.f∗ ≤ f∗

t , x ∈ D};
14 else
15 Dn′ ← {(x, y) | x.f∗ > f∗

t , x ∈ D};
16 end
17 if Dn′ = ∅ then
18 n′.class← MajorVote(n.values); return
19 else
20 n′ ← ODTGENERATE(Dn′ , F, i+ 1);
21 end
22 end

Output: A trained ODT T0 where internal nodes
obtain the thresh attribute and the leaves
maintain the class attribute.

To determine the optimal feature, we iterate through all
the feasible feature-threshold combinations. In particular,
because we are using the DT variant of CART, this refers
to the feature and threshold combination that results in
the lowest Gini index [17]. Once the optimal feature
and thesholds are determined, the samples are partitioned
into a left branch (≤ f∗

t) and the right branch (> f∗
t)

(lines 9∼22).
After the training with Algorithm 1, the ODT can predict

class labels for test samples. For a test sample, its feature value
is compared with internal nodes’ threshold f∗

t and then this
sample is routed to the left/right child nodes until it reaches a
leaf node, then the class of the leaf is returned.

B. ODT Pruning

The ODT obtained from the training process described in
§III-A would generally be too big to fit in a P4 switch.
To reduce the depth of the ODT to fit within the resource
constraints, we implement two pruning techniques: (i) hard

pruning will forcefully reduce the depth of the ODT; and (ii)
soft pruning which removes redundant nodes arising from hard
pruning to make the ODT more compact.

Algorithm 2: Hard Pruning
Input: A tree with root r; A queue S = [r] for nodes;

A queue V = [0] for nodes’ levels; Tree
limited depth d.

1 while S ̸= ∅ do
2 n← S.pop() ; // queue is first-in-first-out

3 l← V.pop();
4 if n is an internal node then
5 if l < d then
6 S.push(n.left child);
7 V.push(l + 1);
8 S.push(n.right child);
9 V.push(l + 1);

10 else if l = d then
/* set n as a leaf, remove its

subtree */

11 n.class← MajorVote(n.values);
12 end
13 end
14 end

Output: Hard pruned ODT Th.

Hard Pruning. The hard pruning sets internal nodes with
a specific depth d as leaves, removing all nodes deeper down
the tree. For each new leaf n, we decide its class label by
conducting the majority vote on its n.values attribute. Details
of the hard pruning algorithm are shown in Algorithm 2. The
core idea is that we first perform a breadth-first traversal on the
tree, reach the desired depth d, and then set each internal node
at this depth level to be a leaf by executing the MajorVote(.)
function on its values in line 11.

Fig. 2: An example of the hard pruning.

Fig. 2 shows an example of the hard pruning algorithm.
The different colors (red and blue) of leaf nodes indicate
different class labels. The two bottom leaves that exceed
the depth limit d = 2 are both removed. We set their
parent as a new leaf with the class label obtained through
MajorVote(parent.values). Notably, once the ODT is trained,
each node is assigned an array values (Algorithm 1 line 2).
This array records the number of samples split to this node.
Assume that parent.values = [red : 10, blue : 5], then
MajorVote(parent.values) will return the class label of red.
Nevertheless, in this example, the MajorVote(.) returns a leaf

Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on January 02,2024 at 07:06:07 UTC from IEEE Xplore. Restrictions apply.

that has the same class label as its siblings, resulting in
redundant nodes (the following soft pruning will tackle this
problem).

Algorithm 3: Soft Pruning
Input: A tree with root r; A list L = [] for leaves’

class labels; A stack S = [r] for nodes.
1 while S ̸= ∅ do
2 while S.top.left child ̸= NULL AND ̸= visited

do
3 S.push(S.top.left child);
4 end
5 n← S.pop() ; // stack is last-in-first-out

6 if n is an internal node with l leaves then
7 if L[−l : −1] are ALL the same class C then
8 n.class← C ; // set n as a leaf

9 L.add(n.class);
10 end
11 else if n is a leaf then
12 L.add(n.class);
13 end
14 if S.top.right child ̸= NULL AND ̸= visited

then
15 S.push(S.top.right child);
16 end
17 end

Output: Soft pruned ODT Ts.

Soft Pruning. In Dryad, we propose a soft pruning algo-
rithm to remove redundant nodes on the ODT. As shown in
Algorithm 3, we use the post-order traversal to recursively visit
the tree. In this algorithm, the left subtree of the current node
is traversed first (lines 2∼4), followed by the right subtree
(lines 14∼16), and then the current node is visited. If all leaves
of the current node have the same class label C, we remove
all branches of the current node and set the current node as a
leaf with label C (lines 7∼10).

Fig. 3: An example of the soft pruning.

Fig. 3 illustrates an example of the soft pruning algorithm.
As can be seen, the leftest white internal node has two leaves
that have the same red class. Soft pruning removes these
redundant leaves, and makes their parent internal node a leaf
by simply assigning it the red class label. It should be clear
that the soft pruning does not affect the ODT’s classification
performance.

Fig. 4: The Dryad framework.

IV. DRYAD IMPLEMENTATION

An overview of the Dryad system is shown in Fig. 4.
Dryad consists of two independent stages: a training process
that computes the ODT from the dataset and an adaptive
deployment process that determines how the ODT should be
pruned and deployed on the P4 switch.

Training process. Training, as described in §III, is per-
formed on a high-performance remote server, which can han-
dle computationally expensive training and massive datasets.
Upon receiving a dataset, we endeavor to train an accurate
ODT without compromising model size due to resource con-
straints. Especially, nodes in the ODT have summarized the
observed training data statistics for future adaptations.

Deployment process. The deployment process operates
independently at programmable switches with the assistance
of built-in control APIs. Whenever the resource constraints
change, Dryad might adjust the ODT at the potential cost of
lower accuracy in two possible ways:

1) Reduce the demand. In particular, we compress the ODT
using hard pruning, which prunes the ODT to a specific
depth, and soft pruning, which further removes redundant
nodes without sacrificing classification accuracy (§III-B).
Our proposed pruning mainly relies on the summarized
dataset statistics in the ODT, which is fast and efficient.

2) Increase the supply. We propose two P4 scaling op-
erations to maintain a larger ODT of higher accuracy
(§IV-A). As part of the table implementation, we can
support multiple ODT level tables with a single pipeline
stage by allowing packets to loop through the pipeline
in multiple rounds, so that more levels can be hosted in
the pipeline. For table entries’ implementation, we jointly
use the range and ternary match to reduce the capacity
required by each classification rule in the ODT.

These two perspectives result in a trade-off between accuracy
and packet process (classification) latency. To achieve higher
accuracy, a larger ODT is preferred; however, to support a
larger ODT, we will require more P4 scaling operations that
will result in higher processing latency.

Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on January 02,2024 at 07:06:07 UTC from IEEE Xplore. Restrictions apply.

Fig. 5: Three ODT implementation options in the ASIC3. In
the ODT branches, “T” is True, and “F” is False.

We run a progressive search algorithm (§IV-B) to determine
the optimal configuration for the abovementioned pruning
methods and P4 scaling operations. During the search, we
try to maximize an objective function that trades off clas-
sification performance against packet process latency. The
classification performance is estimated from the summarized
statistics, without needing any processing of the training
dataset. Furthermore, we describe optimization techniques in
§IV-B that can speed up the implementation of this algorithm
on switch CPUs.

After obtaining the optimal configuration, the ODTCompiler
(§IV-C) automatically adjusts the ODT and converts it into a
P4 program of match-action tables (along with table entries),
and finally calls the built-in control APIs to quickly reinstall
the application in the switch ASIC pipeline.

A. P4 Scaling Operations

1) Match-Action Table Arrangement: There are several
ways to map a tree model on a P4 switch’s ASIC [9], [19]–
[21]. Currently, we select the level-table manner [19]–[21]
(discussed in §II-C), which makes it easier to associate the
tree depth with the pipeline stages, as the base of our ODT
deployment. In a switch ASIC like Tofino (Fig. 5), a packet
traverses multiple consecutive pipeline stages (the light blue
blocks) in the form of PHV (i.e., packet header vector in
§II-B). Each stage can read and modify the packet properties
and affect the processing of the next stage through its stored
match-action tables. For the ODT, each stage can maintain a
level of the ODT as a match-action table, and the PHV conveys
the input feature values. We call this approach the normal
solution (Norm.). As an illustration, Level1 (one node) is
placed in the first stage, and Level2 (two nodes) is in the
second stage. This solution enjoys low packet process latency
because the classification results can be obtained directly when
packets pass through the pipeline. However, this solution is
only feasible when the number of the ODT’s levels does not
exceed the number of available stages.

To support a deeper ODT, we propose the resubmit and
recirculate implementation options, which host two or more
ODT levels in a stage by allowing a packet to go through
the pipeline more than once. As shown in Fig. 5, with
the help of the built-in traffic manager (TM), the resubmit
solution (Resub.) loops the packet back to the parser, and
then forces the packet to pass through the pipeline again. Note
that the TM automatically does the resubmit operation once
the resubmit type flag in the PHV is non-zero. That is, at
the last pipeline stage, all we do is set resubmit type and
embed some necessary metadata (e.g., the last visited level, the
corresponding tree node, and the match result) into the PHV. In
the recirculate solution (Recir.), we first defined ingress port
#68 and egress port #68 to be looped. Then, by assigning the
output port as 68 at the last stage, and embedding the necessary
metadata in the PHV, the packet can be redirected to the
ingress multiple times. While resubmit and recirculate improve
resource utilization and accommodate more ODT levels, they
also add to the packet process latency as a packet must be sent
through the pipeline two or more times.

2) Joint Range-Ternary Match: To predict an unclassified
sample, the trained ODT is traversed through a series of
threshold comparisons. Starting from the root, at each internal
node, the value of the sample’s splitting feature f∗ is compared
with the threshold f∗

t . The comparison outcome leads the
sample to either the left (f∗ > f∗

t) or the right branch
(0 ≤ f∗ ≤ f∗

t). After hitting a leaf node, a class label is
assigned to the sample.

As discussed in §II-B, there are two important match types
(range and ternary) defined in P4. It is most straightforward
to use the range match to represent these range comparisons.
However, given a fixed memory block in a stage, we observe
that using the range match will lead to much fewer allowed ta-
ble entries than the ternary match. But simply using the ternary
match is not efficient because each range (e.g., 0 ≤ f∗ ≤ f∗

t)
must be broken into several (Mask, V alue) pairs [38]. Thus,
in our match-action tables (ODT levels), we use the range
match and ternary match jointly. That is, the range match for
features whose number of bits exceeds a threshold bit, while
the ternary match for features whose bits are below the bit.

B. Progressive Search Algorithm

The key idea of our progressive search algorithm is to
determine the optimal configuration for deploying an ODT in
terms of the following 3 parameters: (i) the optimal number of
rounds that a packet needs to go through the pipeline, which
determines the solution (among Norm., Resub., and Recir. in
Fig. 5) used for placement of the ODT level tables; (ii) the
optimal bit threshold for choosing between the range match
and the ternary match for the ODT feature comparison in level
tables; and (iii) the optimal hard pruning depth. We iterate
the search space for these three parameters to determine the

3Tofino ASICs restrict that resubmit can loop packets back only once
through the traffic manager so as to reduce the packet latency. In contrast,
recirculate does not have a limit on the number of loopbacks.

Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on January 02,2024 at 07:06:07 UTC from IEEE Xplore. Restrictions apply.

Algorithm 4: Progressive Search Algorithm
Input: ODT tree0; Stage budget stages; Max packet

process rounds k; A coefficient α to balance
the ODT accuracy and packet process latency.

1 Initialize a reward list S with k zeros;
2 Initialize a strategy list strategy with k NULL;
3 for round from 1 to k do
4 tree← deepcopy(tree0);
5 for estdepth from round× stages to 1 do
6 tree← Soft(Hard(tree, estdepth));
7 for bit from 0 to the max bits of tree features

do
/* the rule capacity per stage if

features with bits ≤ bit use

ternary match */

8 rulecap← RuleEst(bit);
9 real depth← Encode(tree, rulecap, bit);

10 reward←
αMetricEst(tree, real depth) + (1−
α)

1

LatencyEst(round)
;

11 if reward > S[round] then
12 S[round]← reward;
13 strategy[round]←

(real depth, bit, round);
14 end
15 end
16 end
17 end

Output: The strategy (real depth, bit, round), whose
corresponding S[round] is the maximum.

appropriate trade-off between accuracy and packet processing
latency (Algorithm 4).

1) Algorithm Details: The following is a brief overview of
the three nested for loops:

• The outermost loop iterates through the different rounds
(i.e., round) that packets loop through the pipeline. In
this loop (line 4), we always copy a new tree from the
original full-depth tree0 per round so as to reuse tree0
during the search.

• The middle loop searches through all feasible values of
hard pruning depth estdepth that may be arranged in the
pipeline by round× stages. Soft(.) and Hard(.) refer to
soft and hard pruning, respectively. We see in line 6 that
the ODT is first hard pruned to the depth estdepth, then
soft pruned to remove its redundant leaves.

• The innermost loop iterates through the value range of
bit, which is the decision threshold to choose between
the range match and the ternary match (see §IV-A2).

In the innermost loop, we first determine the number of
allowed table entries at each stage with RuleEst(.) in line 8 for
the specified bit threshold. RuleEst(.) is essentially a lookup
table that we had determined empirically. Next, we determine
the resulting depth of the ODT after encoding the tree into

match-action tables using Encode(.) in line 9. Reward is the
optimization objective function for each configuration that
jointly considers the ODT performance and packet process
latency.

The ODT performance (i.e., accuracy) is calculated as
follows:

MetricEst(.) =

∑
max(li.values)∑

li.values
× 100%

where li are the leaves in the ODT and max(li.values) is
the number of samples in the majority class for leaf li. From
Algorithm 1, the class label for leaf li is the class with the
most samples at the leaf. Hence, numerator

∑
max(li.values)

is the number of correctly classified samples, and the de-
nominator is the total number of samples. For example, for
an ODT of two leaves (l1.values = [class0 : 10, class1 :
3]; l2.values = [class0 : 1, class1 : 5]), the predicted
accuracy is 10+5

10+3+1+5 × 100%. Note that MetricEst(.) can be
modified to support other metrics such as precision, recall,
and F1-score, as all of them can be obtained using values.
We leave this as future work.

The packet process (classification) latency is obtained from
LatencyEst(.), which is determined empirically from mea-
surement. The values for LatencyEst(.) will depend on the
hardware platform.

As shown in line 10, the accuracy and packet process
latency are weighted by α and 1 − α, respectively. By as-
signing different values (from 0.0 to 1.0) to α, we can make
the appropriate trade-off between these two objectives. For
example, when the traffic rate is slow (10Gbps), adding some
packet latency to achieve high accuracy is acceptable. Thus,
we can use a large α (see §V-A for details).

Upon finishing iterating through the above triple nested
for loop, an optimal configuration (real depth, bit, round)
with the maximum reward is obtained. Here, real depth
indicates how deep an ODT is to be pruned; bit is the
optimal threshold for the selection of range match and ternary
match; and round specifies which of the following three table
arrangement solutions should be used: Norm. (round = 1),
Resub. (round = 2), or Recir. (for round ≥ 3).

2) Algorithm Optimizations: We propose two optimizations
to accelerate Algorithm 4, so that it can run on ordinary
switch CPUs. The early-stopping: For the outermost loop
in Algorithm 4, the resource consumption increases linearly
as round increases. Therefore, while iterating through the
outermost loop, whenever the candidate strategy exceeds the
maximum resource budget, we stop examining larger round
to avoid taking up excessive resources. The multi-core: CPUs
are now equipped with multi-core technology that allows the
system to perform multiple tasks concurrently with higher
overall system performance. For each round in the outermost
loop, we generate an independent process running on a CPU
core alone. Moreover, an early-stopping signal is used in inter-
process communication [39].

Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on January 02,2024 at 07:06:07 UTC from IEEE Xplore. Restrictions apply.

C. ODTCompiler

After Algorithm 4, the ODT is passed to the ODTCompiler.
The ODTCompiler first uses both soft and hard pruning
algorithms to prune the ODT to the depth of real depth (thus
real depth+1 levels). Then, ODTCompiler instantiates a P4
program from the appropriate pre-installed P4 code templates
according to round. Next, the ODTCompiler traverses the
nodes in each ODT level, encoding them into table entries
with the range match or ternary match according to bit. At
last, the P4 program (the instantiated code along with the table
entries) is compiled and installed on the ASIC pipeline. We
mainly discuss two key processes: P4 code instantiation and
table entry encoding below.

1) P4 Code Instantiation: Our ODTCompiler maintains
several P4 templates:

• The base.p4 template defines a universal P4 program that
consists of the standard components like the parser, the
pipeline, and the deparser.

• The norm.p4, resub.p4, and recir.p4 inherit the universal
base template and then add their required modifications
accordingly (see §IV-A1).

When the ODTCompiler is called, it instantiates a P4 program,
namely, p4app.p4, by selecting the appropriate template. Then,
according to the adaptation strategy (real depth, bit, round)
and the received ODT, the ODTCompiler decides how many
match-action tables are derived in the template program, which
PHV elements (i.e., ODT features) are used as table keys, what
kind of matching (e.g., range or ternary) is used, etc.

List 1 shows the code fragment of a template switch
pipeline in base.p4. This pipeline is defined by the control
keyword along with multiple meta parameters (lines 1∼6).
Except for the P4 code, we use the Jinja4 syntax to write
the special placeholders in this template which allows the
ODTCompiler to replace with meaningful words. For example,
the placeholders resubmit1 (List 1 line 13) is overwritten
by the resub.p4 in List 2 lines 2∼8.

2) Table Entry Encoding: After finishing the P4 code
generation, the ODTCompiler will encode the ODT into table
entries. This encoding process can be done by a breadth-first
traversal on the ODT. List 3 shows a part of it. For example,
in line 3, we use two queues to store the tree nodes in the
current level and the next level. For each node in the current
level, we examine whether it is a leaf or not. If so, lines 9∼13
will encode it to a table entry with the action of class
label assignment. In entry, p4app is the corresponding P4
program name, level%d indicates which level table this entry
belongs to, and SetClass is the associated P4 action for
this rule which assigns a class label (i.e., pred_cls_id) to
a matched packet.

V. EVALUATION

A. Experimental Settings

We use the UNSW-NB15 dataset [33] that consists of
100GB pcap files from synthetic normal activities and con-

4https://jinja.palletsprojects.com/en/3.0.x/

Listing 1: The code fragement in base.p4
1 control Ingress(
2 // User
3 inout my_ingress_headers_t

hdr,
4 inout my_ingress_metadata_t

meta,
5 // Intrinsic
6 inout ingress_intrinsic_metadata_for_tm_t

ig_tm_md)
7 {
8 // initialized level tables
9 {% for level in levels %}

10 Level(){{level}};
11 {% endfor %}
12

13 {% block resubmit1 %}{% endblock %}
14

15 apply {
16 {% for level in levels %}
17 {{level}}.apply(hdr,meta,ig_tm_md);
18 {% endfor %}
19 }
20 }

Listing 2: The code fragement in resub.p4
1 {% extends "base.p4" %}
2 {% block resubmit1 %}
3 action action_packet_add_info(){
4 meta.resubmit_data.node_id = meta.node_id;
5 meta.resubmit_data.compare_result = meta.

compare_result;
6 ig_dprsr_md.resubmit_type = 2; // previously

discussed in §IV-A1
7 }
8 {% endblock %}

Listing 3: Python code for encoding table entries
1 def export_p4_rules(tree) {
2 # store node ID per level
3 queues = [queue(), queue()]
4 # omit other code...
5 for level in range(0, tree.depth):
6 cur_level = queues[level%2]
7 while len(cur_level) > 0:
8 node_id = cur_level.popleft()
9 if tree.feature[node_id] == None:

10 # leaf has no f∗
t for comparision

11 pred_cls_id = argmax(tree.values[
node_id])

12 entry = ’bfrt.p4app.pipe.level%d.
’+

13 ’add_with_SetClass(%d, %d)’%(
level,node_id,pred_cls_id)

14 else:
15 # omit to encode inner nodes...
16 # add child nodes of next level
17 queues[(level+1)%2].append(tree.

children_left[node_id], tree
.children_right[node_id])

18 }

temporary attack behaviors (e.g., DoS and Exploits). Given a
packet, the task of Dryad is to classify whether it is malicious

Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on January 02,2024 at 07:06:07 UTC from IEEE Xplore. Restrictions apply.

or not on switches. Learning from [9], [21], we consider the
parsed IP/TCP/UDP header fields in the PHV as ODT features.
The dataset is randomly splitted for training (80%) and testing
(20%) on a server with Intel(R) Xeon(R) Gold 6230R CPU @
2.10GHz, Python 3, and scikit-learn [32]. Notably, by utilizing
registers in switches to record flow statistics (e.g., the average
and max packet sizes [19], [20]), Dryad can be used to identify
whether a flow is malicious. Dryad’s flow classification will
be studied in future works.

We leverage three commodity switches, i.e., OpenMesh BF-
48X6Z [25], EdgeCore Wedge 100BF-65X [26], and H3C
S9850-32H [27] to demonstrate the performance of Dryad:

• For the OpenMesh switch, we constrain the max number
of available stages to be 5, and the traffic rate is 10Gbps.
In this case, the ODT accuracy is more important than
the packet latency, so we set the progressive search
coefficient α = 0.9 in Algorithm 4.

• For the EdgeCore switch, the number of available stages
is 8, the traffic rate is 40Gbps, and α = 0.7.

• For the H3C switch, the number of stages is 12, the traffic
rate is 100Gbps, and α is set to 0.5 to attach importance
to the packet latency in such a high traffic rate case.

We set the max round k = 4, i.e., round ∈ {1, 2, 3, 4}
in the outermost loop of Algorithm 4: The Norm. and the
Resub. solutions are indicated by round = 1 and round = 2,
respectively, while round ≥ 3 implies the Recir. solution.

B. Rule and Latency Measurement

0 1 8 16
bit

0

1000

2000

3000

4000

5000

R
ul

e
ca

pa
ci

ty

OpenMesh
EdgeCore
H3C

(a) Rule capacity

1 2 3 4
round

0

1000

2000

3000

4000

Pa
ck

et
 la

te
nc

y
(n

s) OpenMesh
EdgeCore
H3C

(b) Packet process latency

Fig. 6: Rule capacity and packet process latency estimation of
different switches.

Fig. 6 shows the rule capacity of different bit, and the
packet process latency of different round on three switches.
For the rule capacity, we empirically measure the number of
allowed table entries per stage when features with bits ≤ bit
use the ternary match (> bit use the range match). As shown
in Fig. 6a, as more features are converted to the ternary match
(i.e., bit from 0 to 16), the rule capacity increases from 400
to 4000. But as discussed in §IV-A2, using only the ternary
match does not necessarily lead to better resource utilization,
because threshold comparisons of features are natively ranges
(e.g., 0 < f∗ ≤ f∗

t), and it may consume w× table entries
when one w-bit range is converted from the range match to
the ternary match [38]. The results in Fig. 6b show that the
packet process latency increases when the number of loopback
rounds gets larger.

OpenMesh
EdgeCore H3C

Average

Device

0

2

4

6

8

Ti
m

e
(s

)

PSA Optimized PSA

(a) Progressive search algorithm (PSA)

OpenMesh
EdgeCore H3C

Average

Device

0.0

0.1

0.2

0.3

0.4

Ti
m

e
(s

)

ODTCompiler

(b) ODTCompiler

Fig. 7: The Dryad performance on different switches (PSA
and ODTCompiler are based on Python3).

C. Adaptation Strategies and Their Effects

To show the real ODT deployment outcomes, we run
Algorithm 4 on CPUs of each commodity switch and obtain
the following adaptation strategies:

• For the OpenMesh switch (the case of 5 stages, 10Gbps),
the algorithm finally selects the Recir. solution of
round = 4 where features with bits ≤ 8 use the ternary
match while the others use the range match. As packets
are processed by the pipeline four times (round = 4),
we ideally can obtain a pruned ODT of 4×4 = 16 levels
(the fifth stage is used for recirculating, see §IV-A1).
However, due to the rule capacity, we actually prune the
ODT to a depth of 14 (15 levels).

• For the EdgeCore switch (the case of 8 stages, 40Gbps),
the Resub. solution (round = 2) is selected where
features with bits ≤ 8 use the ternary match. As packets
are processed by the pipeline twice (round = 2), we
obtain a pruned ODT of depth 13 (2× 7 = 14 levels, the
eighth stage is used for resubmitting).

• For the H3C switch (the case of 12 stages, 100Gbps),
the Norm. solution is selected with all features using the
ternary match, and the ODT depth is 11 (12 levels).

Fig. 7a and 7b illustrate the time consumption of search-
ing and deploying the aforementioned strategies in different
switches. Notably, the progressive search algorithm (PSA)
with and without optimizations in §IV-B2 are also included.
On average, PSA and optimized PSA cost 3.64s and 1.44s
respectively. The ODTCompiler that adjusts the ODT by
pruning and generates P4 codes is much faster, and only costs
0.17s on average. That is, on average, it takes 1.61s to finish
the ODT adaptation on a tested switch.

D. Comparison with Baselines

As stated in §IV-A1, SwitchTree [19] and pForest [20] use
the same level-table manner, which is similar to our Norm.
solution. Therefore, their DT depths are also correlated to
stages. However, these two approaches do not discuss how to
adjust the DT when the number of stages varies. So we assume
they use the off-the-shelf CART (a DT variant) retraining
provided by scikit-learn [31], [32] to adjust their depths. For
the sake of simplicity, we do not consider the rule capacity

Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on January 02,2024 at 07:06:07 UTC from IEEE Xplore. Restrictions apply.

2 3 4 5
Resource (#stages)

0

5

10

15

20

Tr
ee

 d
ep

th
Dryad SwitchTree/pForest

(a) Tree depth

2 3 4 5
Resource (#stages)

60

70

80

90

100

110

A
cc

ur
ac

y
(%

) Dryad SwitchTree/pForest

(b) Accuracy

2 3 4 5
Resource (#stages)

75

80

85

90

95

F1
 sc

or
e

(%
) Dryad SwitchTree/pForest

(c) F1-score

Fig. 8: The tree adaption according to the OpenMesh settings in §V-A.

limitation in these methods. The adaptation comparison in this
section is simulated on our high-performance Intel server.

In Fig. 8, we can see that Dryad outperforms SwitchTree/p-
Forest for the OpenMesh switch. While tree depth is limited by
the stages for SwitchTree/pForest, Dryad can support deeper
trees on OpenMesh as shown in Fig. 8a by employing our
P4 scaling operations (§IV-A). As a result, Dryad achieves
better classification performance as shown in Fig. 8b and 8c.
E.g., 0.47% ↑ (99.02% vs. 98.55%) on accuracy and 3.78% ↑
(89.82% vs. 86.04%) on F1-score with #stages = 5.

In Table I, we present the adaptation time for different
switch settings. We can see that pruning is more efficient
than training a tree from scratch (i.e., retraining). For example,
under the H3C case, Dryad is 161× faster when pruning than
the retraining in SwitchTree/pForest (0.11s vs. 17.71s). Also,
Dryad has a slightly higher retraining time than SwitchTree/p-
Forest. This is because Dryad generally produces a deeper tree
during training since our P4 scaling operations allow Dryad
to support deeper trees (see §V-C).

TABLE I: The comparison of adaption time (seconds).

Dryad
(Pruned ODT)

SwitchTree/pForest
(Retrained CART)

Adaptation Time(s) 0.11 17.71

Depth 11 11

Accuracy (%) 98.99 98.99

F1-score (%) 89.39 89.39

Dryad
(Pruned ODT)

SwitchTree/pForest
(Retrained CART)

Adaptation Time(s) 0.11 17.71

Depth 11 11

Accuracy (%) 98.99 98.99

F1-score (%) 89.39 89.39

Switch
Dryad

(Retraining)
Dryad

(Pruning)
SwitchTree/pForest

(Retraining)

OpenMesh
(5 stages)

19.32 0.23 16.37

EdgeCore
(8 stages)

18.54 0.18 16.70

H3C
(12 stages)

17.83 0.11 17.71

E. Impact of Soft Pruning

Next, we investigate the impact of soft pruning. We see in
Fig. 9a that soft pruning has no impact on ODT classification
performance and in Fig. 9b that soft pruning can significantly
reduce the number of nodes. In particular, for an ODT of depth
20, the F1-score remains the same after the soft pruning, but
the number of nodes is reduced by 12.20%.

VI. CONCLUSION AND FURTHER DISCUSSION

In this paper, we propose Dryad, a self-adaptive in-network
intelligence system that can adapt to changing switch re-

4 12 20 28 36
Limit depth

70

80

90

100

F1
 sc

or
e

(%
)

Before After

(a) F1-score

4 12 20 28 36
Limit depth

0

1

2

3

N
um

be
r o

f n
od

es

×104

0

20

40

60

80

100

R
ed

uc
tio

n
R

at
e

(%
)

Before
After
Reduction Rate

(b) Number of nodes

Fig. 9: The F1-score and the number of nodes before/after the
soft pruning. Reduction rate = Before−After

Before × 100%

sources. In Dryad, a large and accurate ODT model is trained
at maximum accuracy without any limits on the resulting depth
of the DT. When there is a change in the available resources,
we first run the progressive search algorithm to select the
optimal ODT configuration. Then, we use the ODTCompiler
to generate the corresponding P4 program. We show with
extensive experiments that our Python-based prototype can
finish the adaptation in 1.61s. This is some 161× faster than
retraining afresh using the full dataset.

Our current prototype is implemented in Python. The time
required is still significantly longer than the time taken by
commodity P4 switches to perform reconfiguration, which is
typically in the order of nanoseconds [23]. We believe that
this can be mitigated by re-implementing Dryad with a more
efficient language like C++ that can be 25× [40] to 29× [28]
faster than Python. Also, we can cache (or run offline) the
frequently used configurations for acceleration.

VII. ACKNOWLEDGMENT

We thank Prof. Ben Leong for his helpful suggestions
and the anonymous reviewers for their thoughtful comments.
This work is supported in part by the National Key R&D
Program of China under Grant No. 2022YFB3105000, the
National Natural Science Foundation of China under Grant
No. 61972189, the Major Key Project of PCL under Grant No.
PCL2023AS5-1, the Shenzhen Key Lab of Software Defined
Networking under Grant No. ZDSYS20140509172959989,
and the China Scholarship Council (CSC202306210169).

Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on January 02,2024 at 07:06:07 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] Y. Mirsky, T. Doitshman, Y. Elovici, and A. Shabtai, “Kitsune: An
ensemble of autoencoders for online network intrusion detection,” in
Proceedings of the 25th Annual Network and Distributed System Security
Symposium, 2018. The Internet Society, 2018.

[2] M. Amanowicz and D. Jankowski, “Detection and classification of mali-
cious flows in software-defined networks using data mining techniques,”
Sensors, vol. 21, no. 9, p. 2972, 2021.

[3] R. Doshi, N. J. Apthorpe, and N. Feamster, “Machine learning ddos
detection for consumer internet of things devices,” in Proceedings of
the IEEE Security and Privacy Workshops (SPW). IEEE Computer
Society, 2018, pp. 29–35.

[4] M. Lotfollahi, R. S. H. Zade, M. J. Siavoshani, and M. Saberian, “Deep
packet: A novel approach for encrypted traffic classification using deep
learning,” arXiv preprint arXiv:1709.02656, 2017.

[5] R. Li, X. Xiao, S. Ni, H. Zheng, and S. Xia, “Byte segment neural
network for network traffic classification,” in Proceedings of the 26th
International Symposium on Quality of Service. New York, USA: ACM,
2018, pp. 1–10.

[6] G. Xie, Q. Li, and Y. Jiang, “Self-attentive deep learning method for
online traffic classification and its interpretability,” Computer Networks,
p. 108267, 2021.

[7] G. Xie, Q. Li, Y. Jiang, T. Dai, G. Shen, R. Li, R. Sinnott, and
S. Xia, “Sam: Self-attention based deep learning method for online
traffic classification,” in Proceedings of the Workshop on Network Meets
AI & ML, NetAI@SIGCOMM. ACM, 2020, pp. 14–20.

[8] P. Poupart, Z. Chen, P. Jaini, F. Fung, H. Susanto, Y. Geng, L. Chen,
K. Chen, and H. Jin, “Online flow size prediction for improved network
routing,” in Proceedings of the 24th IEEE International Conference on
Network Protocols. IEEE Computer Society, 2016, pp. 1–6.

[9] Z. Xiong and N. Zilberman, “Do switches dream of machine learning?:
Toward in-network classification,” in Proceedings of the 18th ACM
Workshop on Hot Topics in Networks. ACM, 2019, pp. 25–33.

[10] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese et al., “P4: Pro-
gramming protocol-independent packet processors,” Computer Commu-
nication Review, vol. 44, no. 3, pp. 87–95, 2014.

[11] T. P. A. W. Group, P416 Portable Switch Architecture (PSA), 2018
(accessed May 3, 2023). [Online]. Available: https://p4.org/p4-spec/
docs/PSA-v1.0.0.html

[12] G. Xie, Q. Li, Y. Dong, G. Duan, Y. Jiang, and J. Duan, “Mousika:
Enable general in-network intelligence in programmable switches by
knowledge distillation,” in Proceedings of the International Conference
on Computer Communications, 2022, pp. 1938–1947.

[13] I. Corporation, Intel Tofino: P4-programmable Ethernet switch ASIC
that delivers better performance at lower power, 2019 (accessed May
3, 2023). [Online]. Available: https://www.intel.com/content/www/us/
en/products/network-io/programmable-ethernet-switch.html

[14] J. Xing, K. Hsu, M. Kadosh, A. Lo, Y. Piasetzky, A. Krishnamurthy, and
A. Chen, “Runtime programmable switches,” in Proceedings of the 19th
USENIX Symposium on Networked Systems Design and Implementation.
USENIX Association, 2022, pp. 651–665.

[15] J. R. Quinlan, “Induction of decision trees,” Machine Learning, vol. 1,
no. 1, pp. 81–106, 1986.

[16] R. Quinlan, C4.5: Programs for Machine Learning. Morgan Kaufmann,
1993.

[17] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, Classification
and Regression Trees. Wadsworth, 1984.

[18] C. Zheng, Z. Xiong, T. T. Bui, S. Kaupmees, R. Bensoussane, A. Bern-
abeu, S. Vargaftik, Y. Ben-Itzhak, and N. Zilberman, “Iisy: Practical
in-network classification,” arXiv preprint arXiv:2205.08243, 2022.

[19] J.-H. Lee and K. Singh, “Switchtree: in-network computing and traffic
analyses with random forests,” Neural Computing and Applications, pp.
1–12, 2020.

[20] C. Busse-Grawitz, R. Meier, A. Dietmüller, T. Bühler, and L. Vanbever,
“pforest: In-network inference with random forests,” arXiv preprint
arXiv:1909.05680, 2019.

[21] C. Zheng and N. Zilberman, “Planter: seeding trees within switches,”
in Proceedings of the Conference of the ACM Special Interest Group
on Data Communication, Poster and Demo Sessions. ACM, 2021, pp.
12–14.

[22] T. Yang, J. Jiang, P. Liu, Q. Huang, J. Gong, Y. Zhou, R. Miao,
X. Li, and S. Uhlig, “Elastic sketch: adaptive and fast network-wide
measurements,” in Proceedings of the Conference of the ACM Special
Interest Group on Data Communication. ACM, 2018, pp. 561–575.

[23] B. Antonin, Leveraging stratum and tofino fast refresh
for software upgrades, 2018 (accessed August 3, 2023).
[Online]. Available: https://opennetworking.org/wp-content/uploads/
2018/12/Tofino Fast Refresh.pdf

[24] Y. Feng, Z. Chen, H. Song, W. Xu, J. Li, Z. Zhang, T. Yun, Y. Wan, and
B. Liu, “Enabling in-situ programmability in network data plane: From
architecture to language,” in Proceedings of the 19th USENIX Sympo-
sium on Networked Systems Design and Implementation. USENIX
Association, 2022, pp. 635–649.

[25] T. Corporation, OpenMesh BF-48X6Z Programmable Switch, 2022
(accessed May 3, 2023). [Online]. Available: http://www.tooyum.com/
products/OpenMesh BF48X6Z.html

[26] E. N. Corporation, DCS802 12.8T PROGRAMMABLE DATA
CENTER SWITCH, 2021 (accessed May 1, 2023). [Online].
Available: https://www.edge-core.com/productsInfo.php?cls=1&cls2=
5&cls3=181&id=334

[27] N. H. T. Corporation, H3C S9850 Series Data Center
Switches, 2022 (accessed May 1, 2023). [Online]. Avail-
able: https://www.h3c.com/en/Products and Solutions/InterConnect/
Switches/Products/Data Center/Aggregation/S9800/H3C S9850/

[28] D. Lion, A. Chiu, M. Stumm, and D. Yuan, “Investigating managed
language runtime performance: Why javascript and python are 8x and
29x slower than c++, yet java and go can be faster?” in Proceedings
of the USENIX Annual Technical Conference. USENIX Association,
2022, pp. 835–852.

[29] P. Cui, H. Pan, Z. Li, J. Wu, S. Zhang, X. Yang, H. Guan, and G. Xie,
“Netfc: Enabling accurate floating-point arithmetic on programmable
switches,” in Proceedings of the 29th IEEE International Conference on
Network Protocols. IEEE, 2021, pp. 1–11.

[30] D. Barradas, N. Santos, L. Rodrigues, S. Signorello, F. M. V. Ramos,
and A. Madeira, “Flowlens: Enabling efficient flow classification for ml-
based network security applications,” in Proceedings of the 28th Annual
Network and Distributed System Security Symposium. The Internet
Society, 2021.

[31] scikit learn, Decision Trees, 2007 (accessed August 3, 2023). [Online].
Available: https://scikit-learn.org/stable/modules/tree.html#tree

[32] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011.

[33] N. Moustafa and J. Slay, “UNSW-NB15: a comprehensive data set for
network intrusion detection systems (UNSW-NB15 network data set),”
in Proceedings of the Military Communications and Information Systems
Conference. IEEE, 2015, pp. 1–6.

[34] E. Strubell, A. Ganesh, and A. McCallum, “Energy and policy consider-
ations for deep learning in NLP,” in Proceedings of the 57th Conference
of the Association for Computational Linguistics. Association for
Computational Linguistics, 2019, pp. 3645–3650.

[35] L. A. Breslow and D. W. Aha, “Simplifying decision trees: A survey,”
Knowledge Engineering Review, vol. 12, no. 1, pp. 1–40, 1997.

[36] J. R. Quinlan, “Simplifying decision trees,” International Journal of
Human-Computer Studies, vol. 51, no. 2, pp. 497–510, 1999.

[37] M. Bohanec and I. Bratko, “Trading accuracy for simplicity in decision
trees,” Machine Learning, vol. 15, no. 3, pp. 223–250, 1994.

[38] H. Liu, “Efficient mapping of range classifier into ternary-cam,” in
Proceedings of the 10th Annual IEEE Symposium on High Performance
Interconnects. IEEE Computer Society, 2002, pp. 95–100.

[39] P. S. Foundation, Process-based parallelism, 2022 (accessed
April 3, 2023). [Online]. Available: https://docs.python.org/3/library/
multiprocessing.html

[40] N. Tamimi, How Fast Is C++ Compared to Python?, 2020 (accessed
August 3, 2023). [Online]. Available: https://towardsdatascience.com/
how-fast-is-c-compared-to-python-978f18f474c7

Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on January 02,2024 at 07:06:07 UTC from IEEE Xplore. Restrictions apply.

