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With the booming of smart home market, intelligent Internet of Things (IoT) devices have been increasingly involved in

home life. To improve the user experience of smart homes, some prior works have explored how to use machine learning for

predicting interactions between users and devices. However, the existing solutions have inferior User Device Interaction

(UDI) prediction accuracy, as they ignore three key factors: routine, intent and multi-level periodicity of human behaviors. In

this paper, we present SmartUDI, a novel accurate UDI prediction approach for smart homes. First, we propose a Message-

Passing-based Routine Extraction (MPRE) algorithm to mine routine behaviors, then the contrastive loss is applied to narrow

representations among behaviors from the same routines and alienate representations among behaviors from different routines.

Second, we propose an Intent-aware Capsule Graph Attention Network (ICGAT) to encode multiple intents of users while

considering complex transitions between different behaviors. Third, we design a Cluster-based Historical AttentionMechanism

(CHAM) to capture the multi-level periodicity by aggregating the current sequence and the semantically nearest historical

sequence representations through the attention mechanism. SmartUDI can be seamlessly deployed on cloud infrastructures

of IoT device vendors and edge nodes, enabling the delivery of personalized device service recommendations to users.

Comprehensive experiments on four real-world datasets show that SmartUDI consistently outperforms the state-of-the-art

baselines with more accurate and highly interpretable results.
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1 INTRODUCTION
With fast-evolving IoT solutions, the number of smart devices in homes has soared, expected to reach 5 billion

by 2025 [24]. The emergence of cloud platforms also allows IoT sensors and actuators to better assist users in

various home living activities [19, 20]. User Device Interaction (UDI), i.e., constant device controls, can reflect

users’ behavioral habits and intents. UDI prediction for smart homes brings about opportunities from multiple

perspectives. For service providers, such as vendors, predicting users’ living behaviors through their device usage

histories can offer insights for improving user experience. From the perspective of device intelligence, prediction

of users’ behaviors can help intelligent platforms recommend actions that users may like to perform, such as

“turn off the bed light", as shown in Fig 1. From the perspective of user behavior analysis, accurate user behavior

prediction can be used for abnormal user behavior identification, elderly/disabled care, or further user behavior

analysis.
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Fig. 1. The user forgets to turn off the bed light after leaving, by analyzing the behavior sequence, the user behavior prediction
model recommends the action “turn off the bed light”.

Motivated by these, a growing body of research endeavors to propose algorithms that harness the interaction

data between smart home users and devices to empower users with intelligent services that go beyond mere

device interactions. These services encompass tailored recommendations for device behavior, ensuring a seamless

and personalized experience within the smart home ecosystem. Some prior studies have analyzed user behaviors

in smart home and adopted user behavior prediction technologies for different purposes. [22, 32] infer the users’

behavioral intents from their sequential operations on the device, and generate alternative automation rules and

subsequent behavior recommendations. [1, 25, 41] analyze the behavior patterns of users at home, and observe

the status of connected smart home entities (sensors and devices) through different user activities and usage

patterns for the benefit of elderly care and abnormal behavior recognition. [13] applies deep learning models to

recommend actions for users to control their devices at smart home.

However, user behavior is dynamic and complex [39], making User Device Interaction (UDI) prediction more

challenging. There are three key factors in the prediction of UDI that have not been properly considered in smart

home scenarios.

First, a routine contains people’s behavior habits. Mining the correlations of behaviors in routines is beneficial

for UDI prediction. However, the existence of noise behaviors between the routine behaviors causes the model to

learn false correlations between noisy behaviors and routine behaviors which co-occur in the same sequence.
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For example, as shown in Fig. 2, a user’s routine is to cook while doing laundry. Meanwhile, the user also has

random behaviors in the sequence, such as “unlock the smart lock” at time 𝑡3, and “open the network audio” at time

𝑡10. The correlation between laundry and cooking behaviors should be relatively high while “unlock the smart
lock” and “open the network audio” should be less correlated with former behaviors, however, since all the above

behaviors appear in the same sequence, it is difficult for the model to distinguish the strength of the correlation

between different behaviors. The challenge of learning user routines is to identify the routines and learn the

correct correlation of behaviors from the same and different routines.

Second, an intent inherently determines the user behaviors. Relying purely on a user’s sequential behavior

without considering intents may lead to wrong predictions. On the one hand, there are often multiple intents in a

UDI sequence. For example, a user may cook while doing laundry because of the long wash cycle of the washing

machine, as shown in Fig. 2. As such, there are two intents, laundry and cooking, in the behavior sequence.

Without considering a user’s multiple intents, the next behavior after observing 𝑡1 to 𝑡5 is likely to be predicted as

“start dish washer”, because recent behaviors “switch on oven” and “switch on microwave” are both cooking-related.

However, in fact, before the meal is ready, the user’s next behavior should be “turn off washing machine” as the
washing machine cycle has finished. On the other hand, user intents are dynamic. There are complex transitions

between different intents, which leads to complex transitions between devices user accessed. There are transitions

not only between consecutive devices, but also in broader contexts (i.e., other devices in the behavior sequence).

For example, as shown in Fig. 2, the user interacts with the water valve at time 𝑡1 and 𝑡7. All devices between

time 𝑡1 and 𝑡7, rather than just the devices immediately next to 𝑡1 and 𝑡7, have transitions with the water valve.

Meanwhile, the transitions among different devices are heterogeneous, that is, caused by different device controls.

For example, the transition from the oven to the microwave can be caused by the device control “turn on the
microwave”, or caused by the device control “turning off the microwave” (e.g., the user’s reaction upon receiving a

finish notification from the microwave). The challenge of learning user intents lies in reasonably mining the

intents behind user behaviors and properly modeling complex heterogeneous transitions between behaviors.

Third, multi-level periodicity in user behaviors makes it difficult for models to predict the interactions. For

example, the bedtime of a user, which determines when sleep-related interactions (“close curtain”/“turn off light”)
occur, can fluctuate within a week. As shown in Fig. 3, the user may work overtime and go to bed later than usual

once every weekend, which shows week-level periodicity. As a mountaineering enthusiast, the user goes climbing

at the end of each month and goes to bed early at night due to fatigue, which shows month-level periodicity.

In this example, the multi-level periodicity in the user’s behaviors, i.e., leaving work on time daily, working

overtime every week, and going climbing every month, causes fluctuations in sleeping time. The challenge of

modeling multi-level periodicity lies in accurately and efficiently capturing the correlation between the current

behavior sequence and historical behavior sequences.
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Fig. 2. An example of user sequential behavior with two intents: laundry (watervalve/washing machine/dryer) and cooking
(oven/microwave/dish washer). Noise behaviors include unlock the smart lock and open the network audio.
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Fig. 3. The multi-level periodicity in the user behaviors.

Although some existing models such as CNN [33], RNN [27], GNN [38] and Transformer [13] models can

model temporal information and mine contextual information well, they cannot be directly applied to smart home

scenarios due to the following reasons. First, these models treat the entire sequence indiscriminately, therefore

learns wrong correlations between behaviors due to lack of identification of routines. Second, these models do

not consider intents of the user, thus lacking of capturing the complex heterogeneous transitions between user

behaviors. Third, these models only consider the current sequence. So they naturally cannot mine the correlation

between the current sequence and the historical sequences, which prevents them from modelingmulti-level
periodicity.
To address the above challenges, in this paper, we propose SmartUDI, a novel approach for accurate UDI

prediction. The design of SmartUDI mainly includes the following three key designs. First, to make the model learn

the correct behavioral correlation in routines, SmartUDI designs aMessage-Passing-based Routine Extraction
(MPRE) to extract routine behavior from behavior sequences with noise behaviors, then contrastive learning

is applied to minimize the difference between behaviors within the same routine and maximize the difference

between the behaviors derived from different routines. Second, we propose an Intent-aware Capsule Graph
Attention NeTwork (ICGAT) to encode multiple intents of users while considering complex heterogeneous

transitions. Specifically, ICGAT mines transitions among devices by relational gated graph attention network

and views behaviors of different intents as different primary capsules, and learns multi-intent representations

of users through the capsule networks [29], then an inter-intent aggregation mechanism is applied to learn

weights of different intents for aggregating representations. Third, we design a Cluster-basedHistoricalAttention
Mechanism (CHAM) to capture the multi-level periodicity by aggregating the current sequence and the historical

sequence representations through the attention mechanism. To take advantage of effective historical sequences

and improve training efficiency, we cluster the behavior sequences and leverage semantically nearest historical

sequences for aggregation. Our main contributions and novelties are summarized as follows:

• We propose SmartUDI, an innovative framework designed to enhance the accuracy of User Device In-

teraction (UDI) prediction by considering crucial factors such as user routines, intents, and multi-level

periodicity. SmartUDI can be seamlessly deployed on cloud infrastructures of IoT device vendors and edge

nodes, allowing for comprehensive analysis of user behavior data and extraction of valuable behavior

patterns. By leveraging this intelligent framework, SmartUDI enables the delivery of personalized device

service recommendations to users, thereby augmenting the overall intelligence and efficiency of the home

Internet of Things ecosystem.

• We proposeMPRE to mine routine behaviors from behavior sequence with noisy and apply contrastive

learning to correct correlations between behaviors. Specially, we are the first to formalize the routine

classification problem as a community detection problem and design a novel message-passing-based routine

classification algorithm to solve it.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 7, No. 3, Article 136. Publication date: September 2023.



I Know Your Intent: Graph-enhanced Intent-aware User Device Interaction Prediction via Contrastive Learning • 136:5

• We propose ICGAT, an architecture based on graph attention networks, which converts user behavior

sequences into relational sequence graphs to learn complex heterogeneous transitions among devices and

view behaviors as primary capsules to learn multi-intent representations of users by dynamic routing. We

innovatively propose to construct RS-Graph from behavior sequence and use the relational gated graph

attention network to learn the heterogeneous transitions between behaviors on RS-Graph. Besides, we

explicitly label the intents of the behavior and use a dynamic routing algorithm to realize the intent learning.

All of these have not been explored in prior works.
• We propose CHAM to capture multi-level periodicity of user behaviors by applying attention mechanism

between current and the semantically nearest historical user behavior sequences. Particularly, we propose a

novel measure of behavior sequence similarity which jointly considers the semantic and temporal features

of behavior sequences. Moreover, we are the first to apply clustering to improve historical attention

mechanism, CHAM can filter out noisy behavior sequences and improve computational efficiency by

performing attention on the most similar historical sequences.

• We conduct comprehensive experiments on four real-world datasets including three open-sourced datasets

and one newly collected datasets from our testbed. The results show that SmartUDI consistently outperforms

state-of-the-art baselines and shows better interpretability.

The rest of the paper is organized as follows. Section 2 presents the related work. Section 3 describes the

problem definition. Section 4 introduces the overview of SmartUDI architecture. Section 5, 6, 7 respectively

introduce the important components Message-Passing-based Routine Extraction, Intent-aware Capsule Attention

Network and Cluster-based History Attention Mechanism of SmartUDI. Section 8 describes the multi-task training

method. Section 9 shows experimental results. Section 11 concludes the whole paper.

2 RELATED WORK

2.1 User Behavior Prediction in Smart Homes
Research on user behavior prediction in smart homes mainly focuses on learning-based methods, namely

traditional machine learning methods and deep learning methods. (1) Traditional methods. Hidden Markov

Model (HMM) [2, 31] is applied to extract the user’s behavior pattern from the user’s interaction behavior

sequence with the devices, and detect the user’s abnormal behaviors. However, when facing behavioral sequences

with multiple intents and periodic sequential patterns, HMM will fails due to that the independence assumption

[7] of HMM makes it unable to consider context information. (2) Deep learning methods. Some works try to

apply deep learning models to achieve better performance. [1, 6, 8, 34, 42] exploit Long Short-Term Memory

Networks (LSTM) to predict user behavior in smart home scenarios. However, LSTM can only model long-term

sequential influence [10], but misses out the complex heterogeneous transitions and periodic sequential patterns

caused by users’ routines, intents and multi-level periodicity. SmartSense [13] adopts knowledge transfer to

exploit user intent and employs a two-stage encoder to mine contextual information. However, it has a few

drawbacks. First, it does not classify the routines before inputting the sequence into the encoder. Second, the

complex heterogeneous transitions are not modeled. Third, it does not take into account multi-level periodicity

due to lack of consideration of historical sequences. DeepUDI [39] employs the attention mechanism to consider

the periodicity of human behavior and intent-aware encoder to consider intents. However, one the one hand, it

does not consider routines, on the other hand, it leads to suboptimal performance and long prediction time since

it ambiguously considers all history sequences. In conclusion, none of the above works can consider routines,

intents and multi-level periodicity at the same time in UDI sequences, which leads to inferior UDI prediction

accuracy.
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2.2 Sequential User Behavior Prediction
Sequential user behavior prediction methods can be categoried as follows. (1) Traditional methods. Factorizing
Personalized Markov Chains (FPMC) [28] factorizes the users-locations matrix to generate user general prefer-

ences to complete next location prediction. However, the location independence assumption prevents FPMC from

capturing the complicated sequential information [28]. (2) CNN-based methods. Caser [33] employs CNN in

both time-axis and feature-axis to capture temporal dynamics in sequential recommendation. However, due to the

limited receptive field of CNN, it cannot fully model long-term contextual information [17].(3) RNN-based meth-
ods. CARNN [23] and SIAR [27] incorporate contextual information into the RNN for sequential recommendation.

However, CARNN and SIAR can not model multi-level periodicity because they only mine contextual information

in a single sequence [23, 27]. Although DeepMove [9] uses attention-based RNN to model the correlation between

the current sequence and historical sequences, it leads to suboptimal performance and long prediction time since

it ambiguously considers all history sequences. (4) GNN-based methods. SRGNN [38, 40] applies gated GNN to

capture complex transition patterns among nodes for session-based recommendation. However, SRGNN ignores

the heterogeneity of the transition patterns caused by users’ intents [38]. (5) Transformer-based methods.
SASRec [14] utilizes unidirectional transformers to capture sequential patterns in sequences while considering

the importance of correlations between behaviors. However, SASRec only captures the sequential patterns in

single sequences [35], which prevents it from considering multi-level periodicity.

3 PROBLEM FORMULATION
Let D denote a set of devices, C denote a set of device controls, I denote a set of intents and S denote a set of

behavior sequences.

Definition 1. (Behavior) The behavior 𝑏 = (𝑡, 𝑑, 𝑑𝑐, 𝑖), is a 4-tuple consisting of time 𝑡 , device 𝑑 ∈ D, device
control 𝑑𝑐 ∈ C, and intent 𝑖 ∈ I. For example, behavior b = (2022-10-15 11:30, oven, oven:switch on, cooking) describes
the behavior “turn on the oven” at 11:30 on 2022-10-15, with the intent of cooking.

Definition 2. (Behavior Sequence) The behavior sequence 𝑠 = [𝑏1, 𝑏2, · · · , 𝑏𝑛] ∈ S is a list of behaviors. 𝑏 is
ordered by timestamps, and 𝑛 is the length of 𝑠 .

We describe the User Device Interaction (UDI) prediction problem definition as follows.

Problem 1. (UDI Prediction) Given a previous sequence 𝑠 ∈ S, predict the next behavior 𝑏𝑛+1 in the behavior
sequence.

We divide the behavior into fixed time intervals. Since the device control contains both device and intent

information (e.g., “oven:switch on” indicates that the device is oven and the user’s intent is cooking), the problem

is simplified to predict the next device control 𝑐𝑛+1 in the next time interval.

4 SMARTUDI OVERVIEW
To consider user routines, intents and multi-level periodicity, we propose SmartUDI, depicted in Fig. 4. SmartUDI

mainly consists of a Message-Passing-based Routine Extraction algorithm (§5), an Intent-aware Capsule Graph

Attention Network (§6) and a Cluster-based Historical Attention Mechanism (§7). All important symbols are

marked in Fig. 4 for the easy check.

• Message-Passing-based Routine Extraction (Section 5). Noisy behaviors in the routines can cause the

model to learn false correlations between behaviors. Therefore, we first perform routine extraction from

UDI sequences by message passing and then apply the contrastive loss L𝐶𝐿 on behavior embedding h to
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Fig. 4. Overview of SmartUDI. The blue, red, and green nodes in the MPRE part represent behaviors with different routines.
The dark blue and dark red nodes in intent-aware encoder indicate primary capsules with different intents.

minimize the difference between behaviors within the same routine (positive samples) and maximize the

difference between the behaviors derived from different routines (negative samples).

• Intent-aware Capsule Graph Attention Network (Section 6). For encoding multiple intents while con-

sidering the complex transitions between devices, the behavior sequence data is fed into behavior encoder
consisting of Relational Gated Graph Attention Network (RGGAT) and Time2Vec [15] to learn behavior

representation h, then h are input to the intent-aware encoder to extract multi-intent representations of

users for the sequence representations 𝐶 .

• Cluster-based Historical Attention Mechanism (Section 7).We propose to capture the multi-level

periodicity from historical sequences. Specifically, k-means [12] is applied to cluster behavior sequences

and find semantically nearest historical sequences. Then attention mechanism is applied to aggregate the

current sequence and the semantically nearest historical sequences representation to get the prediction

vector 𝑝 for the final prediction.

The workflow of SmartUDI is summarized as follows. First, Routine Extraction classifies the routines of each

behavior sequence. The behavior sequences with their corresponding routine labels are fed into behavior Encoder.

Second, Behavior Encoder encodes the behavior into the behavior embedding h. Intent-aware Encoder takes the
h as input and outputs the sequence embedding 𝐶 . Third, CHAM applies the attention mechanism between the

current sequence embedding 𝐶 and the nearest historical sequence embeddings, where the scope of historical

sequences is determined by the clustering algorithm (Section 7.1)
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The MPRE and the clustering algorithm (Section 7.1) in CHAM run offline and are executed before training.

Other modules such as ICGAT and CHAM are trained in an end-to-end fashion by backpropagation. The loss

function is described in Section 8. The trained optimizer and related parameters are described in Section 9.1.4. The

training process of SmartUDI can be performed on the cloud. Once trained, SmartUDI can be seamlessly deployed

on either cloud infrastructures of IoT device vendors or edge nodes, allowing for real-time UDI prediction.

5 MESSAGE-PASSING-BASED ROUTINE EXTRACTION
We define a series of behaviors that often occur simultaneously as a routine, which reflects a person’s behavior

habits. Behaviors in the same routine are highly correlated, while behaviors of different routines are less correlated,

mining this correlation is beneficial for UDI prediction. As mentioned before, there are often some noise behaviors

mixed in a routine, so we design a Message-Passing-based Routine Extraction (MPRE) Algorithm to extract

routines from behavior sequences. MPRE consists of a behavior graph construction and a routine extraction

algorithm. The Behavior Graph is constructed according to the co-occurrence of different behaviors. Because

behaviors in a routine often appear together in a sequence, closely related behaviors (in the same community) in

the behavior graph are more likely to belong to a routine, so we designed a routine extraction algorithm to detect

the community in the behavior graph.

Behavior Graph Construction. We construct behavior graph from all behavior sequences. The behavior

graph can be modeled as a weighted directed graph𝐺𝑏 (𝑉𝑏, 𝐸𝑏). Each node in the graph represents a device control.

Each edge (𝑐𝑖 , 𝑐 𝑗 ) ∈ 𝐸𝑏 indicates device controls 𝑐𝑖 and 𝑐 𝑗 have co-occurred in the same behavior sequence,

with the weight of the edge represents the number of times that co-occurrence of 𝑐𝑖 and 𝑐 𝑗 happens. A larger

edge weight indicates a closer relationship between the two device controls. Lines 1-8 in Algorithm 1 show the

construction process of the graph𝐺𝑏 (𝑉𝑏, 𝐸𝑏). Line 11 assigns each edge a normalized weight calculated as the

weight of the edge divided by the sum of the weights of all outgoing edges of the starting node of that edge. Lines

12-14 remove edges with lower weight and normalized weight, which helps to separate irrelevant behaviors on

the behavior graph. In line 12, we set𝑤_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 as 3 and 𝑛𝑤_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 as 0.1.

Through behavior graph construction, we transform the routine extraction problem into the community

detection problem [16]. Communities in a graph are the groups of nodes, which are more highly connected

to each other than to the rest of the nodes in the graph. Thus, extracting routines from behavior sequences is

equivalent to identifying communities from the behavior graph.

Message Passing. The routine of a node is not only related to its own features, but also related to the features

of other nodes in the behavior graph. Therefore, we perform message passing on the graph to realize node

information exchange. Before message passing, lines 16-24 use the maximal clique
1
algorithm [37] to initialize

the routine that the node belongs to, because each node in a maximal clique is connected to each other, and these

device controls are likely to belong to the same routine. In line 17, 𝐾 represents the number of maximal cliques

in the behavior graph and 𝑐𝑙𝑖𝑞𝑢𝑒 [𝑘] denotes the set of nodes in 𝑘-th clique. Lines 25-34 update the routines

of different nodes through message passing. For each node, the weighted messages of its neighbor nodes are

accumulated, and then the updated routine is obtained by averaging its own routine and messages. After message

passing, we normalize the routine feature of each node and assign routine labels to nodes based on the routine

feature, as presented in lines 36-40. 𝑟𝑜𝑢𝑡𝑖𝑛𝑒_𝑓 𝑒𝑎𝑡𝑢𝑟𝑒 [𝑛𝑜𝑑𝑒] [𝑘] indicates the probability that 𝑛𝑜𝑑𝑒 belongs to

routine 𝑘 . Line 39 assigns the 𝑛𝑜𝑑𝑒 to the routine 𝑘 with the highest probability.

Through routine extraction, related behaviors are grouped together and unrelated behaviors are separated.

Based on the results of the routines, we can construct positive and negative samples which are used for contrastive

learning (section 8). If two behaviors are from the same routine, they are treated as a positive pair. If they are

1
A clique is a complete subgraph of a graph, that is, all nodes in a clique are connected to each other. A clique is called a maximal clique of a

graph if it is not contained by any other clique. Here we use the Bron-Kerbosh algorithm to solve the maximum clique in the behavior graph.
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Algorithm 1 Message-Passing-based Routine Extraction Algorithm.

Input: behavior sequences S, routine number 𝐾 , iteration number of message passing 𝑇

Output: routine class 𝑟𝑜𝑢𝑡𝑖𝑛𝑒

1: // graph construction

2: for 𝑠 ∈ S do
3: for 𝑖 = 1, ...𝑙𝑒𝑛(𝑠 .𝑑𝑒𝑣𝑖𝑐𝑒_𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠) do
4: for 𝑗 = 1, ...𝑙𝑒𝑛(𝑠 .𝑑𝑒𝑣𝑖𝑐𝑒_𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠) do
5: edges[s.device_controls[i]][s.device_controls[j]] += 1;

6: end for
7: end for
8: end for
9: // remove the edge with small weight

10: for 𝑒𝑑𝑔𝑒 ∈ 𝑒𝑑𝑔𝑒𝑠 do
11: edge_weight[i][j] = edges[i][j]/sum(edges[i]);

12: if edges[i][j] >𝑤_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 && edge_weight[i][j] > 𝑛𝑤_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 then
13: graph.add_edge(i,j,edge_weight[i][j]);

14: end if
15: end for
16: // initialize the routine by clique

17: 𝑐𝑙𝑖𝑞𝑢𝑒, 𝐾 = 𝑔𝑒𝑡_𝑚𝑎𝑥𝑖𝑚𝑎𝑙_𝑐𝑙𝑖𝑞𝑢𝑒 (𝑔𝑟𝑎𝑝ℎ)
18: for 𝑛𝑜𝑑𝑒 ∈ 𝑔𝑟𝑎𝑝ℎ.𝑛𝑜𝑑𝑒𝑠 do
19: for 𝑘 = 1, ...𝐾 do
20: if 𝑛𝑜𝑑𝑒 ∈ 𝑐𝑙𝑖𝑞𝑢𝑒 [𝑘] then
21: routine_feature[node][k] = 1;

22: end if
23: end for
24: end for
25: // message passing

26: for 𝑖𝑡𝑒𝑟 = 1...𝑇 do
27: for 𝑛𝑜𝑑𝑒 ∈ 𝑔𝑟𝑎𝑝ℎ.𝑛𝑜𝑑𝑒𝑠 do
28: message = 0;

29: for 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 ∈ 𝑛𝑜𝑑𝑒.𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 do
30: message += routine_feature[neighbor]*edge_weight[node][neighbor];

31: end for
32: routine_feature[node] = (message+routine_feature[node])/2;

33: end for
34: end for
35: // calculate the label of each node

36: for 𝑛𝑜𝑑𝑒 ∈ 𝑔𝑟𝑎𝑝ℎ.𝑛𝑜𝑑𝑒𝑠 do
37: total = sum(routine_feature[node])

38: routine_feature[node] = routine_feature[node] / total;

39: routine[node] = 𝑎𝑟𝑔𝑚𝑎𝑥𝑘∈{1...𝐾 } (routine_feature[node][𝑘])
40: end for
41: return 𝑟𝑜𝑢𝑡𝑖𝑛𝑒
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from different routines, they are treated as a negative pair. As shown in Fig. 4 (bottom left), for the behaviors in

the blue area, the behaviors inside the blue area are the positive samples, and the behaviors in the red and green

areas are the negative samples.

6 INTENT-AWARE CAPSULE GRAPH ATTENTION NETWORK
The Intent-aware Capsule Graph Attention Network mainly includes a behavior encoder and an intent-aware

encoder. The behavior encoder (§6.1) encodes device control with device and time to fully account for contextual

information. The intent-aware encoder (§6.2) views the behavior representations as a primary capsule and learns

multi-intents representations by dynamic routing.

6.1 Behavior Encoder
Because human behaviors consist of time, device and device control, to fully account for contextual information,

we design different ways to learn the embeddings of time, device and device control respectively.

6.1.1 Time Embedding. Due to the continuity of timestamps, it is impractical to learn temporal representations

directly from timestamps. We express time as hour of the day and day of the week, as they are shown to affect

users’ device controls [13]. We leverage Time2Vec [15] to learn time embedding because it can capture both

periodic and non-periodic patterns and is invariant to time rescaling. For a given scalar notion of time 𝜏 , the

embedding t2v(𝜏) of size 𝐿 can be defined as follows:

t2v(𝜏) [𝑖] =
{
𝜔𝑖𝜏 + 𝜑𝑖 , if 𝑖 = 0

F (𝜔𝑖𝜏 + 𝜑𝑖 ) , if 1 ≤ 𝑖 ≤ 𝐿 − 1

(1)

where t2v(𝜏) [𝑖] denotes the 𝑖-th element of t2v(𝜏), F is a periodic activation function, i.e., a sine function, 𝜔𝑖

and 𝜑𝑖 are learnable parameters. For instance, a sine function 𝑠𝑖𝑛(𝜔𝜏 + 𝜙) with 𝜔 =
2𝜋

7

repeats every 7 days

(assuming 𝜏 indicates days) and can potentially model weekly patterns. Let 𝑒𝑑𝑤, 𝑒ℎ ∈ R𝐿 denote the embeddings

of day of the week and hour of the day which are obtained by Time2Vec, respectively.

6.1.2 Device and Device Control Embeddings. When learning device and device control embeddings, we need

to consider complex heterogeneous transitions between different devices and device controls. [38] proves that

Gated Graph Neural Networks (GGNN) can mine the transitions between different nodes in a sequence graph.

However, GGNN cannot be directly applied to our scenario because the transitions between different devices are

heterogeneous (different device controls). Inspired by [3], which incorporates relational information into Graph

Attention Networks (GAT), we propose Relational Gated Graph Attention Network (RGGAT) to learn device

and device control embeddings from the relational sequence graphs constructed by behavior sequences.

Relational Sequence Graph (RS-Graph) Construction. A behavior sequence 𝑠 can be modeled as a

relational directed graph 𝐺𝑠 (𝑉𝑠 , 𝐸𝑠 ) with 𝑅 = |ℛ| relation types and 𝑁 nodes. Each node in the graph represents

a device, each edge (𝑑𝑛−1, 𝑑𝑛) ∈ 𝐸𝑠 indicates that the user accesses device 𝑑𝑛 after accessing device 𝑑𝑛−1 and
each device control represents a relation 𝑟 . Specifically, letMIn,MOut ∈ R𝑁×𝑁

denote weighted connections of

outgoing and incoming edges in the RS-Graph, respectively. Considering a behavior sequence 𝑠=[(𝑡1, 𝑑1,washing

machine:start, laundry), (𝑡2, 𝑑2, microwave:switch on, cooking), (𝑡3, 𝑑1, washing machine:notification, laundry),

(𝑡4, 𝑑3, dryer:switch on, laundry), (𝑡5, 𝑑2, microwave:notification, cooking), (𝑡6, 𝑑4, dish washer: start, cooking)],

the RS-Graph is shown in Fig. 5(a) and the relevant incoming and outgoing matrices are shown in the Fig. 5(b).

Since several devices may appear in the behavior sequence repeatedly, we assign each edge a normalized weight

calculated as the number of occurrences of the edge divided by the out-degree of the starting node of that edge.
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Fig. 5. Construction of RSGraph.

Device Embedding Update on RS-Graph. Next, we describe how to learn representations for each device

and device control with Relational Gated Graph Attention Neural Networks (RGGAT).

To learn representations for devices, we first encode each device 𝑑 ∈ D into a low-dimensional latent space

through an embedding layer. Let 𝑒𝑑 ∈ R𝐿 denote a 𝐿-dimensional embedding vector of device 𝑑 . Let N (𝑟 )
𝑖

denote

the set of neighbor indices of node 𝑖 under relation 𝑟 ∈ ℛ. For nodes 𝑗 ∈ N (𝑟 )
𝑖

, to evaluate how important node

𝑗 ’s features are to node 𝑖 , we compute the attention coefficient 𝐸𝑖, 𝑗,𝑟 as:

𝐸𝑖, 𝑗,𝑟 = Attention

(
W𝑒𝑑𝑖 ,W𝑒𝑑 𝑗

)
, (2)

whereW is the sharedweightmatrix, andAttention is the attentionmechanism [36], i.e., a single-layer feedforward

neural network and the LeakyReLU nonlinear activation function. The normalized attention coefficients across

all neighbors of node 𝑖 under relation 𝑟 are:

𝛼𝑖, 𝑗,𝑟 = softmax

𝑗

(
𝐸𝑖, 𝑗,𝑟

)
=

exp

(
𝐸𝑖, 𝑗,𝑟

)∑
𝑘∈N (𝑟 )

𝑖

exp

(
𝐸𝑖,𝑘,𝑟

) , (3)

∀𝑖, 𝑟 :
∑︁
𝑗∈N (𝑟 )

𝑖

𝛼𝑖, 𝑗,𝑟 = 1. (4)

Given the attention matrix A𝑟 under relation 𝑟 , where the value in row 𝑖 and column 𝑗 of A𝑟 represents 𝛼𝑖, 𝑗,𝑟 , and
the connection matrices MIn

and MOut
, for the 𝑛-th device in the RS-Graph, the information propagation process

can be formalized as:

a𝑛,𝑟 = Concat

(
M𝐼𝑛
𝑛 ⊙ A𝑟,𝑛

[
e𝑑1 , . . . , e𝑑𝑁

]
,

M𝑂𝑢𝑡
𝑛 ⊙ A𝑟,𝑛

[
e𝑑1 , . . . , e𝑑𝑁

] )
,

(5)

whereM𝐼𝑛
𝑛 ,M

𝑂𝑢𝑡
𝑛 ∈ R1×𝑁 are 𝑛-th row ofM𝐼𝑛

andM𝑂𝑢𝑡
corresponding to node 𝑑𝑛 , respectively, and A𝑟,𝑛 ∈ R1×𝑁

is the 𝑛-th row of A𝑟 . ⊙ denotes element-wise multiplication. a𝑛,𝑟 extracts the transition context information

between different devices with different relations.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 7, No. 3, Article 136. Publication date: September 2023.



136:12 • Xiao and Zou, et al.

Then a𝑛,𝑟 is input to the Gate Recurrent Unit (GRU), which consists of an update gate z𝑛 and a reset gate r𝑛 .
The reset gate z𝑛 determines how new input information is combined with previous memories

z𝑛,𝑟 = sigmoid

(
W𝑧a𝑛,𝑟 + U𝑧e𝑛−1

)
. (6)

The update gate r𝑛 determines what historical information to keep

r𝑛,𝑟 = sigmoid

(
W𝑟a𝑛,𝑟 + U𝑟e𝑛−1

)
. (7)

Then, we constructs the candidate state ẽ𝑛,𝑟 by the previous state 𝑒𝑛−1, the current state a𝑛,𝑟 , and the reset gate

r𝑛,𝑟 as

ẽ𝑛,𝑟 = tanh

(
Wℎa𝑛,𝑟 + U𝑜

(
r𝑛,𝑟 ⊙ e𝑛−1

) )
. (8)

The final state is then the combination of the previous hidden state and the candidate state, under the control of

the update gate. After updating all nodes in RS-Grpahs until convergence, we can obtain the device embedding

𝑒𝑛,𝑟 under relation 𝑟 as

e𝑛,𝑟 =
(
1 − z𝑛,𝑟

)
⊙ e𝑛−1 + z𝑛,𝑟 ⊙ ẽ𝑛,𝑟 , (9)

whereW𝑧,W𝑟 ,Wℎ ∈ R𝐿×2𝐿,U𝑧,U𝑟 ,U𝑜 ∈ R𝐿×𝐿 are learnable parameters, ⊙ represents element-wise multiplica-

tion. Adding the results of 𝑅 relation outputs together can obtain the final 𝑛-th device embedding:

e𝑑 = ⊕𝑅𝑟=1e𝑛,𝑟 , (10)

where ⊕ represents element-wise addition.

The device control embedding 𝑒𝑑𝑐 can be obtained similarly by building device control RS-Graphs, where the

node represents device control and the incoming edge and the outgoing edge represent two relations, respectively.

6.1.3 Behavior Embedding. By concatenating the day of the week embedding, hour of the day embedding, device

embedding and device control embedding, we can obtain the summarized representation h̃ of each behavior:

h̃ = [𝑒𝑑𝑤, 𝑒ℎ, 𝑒𝑑 , 𝑒𝑑𝑐 ], (11)

Since our model contains no recurrence and no convolution, we must inject some information about the relative

or absolute position of the behaviors in the sequence so that the model can make use of the order of the sequence.

To identify the position of the input variable, following [35], we add positional encoding 𝑃𝐸 to the behavior

representation as follows:

h = h̃ + 𝑃𝐸, (12)

𝑃𝐸 (𝑝𝑜𝑠,2𝑖 ) = sin

(
𝑝𝑜𝑠/100002𝑖/𝑑h̃

)
,

𝑃𝐸 (𝑝𝑜𝑠,2𝑖+1) = cos

(
𝑝𝑜𝑠/100002𝑖/𝑑h̃

)
,

(13)

where 𝑖 denotes the 𝑖-th dimension of the behavior embedding, 𝑝𝑜𝑠 denotes the position of the behavior in the

behavior sequence and 𝑑h̃ is the dimension of h̃.

6.2 Intent-aware Encoder
The purpose of the intent-aware encoder is to encode a sequence of behaviors while considering the relationship

between different behaviors and the multiple intents of the user. To this end, we design a self-attention layer to

mine the context of behaviors, and capsule networks to learn the multi-intent representations of users.
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6.2.1 Self-attention Layer. We employ transformer encoder [35] for the self-attention layer since it can effectively

mine global semantic information of behavior sequence context by learning query, key and value matrices of

different variables. Given an input behavior representation h, the query, key and value matrices can be calculated

as following:

Q = hW𝑄 , K = hW𝐾 , V = hW𝑉 , (14)

where W
𝑄 ,W𝐾 ,W𝑉

are the transformation matrices. The attention score is computed by:

A = Attention(𝑄,𝐾,𝑉 ) = softmax

(
𝑄𝐾𝑇
√
𝑑𝑘

)
𝑉 (15)

where 𝑑𝑘 is the dimension of 𝐾 . To improve the stability of the learning process and achieve higher performance,

we adopt multi-head attention in Q, K, and V. Then, the position-wise feed-forward network (FNN) and residual

connections are adopted:

h = Trans(h) = h + Ah + FNN(h + Ah) (16)

where Trans(·) is the transformer and FNN(·) is a 2-layered position-wise feed-forward network [35].

6.2.2 Capsule Networks. We utilize Capsule Networks [29] (CapsNets) to extract multiple intents of a behavior

sequence. We can naturally treat intents as capsules to learn the probabilities of various intents, since the capsule

network learns the probability that a capsule’s entity exists. A capsule is a set of neurons whose activity vectors

represent the instantiated parameters of a specific type of entity, such as an object or object part, and the length

of the instantiation vector represents the probability that a capsule’s entity exists [29]. Take a two-layer capsule

network as an example, there are two levels of capsules, i.e., low-level capsules from the first layer and high-level

capsules from the second layer. The dynamic routing algorithm is used to compute the values of high-level

capsules given the values of low-level capsules.

In SmartUDI, intent-specific behavior representations are treated as primary (low-level) capsules, while user

multi-intent representations are treated as intent (high-level) capsules. We artificially classify the intents of

behaviors, and then each behavior representation is only connected to the corresponding intent capsule. (As

shown in Fig. 4 (bottom right), the blue representations and the red representations belong to two different

intents, and are connected to the corresponding intent capsules.) The representation h𝑖 of the 𝑖-th behavior

denotes the 𝑖-th capsule of the primary layer. Based on the primary capsules, the 𝑗-th intent capsule of the next

layer can be calculated as:

ˆh𝑗 |𝑖 = W𝑖 𝑗h𝑖 , (17)

whereW𝑖 𝑗 denotes the learnable bilinear mapping matrix. The candidate vector s𝑗 for intent capsule 𝑗 is computed

as the weighted sum of all primary capsules:

s𝑗 =
∑︁
𝑖

w𝑖 𝑗
ˆh𝑗 |𝑖 , (18)

where𝑤𝑖 𝑗 denotes the weight for connecting low-level capsule 𝑖 and high-level capsule 𝑗 and is calculated by

performing softmax on routing logits 𝑏𝑖 𝑗 as:

w𝑖 𝑗 =
exp

(
𝑏𝑖 𝑗

)∑
𝑘 exp (𝑏𝑖𝑘 )

, (19)

where 𝑏𝑖 𝑗 represents the log prior probability that capsule 𝑖 should be coupled to capsule 𝑗 . The values of 𝑏𝑖 𝑗 are

initialized to zeros, and updated by the routing process described in Algorithm 2. Then a non-linear “squashing”
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function [29] is adopted to squeeze the candidate vector 𝑠 𝑗 so that short vectors are compressed to almost zero

length, while long vectors are compressed to a length slightly below 1. The vector of intent capsule 𝑗 is calculated

by:

c𝑗 = squash

(
s𝑗

)
=



s𝑗

2
1 +



s𝑗

2 s𝑗

s𝑗

 . (20)

The output intent capsules are formulated as [c1, ..., c𝐾 ] ∈ R𝐾×𝑙𝑒𝑛 (c)
to represent multiple intents of the behavior

sequences, the 𝑙𝑒𝑛(𝑐) denotes the dimension of primary capsules. Finally, the inter-intent aggregation mechanism

is applied as follows:

C = W𝐶 [c1, ..., c𝐾 ], (21)

whereW𝐶 ∈ R1×𝐾 is the learnable parameter and denotes the weights of the intents.

Algorithm 2 SmartUDI Dynamic Routing.

Input: primary capsules h𝑖 , iteration times 𝑇 , number of intent capsules 𝐾

Output: intent capules

{
c𝑗 , 𝑗 = 1, . . . , 𝐾

}
1: for each primary capsule 𝑖 and corresponding intent capsule 𝑗 : initialize 𝑏𝑖 𝑗 = 0

2: for 𝑖𝑡𝑒𝑟 = 1, ...𝑇 do
3: for each primary capsule 𝑖: w𝑖 = softmax (b𝑖 ).
4: for each intent capsule 𝑗 : s𝑗 =

∑︁
𝑖

w𝑖 𝑗W𝑖 𝑗h𝑖 .

5: for each intent capsule 𝑗 : c𝑗 = squash

(
s𝑗

)
.

6: for each primary capsule 𝑖 and intent capsule 𝑗 : 𝑏𝑖 𝑗 = 𝑏𝑖 𝑗 + c⊤𝑗 W𝑖 𝑗h𝑖 .
7: end for
8: return

{
c𝑗 , 𝑗 = 1, . . . , 𝐾

}
7 CLUSTER-BASE HISTORICAL ATTENTION MECHANISM
[9, 32] show the multi-level nature of human behavior periodicity, a static representation of user behavior

sequences fails to capture the periodicity and evolution of user behavior. Human behavior is dynamic in nature.

The multi-level periodicity (day-level, week-level, month-level, and even some irregular periodicity) may exist

at the same time in human behaviors, we cannot explicitly represent the periodicity times. Nevertheless, the

existence of periodicity also means some human historical behaviors may reappear in a predictable way. By

capturing the correlation between the current behavior sequence and the historical behavior sequences, such

recurrence feature can be well excavated for predicting the next behavior, which essentially reflects the multi-level

periodicity of human behavior. The attention mechanism [35] is often used to measure the correlation between

two instances. DeepMove [9] mines the multi-level periodicity of human mobility by applying the attention

mechanism between the current sequence and all historical sequences. However, considering all historical

sequences not only increase the training overhead as the sequence data increases, but also introduces noise since

not all historical sequences are related to the current sequence. Therefore, we design a Cluster-based Historical

Attention Mechanism (CHAM). CHAM first clusters behavior sequences according to their semantic similarities

and then applies historical attention mechanism within the scopes of clusters. By considering the historical

sequences semantically nearest to the current sequence, CHAM not only reduces the training overhead, but also

filters the irrelevant sequences, thereby improving the prediction performance.
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7.1 Behavior Sequences Clustering
Behavioral Sequence Clustering needs to be completed before training, so as to ensure that the model can obtain

similar historical sequences according to the clustering results during training. To effectively cluster behavior

sequences, we first need to evaluate the semantic similarity between behavior sequences which jointly considers

the device, device control and time dimensions.

Edit distance [30] is widely used to measure the similarity between two sequences. It is calculated by the

minimum number of editing operations required to convert one sequence to another. A smaller distance means

more similar sequences. However, edit distance is not feasible to measure the similarity between behavior

sequences in our scenarios due to the following two reasons. First, edit distance does not incorporate device

control semantic information. For example, suppose device control sequence 𝐴 is “turn on light -> turn on outlet

-> turn off light”, device control sequence 𝐵 is “turn on light -> adjust outlet mode -> turn off light”, and device

control sequence 𝐶 is “turn on light -> close curtain -> turn off light”. The edit distance between the three

sequences is 1, but the degree of difference between 𝐴 and 𝐵 is lower than that between 𝐴 and 𝐶 , because the

second behaviors of 𝐴 and 𝐵 are both to control on the outlet, while the second behavior of 𝐶 is to control the

curtain. Second, edit distance does not consider the time when a behavior occurs, which is also of great value for

evaluating similarity.

7.1.1 Device and Device Control Similarity. Node2vec [11] can learn low-dimensional representations containing

semantic information for nodes in a graph by using random walks through a graph starting at a target node.

We have constructed RS-Graphs for devices and device controls in section 6.1, so we perform node2vec [11] on

RS-Graphs to learn the representations of device and device control.

7.1.2 Time Similarity. Because behaviors are cyclical, using the absolute time to measure time similarity between

behaviors is inappropriate. For example, a user may open the curtains at 8:00 a.m. on both Tuesday andWednesday.

Though the absolute time dissimilarity is one day, in fact, there is no difference between the two behaviors

because they both occur at 8:00 a.m.. Therefore, we express time as the hour of the day. Then, the time 𝑡 is

converted to the radian of a unit circle in the coordinates centered on (0, 0), i.e., [0, 24) → [0, 2𝜋). The hour time

is represented by the coordinate of a point in the unit circle based on the radian 𝜃 [21] following:

𝐻 (𝑡) = (cos𝜃, sin𝜃 ), 𝜃 = 2𝜋

( 𝑡
24

)
. (22)

Let 𝐹 (𝑑) and 𝐹 (𝑑𝑐) denote the device and the device control representations learned by node2vec [11], respec-

tively. The similarity between two behavior sequences 𝑠𝑝 and 𝑠𝑞 is computed as:

𝑑 (𝑠𝑝 , 𝑠𝑞) =
𝑙𝑒𝑛 (𝑠 )∑︁
𝑝𝑖=1,𝑞𝑖=1

(𝐹 (𝑑𝑝𝑖 )𝑇 𝐹 (𝑑𝑞𝑖 ) + 𝐹 (𝑑𝑐𝑝𝑖 )𝑇 𝐹 (𝑑𝑐𝑞𝑖 ) + 𝐻 (𝑡𝑝𝑖 )𝑇𝐻 (𝑡𝑞𝑖 )), (23)

where 𝑙𝑒𝑛(𝑠) is the length of sequence 𝑠𝑝 and 𝑠𝑞 , 𝑝𝑖 and 𝑞𝑖 are the 𝑝𝑖-th and 𝑞𝑖-th item in the behavior sequence

𝑠𝑝 and 𝑠𝑞 , respectively.

Finally, we use the k-means algorithm [12] to cluster behavioral sequences, where the similarity of the sequences

is measured by Eq.23.

7.2 History Attention Mechanism
Suppose the current sequence is 𝑠𝑡 , the nearest history sequences {𝑠𝑖 ∈ 𝐶𝑙𝑢𝑠𝑡𝑒𝑟 (𝑠𝑡 )} are obtained from the cluster

results. The historical attention layer uses the representation C𝑡 of the current behavior sequence as a query
vector to calculate the attention score between it and the nearest historical behavior sequences. The historical

attention mechanism is formulated as follows:
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𝛼𝑖 =
exp (𝛽𝑖 )∑𝑡−1
𝑗=1 exp

(
𝛽 𝑗

) , 𝛽𝑖 = tanh (C𝑡W𝐻C𝑖 ) , (24)

where 𝛼𝑖 , 𝛽𝑖 ∈ R are normalized and unnormalized scores for the 𝑖-th history behavior sequence, respectively, C𝑖
is the 𝑖-th history behavior sequence’s representation in the nearest sequences and𝑊𝐻 is the learnable parameter.

Upon obtaining the attention weights, the prediction vector 𝑝 can be obtained by concating C𝑡 and the weighted

sum of historical behavior sequence representations:

𝑝 = Concat

(
C𝑡 ,

𝑡−1∑︁
𝑖=1

𝛼𝑖C𝑖

)
, (25)

finally, we feed 𝑝 into the prediction layer and compute the probabilities of device controls as follows:

ŷ = softmax

(
W𝑝𝑝

)
, (26)

where ŷ is the predicted probabilities of the next device control andW𝑝 ∈ R | C |×𝑙𝑒𝑛 (𝑝 )
is the learnable transfor-

mation matrix, |C| is the number of device controls, 𝑙𝑒𝑛(𝑝) is the length of 𝑝 .

8 MULTI-TASK TRAINING
Contrastive learning as a self-supervised learning method has been applied to make the representation vectors of

“similar” samples close and those of “dissimilar” samples alienated [5]. To leverage the self-supervised signals

derived from the routine extraction part (section 5) to enhance the performance of UDI prediction, we adopt a

multi-task strategy where the main UDI prediction task and the contrastive learning task are jointly optimized.

Contrastive Learning Task Loss Function. Based on the routine, a contrastive loss function is used to

distinguish whether two behaviors originate from the same routine. The contrastive loss can lean to minimize

the difference between behaviors of the same routine and maximize the difference between the behaviors derived

from different routines. Through contrastive learning, the correlation of behaviors in the same routine can be

strengthened, and the correlation of behaviors not in the same routine will be reduced, thereby solving the

problem of false correlation. We first define the similarity between two behavior representations h𝑝 and h𝑞 as:

sim

(
h𝑝 , h𝑞

)
= h⊤𝑝 h𝑞/



h𝑝

 

h𝑞

 . (27)

Then, the contrastive loss for h𝑖 in behavior sequence 𝑠 is defined as:

L (h𝑖 ) = − log

∑
h𝑗 ∈𝑝𝑜𝑠 (h𝑖 ),h𝑗≠h𝑖 exp

(
sim

(
h𝑖 , h𝑗

)
/𝜏

)∑
h𝑘 ∈𝑛𝑒𝑔 (h𝑖 ),h𝑘≠h𝑖 exp (sim (h𝑖 , h𝑘 ) /𝜏)

, (28)

where 𝑝𝑜𝑠 (h𝑖 ) is set of positive samples for hi, 𝑛𝑒𝑔(h𝑖 ) is the set of negative samples for hi, and 𝜏 is a temperature

parameter to control the sensitivity of the cosine similarity. Finally, the contrastive loss function can be defined

as:

L𝐶𝐿 =
1

∥S∥
∑︁
𝑠∈𝑆

∑︁
h𝑖 ∈𝑠

L (h𝑖 ) , (29)

where ∥S∥ is the number of behavior sequences.

UDI Prediction Task Loss Function.We define the cross-entropy loss function for user device interaction

prediction problem as follows:

L𝑈𝐷𝐼 (𝑋, Y) = − 1

|S|
∑︁
𝑠∈S

y𝑠 log ŷ𝑠 , (30)

where ŷs is the predicted probabilities of the next device control of the behavior sequence 𝑠 and y is the one-hot

vector of the ground-truth label.
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The total loss is a linear weighted sum:

Ltotal = LUDI + 𝜆LCL, (31)

where 𝜆 is a balance hyperparameter.

9 EXPERIMENTS
In this section, we conduct comprehensive experiments on four real-world datasets to answer the following

research questions:

• RQ1. Performance. Compared with other methods, can SmartUDI predict user device interaction more

accuractely?

• RQ2. Ablation study. How does each main component of SmartUDI affects the performance of UDI

prediction?

• RQ3. Parameter study. How do key parameters affect the performance of SmartUDI?

• RQ4. Interpretability study. Can SmartUDI give a reasonable explanation for the prediction results?

• RQ5. Embedding space analysis.Does SmartUDI successfully learn useful embedding vectors of behaviors

and correct correlations between behaviors?

9.1 Experimental Setup
9.1.1 Datasets. We evaluate model performance using four real-world smart home datasets, three (FR/SP/US)

from public datasets
2
and one anonymous dataset (AN) collected by ourselves. The datasets description is shown

in Table 1, the testbed and collection process of AN datasets are shown in Appendix B. In the datasets, all behavior

sequences are arranged in chronological order. All datasets are split into training, validation and testing sets with

a ratio of 7:1:2 according to the timestamps of the behaviors. The divided datasets still maintain time order (from

early to late). That is, all behaviors in the validation set occur after those in the training set and all behaviors

in the test set occur after those in both the training and validation sets. We create sequential instances with

a window of length 10. The first nine behaviors of the window are input of SmartUDI for predicting the next

behavior, i.e., the 10th behavior. Time features of a behavior is a combination of the day of week and hour based

on the behavior’s timestamp. The hour is one of the 8 time ranges of 3 hours length: 0-3, 3-6, 6-9, 9-12, 12-15,

15-18, 18-21, and 21-24. It is worth noting that we divide the behavior into fixed time intervals (i.e., 3h), so that

the time span of a user behavior sequence depends on the total time span of the behaviors in the sequence. We

label user behaviors with intents based on device attributes. For example, an oven belongs to the cooking intent,

and a TV belongs to the entertainment intent. Information of all intents is included in Appendix C.

Table 1. Datasets Description

Name Time period (Y-M-D) Sizes # Devices # Device controls

US 2022-02-22∼2022-03-21 67,882 40 268

SP 2022-02-28∼2022-03-30 15,665 34 234

FR 2022-02-27∼2022-03-25 4,423 33 222

AN 2022-07-31∼2022-08-31 1,765 36 141

2
https://github.com/snudatalab/SmartSense
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9.1.2 Baselines. Several methods in existing studies about UDI prediction in smart home and sequential user

behavior prediction are employed as baseline algorithms:

• HMM [2] builds a transition matrix between different device controls to capture the first order transition

probabilities for UDI prediction.

• FPMC [28] combines Markov chain with matrix factorization to capture both sequential patterns and user

preferences for UDI prediction.

• LSTM [34] captures the long-term sequential influence for UDI prediction.

• CARNN [23] considers context-dependent features by using context-specific transition matrix in RNN cell

for a sequential recommendation.

• Caser [33] employs CNN in both time-axis and feature-axis to capture temporal dynamics for UDI predic-

tion.

• DeepMove [9] captures both long and short-term user behavior patterns by the enhanced version of RNN

with a history attention mechanism.

• SIAR [27] applies Stacked Recurrent Neural Networks that model the dynamics of contexts and temporal

gaps for context-aware UDI prediction.

• SR-GNN [38] applies gated graph neural network to generate latent vectors of items and then represents

each session through an attention network for user behavior prediction.

• SASRec [14] uses time-growing directional transformer encoder to consider sequential patterns of user

actions for action prediction.

• SmartSense [13] applies query transformer for smart home action recommendation.

• DeepUDI [39] applies graph neural network, transformer and attention mechanism to predict user behavior

in smart home scenarios.

9.1.3 Evaluation Metrics. Top-k accuracy (Acc@k) and Macro-F1 are adopted as evaluation metrics for UDI

prediction. Specifically, let 𝑠 ∈ 𝑆 denote the set of behavior sequences and 𝑃𝐾 (𝑠) denote the set of 𝐾 device

controls with the largest probabilities that the model predicts for the behavior sequence 𝑠 , the Acc@K can be

formulated as:

Acc@K =
| {𝑠 ∈ 𝑆 : 𝑝 (𝑠) ∈ 𝑃𝐾 (𝑠)} |

|𝑆 | , (32)

where 𝑝 (𝑠) denotes the ground truth of the next device controls. As UDI prediction is a multi-class classification

problem and the class distribution is uneven (as shown in Appendix A), Macro-F1 is a more generic metric to the

evaluation of model performance on a dataset with an uneven class distribution:

Macro-F1 =

∑
𝑐 F1𝑐

|C| , (33)

where F1𝑐 denotes the F1 score of class 𝑐 (device control), and the F1 score is the harmonic mean of the precision

and recall.

9.1.4 Implementation. All models are implemented by PyTorch [26] and run on a graphic card of GeForce RTX

3090 Ti. All models are trained with Adam optimizer [18] with a learning rate of 0.001. The iteration number𝑇 in

Algorithm.1 is set to 2 and the balance hyperparameter 𝜆 in Eq.31 is set to 0.5. SmartUDI is trained by multi-task

training strategy in Section 8. During training, we monitor Acc@1 and stop training if there is no performance

improvement in 10 steps. We observe the time cost of SmartUDI for next behavior prediction is 11.8ms, which

means that SmartUDI is capable of real-time UDI prediction.
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Table 2. Performance comparison on four real-world datasets.

Dataset Metric HMM FPMC LSTM CARNN Caser DeepMove SIAR SRGNN SASRec SmartSense DeepUDI SmartUDI

Acc@1 0.6099 0.6557 0.7062 0.7026 0.7054 0.7116 0.7238 0.9245 0.9325 0.9407 0.9784 0.9805
Acc@3 0.7501 0.7959 0.7843 0.8302 0.8569 0.9272 0.9354 0.9864 0.9665 0.9731 0.9865 0.9874
Acc@5 0.7714 0.7902 0.8328 0.9003 0.9273 0.9542 0.9645 0.9872 0.9765 0.9838 0.9882 0.9892AN

Macro-F1 0.2439 0.2845 0.3759 0.4159 0.4467 0.5027 0.5259 0.7368 0.7432 0.7519 0.7997 0.8966

Acc@1 0.6536 0.6814 0.6962 0.7893 0.7742 0.7762 0.7796 0.7819 0.7821 0.7923 0.8144 0.8145
Acc@3 0.7813 0.8271 0.8011 0.9148 0.9201 0.9221 0.9120 0.9197 0.9204 0.9232 0.9237 0.9238
Acc@5 0.8242 0.8508 0.8565 0.9425 0.9414 0.9446 0.9420 0.9435 0.9362 0.9379 0.9511 0.9512FR

Macro-F1 0.1127 0.1279 0.1302 0.2102 0.2158 0.2288 0.2312 0.2482 0.2473 0.2603 0.3425 0.3837

Acc@1 0.6315 0.6964 0.7517 0.7853 0.7721 0.7756 0.7802 0.7815 0.7821 0.7921 0.7923 0.7930
Acc@3 0.7863 0.7916 0.8864 0.8915 0.9045 0.9125 0.9217 0.9303 0.9321 0.9342 0.9375 0.9427
Acc@5 0.8361 0.8605 0.9346 0.9117 0.9273 0.9521 0.9597 0.9603 0.9560 0.9511 0.9642 0.9671SP

Macro-F1 0.1382 0.1586 0.1756 0.1745 0.1927 0.2159 0.2176 0.2239 0.2254 0.2244 0.3112 0.3328

Acc@1 0.3327 0.3543 0.4286 0.5212 0.5378 0.5527 0.5633 0.5784 0.5826 0.5935 0.6056 0.6321
Acc@3 0.6881 0.6992 0.8209 0.8577 0.8632 0.8844 0.8902 0.8955 0.8972 0.9056 0.9123 0.9058
Acc@5 0.7258 0.7712 0.8929 0.9135 0.9266 0.9418 0.9432 0.9463 0.9320 0.9489 0.9521 0.9538US

Macro-F1 0.1069 0.1123 0.1265 0.1396 0.1576 0.2388 0.2397 0.2431 0.2433 0.2451 0.3538 0.3742

9.2 Performance Comparison (RQ1)
We use grid search to adjust the parameters (§9.4) of SmartUDI and select the optimal results. The results are

shown in Table 2. For each row, the best performance and the second best performance are highlighted by

bold and underline, respectively. We can make the following observations: 1) The proposed SmartUDI scheme

outperforms all baselines; 2) the traditional models, HMM and FPMC, show the worst performance; 3) the

CNN-based and RNN-based models outperform the traditional models; 4) SR-GNN outperforms RNN-based

models; 5) Transformer-based models SASRec, SmartSense and DeepUDI achieve better performance than all

other baselines. Nevertheless, their performance is still inferior to that of SmartUDI.

9.3 Ablation Study (RQ2)

Table 3. Ablation study results on four datasets.

AN FR SP US

Model

Acc@1 Macro-F1 Acc@1 Macro-F1 Acc@1 Macro-F1 Acc@1 Macro-F1

SmartUDI(w/o MPRE) 0.9622 0.7689 0.7871 0.3093 0.7832 0.3072 0.6028 0.3375

SmartUDI(w/o ICGAT) 0.9568 0.7354 0.7773 0.3199 0.7763 0.2846 0.5872 0.3252

SmartUDI(w/o CHAM) 0.9757 0.8018 0.7929 0.3458 0.7881 0.3235 0.6125 0.3486

SmartUDI(w/o ALL) 0.9137 0.6934 0.7578 0.2511 0.7685 0.2482 0.5736 0.2476

SmartUDI 0.9805 0.8966 0.8145 0.3837 0.7930 0.3328 0.6321 0.3742

To verify the contribution of each of the main components of SmartUDI, i.e., Message-Passing-based Routine

Extraction (MPRE), Intent-aware Capsule Graph Attention Network (ICGAT) and Cluster-based Historical

Attention Mechanism (CHAM), to the final prediction results, we conduct ablation experiments with the optimal

parameters unchanged. SmartUDI(w/o MPRE) denotes SmartUDI without routine extraction and contrastive

learning process. SmartUDI(w/o ICGAT) denotes SmartUDI without ICGAT, which, instead of behavior encoder
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and intent-aware encoder, uses a simple embedding layer (i.e., a fully connected layer). SmartUDI(w/o CHAM)

denotes SmartUDI without CHAM. SmartUDI(w/o ALL) denotes SmartUDI with none of the three components.

SmartUDI is the full scheme with all the three components. Table 3 shows that SmartUDI outperforms all others

on all the four datasets, while SmartUDI(w/o ALL) shows the worst Acc@1 and Macro-F1. In summary, each of

the three components of SmartUDI is contributive for UDI prediction.

Furthermore, we conduct the abalation study on CHAM, and the results are shown in Fig. 6. SmartUDI-HAM

applies attention to all historical behavior sequences and SmartUDI-CHAM cluster behavior sequences first

and then applies attention to semantically nearest historical sequences. Fig. 6(a) and Fig. 6(b) show that the

Acc@1 and Macro-F1 of SmartUDI-CHAM are higher than those of SmartUDI-HAM, because semantically nearest

historical sequences are more helpful for prediction. Then, we set the batch size to 512 to test the execution

time of the model. Fig. 6(c) shows that the execution time per batch of SmartUDI-CHAM is lower than that of

SmartUDI-HAM, which means that SmartUDI-CHAM has higher execution efficiency.
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Fig. 6. Abalation study on Cluster-based Historical Attention Mechanism.

9.4 Influence of Hyper-parameters (RQ3)
We conduct experiments to explore the effects of the number of RGGAT layers, embedding dimension, number of

historical behavior sequence and batch size by keeping other optimal parameters unchanged.
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Fig. 7. The influence of hyper-parameters on Acc@1.

9.4.1 Number of Layers in RGGAT. Fig. 7(a) shows the performance of SmartUDI with different numbers of

RGGAT layers. We find that when the number of RGGAT layers increases, Acc@1 first increases and then

decreases, reaching the optimal value at 2 layers. This is because too few layers can lead to under-fitting, while

too many layers can lead to over-smoothing [4].
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9.4.2 Embedding Dimension. As shown in Fig. 7(b), when the embedding dimension is too small, it cannot

encode enough information, resulting in poor performance. As the embedding dimension becomes larger, the

performance gradually increases. A larger embedding size does not necessarily lead to better performance because

of over-fitting. Therefore, we choose the embedding size to be 50 to achieve the best performance.

9.4.3 Number of History Behavior Sequences. When performing CHAM, we consider a fixed number of historical

sequences which are most similar to the current sequence in the same cluster. A larger number of historical

sequences allows the model to consider more historical information. However, too much historical information

may introduce more uncertainty and is no longer beneficial for performance. Fig. 7(c) shows that 15 historical

sequences enable SmartUDI to achieve the optimal performance.

9.4.4 Batch Size. Fig. 7(d) shows the influences of batch size. As the batch size increases, Acc@1 increases. When

the batch size exceeds 512, the increase in batch size leads to a decrease in performance since larger batch size

hurts the generalization ability of the model.

9.5 Case Study (RQ4)
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Fig. 8. (a) Routine extraction results, (b) capsule weight and (c) top 5 prediction results of the example.

To verify the interpretability of SmartUDI, we choose a behavior sequence𝐴 from the test set of the AN dataset

and visualize the routine extraction results of Message-Passing-based Routine Extraction (MPRE), multi-intent

weights of Intent-aware Capsule Graph Attention Network (ICGAT) and history attention score of Cluster-based

Historical Attention Mechanism (CHAM). The results are shown in Fig. 8 and Fig. 9, we can make the following

three observations.

First, as shown Fig. 8(a), MPRE can dig out potential device correlations from behavior sequences by routine

extraction, which reflect the user’s behavior habits. The routine extraction results show that there are three

routines represented as different areas with different colors in the behavior sequence 𝐴. Devices in the same

routine have a high correlation. The correlation between curtains and bedlight is high because both are operated

right before bedtime and after getting up. The high correlation between the sweeper and TV shows that the user

tends to do some entertainment activities while doing housework activities. The air cleaner and window cleaner

are highly relevant because they are both cleaning devices.
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Second, as shown Fig. 8(b), ICGAT can effectively mine users’ multiple intents and learn the importance

of different intents for final prediction. We visualize the intent weight W𝐶 in Eq. 21. From the intent weight

heatmap, we can find that the four intents with the highest weights in the capsule network are “sleep/getup”,
“shower”, “leave/return”, and “entertainment”, which reasonably explainwhy “bedlight:off ” (sleep/getup), “shower:on”
(shower), “air conditioner:change” (others) “TV:off ” (entertainment) are predicted by the model to be the next

action with the highest probabilities. In particular, the next real action of the sequence is “bedlight:off ”, which is

also predicted with the highest probability by the model as shown in Fig. 8(c). The reason why the predicted

probabilities of “shower:on” and “air conditioner:change” are also high is that the model has learned that the user

often takes a shower and adjusts the temperature of the air conditioner before going to bed. The high probability

of “TV:off ” in the prediction result is because the user has already turned on the TV and needs to turn it off

sometime before bed.

on openon on power up power downopen on sweep

power upon on power down onpower down feed clean temper up
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feed open on power up cleanpower down on open sweep
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Fig. 9. Top 5 most similar historical sequences, time span, next behavior and historical attention score.

Third, as shown Fig. 9, CHAM can leverage most similar historical behavior sequences to model multi-level

periodicity for assisting the prediction. The top five most similar historical behavior sequences (𝐵,𝐶, 𝐷, 𝐸, 𝐹 ) and

historical attention scores between the behavior sequence𝐴 and historical behavior sequences are shown in Fig. 9.

From 𝐵 to 𝐹 , the similarity is gradually decreasing, correspondingly, the attention score also gradually decreases.

The similarity and attention score between 𝐵 and𝐴 are the highest, so when applying CHAM, historical sequence

𝐵 plays the most important role in predicting 𝐴’s next behavior. The next behavior of sequence 𝐵 is "bedlight:off",

so there is a high probability that the next behavior of sequence 𝐴 is "bedlight:off". As shown in Fig. 9, We find

that behavior sequence 𝐴 occurred between 21:00 and 24:00 of 2022-8-21 and behavior sequence 𝐵 occurred

between 21:00 and 24:00 of 2022-8-20, so we can speculate that 𝐴 and 𝐵 show day-level periodicity.

9.6 Embedding Space Analysis (RQ5)
We analyze whether the model effectively learns the relationship between behaviors by observing the embedding

space of the device and time.
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Fig. 10. The device embedding similarity matrix and time embedding similarity matrix.

9.6.1 Device Embedding. We visualize the similarity between device embeddings before and after applying

contrastive learning. The results are shown in Fig. 10(a) (device embedding without contrastive learning) and

Fig. 10(b) (device embedding with contrastive learning). As shown in Fig. 10(a), before contrastive learning, the

similarity between almost all devices is very low, because there is noise behavior in the behavior sequence, and

it is difficult for the model to mine the correlation between different devices. In Fig 10(b), we can see that the

correlation between “curtain" and “bedlight" is relatively high, while the correlation between “sweeper" and

“aircleaner" is relatively low. Combining the results of Fig. 8, we can find that the “curtains" and “bedlight" are in

the same routine, while the “sweeper" and “aircleaner" are in different routines. This shows that after applying

contrastive learning on different routines, embeddings of devices in same routine get closer while embeddings of

devices from different routines become more distant. This is because the contrastive learning narrows embeddings

among devices from the same routines but alienates embeddings among devices from different routines.

9.6.2 Time Embedding. We visualize the day of week embedding and hour of day embedding to verify whether

the model captures the time information well. The results are shown in Fig. 10(c) and Fig. 10(d). In general, the

similarity between adjacent times is relatively high. For example, the similarity between 0-3 hours and 3-6 hours

is high and the similarity between Thursday and Friday is high. However, human behavior is periodic, so the

similarity between some non-adjacent times can also be high, e.g., Tuesday and Thursday, 6-9 hours and 12-15

hours.

10 DISCUSSION
While SmartUDI achieves excellent performance in the UDI prediction tasks, it has some room for further

improvement. First, SmartUDI does not consider the impacts of environmental factors on human behaviors in

smart homes, such as temperature, humidity, and brightness. If the temperature in the room is high, the user

is likely to turn down the temperature of the air conditioner. If it is dark indoor (e.g., a cloudy day), the user

may turn on lights even in the morning. In future work, we will consider collecting environmental factors from

smart home sensors (such as temperature, humidity, light sensors), and feed these environmental features to the

model when making UDI prediction to account for their impacts. Second, SmartUDI considers the behavior of

the current user when making UDI predictions. There may be other users in the smart home, and the behaviors

of different users may affect each other. In future work, we will consider the influence between behaviors from

different users by exploiting the correlation between the current user’s behaviors and other users’ behaviors for

better UDI prediction in multi-user scenarios.
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11 CONCLUSION
In this paper, we propose SmartUDI, a novel user device interaction prediction framework, which achieves

accurate UDI prediction by considering routine, intent, and multi-level periodicity of user behaviors. First, to

extract routine behaviors from behavior sequences with noise, we propose Message-Passing-based Routine

Extraction (MPRE) Algorithm and apply the contrastive loss to minimize the difference between behaviors

within the same routine and maximize the difference between the behaviors derived from different routines.

Second, we propose an Intent-aware Capsule Graph Attention network (ICGAT), which consists of a relational

gated graph attention network and a capsule network to learn user multi-intent representations. Third, we

propose a Cluster-based Historical Attention Mechanism (CHAM) to learn the multi-level periodicity of user

behaviors efficiently from semantically nearest history sequences. We build a testbed and conduct comprehensive

experiments on four real-world datasets. The results demonstrate that 1) SmartUDI outperforms all existing

traditional, CNN-based, RNN-based, GNN-based and Transformer-based models; 2) our proposed three modules

MPRE, ICGAT and CHAM are all contributive for UDI prediction; 3) the prediction results of SmartUDI can be

well explained by analyzing the intents and historical sequences learned by the model; 4) by analyzing embedding

space, we find that SmartUDI has learned both device-level correlation and time-level correlation very well.
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A DATA DISTRIBUTION
The class distribution of four datasets (AN,FR,SP,US) are shown in Fig. 11, we can find all the class distributions

are uneven.
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Fig. 11. The class distribution of four datasets.

B DESCRIPTION OF ANONYMOUS DATASET
Testbed and Participants. To consider a realistic and functional smart home, we deploy the experimental

platform in an apartment to collect user usage data of devices to construct our smart home user behavior dataset

(AN). We invited three volunteers to simulate the real life of a common family. The volunteers acted as an adult

male, an adult female and a child. Our experimental platform contains a total of 36 popular devices on the market

and the deployment of these devices is shown in Fig. 12.

Data Collection. The volunteers live in apartments and live and use equipments with to their own habits.

During the data collection period, we do not interfere with the volunteers’ behaviors. The volunteers are asked

to regularly log their behaviors. After the data collection process is over, we check the device usage logs on

the smart home apps, and combine the user’s behavior records to obtain a user behavior data set. To avoid bias

during settle-in period, we let the volunteers live in the experimental environment for least two weeks before
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formally collecting data. All users have full knowledge of the IoT devices and the apps used. The volunteers are

informed in advance that the usage of the devices will be reviewed and used by us in the future.
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Fig. 12. Overview of testbed setup.

Table 4. Device Information

No. Device No. Device No. Device No. Device

0 AC 9 bedight_1 18 audio 27 dishwasher

1 heater 10 camera 19 plug 28 bulb_1

2 dehumidifier 11 sweeper 20 bulb_2 29 TV

3 humidifier_1 12 LED 21 soundbox_1 30 pet_feeder

4 fan 13 locker 22 soundbox_2 31 hair_dryer

5 standheater 14 bathheater 23 refrigerator 32 window_cleaner

6 aircleaner 15 water_cooler 24 projector 33 bedlight_2

7 humidifier_2 16 curtains 25 washing_machine 34 bedlight_3

8 desklight 17 outlet 26 kettle 35 cooler

C INTENT INFORMATION OF DEVICES
We describe the intent information of devices used in the intent-aware encoding process in the main body of the

paper below. Four tables describe the intent information we annotated for devices in different datasets (AN, FR,

SP and US), respectively. Note we consider leaving and returning as one intent of the users.
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Table 5. The Intent Information of Devices in Dataset AN

Intent Devices

Entertainment TV, Projector, AC, Pet_feeder

Shower Standheater, Bathheater, Curtains, Hair_dryer

Sleep/getup Dehumidifier, Bedlight_1, Bedlight_2, Bedlight_3, Bulb_1, Bulb_2

Study Fan, Desklight, LED

Leave/return Camera, Locker

Cooking Refrigerator, Kettle

Cleaning Sweeper, Washing_machine, Window_cleaner, Dishwasher

Others Heater, Humidifier_1, Aircleaner, Humidifier_2, Outlet, Audio, Plug, Soundbox_1, Soundbox_2

Table 6. The Intent Information of Devices in Dataset FR

Intent Devices

Entertainment Computer, Fan, NetworkAudio, Television, Projector

Cooking Microwave, Oven, Refrigerator

Washing Dryer, Dishwasher, Washer

Cleaning ClothingCareMachine, RobotCleaner,

Leave/return Camera, Elevator, GarageDoor, MotionSensor, PresenceSensor, SmartLock, Siren

Lighting Blind, Light

Operational AirConditioner, AirPurifier, WaterValve, Switch, Thermostat, SmartPlug, RemoteController

Others ContactSensor, CurbPowerMeter, None, Other

Table 7. The Intent Information of Devices in Dataset SP

Intent Devices

Entertainment Computer, Fan, NetworkAudio, Television, SetTop

Cooking Microwave, Refrigerator

Washing Dryer, Dishwasher, Washer

Cleaning ClothingCareMachine, Dryer, RobotCleaner

Leave/return Camera, Elevator, GarageDoor, MotionSensor, PresenceSensor, SmartLock, Siren, Doorbell

lighting Blind, Light, Vent

Operational AirConditioner, AirPurifier, WaterValve, Switch, Thermostat, SmartPlug, RemoteController, Humidifier

Others ContactSensor, None, Other, GasValve, LeakSensor, MultiFunctionalSensor

Table 8. The Intent Information of Devices in Dataset US

Intent Devices

Entertainment Computer, Fan, NetworkAudio, Television, SetTop, Projector

Cooking Microwave, Refrigerator

Washing Dryer, Dishwasher, Washer

Cleaning ClothingCareMachine, RobotCleaner

Leave/return Camera, Elevator, GarageDoor, MotionSensor, PresenceSensor, SmartLock, Siren, SecurityPanel, SoundSensor

Lighting Blind, Light, Vent

Operational AirConditioner, AirPurifier, WaterValve, Switch, Thermostat, SmartPlug, RemoteController, Humidifier

Others ContactSensor, None, Other, GasValve, LeakSensor, MultiFunctionalSensor, SmokeDetector, Irrigation
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