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Abstract—Deploying machine learning models within the data
plane can facilitate traffic analysis at line rate. Nevertheless,
existing schemes suffer from performance degradation when
faced with hardware resource constraints. They further cannot
accommodate incremental model updates as the underlying
traffic distributions change. This paper presents LINC, a novel
framework for low-resource and incrementally updatable in-
network classification. To circumvent the complicated P4 pro-
gram that consumes extensive resources, LINC generalizes ex-
plicit deployable classification rules by interpreting a customized
neural network. For incremental updates with minimal new
training data, we design a divide-and-conquer strategy that
decomposes the update task into binary classification tasks within
distinct subspaces to simplify the task. We then update the
model locally within each subspace to improve accuracy for
new categories without compromising the accuracy of existing
categories. Experimental results reveal that, compared to state-
of-the-art solutions, LINC significantly reduces switch hardware
resources by up to 15.6× and achieves up to 11.63% higher
classification accuracy. During the incremental model updates,
LINC not only improves the accuracy by 26.1% but also decreases
the table entries by 6×.

I. INTRODUCTION

The advent of programmable network devices, such as
programmable switches [1] and smart network interface
cards (NICs) have enabled the development of more adapt-
able networking functions. These include monitoring [2]–
[4], caching [5]–[7], failure localization [8]–[11], distributed
coordination [12]–[14], and load balancing [15]–[17]. One par-
ticularly important example is in-network classification [18],
which aims to identify a flow’s traffic category within the data
plane. This is helpful for various applications, such as Quality
of Service (QoS) aware prioritization, implementing security
measures, and enabling targeted network optimization.

In contrast to traditional solutions (e.g., empirically derived
traffic filters [19]), there have been recent efforts [18], [20]–
[25] to deploy popular machine learning (ML) models in
the data plane to improve in-network classification perfor-
mance, while maintaining line speed inference (aka in-network
ML [20]). Compared to server-based solutions [26]–[28],
which deploy the ML models in back-end servers, in-network
ML bypasses traffic redirection to dedicated servers, thus
reducing response delay. This is essential for some latency-
sensitive applications such as DDoS mitigation. However,
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these prior in-network ML solutions lack two core require-
ments.

The first requirement is that any solution must be de-
ployable within low-resource environments while retaining
high model performance. Yet, current solutions fall short of
this requirement as they have to sacrifice model performance
in order to adapt to the resource constraints of network
devices. For example, P4 switches (e.g., with Intel Tofino
ASIC [29]) have a limited number of Match-Action (MA)
stages and memory resources such as SRAM and TCAM. In
addition, a native switch needs to allocate some (or most) of
its resources to basic networking functions such as forward-
ing [18]. Thus, in-network classification must be performed
in a very resource-efficient manner. Although some resource-
efficient schemes [21]–[23] have been proposed, compared
to previous schemes [30], [31], they still have to trade-off
model complexity (i.e., accuracy) in low-resource scenarios.
For example, Planter [21] reduces the number of features
and tree estimators to prevent an excessive number of MA
tables, and Mousikav2 [23] reduces the amount of training
data to mitigate the problem of combinatorial explosion [22],
[24]. In both cases, this reduces model accuracy. Therefore,
designing a more resource-efficient scheme for in-network
classification remains a key challenge.

The second requirement is that any solution must be in-
crementally updateable [32]–[34]. This is because the traffic
distribution of a typical switch will change over time. Thus,
when it is found that a model fails (e.g., due to traffic changes),
the model should be updated to identify new traffic patterns
correctly. To update models quickly and minimize traffic
disruption, current schemes use traditional methods [18], i.e.,
retraining ML models on both old and new data simulta-
neously, and directly updating table entries in MA tables
without modifying the switch program. However, in practice,
it is difficult to manually annotate enough fresh data for
model updates within a short period. Therefore, the amount
of new data is usually far less than that of the old data. This
means the updated model is usually over-fitted and exhibits
low classification accuracy on the new data (i.e., the Few-
Shot Learning (FSL) problem [35], [36]). Thus, designing
an incrementally updateable solution that can cope with
limited new data remains a key challenge.

To address these two requirements, we present LINC, a
novel framework for Low-resource and INcrementally up-979-8-3503-5171-2/24/$31.00 ©2024 IEEE



datable in-network Classification. For the low-resource re-
quirement, LINC customizes a novel neural network and con-
verts it into deployable classification rules by interpreting the
learned mappings from input features to target categories. This
approach exploits neural networks to directly learn a small
number of efficient and complex classification rules from the
data, rather than using knowledge distillation to assist decision
trees in learning redundant basic rules [23]. This significantly
reduces resource consumption. For the incremental updates
requirement, where the new data is significantly smaller than
the old data, LINC decomposes the update task into binary
classification sub-tasks within different subspaces. Each sub-
task involves classifying the new data against partial old data
belonging to an old category within the subspace. This divide-
and-conquer strategy reduces task complexity and mitigates
the problem of Few-Shot Learning, leading to promised accu-
racy on both new and old categories.

The main contributions of this paper are as follows:
• Resource-efficient Explicit Rule Generation: We cus-

tomize a novel neural network model to learn distinct
mappings for each traffic category individually, with each
mapping utilizing only a tiny fraction of the total feature
set. For example, our approach allows a mapping to take
a mere 4 bits out of a total 96-bit feature set to predict
the target category. These mappings are interpreted by di-
rectly enumerating all the input-output pairs of mappings,
e.g., 24 pairs are needed to interpret the mapping that
takes 4-bit features as input. Subsequently, these input-
output pairs are then converted into simple classification
rules, i.e., table entries in an MA table. We also propose
a sampling method to further reduce the use of entries.

• Data-efficient Incremental Rule Updates: Given limited
data for a newly identified category label, LINC first
utilizes the old rules to predict an old category label
for each new sample and partitions them into subspaces,
represented by the corresponding predicted categories.
Although the old rules misclassify each sample as a
specific category, they can rule out the possibility of
belonging to another old category. Within each subspace,
LINC then designs new local rules for distinguishing new
samples from old samples belonging to the incorrectly
predicted old categories. These new local rules are then
merged with the old rules to complete the update.

We implement a prototype of LINC1 on commercial P4
switches [1]. Based on the prototype, we conduct extensive
experiments on three public classification tasks: traffic size
prediction, traffic type classification, and intrusion detection.
We compare the performance of LINC with four state-of-the-
art methods: Mousikav2 [23], Planter [21], IIsy [18], and
Netbeacon [22]. The results show that: (i) LINC achieves
better performance in low-resource scenarios — accuracy is
improved by 11.63% over Netbeacon (91.73% vs. 80.1%) with
fewer table entries (14 vs. 22); (ii) For incremental updates,
LINC greatly improves the prediction accuracy on the newly

1The code is in https://github.com/haolinyan/LINC.

observed categories of traffic via continuous model updates —
LINC achieves 26.1% higher average accuracy than traditional
update method on new categories (85.6% vs. 59.5%), while
using fewer table entries (6× ↓).

II. BACKGROUND AND MOTIVATION

A. Machine Learning in Programmable Switches

Programmable switches based on the Protocol Independent
Switch Architecture (PISA), allow direct programming using
the P4 programming language [1]. This makes it possible
to offload machine learning (ML) models from the control
plane to the data plane, enabling line-rate traffic analysis.
In general, ML models are deployed by defining the Match-
Action pipeline for switches via P4. The Match-Action pipeline
sets a serial of Match-Action Unit (MAU) stages, each in-
corporating multiple parallel Match-Action (MA) tables to
match their target values in packet header vectors (PHVs),
triggering the corresponding actions. Specifically, each MA
table sets a predefined lookup key to extract the target values
in PHVs and matches the values against its table entries.
The standard P4 library defines three standard match kinds,
i.e., exact match, ternary match, and longest prefix match. If
multiple table entries match the input at the same time, the
entry with the highest priority is selected. After matching is
done, the corresponding actions are triggered, which support
some primitive operations for model inference.

Although switches have greater bandwidth and versatility
compared to Smart NICs, implementing ML in them faces
more constraints that limit the type and complexity of the
ML models. First, the number of MAU stages is limited (e.g.,
Intel Tofino 1 has only 12 MAU stages), which restricts the
number of sequential operations. Second, P4 switches do not
support multiplication, division, nor loops or other floating-
point operations. Third, P4 switches have limited memory
resources, such as SRAM and TCAM. For the Intel Tofino
1, the TCAM of each pipeline is far smaller than the SRAM
(6.2MB vs. 120MB), however, current schemes consume
more TCAM compared to SRAM (up to 8× consumption,
see Section VI-B). Fourth, switches must reserve resources
for basic networking functionality or even other in-network
applications. These demands further exacerbate the scarcity
of switch resources. We therefore argue that it is important
to develop more resource-efficient models that can operate on
switches.

In parallel to these developments, there has been impressive
progress made in Neural Networks (NNs) for traffic classifi-
cation [28], [37]–[39]. However, the above constraints hinder
their practical deployment in switches. Other ML models,
such as K-means and SVMs, have been used [18], yet these
consume massive resources and often exhibit poor perfor-
mance [20], [25]. Thus, tree-based models, such as Decision
Trees (DT) and Random Forests (RF), are commonly used
instead, due to their simple inference logic and low complexity.
However, as we analyze in the next subsection, these tree-
based models still have to trade model complexity for resource
consumption, leading to performance degradation.
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Fig. 1: The generic rule generation process of two types of
tree models used in [18], [21], [22] and [23] respectively.

B. Tree-based In-network Classification

Tree-based models are more suitable for switches because
their inference logic is intuitively similar to the Match-Action
pipeline. Previous schemes [30], [31] directly implement the
decision tree inference logic in switches, which consumes mas-
sive resources and limits the model complexity since the tree
depth is limited by the number of MAU stages. To overcome
these limitations, current schemes [18], [20], [22], [23], [40]
apply encoding-based methods to enable the deployment of
more complex tree models such as RF and XGBoost. These
methods first convert the tree model into a set of generic rules.
Fig. 1 shows two types of decision trees and the generic rules
they generate. A generic rule comprises multiple conditions —
this includes features and their associated thresholds that must
be met concurrently to predict the corresponding category. The
encoding-based methods for DT and BDT are reviewed below.

Ordinary Decision Tree (ODT). As shown in the tree on
the left in Fig 1, a generic rule is constructed along a decision
path, originating from the root node and terminating at a
leaf node. This can be deployed in an MA table using range
match. However, this method encounters several challenges:
(i) The length of these rules is not always the same, i.e.,
some rules consist of more conditions. Consequently, the
size of the lookup key must be determined by the longest
rule, leading to memory inefficiency; (ii) As tree models
become increasingly complex, a large number of decision
path combinations can lead to an exponential increase in the
number of rules.Therefore, despite this method relying on a
single MA table, substantial memory resources are consumed.

To address these limitations, IIsy [18] uses multiple MA
tables (refered to as feature tables) to independently encode
each input feature. The output codes are then concatenated as
a query to the subsequent MA table, i.e., the model table,
to determine the corresponding category. Planter [21] and
Netbeacon [22] further propose similar feature table encoding
and model table voting techniques to deploy more complex
models (e.g., Random Forest and XGBoost [41]). However,
these schemes demand more switch resources as the model

complexity increases [25]. For example, more MA tables are
needed to encode more features or to act as model tables for
more estimators in ensemble models. If the number of nodes
in trees is large, this will result in significant number of table
entries and the use of longer lookup keys.

Binary Decision Tree (BDT). As shown in the tree on the
right in Fig. 1, the threshold in each node is represented by
1 bit. Thus, a BDT can be converted into a set of ternary
rules by combining the thresholds along each decision path
and masking the ignored features as ”*”. These generic rules
can be directly deployed in an MA table using ternary match
that is more efficient and widely supported across different P4
standards compared to range match. To mitigate the combi-
natorial explosion problem mentioned, Mousikav2 [23] uses
complex models such as RF and NNs to guide a BDT to gen-
erate a simple but efficient tree structure through knowledge
distillation. This manner indirectly leverages the performance
of NNs while bypassing the strict limitations imposed by
switches. However, knowledge distillation is not lossless [42],
and it has been found that Mousikav2 may fail to transfer
knowledge from NNs to BDT on some tasks [22], [24],
leading to a complicated BDT that subsequently encounters
the combinatorial explosion problem again.

Summary. Although encoding-based methods can deploy
more complex tree models, these models can only learn simple
classification patterns at each tree node and then combine them
into a large number of redundant rules, resulting in a waste of
resources. In a low-resource scenario, these schemes therefore
have to trade-off model complexity for resources, e.g., reduce
the number of features and estimators, control the model
depth and maximum number of leaves. However, this results
in worse classification performance. Although Mousikav2 can
convert NNs into a set of rules by knowledge distillation, this
indirect approach does not fully exploit the excellent pattern
recognition capabilities of NNs (the generic rules are actually
converted from a tree model), which inspires us to design a
new method to convert the NNs directly into a set of equivalent
generic rules.

C. Incrementally updatable classification

In addition to improving the model performance in a low-
resource scenario, it is also crucial to consider incremental
model updates [43]. In practice, once a ML model has been
deployed on the switch, to evaluate its performance, it is
common to periodically collect data from the data plane and
submit it for manual inspection. When the model becomes
ineffective due to changes in the traffic distribution or the
emergence of a new traffic attacks, it is necessary to update
the model, e.g., add a new category label for classification.
The traditional method [18] adds the newly annotated data to
the existing dataset. The model is then retrained and deployed
on the switch again. However, annotating sufficient new data
within a short period is difficult. Consequently, models are
often retrained on imbalanced datasets, where the proportion
of new data is minimal, resulting in low accuracy for the newly
introduced category [35], [36]. To the best of our knowledge,
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only IIsy [18] has considered the necessity of incremental
model updates. However, it does not propose an effective
strategy to address the above challenge. Therefore, we propose
a divide-and-conquer strategy that decomposes the update task
into multiple binary classification sub-tasks. Each sub-task
focuses only on distinguishing new data from partial old data,
thereby balancing the dataset and reducing the task complexity.

III. OVERVIEW OF LINC

Fig. 2 illustrates the LINC framework, which comprises of
two components: (i) explicit rule generation, and (ii) incremen-
tal rule updates. Initially, LINC uses explicit rule generation
to achieve resource-efficient in-network classification. Here,
LINC first designs a novel neural network architecture ded-
icated to the generation of generic rules and trains this NN
model to identify traffic categories.

Based on the trained NN model, LINC interprets the NN
model by deducing the key features and their binary thresholds
to form generic rules for each category, e.g., the blue generic
rule in Fig. 2 (detailed in Section IV-A). These generic rules
are then converted into the ternary entries, followed by a
sampling process to further reduce the resource usage (detailed
in Section IV-B). Last, these sampled entries are installed in
an MA table in the data plane.

LINC then periodically collects traffic data for expert sam-
pling and inspection. If the traffic changes over time or a new
class emerges, LINC utilizes a divide-and-conquer strategy for
incremental rule updates in a data-efficient manner. First, the
existing prioritized ternary entries serve as a decision tree
to classify the new and old data into subspaces (detailed in
Section V-A). In this tree, each prioritized entry is represented
as a node, and the highest-prioritized entry is the root node.
Subspaces are then represented by the tree leaves. In Fig. 2,
these are visually categorized as the blue slice for old data,
the red slice for new data, and the grey slice for the default
category (i.e., the default action in an MA table).

LINC then utilizes the BDT to design the new local rules
within each subspace, e.g., inserting the new purple rules to
identify the new data. These rules are converted to ternary
entries, merged with their parent entries, and given a priority
one level higher than their parents, so if these new entries

Softmax

TopkMask FC

BN

FC

Input Output

Fig. 3: The computational graph of the Neural Network Unit
(NNU).

are not matched, the tree will attempt to match the next level
of entries (the parent nodes). After rule updates, these entries
can be used directly to update the MA table in the data plane.
Section V-B presents detailed descriptions and the comparison
with explicit rule generation.

IV. EXPLICIT RULE GENERATION

In this section, we present the architecture of the customized
NN model and its training. We then explain how we convert
the NN model into the generic rules and elaborate on the
generation and sampling of table entries.
A. Model Construction and Conversion

Data Preprocessing. LINC converts packet-level features
into several binary features (e.g., ip.ihl into 4 different binary
features) and concatenates them into a d-bit binary vector
xb ∈ {0, 1}d, which is then linearly mapped to {−1, 1}d by
x = 2xb − 1 for efficient training convergence [44]–[47]. The
dataset is denoted as D = {(xi, yi)}N−1

i=0 , where yi is the label
in the one-hot format and xi is the d-bit preprocessed vector.

Customized Neural Network. Given a classification task
containing C categories, we design a neural network that
integrates E Neural Network Units (NNUs) for each category,
i.e., C × E NNUs in total. Fig. 3 shows the computational
graph of an NNU that aims to select k-bit features from
the preprocessed d-bit features and predicts the score that
indicates the category probability. Concretely, each NNU sets
its specific learnable position parameter α ∈ Rd to represent
the importance of the corresponding features. The normalized
importance weights w is obtained by

w = Softmax(
α

T
), (1)



where T is a temperature coefficient used to control the
distribution difference of the weights [48]. In our experiments,
we find the optimal T to be between 0.5 and 0.6, using
hyperparameter search. Then we define an operation named
TopkMask that sorts the values in the vector w, keeps the top
highest k bit values, and sets the remaining values to 0:

ŵ = TopkMask(w, k), (2)

where ŵ is the feature selection weight. To obtain the selected
features ẑi, NNU first multiplies xi by ŵ, which contains 0s
to drop the features that are not selected, and then adds a
learnable bias vector c to enhance the features expressiveness
[46], [47]:

ẑi = xi ⊙ ŵ + c. (3)

Then, as shown in Fig. 3, each NNU has a fully connected
layer to halve the feature dimension from d to d

2 , as follows:

hi = W0ẑi + b0, (4)

where W0 ∈ R d
2×d represents the weight matrix, and b0 is a

scalar serving as the bias term. Subsequently, we incorporate
BatchNorm (BN) [49] and PReLU (σ) [50] activation func-
tions to facilitate non-linear transformations:

ĥi = BN(hi), (5)

ai = σ(ĥi). (6)

To predict the score that indicates the category probability,
an additional fully connected layer is introduced to map the
vector ai to a scalar value:

si = W1âi + b1. (7)

Here, W1 ∈ R d
2 is the weight vector, and b1 is a scalar

bias. Note that each NNU of C × E NNUs has independent
learnable parameters such as α, W0, W1, etc., and outputs a
score si which is denoted as sce in the later text.

Model Training. To optimize an NN model, it needs to
predict the distribution of category probabilities P̂ ∈ RC

for the loss calculation. However, for a sample xi, C × E
NNUs will predict C × E category scores (E scores per
category), which cannot be used directly as the category
distribution P̂ . To train these NNUs simultaneously, for each
category, a category score is randomly sampled from the E
candidate scores based on probability as the final score for that
category. Concretely, for category c, the normalized probability
distribution, Pc, is calculated, and the final category score ŝc
is sampled according to the distribution Pc, i.e.,

Pc = Softmax([s0c , s
1
c , ..., s

E−1
c ]), (8)

ŝc = RandomSample(Pc, [s
0
c , s

1
c , ..., s

E−1
c ]). (9)

Then, the sampled final category scores of all cate-
gories are concatenated into a C dimensional logits Ŝ =
[ŝ0, ŝ1, ..., ŝC−1]. Last, the predicted distribution of category
probabilities, P̂ , is calculated by applying the Softmax func-
tion on Ŝ, i.e.,

P̂ = Softmax(Ŝ). (10)

Standard DNN optimization techniques are then applied
to optimize the model parameters, namely cross-entropy loss
calculation, backpropagation, and parameter update.

Rule Derivation. The next task is to generate equivalent
lightweight rules from the NN model. Concretely, LINC de-
duces the generic rules by analyzing the feature selection
weight ŵ of each NNU. Each weight ŵc

e proposes k-bit fea-
tures for identifying the category c. To obtain the correspond-
ing thresholds, thanks to the binary features, a straightforward
approach is to enumerate the combination of selected feature
values, i.e., a total of 2k threshold combinations from an
NNU. These feature value combinations are then fed into the
corresponding NNUs to generate the category scores.

Up to this point, we have formulated the generic rules. Each
rule comprises k sets of conditions that need to be satisfied
simultaneously, along with the predicted category label and its
category score. In this way, we can deduce a total over C ×
E × 2k generic rules from the customized model. Compared
to the ordinary neural network, the customized NN enables
us to control the quantity of the generic rules by setting the
hyper-parameters E and k, and ensure uniform rule lengths.

B. Entries Generation and Sampling

Once we have compiled the generic rules, e.g., if (bit0 =
1&& bit3 = 0) then category A, which are in the same format
as that used by the BDT, we convert them to ternary table
entries (e.g., if 1**0 then category A). Additionally, the output
category scores are transformed into the entry priorities. In an
MA table, if several table entries match the input at the same
time, the entry with the highest priority is selected.

Recall that each NNU selects only k-bit features (k = 4
or 8 in our experiments) that are highly relevant to the target
category. For most data belonging to the same category, their
values on these key features are typically the same. For
example, HTTP commonly uses port 80, while HTTPS uses
port 443. Similarly, the standard ports for email protocols
are 25 for SMTP and 143 for IMAP. Therefore, directly
enumerating and retaining all possible combinations of feature
values would result in redundant table entries. Furthermore,
under the assumption that the distribution of the training set
is analogous to the actual data distribution (i.e., the i.i.d. as-
sumption), machine learning theory [51], [52] ensures that the
distributions of values on the key feature combinations learned
by ML models should be consistent, whether in the training
data or the actual data, which is particularly pronounced for
binary features.

These insights inspire us to design an efficient method to
sample a subset of entries. We traverse each sample in the
training set, and for each sample, C × E table entries will
match with it simultaneously. The entry that corresponds to
the true category and has the highest priority will be sampled
in the subset. We then remove duplicate entries from the
subset and then install it in the data plane. From the system
perspective, packets that have been classified at the data plane
can be copied to the control plane and checked by matching
them with the original entries. When the packet triggers an
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unsampled entry, the entry can be directly installed into the
data plane, ensuring the correct classification of subsequent
packets in the same category. We evaluate the effectiveness of
this sampling method in Section VI-F.

V. INCREMENTAL RULE UPDATES

As stated previously, sometimes experts will identify new
changes in the traffic distribution or the emergence of novel
traffic attacks from a small sample of collected data. In
such cases, it is necessary to update the model. Existing
approaches involve retraining the model on all data. However,
this approach often fails to achieve ideal performance on the
new category because of the scarcity of newly labeled data.
For example, a newly identified attack pattern may have only a
handful of labeled samples to train on. This section introduces
a divide-and-conquer strategy that requires little new data to
achieve efficient model updates.

A. Data Partitioning

The proposed strategy first uses the old model (i.e., the old
entries before the update) as a decision tree to partition both
the old and new data into subspaces and decomposes the entire
task into several simpler sub-tasks. Concretely, for a newly
identified category (e.g., a new type of attack), each update
involves the introduction of a new category label to the model
task. For the new samples that belong to an old category, but
are misclassified due to distribution changes, LINC assigns
them a new category during the update process.

Step 1 of Fig. 4 illustrates how the old entries act as a
decision tree. The root node represents the entry with the
highest priority. As the tree gets deeper, the priority gradually
decreases until reaching the default entry. Therefore, the old
entries act as a tree to classify both new and old samples
into leaf nodes, where each leaf represents a subspace of an
old category. Specifically, for an old sample that matches an
entry, if the entry correctly classifies its category, the sample
is appended to the subspace as a positive sample. For a new
sample, it is added directly to the subspace it matched, as a
negative sample. Up to this point, each subspace has collected
a mini-dataset containing both positive and negative samples

(e.g., the orange table in subspace 0b1**1 in Step 1 of Fig.
4). This step leverages the old entries to initially distinguish
the new data from a fraction of the old data (e.g., distinguish
the two new blue samples of category E from the categories
A, C and D in Fig. 4), thereby reducing the task complexity.
For both the old and new data in the same subspace, LINC
automatically designs new local rules to identify the new
category.

B. Automatic Local Updates

After data partitioning, LINC allows users to leverage vari-
ous methods to design new local rules. For example, besides
the proposed explicit rule generation, other methods, such as
Mousikav2 [23], can be used to design new rules for regional
binary classification tasks. Even heuristic design can be used
for simple classification.

For automatic local updates, LINC utilizes the BDT for
fast local updates since a BDT can also be converted as a
ternary rule set in an MA table and has better performance and
time efficiency than NNs in data-scarce scenarios (detailed in
Section VI-D). As shown in Step 2 of Fig. 4, from low-priority
to high-priority subspaces, LINC focuses on one subspace at a
time (e.g., the subspace 0b1**1) and uses the BDT to fit the
mini-dataset. The new generic rules generated by the BDT can
distinguish the new and old data in this subspace (the new rules
are displayed in the form of blue entries for convenience). In
addition, the learned BDT ensures that these new generic rules
will not be matched simultaneously so that they have the same
priority.

The hierarchical structure of the decision tree guarantees
that re-partitioning these subspaces (i.e., splitting tree nodes)
will not affect each other. However, the new tree (the second
tree in Fig. 4) cannot be directly converted back to the
prioritized ternary entries. Therefore, LINC converts these new
generic rules into ternary entries and merges them with their
parent entries in Step 3 of Fig. 4. These new merged entries
have one level higher than their parents, so if they are not
matched, the tree will attempt to match the next level of entries
(the parent nodes). For example, the blue newly generated
entry 0b*0** is merged with its parent entry 0b1**1 as a new



entry 0b10*1 and given one level higher priority than 0b1**1
in the right tree in Fig. 4. After this update, the classification
of old data that does not match with entry 0b1**1 will remain
unaffected, ensuring that local updates do not impact the
classification of other subspaces. The new and old data that
match with 0b1**1 will be correctly classified by the new blue
entries and the parent entry 0b1**1, respectively, ensuring the
classification accuracy for the new category.

Compared to explicit rule generation, this divide-and-
conquer strategy for rule updates is suitable for data-scarce
scenarios due to its data-efficient nature. Instead, explicit rule
generation can achieve better performance if there is enough
labelled data, while consuming fewer table entries.

VI. EVALUATION

This section compares the performance and resource usage
of LINC against four state-of-the-art methods in low-resource
scenarios. We evaluate our incremental rule update strategy
and compare it to explicit rule generation to clarify the
applicable scenarios for both methods in LINC. In addition,
we evaluate the time efficiency of LINC and verify the perfor-
mance of the entry sampling method.

A. Experimental Settings

We utilize three publicly accessible datasets: (i) Traffic Size
Prediction: The UNIV1 dataset [53] is used to predict flow
size, specifically distinguishing between large flows (referred
to as “elephants”) and small flows (referred to as “mice”); (ii)
Traffic Type Classification: The ISCX Dataset [54] is used to
identify different application types of traffic, such as Email,
Chat, Streaming, File Transfer, VoIP, and P2P; (iii) Intrusion
Detection: The UNSW-NB15 Dataset [55] is used to identify
intrusion attacks, differentiating between normal and malicious
traffic. Table I lists the features used in LINC. These features
are pre-processed in Section IV-A before being fed into our
NN model.

TABLE I: Packet-level features used in LINC.

Header Features
IPv4 ihl, tos, length, flags, ttl, proto
TCP dataoffset, flags, window
UDP length

We compare LINC with four state-of-the-art methods, in-
cluding IIsy [18] (DT), Planter [20] (RF), Netbeacon [22] (RF
for packet-level classification), and Mousikav2 [23] (distilled
BDT). All models are trained on a server with an Intel(R)
Xeon(R) E5-2643 v4 @3.40GHz CPU, a Tesla M60 GPU,
Python 3.9 and Pytorch 1.12.0.

In addition, we deploy the LINC framework in three com-
modity P4 switches (EdgeCore Widge 100BF-65X3,2 H3C
S9850-32H4,3 and OpenMesh BF-48X6Z5.4) The KEYSIGHT

2https://www.edge-core.com/productsInfo.php?cls=1&cls2=5&cls3=181&
id=334

3https://www.h3c.com/en/Products Technology/Enterprise Products/
Switches/Data Center Switches/H3C S9850/

4http://www.tooyum.com/products/OpenMesh BF48X6Z.html
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Fig. 5: The classification performance on three tasks.

XGS12-SDL traffic generator5 generates test traffic at a speed
of 100 Gbps. This traffic is generated in Internet Hybrid
(IMIX) mode to closely resemble real-world traffic patterns.

B. Classification Performance and Resource Usage

We first compare the classification performance of the
methods across the three tasks. As illustrated in Fig. 5, LINC
outperforms other methods across the majority of considered
metrics including accuracy, precision, recall, and f1-score.

As shown in Fig. 5a, on the traffic size prediction task
dataset, LINC improves the recall by 7.45% compared with
Planter (82.25% vs. 74.79%) and the f1-score by 6.71%
compared with Netbeacon (86.56% vs. 79.85%). As shown
in Fig. 5b, LINC achieves a 10.76% improvement in f1-score
over Planter in the traffic type classification task (86.03%
vs. 75.27%). For the intrusion detection task in Fig. 5c,
LINC improves the precision by 5.1% compared with Planter
(94.04% vs. 88.94%). That said, Planter and Netbeacon out-
perform LINC by precision and recall on a small subset of
experiments. For example, compared to LINC, Planter and

5https://www.keysight.com/us/en/products/network-test/
network-test-hardware/xgs12-chassis-platform.html?rd=1
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Fig. 6: The comparison of different resource usage of switches.
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Fig. 7: The comparison of model performance under different budgets of table entries on three networking tasks.

Netbeacon improve recall in the intrusion detection task by
3.0% and 2.8% respectively. As we analyze below, they
consume massive switch resources due to their complicated
P4 programs.

To compare the resource consumption, we deploy P4 pro-
grams generated by these methods for the task of traffic size
prediction in switches. We assess these methods in terms
of memory utilization (SRAM and TCAM), Ternary Match
Input Xbar (TMIX), the number of MAU stages, the count
of MA tables, and the total number of table entries. As
shown in Fig. 6, LINC and Mousikav2 significantly reduce
the use of SRAM, TMIX, MAU stages, and MA tables.
This is due to their simple P4 programs, which in fact
only depend on one MA table, while others require several
MA tables and MAU stages to deploy models. For example,
compared to Planter, LINC reduces 15.6× of SRAM (0.10%
vs. 1.56%) and 9× of TRAM (1% vs. 9%) respectively, while
achieving better performance (see the Fig. 5a). In Fig. 6b,
LINC reduces 5.21× of TMIX compared with IIsy (1.89% vs.
9.85%). In Fig. 6c, LINC reduces 2.34× of entries compared
with Netbeacon (328 vs. 768). The only difference between
LINC and Mousikav2’s P4 program is that LINC removes
the redundant MA table used for feature concatenation in
Mousikav2. However, Mousikav2 tends to generate a complex
binary decision tree when the distillation technique fails to

transfer the knowledge from NNs to the BDT, leading to
the combinatorial explosion problem [24], [56]. As shown in
Fig. 6a and Fig. 6c, Mousikav2 generates a large number
of table entries, resulting in massive TCAM consumption.
LINC leverages the powerful neural network to directly learn a
small number of represent-efficient classification rules, thereby
reducing the number of table entries (5× less than Mousikav2)
and TCAM consumption (4× less than Mousikav2).

C. Performance Under Resource Constraints

To facilitate comparison, we simulate a low-resource sce-
nario by limiting the number of table entries. Specifically, we
limit the number of entries to a maximum of 400. As the
budget for the number of available entries decreases, we train
models of varying sizes by controlling the hyper-parameters,
including tree depth, the number of estimators for IIsy, Planter,
and Netbeacon, the quantity of training data for Mousikav2,
and the values of E and k for our customized model.

Fig. 7 compares the classification accuracy of these different
models under given resource budgets. LINC achieves better
accuracy than other methods under similar budgets, i.e., it can
provide similar accuracy with much fewer table entries than
other methods. For example, in the traffic type classification
task in Fig. 7c, LINC achieves an 11.63% improvement in
accuracy over Netbeacon (91.73% vs. 80.1%), while using
a fewer number of table entries (14 vs. 22). For the traffic
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Fig. 8: Performance of updated models given different amounts of the data. We compare the accuracy of different methods
during the three updates (P2P, Streaming, and VoIP respectively) by controlling the data volume.

size prediction task in Fig. 7a, LINC overtakes Mousikav2 by
5.14% (92.71% vs. 87.56%) using fewer table entries (10 vs.
86). In the intrusion detection of Fig. 7b, LINC improves the
accuracy by 0.9% than Planter using fewer table entries (8
vs. 34). The results show that IIsy’s performance is close to
that of LINC, yet the entries produced by IIsy and Planter are
employed for range match in feature tables, whereas LINC,
Mousikav2, and Netbeacon are utilized for ternary match.
Therefore, using the same number of entries, IIsy actually
consumes more resources than LINC.

D. Incremental Model Updates

Next, we compare the performance of the proposed divide-
and-conquer strategy vs. the traditional update method on
newly observed categories. Here, we test them under differing
volumes of new training data. Specifically, we initially train
all models using the three categories of traffic type (Chat, File
Transfer, and Email). To emulate the arrival of new traffic
categories, we then introduce three new types, separately
(Streaming, P2P, and VoIP). The baseline models are then
retrained on all available datasets, including the old and new
ones. LINC is updated via the Divide-And-Conquer strategy,
abbreviated as DAC for the sake of brevity.

Fig. 8 reveals that the traditional method exhibits limited
accuracy when the dataset is small, i.e., when it faces the Few-
Shot Learning problem. Compared to the traditional method,
DAC is able to update models to acceptable accuracy (over
95%) in three updates, even with very little data. For example,
in the task of identifying Streaming traffic, DAC improves
the accuracy by 1.89% compared with Mousikav2 (98.69%
vs. 96.8%) when using 10% of the dataset, and improves
the accuracy by 24.27% compared with Planter (97.17% vs.
72.9%) when using 1% of the dataset. This constitutes a
significant improvement.

To assess the efficiency of incremental rule updates in LINC,
we update the models three times consecutively, incorporating
each of the three categories (Streaming, P2P, and VoIP) into
training one at a time. Here, we use a restricted quantity of
fresh data (comprising 0.05% of new data, which included
63 samples for Streaming, 44 for P2P, and 28 for VoIP).
For comparison between Explicit Rule Generation (ERG) and

DAC, ERG retrains the NN model using both new and old data
and converts it into updated table entries.

Table II presents the accuracy of the models during the three
consecutive updates of new categories (Acc (n)), old categories
(Acc (o)), and all categories collectively. The consumption of
table entries is also reported during each update. The results
show that DAC has superior classification accuracy across all
categories when the model is updated sequentially. Further, it
consumes fewer table entries. Although Mousikav2 and Planter
exhibit superior accuracy for the old categories during the first
update (just a 0.5% improvement), as the number of updates
increases, these methods lag behind LINC on all metrics. For
example, compared to Mousikav2, DAC improves the average
accuracy for all categories by 6.7% (94.6% vs. 87.9%), by
26.1% for new categories (85.6% vs. 59.5%), and by 4.1%
for old categories (95.6% vs. 91.5%), while reducing 6×
the number of table entries, on average (104 vs. 643). ERG
exhibits inferior accuracy when the dataset is small, as neural
networks, compared to tree-based models, are more dependent
on a large amount of training data.

To compare ERG and DAC, we use all the new data
for the three consecutive model updates. Recall that DAC
utilizes the BDT for local rule updates, which can lead to
significant consumption of entries when dealing with large
volumes of data. As shown in Table III, ERG outperforms DAC
and baseline methods, achieving better average performance
(96.9% vs. 81.7%) and fewer entries (162 vs. 462). Therefore,
in LINC, ERG is suitable when a sufficient amount of data
is available. However, to quickly adapt to changes in traffic
distribution with a small amount of training data, it is superior
to use DAC for efficient incremental rule updates.

Note, the baseline models also consume more entries in
Table II than in Table III. This is because these tree-based
models require more complex trees to overfit the small set of
new data items for acceptable accuracy, thereby consuming a
large number of table entries.

E. Time Efficiency of LINC

First, we evaluate the time efficiency of LINC’s training
and update pipeline. The initial NN model is trained on a
Tesla M60 GPU using 908, 469 samples for 32 epochs in



TABLE II: The comparison of models’ performance after three consecutive incremental category updates using partially new
data.

Methods Streaming P2P VoIP Average

Acc Acc(o) Acc(n) Entries Acc Acc(o) Acc(n) Entries Acc Acc(o) Acc(n) Entries Acc Acc(o) Acc(n) Entries

ERG 85.6 97.4 0.0 116 78.9 85.5 0.0 81 74.9 78.6 0.0 82 79.8 87.2 0.0 93
DAC 95.2 97.5 78.2 96 94.3 95.1 84.5 106 94.2 94.2 94.1 109 94.6 95.6 85.6 104
IIsy 90.3 97.3 39.1 171 88.7 90.9 62.9 509 89.1 88.8 94.1 643 89.4 92.3 65.4 441

Planter 90.8 98.0 39.0 1417 88.6 90.8 62.4 1402 88.8 88.5 94.1 1703 89.4 92.4 65.2 1507
Netbeacon 90.5 97.7 39.0 808 88.3 90.5 62.2 781 88.4 88.4 89.5 432 89.1 92.2 63.6 674
Mousikav2 89.5 98.0 28.6 808 87.3 89.5 60.5 643 87.0 86.9 89.5 479 87.9 91.5 59.5 643

TABLE III: The comparison of models’ performance after three consecutive incremental category updates using all new data.

Methods Streaming P2P VoIP Average

Acc Acc(o) Acc(n) Entries Acc Acc(o) Acc(n) Entries Acc Acc(o) Acc(n) Entries Acc Acc(o) Acc(n) Entries

ERG 97.5 97.2 99.5 120 96.7 97.0 93.3 179 96.5 96.6 94.2 187 96.9 96.9 95.7 162
DAC 97.5 97.3 99.0 200 96.4 96.2 99.6 471 51.3 49.0 99.1 715 81.7 80.8 99.2 462
IIsy 97.2 96.9 99.4 191 96.3 97.1 87.1 197 96.3 96.4 94.8 183 96.6 96.8 93.8 190

Planter 95.4 94.8 99.4 226 93.0 95.3 65.5 289 92.4 91.1 94.7 284 93.6 93.7 86.5 266
Netbeacon 96.6 96.3 99.3 269 88.4 88.4 89.5 432 93.5 93.6 91.0 242 92.8 92.8 93.3 314
Mousikav2 96.6 96.3 99.3 185 95.2 95.0 96.8 206 95.2 95.1 96.9 209 95.7 95.5 97.7 200
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Fig. 9: (a) Throughput and latency for LINC across three
switches. (b) Impact of rule sampling method on rule reduction
and accuracy loss.

137 seconds. It then takes 4 seconds to convert the model
to rules. In three consecutive rule updates, the average time
cost is 14.31 seconds when using 0.05% of the new data, and
36.46 seconds when using all the new data. LINC’s time cost
is minimal versus manual data labelling. It only needs little
fresh data for quick, efficient model updates.

To measure the runtime throughput and latency, we deploy
LINC on three commodity switches and measure the perfor-
mance under a traffic rate of 100 Gbps. As depicted in Fig 9a,
both the received throughput (RT) and transmitted throughput
(TT) can reach 99.9 Gbps, and the average latency of packet
processing is below 890 nanoseconds, indicating that LINC
achieves line-speed inference on real network devices.

F. Efficiency of Entry Sampling Method

Finally, we investigate the average proportion of redundant
entries reduced by the entry sampling method proposed in
Section IV-B and measure the resulting loss of accuracy.
Fig. 9b shows the results on three tasks, represented by
the names of the datasets (UNIV1, ISCX, and UNSW) for
convenience. Our method significantly reduces the redundant
entries by up to 85%, while maintaining minimal impact on the
model’s classification accuracy (less than a 0.019% decrease).

VII. CONCLUSION

In this paper, we have proposed LINC, a novel frame-
work for low-resource in-network classification and efficient
incremental model updates. Its goal is to improve in-network
model performance under the low-resource scenarios. For this,
we tailor a neural network for classification and for learning
the representative mapping between input features and output
categories. We indirectly deploy this NN model in the data
plane by deducing generic rules from it, and utilize an efficient
entry sampling method to reduce the redundant entries. For
incremental model updates, we propose a novel divide-and-
conquer strategy that decomposes the entire task into multiple
regional binary classification tasks and updates these tasks
respectively, thus improving the update performance.

Our experimental results show that LINC reduces resource
consumption while improving the model performance. LINC
reduces the use of various switch resources, including the
table entries (5× ↓), SRAM (15.6× ↓), TCAM (8.7× ↓) and
TMIX (7.5× ↓), while improving the accuracy (11.63% ↑).
For incremental model updates, LINC enhances the average
accuracy of new categories by 26.1% ↑, despite using fewer
table entries (6× ↓).
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