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Abstract

Vision-language retrieval (VLR) has attracted significant at-
tention in both academia and industry, which involves using
text (or images) as queries to retrieve corresponding images
(or text). However, existing methods often neglect the rich vi-
sual semantics knowledge of entities, thus leading to incorrect
retrieval results. To address this problem, we propose the En-
tity Visual Description enhanced CLIP (EvdCLIP), designed
to leverage the visual knowledge of entities to enrich queries.
Specifically, since humans recognize entities through visual
cues, we employ a large language model (LLM) to generate
Entity Visual Descriptions (EVDs) as alignment cues to com-
plement textual data. These EVDs are then integrated into raw
queries to create visually-rich, EVD-enhanced queries. Fur-
thermore, recognizing that EVD-enhanced queries may in-
troduce noise or low-quality expansions, we develop a novel,
trainable EVD-aware Rewriter (EaRW) for vision-language
retrieval tasks. EaRW utilizes EVD knowledge and the gener-
ative capabilities of the language model to effectively rewrite
queries. With our specialized training strategy, EaRW can
generate high-quality and low-noise EVD-enhanced queries.
Extensive quantitative and qualitative experiments on image-
text retrieval benchmarks validate the superiority of EvdCLIP
on vision-language retrieval tasks.

Introduction
Vision-language retrieval (VLR) has attracted extensive re-
search and industrial interest due to its significant research
and practical value. It usually takes descriptive texts as
queries and retrieves corresponding images, or vice versa.

Existing methods heavily rely on the alignment between
visual and textual representations. As shown in Figure 1,
CLIP (Radford et al. 2021) successfully differentiates be-
tween “beach” and “camp of tents” but confuses “camp of
tents” with “village”, leading to incorrect retrievals. Even
with descriptions from WordNet (Kilgarriff 2000), it strug-
gles to distinguish these concepts. We argue that the lack of
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Neg1 : A woman in a blue shirt walking in a village.

Pos : A boy in sunglasses, a blue, hooded, zipped up sweater and brown shorts is 

running from a camp of tents.

Neg1 : A woman …  a village.

Pos : A boy  …  camp of tents. camp of tents: A outdoor recreation in 

which people sleep outdoors…

village:  A community of people smaller 

than a town…

Prompt：What are useful features for 

distinguishing camp of tents in a photo?
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Neg2 : A woman in a blue shirt walking in a beach.

Neg2 : A woman …  a beach.

Neg2 : A woman … a beach.

……

Figure 1: Illustration of entity visual descriptions (EVD) en-
hanced framework. The CLIP and WordNetCLIP which in-
troduces the concept of entities struggle to distinguish be-
tween “camping of tents” and “village”, leading to incorrect
retrieval results. Our EvdCLIP leverages the EVD generated
by LLMs to improve cross-modal retrieval performance.

visual information in these descriptions and that visual de-
scriptions are crucial to distinguish visually similar entities.

Let’s start by analyzing how humans recognize entities
in an image. Humans are able to easily describe the visual
features of entities using language and leverage these visual
descriptions to enhance perception, even for unfamiliar en-
tities. Our key insights are: (1) Visual descriptions offer tex-
tual additional cues that improve image-text alignment. (2)
Descriptions highlight critical details and discriminative in-
formation, aiding in entity recognition. (3) They encompass
generic features, boosting the model’s transferability.

However, existing methods struggle to obtain EVD to of-
fer useful cues in multi-modal retrieval. Manually creating
these descriptions is costly and impractical given the vast
number of concepts in our world. Recently, with the advance
in Large Language Models (LLMs), several works utilize the
LLMs to generate training samples or auxiliary information
for specific tasks (Touvron et al. 2023; Zhu et al. 2023; Liu
et al. 2023). The large-scale corpus used to train these LLMs
contains a substantial amount of semantic knowledge, mak-
ing them into rich visual knowledge bases.

Based on these insights, we propose Entity Visual De-
scriptions enhanced CLIP (EvdCLIP), which leverages



Query: People pose with helmets and goggles on while riding snowmobiles.

EVD-enhanced Query (Paralleled Description Formulation)：
1. People pose with helmets and goggles which has a curved frame that fits the eyes 
on while riding snowmobiles which has a long, narrow vehicle with a low profile.

2. People pose with helmets and goggles which has a tinted or mirrored lens to 
reduce glare on while riding snowmobiles which has skid plate on the bottom.

3. People pose with helmets and goggles which has two lenses that are connected by 
a bridge on while riding snowmobiles which has the environment of snowfields or 
forested paths that are covered by snow.

(b) Low-quality Issue of Integrating EVD

Query: A child in a brown hat napping in his stroller.

    four wheels 

    a seat for a child 

    a canopy for shading

    a storage basket underneath

    a footrest for the kid

(a) Noise Issue of EVD

Figure 2: Challenges of EVD integration to VLR. (a) Noise
issue. Certain descriptions (e.g., “four wheels”) may not be
presented in the “stroller” in the image and query helps to
reveal the entity’s preferences. (b) Low-quality issue. Using
templates “which has/is” to concatenate entities and descrip-
tions can compromise fluency and introduce ambiguity.

LLMs to generate valuable visual descriptions as auxiliary
cues to guide VLR. Specifically, we first employ LLMs to
create an Entity Visual Descriptions (EVD) knowledge base
from the image-text dataset. Subsequently, EVD knowlege
base is then used to enhance queries with visual descriptions,
enabling cross-modal alignment between text and images.

Although some research (Yao et al. 2022; Menon and
Vondrick 2022; Maniparambil et al. 2023; Yang et al. 2023;
Pratt et al. 2023; An et al. 2023) has applied descriptions to
image classification and object detection, considering that
queries in VLR are complex sentences containing multiple
entities, applying EVDs to VLR presents two challenges:
noise and low-quality issue. The noise issue arises because
EVDs exhibit over-diversity due to the lack of constraints
specific to the image, leading to inconsistencies in some
EVDs. As shown in Fig 2 (a), we should consider query
content for EVD’s denoising. As illustrated in Fig 2 (b), the
low-quality issue occurs when existing parallel description
paradigm’s combining query and description leads to awk-
ward and unsmooth queries.

To address these challenges, we introduce an EVD-aware
rewriter (EaRw) that dynamically selects EVDs based on
the query, generating high-quality VLR queries. To bridge
the gap between knowledge-enhanced tasks and pre-trained
rewriters, we create a trainable scheme. Using LLM’s ability
and CLIP’s feedback, we generate a high-quality corpus that
captures context preferences and dataset preferences (Dun-
lap et al. 2024). EaRw then learns to effectively select and
integrate EVDs based on query, mitigating noise and low-
quality issues, and enhancing VLR performance.

The contributions of our work are three-fold: (1) We
propose EvdCLIP, utilizing LLM-based visual descrip-
tions to improve visual-linguistic alignment in VLR. To our

knowledge, this is the pioneering effort to use LLMs’ vi-
sual knowledge for guiding VLR. (2) We develop a novel
EVD-aware Rewriter (EaRW) using the compact, train-
able T5 (Raffel et al. 2020) to generate precise and fluent
EVD-enhanced queries, effectively mitigating noise of EVD
and enhancing query quality. (3) We conduct extensive ex-
periments to validate the effectiveness of our method on
the public benchmark and Huawei business data.

Related Work
Vision-Language Retrieval
Previous VLR models fall into three categories: single-
stream, double-stream, and dual-encoder. Single-stream
models (Kim, Son, and Kim 2021) use self-attention for fine-
grained multi-modal alignment. Double-stream models (Li
et al. 2021, 2022; Yang et al. 2022) process intra-modality
features with a shared fusion encoder, decoupling intra-
modal and cross-modal modeling. Due to the need for ef-
ficient inference in visual language retrieval, dual-encoder
architectures (Radford et al. 2021; Wang et al. 2022b; Zhao
et al. 2023; Wang et al. 2024) have been proposed, using
contrastive learning to align visual and text embeddings in
the same semantic space. To enhance image-text alignment,
we introduce the EvdCLIP framework, which integrates en-
tity visual descriptions as alignment cues.

Knowledge Acquisition for VLR
Related work falls into two categories: internal knowl-
edge mining and external knowledge incorporation. Inter-
nal Knowledge Mining: OA-Trans (Wang et al. 2022c) and
structureCLIP (Huang et al. 2024) use objects in images for
cross-modal learning, while Coder (Wang et al. 2022a) and
ViSTA (Cheng et al. 2022) leverage common knowledge
and scene text for image-text retrieval. External Knowl-
edge Incorporation: Knowledge-CLIP (Pan et al. 2022) and
ACP (Pan et al. 2022) use multi-modal knowledge graphs to
improve concept-level semantics. EI-CLIP (Ma et al. 2022)
extends entity semantics through e-commerce knowledge
for better e-commerce retrieval. LLMs can be considered as
vast knowledge bases (Zeng et al. 2022; Menon and Von-
drick 2022). For example, (Shen et al. 2024; Zhu et al. 2024;
Wang et al. 2023) leverage the knowledge in LLMs to un-
derstand and extract user preferences from multimodal in-
puts, optimizing multimodal recommendation and personal-
ized multimodal content generation. In this work, we explore
the use of the rich knowledge in LLMs to enhance image-
text alignment, improving MMR performance.

Description Enhancement for CLIP
Recent work has focused on enhancing CLIP using category
descriptions in image classification and object detection. For
instance, (Menon and Vondrick 2022) and (Pratt et al. 2023)
generate descriptions with LLMs, while (Yao et al. 2022)
improves object detection through parallel training with an
object concept dictionary. As noise in description has gained
attention, filtering methods have emerged. (Yang et al. 2023)
designs a scoring function to select representative descrip-
tions and uses a learnable weight matrix for personalized



A big brown dog plays with a 

smaller gray dog on the grass.
A big brown dog plays with a 

smaller gray dog on the grass.
A yellow dog is walking along 
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A four-legged yellow dog with a 
fluffy coat is walking along a 

mountain trail that meanders 
through a mountainous terrain 

with rugged terrain and featuring 
vistas of  distant peaks.

Text Query

Image

EVD-enhanced Query
Entity-aware Query 
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Figure 3: The overall architecture of EvdCLIP comprises two components: EVD offline generation via LLMs and EVD-
enhanced vision-language retrieval. First, EVD knowledge is generated offline using LLMs. Then, an EVD-aware query rewriter
integrates the query with EVD to produce an EVD-enhanced query for retrieval.

attention. (An et al. 2023) uses a manually designed scor-
ing function to reflect annotators’ linguistic preferences, fo-
cusing on relevant features. (Maniparambil et al. 2023) ad-
dresses interfering information with a self-attention adapter.

However, these works focus on image classification and
detection. In VLR, integration of complex queries and EVDs
faces two challenges: dynamic filtering of EVD noise based
on query and high-quality EVD-enhanced query generation.

Methodology
The framework of EvdCLIP is illustrated in Figure 3. We
first review the dual-encoder framework, and then detail
EVD offline generation via LLMs. Finally, we illustrate how
we utilize EVD to enhance multimodal retrieval.

Dual-encoder Framework
In this work, we select the simple yet effective dual-encoder
CLIP as our backbone. As shown in Figure 3, images and
texts are encoded by an image encoder and a text en-
coder respectively, then projected into the same semantic
space for effective retrieval. Formally, assuming we have N

samples in a batch, B = {(vi, ti)}Ni=1 denotes the train-
ing dataset, where (vi, ti) is the i-th image-text pair. The
matched image-text pairs are considered positive samples,
while other pairwise combinations serve as negative sam-
ples. We define the image-to-text contrastive loss as:

Li2t = − 1

N

∑
(vi,ti)∈B

y · logp (vi, ti)

= − 1

N

∑
(vi,ti)∈B

log
exp (F v

i · F t
i /τ)∑N

j=0 exp
(
F v
i · F t

j /τ
) , (1)

where F v
i and F t

i are the normalized embedding of vi and
ti. τ is the temperature hyper-parameter. Similarly, we can
define the text-to-image contrastive loss as:

Lt2i = − 1

N

∑
(vi,ti)∈B

log
exp (F v

i · F t
i /τ)∑N

j=0 exp
(
F v
j · F t

i /τ
) . (2)

The final contrastive loss can be denoted as:

L = Li2t + Lt2i. (3)

The dual-encoder framework aligns images and text us-
ing global features, but it lacks fine-grained cues for precise
vision-language alignment. To address this, we use EVD as
additional cues, enhancing retrieval performance.

EVD Offline Generation via LLMs
Entity Collection To build the EVD knowledge base, we
first create a predefined entity set. In VLR, visual items with
rich visual information are more critical than non-visual
terms. For example, non-visual terms like “New York” con-
tribute little to image-text retrieval due to the difficulty in
concisely describing its visual characteristics. In contrast, vi-
sual terms like “whale” and “school bus” offer distinct visual
cues that enhance cross-modal retrieval.

We collect visual items from the training datasets of
Flickr30k (Plummer et al. 2015) and MSCOCO (Lin et al.
2014). Since current methods struggle to differentiate be-
tween visual and non-visual entities, we use LLMs with
carefully designed prompts to extract visual entities. Specif-
ically, the prompts clarify the distinction between visual and
non-visual entities, allowing LLMs to accurately extract vi-
sual entities from the text. To ensure precise and standard-
ized extraction, we include two QA examples in the prompt.



The final entity set can be denoted as E = {en}Mn=1, where
M indicates the number of entities and en represents the n-
the entity name.

Visual Description Generation Given the entity set, we
use a large language model to generate visual descriptions
focused on distinguishable features like shape and color, fa-
cilitating fine-grained cross-modal alignment. This approach
generates a list of visual descriptions for each entity, fo-
cusing on characteristics like color, shape, parts, and quan-
tity to enhance visual distinction. The EVD knowledge base
O = {ei : evdi}Mi=1 maps each entity ei to its correspond-
ing visual descriptions evdi, covering around 10,000 entities
in this paper. Here evdi represents a list of multiple visual
descriptions of entity ei. Once the EVD knowledge base is
constructed offline, there is no need to generate EVD during
either training or inference.

EVD-aware Rewriter
Given the query ti, we first retrieve the entities ei and obtain
their descriptions evdi from the EVD knowledge. The EVD-
enhanced query is then formed as tevdi = agg(ti, evdi),
where agg(·) represents the integration strategy. As shown
in Figure 2, existing methods face noise and low-quality is-
sues. To overcome these challenges, we develop the EVD-
aware Rewriter (EaRW), which uses a pre-trained language
model to expand queries with EVD knowledge.

EVD-enhanced Query Rewriting Dataset However, the
multimodal knowledge-enhanced rewriting introduces gaps
with T5’s pre-training, causing EaRW to sometimes struggle
with the rewriting task, limiting its performance. To better
filter EVD noise and improve integration quality, we propose
a specialized training scheme for the T5 model. First, we
construct an EVD-enhanced query rewriting dataset DEQR.
Inspired by recent distillation methods (Ma et al. 2023),
we use LLMs to rewrite queries and collect EVD-enhanced
queries with positive feedback from CLIP as pseudo-labels
in the training dataset DEQR. We generate multiple EVD-
enhanced queries for each query, and the final DEQR is
composed of tuples (x : {yi, si}ki=1), where x is the orig-
inal query, yi is the i-th EVD-enhanced query label for x, si
is the corresponding score, and k is the number of pseudo-
labels for each x. In summary, we leverage ChatGPT’s con-
textual reasoning ability and CLIP’s feedback to generate a
high-quality corpus that effectively captures context prefer-
ences and dataset preferences (Dunlap et al. 2024) of EVD.

Rewriter Warm-up We initiate the EaRW with a pre-
trained T5-large model. The rewriter is first trained on
rewriting dataset DEQR to warm up. In this step, we use
the dataset DEQR to train an initial rewriter via a supervised
fine-tuning method. This process as a text-to-text task and
the rewriter is finetuned on DEQR with the standard log-
likelihood as the training objective, denoted as:

LSFT(θ) = −E(x,y)∼DEQR

∑
t

log π (ŷt|ŷ<t, x; θ) , (4)

where x refers to the original query and ỹ refers to the corre-
sponding EVD-enhanced query label with the highest score.

π(·) and θ denote our query rewriter and its parameters. The
performance of EaRw after warm-up may be sub-optimal.
In order to better align the EaRw with the retriever CLIP, we
further employ preference optimization (Peng et al. 2024) to
fine-tune the EaRw to fit the retriever.

Preference Alignment This process requires the con-
struction of a specialized preference dataset. We generate
multiple EVD-enhanced queries and obtain image-text sim-
ilarity scores from the retrieval system, which serve as re-
wards for preference learning. These scores allow us to rank
the EVD-enhanced queries from highest to lowest prefer-
ence. To minimize bias from the reward model and enhance
fine-grained preference comparisons from a global perspec-
tive, we introduce Preference Rank Optimization (PRO)
based on the Bradley-Terry model(Song et al. 2024). This
method helps the model learn the ranking of rewrites based
on feedback from the retriever, with preference probabilities
defined as proportional to the reward for a given order rela-
tion y1 ≻ y2, expressed as:

PBT =
exp(r(y1, x))

exp(r(y1, x)) + exp(r(y2, x))
, (5)

where r(·) is the reward function, which is defined as the
normalized log probability of the rewrite generated in PRO.
PRO extends pairwise partial order into general listwise par-
tial order. The PRO loss is expressed by the equation:

LPRO(θ) = −E(x,y)∼DEQR

k−1∑
j=1

log

exp

(
πPRO(yj |x;θ)

τ
′
j

)
∑k

i=j exp
(

πPRO(yi|x;θ)
τ i
j

) ,
(6)

where τ ij = 1
r(yj)−r(yi)

and τ
′

j = mini>j(τ
i
j) are used to

measure ranking difference. k denotes the number of can-
didate Evd-enhanced query label, πPRO and θ refer to the
policy model and its parameters. Additionally, an SFT loss
is applied to the PRO loss with weight β to preserve the
model’s ability to generate standard outputs.

LALIGN = LPRO + βLSFT. (7)

EaRW not only learns to recognize and integrate relevant
visual descriptions based on entity preferences but also har-
nesses LLM’s ability to generate fluent, high-quality queries.
This method effectively mitigates the issues of noise and
low-quality of EVD-enhanced query.

We integrate the optimized EaRW into the CLIP frame-
work, fine-tuning CLIP using Eq. (3) while keeping EaRW’s
parameters frozen. To handle queries with varying descrip-
tive granularities, we randomly apply query rewriting with
probability p during training. For inference, we average the
EVD-enhanced query score with the original query score to
determine the final score.

Experiments
Experimental Setup
Datasets This paper utilizes four types of datasets: pre-
training datasets, benchmark datasets, Huawei business



Table 1: Fine-tuning results for image-text retrieval on the Flickr30K (1K) test set and MSCOCO (5K) test set. Notations:
V-Encoder: vision encoder; # PT Data: the pre-training datasets.

Methods V-Encoder # PT Data
Flickr30K(1K) MSCOCO(5K)

I2T Retrieval T2I Retrieval I2T Retrieval T2I Retrieval
R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

CLIP (Radford et al. 2021) ViT-B/32 NA 64.8 85.7 92.5 49.2 79.3 86.8 43.7 73.5 82.6 32.7 63.3 75.0
DetCLIP (Yao et al. 2022) ViT-B/32 NA 65.2 86.3 93.5 50.7 79.2 86.8 45.2 73.7 83.4 33.4 63.5 75.0
DesCLIP (Menon and Vondrick 2022) ViT-B/32 NA 65.8 87.7 93.6 51.2 79.8 87.1 45.7 73.9 83.8 34.2 63.8 75.2
CLIP-GPT (Maniparambil et al. 2023) ViT-B/32 NA 66.5 88.1 93.6 51.2 80.1 87.8 46.1 74.0 83.7 34.1 63.7 75.3
LaBo (Yang et al. 2023) ViT-B/32 NA 66.1 87.5 93.5 51.2 79.8 87.5 46.4 74.1 83.8 34.3 63.7 75.1
EvdCLIP ViT-B/32 NA 66.9 88.6 94.2 52.0 80.5 87.6 46.8 74.4 84.2 35.2 64.5 75.7
CLIP (Radford et al. 2021) ViT-B/32 Laion400M 89.1 97.8 98.9 74.1 92.6 95.9 65.3 85.9 91.9 48.1 75.0 83.7
DetCLIP (Yao et al. 2022) ViT-B/32 Laion400M 89.2 97.8 99.1 74.6 92.8 96.0 65.5 85.9 92.1 48.3 75.1 83.7
DesCLIP (Menon and Vondrick 2022) ViT-B/32 Laion400M 89.6 98.6 99.3 75.1 93.0 95.9 66.1 86.1 92.4 48.8 75.3 84.1
CLIP-GPT (Maniparambil et al. 2023) ViT-B/32 Laion400M 89.7 98.7 99.2 75.2 93.1 96.1 66.2 86.2 92.3 48.8 75.3 84.3
LaBo (Yang et al. 2023) ViT-B/32 Laion400M 89.7 98.5 99.2 74.8 93.1 96.0 66.3 86.1 92.6 49.0 75.2 84.2
EvdCLIP ViT-B/32 Laion400M 90.7 99.1 99.5 75.6 93.5 96.5 66.8 86.8 92.6 49.5 75.8 84.5
CoCa (Yu et al. 2022) ViT-B/32 Laion-2B 85.5 96.5 98.7 72.0 91.2 95.4 63.9 85.6 91.0 45.6 72.1 82.2
DetCoCa (Yao et al. 2022) ViT-B/32 Laion-2B 85.6 96.5 98.7 72.2 91.2 95.4 63.8 85.5 91.0 45.8 72.1 82.1
DesCoCa (Menon and Vondrick 2022) ViT-B/32 Laion-2B 86.2 96.8 98.9 72.3 91.4 95.4 64.2 85.7 91.2 46.0 72.3 82.2
CoCa-GPT (Maniparambil et al. 2023) ViT-B/32 Laion-2B 86.2 97.0 98.8 72.2 91.6 95.3 64.3 85.7 91.0 46.0 72.2 82.3
LaBo (Yang et al. 2023) ViT-B/32 Laion-2B 86.1 96.8 98.8 72.1 91.5 95.5 64.3 85.6 91.1 46.1 72.1 82.3
EvdCoCa ViT-B/32 Laion-2B 86.6 97.2 98.9 72.6 91.5 95.7 64.8 85.7 91.5 46.4 72.6 82.5
EVA-02-CLIP (Sun et al. 2023) ViT-B/16 Merged-2B 90.8 98.7 99.2 78.9 94.7 97.0 69.1 89.2 94.0 52.6 78.5 86.8
DetEVA-02-CLIP (Yao et al. 2022) ViT-B/16 Merged-2B 90.9 98.6 99.1 79.1 94.6 97.0 69.3 89.2 94.0 52.7 78.5 86.7
DesEVA-02-CLIP (Menon and Vondrick 2022) ViT-B/16 Merged-2B 91.1 98.7 99.2 79.3 94.7 97.1 69.5 89.3 94.3 52.6 78.6 86.8
EVA-02-CLIP-GPT (Maniparambil et al. 2023) ViT-B/16 Merged-2B 91.1 98.7 99.2 79.3 94.7 97.1 69.4 89.3 94.3 52.6 78.6 86.8
LaBo (Yang et al. 2023) ViT-B/16 Merged-2B 91.0 98.6 99.3 79.3 94.8 97.0 69.4 89.2 94.1 52.8 78.5 86.8
EvdEVA-02-CLIP ViT-B/16 Merged-2B 91.4 98.6 99.5 79.7 94.8 97.2 69.9 89.7 94.5 53.4 78.9 87.1

Table 2: Fine-tuning T2I retrieval results on HuaWei Busi-
ness Datasets. The vision encoder is ViT-B/32.

Methods Theme Wallpaper
R@5 R@50 R@100 R@5 R@50 R@100

CLIP 50.32 64.22 67.68 22.30 52.01 62.41
EvdCLIP 50.47 67.30 71.85 25.22 58.71 69.13

△ +0.15 +3.08 +4.17 +2.92 +6.70 +6.72

Methods Lock-Screen Icons
R@5 R@50 R@100 R@5 R@50 R@100

CLIP 83.51 92.46 94.31 73.97 86.84 89.71
EvdCLIP 84.73 94.50 95.93 74.03 87.38 90.41

△ +1.22 +2.04 +1.62 +0.06 +0.54 +0.70

datasets, and EVD-enhanced query rewriting dataset DEQR.
We use the benchmark and Huawei business datasets
for model fine-tuning and performance evaluation. Pre-
training Datasets: (1) Laion400M (Schuhmann et al. 2021)
and (2) Laion-2B (Schuhmann et al. 2021) contain 400
million and 2 billion image-text pairs respectively, sourced
from publicly available internet data. (3) Merged-2B (Sun
et al. 2023) combines multiple datasets, totaling 2 bil-
lion image-text pairs. (4) YFCC15M (Thomee et al. 2016)
is a subset of YFCC100M, with 15 million image-text
pairs. Finally, (5) CC12M (Changpinyo et al. 2021) con-
sists of 12 million image-text pairs. Benchmark Datasets:
(1) Flickr30K (Plummer et al. 2015) contains 31,000 im-
ages, each annotated with 5 captions. Following (Li et al.
2021), which split into 29K/1k/1k images for training, vali-
dation and testing. (2) MSCOCO (Lin et al. 2014) comprises
123,287 images, each annotated with 5 captions. We split
it into 114K/5K/5K for training, validation, and testing. (3)
MSR-VTT (Xu et al. 2016) includes 10K videos, each with
200K text. We employ 9K videos for training and evalua-
tion on the 1K test set. (4) SBU30k (Ordonez, Kulkarni, and
Berg 2011) consists of 36k image-text pairs, randomly sam-
pled from SBU Captions and split into 30K/3K/3K for train-
ing, validation, and testing. Similarly, we obtain (6) CC30K
and (7) YFCC30K by randomly sampling from CC12M

and YFCC15M. Huawei Business Datasets: This dataset,
sourced from Huawei Mobile Scene Search Service, con-
tains a large number of Chinese image-text pairs. It is cat-
egorized into four types: Theme, Wallpaper, Lock-Screen,
and Icon.

Baseline We will validate our approach on advanced dual-
encoder retrieval models: (1) CLIP (Radford et al. 2021),
a powerful dual-encoder model pre-trained with contrast
learning. (2) CoCa (Yu et al. 2022), a framework that in-
tegrates various pre-training paradigms, using its image en-
coder and unimodal text decoder for retrieval. (3) EVA-02-
CLIP (Sun et al. 2023), which incorporates novel techniques
for representation learning, enhancing CLIP’s performance.

We also compare EvdCLIP with description-enhanced
CLIP methods: (1) DetCLIP(Yao et al. 2022) generates ob-
ject concepts via WordNet. (2) DesCLIP (Menon and Von-
drick 2022) uses LLMs to generate descriptions and inputs
them into CLIP in parallel. (3) CLIP-GPT (Maniparambil
et al. 2023) creates visual descriptions with LLMs and de-
noising with a self-attention adapter. (4) LaBo (Yang et al.
2023) selects descriptions with designed functions and a
learnable weighting matrix.

Large Language Models We used several LLMs in our
research, including GPT-3 (Brown et al. 2020) (”text-
davinci-003”), ChatGPT (OpenAI 2022) (”GPT-3.5-turbo”),
Llama (Touvron et al. 2023) (”Llama-2-13B-chat”), Vi-
cuna (Chiang et al. 2023) (”vicuna-13B-v1.5”), and
PanGu (Zeng et al.), a Chinese LLM developed by Huawei.

Implementation Details In the construction of the EVD,
we utilize ChatGPT to gather entities from the training sets
of the Flickr30k and MSCOCO datasets. After collecting en-
tities, we filter out low-frequency entities to ensure the rele-
vance and robustness of the dataset. This process result in the
collection of approximately 10k entities (M = 10237). Sub-
sequently, we employ ChatGPT to generate visual descrip-
tions for these entities. In the Huawei business dataset, we



use the PanGu large language model insted of ChatGPT for
our experiments. EaRW is initialized using the pre-trained
T5-large model (770M parameters), making it more feasible
for real-world deployment. We conduct the warm-up phase
of EaRW with a learning rate of 3e-5, a batch size of 8,
and over 20 epochs. For the Rank Preference Optimisation
(RPO) model, we set the learning rate to 5e-7, with a batch
size of 16, across 5 epochs, and used a rank length of 5. The
weight of the SFT loss β is set to 0.2, and the probability of
random rewriting during CLIP fine-tuning p is set to 0.6.

We build EvdCLIP based on fine-tuning on pre-trained
CLIP model (Radford et al. 2021). For the hyper-parameters
used for fine-tuning CLIP, we employ the Adam optimizer
(Kingma and Ba 2014) with weight decay of 1e-3 and batch
size is set to 256. The total number of fine-tuning epochs is
set to 20. The initial learning rate is set to 1e-6 and a co-
sine learning rate decay scheduler is applied. We apply a
warm-up strategy for the initial 2k steps. Following previous
work (Radford et al. 2021), we use recall R@h(h = 1, 5, 10)
as the evaluation metrics.

Main Results
We evaluate our approach on a state-of-the-art dual-encoder
framework for VLR using two benchmarks: Flickr30K and
MSCOCO. As shown in Table 1, EvdCLIP consistently out-
performs CLIP across all metrics on both datasets, demon-
strating that incorporating EVD enhances the alignment of
images and text. Notably, EvdCLIP shows a significant im-
provement on R@1. When pre-trained on Laion400M, Evd-
CLIP achieves R@1 increases of 1.6%, 1.5%, 1.5%, and
1.4% on I2T and T2I for Flickr30K and MSCOCO, respec-
tively, indicating that EVD captures fine-grained entity dif-
ferences, leading to more precise identification.

We test EvdCLIP on other CLIP-style models. As shown
in Table 1, both CoCa and EVA-02-CLIP, with our ap-
proach, achieve superior performance across most metrics,
demonstrating its compatibility and effectiveness. Although
EVA-02-CLIP already significantly improves CLIP’s perfor-
mance through optimization strategies, our method further
enhances its performance. Compared to existing descrip-
tion enhancement methods, EvdCLIP is tailored for VLR,
leading to more significant improvements in retrieval per-
formance. Detailed analysis is provided in ablation studies.

Results on Huawei Business Dataset
We also evaluate our method on Huawei business dataset and
the results are consistent with those from public datasets.
Using the Pangu Chinese LLM to generate entity visual de-
scriptions, EvdCLIP consistently outperforms CLIP in var-
ious text-to-image retrieval tasks, as shown in Table 2. No-
tably, we observe that our method achieves the most sig-
nificant performance gains in the wallpaper task, with re-
call rates improving by 2.92%, 6.70%, and 6.72% at R@5,
R@50, and R@100. We speculate that user queries for the
wallpaper are often short, vague, and entity-rich, making
EVDs particularly crucial for this task. These results further
demonstrate the effectiveness of our EVDs in large-scale
Chinese vision-language retrieval.

Table 3: Ablation studies on description sources. The vision
encoder is ViT-B/32, Fine-tuning dataset is Flickr30k and
Pre-Training dataset is Laion400M.

Methods Des. Source I2T Retrieval T2I Retrieval
R@1 R@5 R@10 R@1 R@5 R@10

CLIP NA 89.1 97.8 98.9 74.1 92.6 95.9
WordNetCLIP WordNet 89.2 97.8 99.2 74.6 92.8 96.0

EvdCLIP

GPT-3 90.6 99.0 99.4 75.6 93.4 96.4
ChatGPT 90.7 99.1 99.5 75.6 93.5 96.5
Llama-13B 90.4 98.8 99.4 75.3 93.3 96.2
Vicuna-13B 90.2 98.8 99.2 75.4 93.2 96.3

Query Image EvdCLIP’s Text map with Image CLIP’s Text map with Image EVD

- pink or red color
- small bumps called papillae
- a pointed tip
- a rough texture
- a U-shaped underside

- circular shape
- flat surface
- plastic material
- colorful design
- raised edges

tongue

Frisbee
A brown dog walks in 

the grass with its tongue
hanging out

A brown dog with a 
purple Frisbee in its 

mouth

Retrieve Results: A brown dog walks in the 
grass with its tongue hanging out 

 

Retrieve Results: A brown dog with a purple 
Frisbee in its mouth

 

- a flat surface with knobs, 
  buttons, and sliders
- a variety of inputs and 
  outputs
- a power switch
- a headphone jack
- a monitor section with level 
  meters
- a master section with a  
  master fader

mixing board
A DJ in a club, adjusting 

levels on his mixing board

A DJ with one hand on 
his headphones and one 

hand on his turntable.

Retrieve Results: A DJ in a club, adjusting 
levels on his mixing board

Retrieve Results: A DJ with one hand on his 
headphones and one hand on his turntable

 

(a)

(b)

A brown dot … its tongue 
hanging out, displaying a 
pink or red color, rough 
texture, and a U-shaped 

underside.

A brown dog … Frisbee in 
its mouth, characterized 
by its circular shape, flat 
surface, plastic material, 

and raised edge.

A DJ … mixing board, 
featuring a flat surface 
with knobs, buttons, 
and sliders. … inputs 

and outputs.

A DJ, … on his turntable, 
wears headphones with 

two earpieces connected 
by a headband and….

Figure 4: EvdCLIP focuses on significant regions of the im-
age that are semantically related to the entity. Visualization
examples of image-to-text retrieval are provided. We present
image queries (the first column) along with four heatmaps.

Ablation Studies
Description Types Entity descriptions in our paper are of
two types: conceptual descriptions from sources like Word-
Net (Kilgarriff 2000) and visual descriptions generated by
our method. Table 3 compares the results of WordNetCLIP
and EvdCLIP. WordNet provides only slight improvements
in image-text retrieval, because its definitions are less rele-
vant to visual understanding. In contrast, EvdCLIP’s visual
descriptions better capture image content, leading to supe-
rior performance in cross-modal tasks.

Large Language Models We test EvdCLIP with various
LLMs, including ChatGPT, GPT-3, Llama-13B, and Vicuna-
13B. As shown in Table 3, experimental results reveal that
EvdCLIP, equipped with any LLMs, can generate visually
helpful descriptions for the model. Different LLMs show
slight variations in performance improvement. GPT-3 and
ChatGPT outperform others.

EVD-enhanced Query Methods We analyze the impact
of different description enhancement methods. As shown in
Table 1, DetCLIP adds concept descriptions for entities, re-
sulting in only slight enhancement. DesCLIP adds visual de-
scriptions, offering better performance than DetCLIP, but it
suffers from noise and low-quality integration issues. CLIP-
GPT and LaBo are designed for image classification denois-
ing, but they fail to dynamically adjust for query content,
limiting their performance. EvdCLIP outperforms all these
methods. With EaRW and our training strategy, EvdCLIP
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Figure 5: Comparison Between EvdCLIP and DesCLIP. The
second column represents the image query. The first column
shows the similar scores between Ground Truth and the im-
age. The text in red annotates the errors.

efficiently filters and utilizes EVD based on the query, gen-
erating high-quality EVD-enhanced queries.

Qualitative Analysis
Superiority of EVD We use the Integrated Gradients al-
gorithm (Qi, Khorram, and Li 2019) to demonstrate how
EVD helps the model focus on relevant image regions. In
Figure 4 (a), CLIP struggles to distinguish between “fris-
bee” and “tongue” in the dog’s mouth, leading to inaccurate
results. EVD enables EvdCLIP to differentiate these entities
by emphasizing features like the “U-shaped underside” of a
“tongue” versus the “circular shape” of a “frisbee”. In Fig-
ure 4 (b), CLIP struggles with the few-shot entity “mixing
board”, while EvdCLIP, guided by the visual description “a
flat surface with knobs, buttons, and sliders,” achieves bet-
ter alignment. In summary, EVD helps EvdCLIP focus on
semantically relevant regions, improving retrieval accuracy.

Superiority of EaRW We then qualitatively analyze the
advantages of EaRW. Due to LLM-induced hallucinations,
some entities may be misinterpreted. For example, in Fig-
ure 5(a), “carrying a whistle” and “carrying a clipboard” are
incorrect descriptions for the entity “keeper”, resulting in
inaccurate retrievals. EaRW, trained on the dataset DEQR,
identifies these intrusive descriptions and filters them out
during query rewriting. Beyond hallucinations, EaRW also
reduces noise. In Figure 5(b), the description “handles on the
side” does not match the “garbage can” in the image. EaRW

山东舰 (Shandong ship)

Query：山东舰 (Shandong ship)

EVD Knowledge : 

婚礼 (wedding)

Query：婚礼壁纸 (Wedding Wallpaper)

EVD Knowledge :

CLIP

EvdCLIP

    红色装饰，象征好运 (Red decoration, symbolizing good luck)

    红色或金色调的传统服饰 (Traditional clothing with red or gold tones)

双喜象征 (Double happiness symbol )

OR

CLIP

EvdCLIP

(a)

(b)

    大型海军军舰 (Large naval vessels)

    航空母舰 (aircraft carrier)

    悬挂中华人民共和国国旗 (Hanging the National Flag of China)

    甲板上有多架飞机 (multiple planes on the deck)

    灰色外观 (Gray appearance)

   穿着西服的新郎 (The groom wearing a suit)

    穿着白色婚纱的新娘 (The bride wearing a white wedding dress)

结婚戒指鲜花等装饰 (Wedding rings, flowers, and other decorations)

Figure 6: Examples of Huawei Wallpaper Retrieval. The left
is query and the right displays top-4 retrieval results. (a) Im-
ages highlighted in green are user-satisfied; (b) Results high-
lighted in red depict Western weddings, while those in blue
represent traditional Chinese weddings.

learns the appearance preferences of high-frequency entities
and selectively incorporates relevant descriptions into the
query. EaRW also effectively resolves entity ambiguity. As
shown in Figure 5(c), the term “square” can refer to either
plaza features or geometric shapes. Geometric descriptions
may reduce matching accuracy. EaRW adapts by choosing
“plaza”-related descriptions based on the query’s context.

Methodological Editability
Unlike black-box models, our framework demonstrates ed-
itability through the incorporation of EVD.

Novel Knowledge Injection: CLIP is limited to under-
standing concepts that existed before its training. In contrast,
EvdCLIP enables the model to grasp novel concepts by in-
tegrating visual descriptions. For instance, in Huawei Wall-
paper Retrieval, as shown in Figure 6 (a), when the query
“Shandong ship” is used, the CLIP model produces poor re-
trieval results. By constructing appropriate descriptors, Evd-
CLIP can recognize that “Shandong ship” refers to an air-
craft carrier and retrieve images that satisfy the user’s intent.

Entity Bias Correction: EVD allow for manual bias cor-
rection in recognition systems. Since EvdCLIP’s decision
relies on EVD, altering descriptions will impact outcomes.
Figure 6 (b) shows how editing EVD can address bias. For
instance, when querying “Wedding Wallpaper”, CLIP may
favor Western weddings due to biased training data. By
incorporating EVDs of traditional Chinese weddings, we
guide the model to explore a more diverse range of concepts.

Conclusion
In this paper, we propose EvdCLIP, which employs entity
visual descriptions generated by LLMs as auxiliary informa-
tion to guide visual-textual alignment. To address the noise
and low-quality issue of EVD integration, we develop an
EVD-aware Rewriter, which utilizes EVD knowledge and
the generative capabilities of pretrained language models to
rewrite query elegantly. Extensive visual-language retrieval
benchmark experiments have demonstrated that our pro-
posed EvdCLIP can effectively improve VLR performance.
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