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Abstract—In recent years, programmable switches have
emerged as robust platforms for deploying high-performance
network services to detect malicious traffic. However, current re-
searches face several challenges: firstly, the flow tables generated
by model deployment are cumbersome; secondly, existing unsu-
pervised methods have difficulty handling repetitive traffic; and
thirdly, the flow-level inference is coarse-grained and susceptible
to attacks. To address these challenges, we propose SentinelX,
which offers several advancements. Initially, we design a space-
saving multi-level flow table representation method. We then
introduce TreeDivider, an innovative model-splitting algorithm
that achieves significant space reductions of up to 63.88% after
only two subdivisions. Next, we propose DualTree, a hardware-
specific unsupervised decision tree utilizing a dual threshold
mode, which enhances detection accuracy by approximately
30.24%. Finally, we design a fine-grained method for determining
the inference point, boosting the detection rate of bypass attacks
by 30.03%. Extensive experiments on the H3C S9830-32H-
H1 switch demonstrate that SentinelX can reach 99.99% of
the maximum bandwidth of switch ports with nanosecond-level
latency, approximately 1.38 times the delay of L3 (network layer)
base forwarding.

Index Terms—programmable switches, in-network classifica-
tion, malicious traffic detection, unsupervised decision tree

I. INTRODUCTION

With the emergence of new network technologies such as
5G, 6G, and the Internet of Things (IoT), network security
challenges are also increasing [1]–[3]. Among these chal-
lenges, emerging networks impose higher requirements on ma-
licious traffic detection, especially regarding high throughput
and low latency. For example, 5G networks can handle a large
number of concurrent data streams. As a result, malicious
traffic detection should quickly identify and address potential
threats without compromising network performance [4], [5].
Additionally, IoT devices rely on real-time data transmission
to perform critical tasks, such as vehicle-to-everything (V2X)
communication in transportation systems and healthcare data
transmission in remote diagnostics. These applications require
networks to have low latency characteristics to ensure respon-
sive communications [6], [7].

Programmable switches have become a promising platform
for deploying high-throughput and low-latency malicious traf-
fic detection systems. This is because switches often perform
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packet-forwarding tasks and can handle a large volume of
packets. By deploying intelligent malicious traffic detection al-
gorithms on programmable switches at critical network nodes,
malicious traffic can be identified and intercepted in real-time
as it flows through the network, significantly enhancing the
response speed and detection accuracy of the network security
system.

Deploying malicious traffic detection systems on pro-
grammable switches, however, faces a significant chal-
lenge: overcoming the hardware limitations of programmable
switches. Due to their limited memory capacity and lim-
ited support for floating-point operations, these switches
are not suitable for neural networks that require com-
plex computations. Previous studies—such as HorusEye [7],
Mousika [8], Netbeacon [9], pForest [10], SwitchTree [11],
Flowrest [12]—have adopted concise and effective decision
tree-based models for deployment in programmable switches
for malicious traffic detection. However, these methods have
shortcomings in the following aspects: (i) Scalability, e.g.,
the lack of consideration for the flow table occupancy as
decision tree models increase in complexity; (ii) Adaptability,
e.g., unsupervised models fail to adjust themselves when
exposed to real-world repetitive traffic; (iii) Robustness, e.g.,
the vulnerability introduced by fixed inference points at the
flow level, which are prone to bypass attacks.

To overcome these challenges mentioned above, we propose
a malicious traffic detection system, SentinelX, which is de-
ployable on hardware switches. SentinelX is characterized by
the following features: first, we use multiple small flow tables
to replace a cumbersome and redundant large flow table, and
we develop an algorithm (i.e. TreeDivider) to split the large
flow table; second, we develop an unsupervised decision tree,
DualTree, which uses a dual threshold model to determine the
standards for identifying traffic anomalies, to cope with real
traffic environments; third, we design a fine-grained inference
point selection method, introducing a random algorithm in
programmable switches to support the random selection of
inference points. This approach effectively counters potential
evasion attacks that attackers might launch.

In summary, SentinelX’s contributions are threefold:
• SentinelX introduces a novel model representation

method employing multiple space-saving small flow ta-
bles to replace a complicated and redundant large flow ta-
ble, addressing memory constraints. This approach marks
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Fig. 1: Protocol-Independent Switch Architecture (PISA).

the first instance of deploying a decision tree using mul-
tiple small flow tables. Additionally, we have developed
the TreeDivider algorithm to effectively split large flow
tables, ensuring optimal division while maintaining the
accuracy of flow table semantics.

• SentinelX proposes an unsupervised decision tree Du-
alTree, suitable for programmable switches. DualTree
employs a dual-threshold model to identify anomalous
traffic, addressing challenges such as duplicate packet
headers due to network retransmissions and other real-
world network issues. Moreover, SentinelX includes fine-
grained flow-level detection to effectively counter evasion
attacks.

• We implement a prototype of SentinelX on the H3C
S9830-32H-H1 switch and conduct extensive testing. The
experiments demonstrate that SentinelX achieves 99.99%
of the maximum throughput of the switch ports and
nanosecond-level latency, which is only 1.38 times the
latency of basic L3 forwarding. After using the TreeDi-
vider algorithm to partition twice, it achieves an average
space saving of 63.88%. For bypass attacks, fine-grained
inference point selection improves the detection rate by
30.03%.

II. BACKGROUND AND RELATED WORK

A. Programmable Switches

The Protocol-Independent Switch Architecture (PISA) is
proposed to address the challenges faced by traditional net-
work switches in supporting new protocols and services.
Traditional switches are often tightly tied to specific network
protocols, requiring hardware changes or upgrades when new
protocols and services are introduced. Such processes can be
costly and time-consuming. PISA aims to provide a protocol-
independent switch architecture, enabling greater flexibility
in adapting to new network protocols and services without
extensive hardware modifications. With PISA, switches can be
adapted to new protocols and services without modifying their
hardware thanks to its programmable data plane architecture.
This flexibility is crucial in the ever-evolving landscape of
network environments and application demands.

As illustrated in Fig.1, packets first enter a parser for header
parsing, then pass through multiple match/action stages for

packet operations, and finally reach the deparser for packet
serialization. The parser, the match/action units, and the de-
parser can all be programmed to implement desired protocols.
The programmable switch pipeline is sufficiently flexible, al-
lowing direct programming through domain-specific languages
like P4. The Match-Action Pipeline supports exact matches,
ternary matches, and longest prefix matches. Each match is
associated with an action, where specific computations and
storage modifications can be executed. Interdependent actions
need to be placed in different stages. The header and metadata
instances utilize stateless storage, reinitializing with the arrival
of new packets. PISA also provides stateful and persistent stor-
age options, such as counters, meters, and registers. Although
programmable switches offer many advantages, they also have
some limitations.
• Memory Limitation. Each stage is equipped with two high-

speed types of memory. The first is TCAM, a content-
addressable memory well-suited for rapid table lookups.
TCAM stores entries that involve matching types such as
ternary, longest prefix matching (LPM), and range matching.
It’s worth noting that not all programmable switches are
suitable for range matching [9]. The second type is SRAM,
utilized for storing entries that require exact matching in
tables and status registers. SRAM has a capacity of approx-
imately 100MB, while TCAM is significantly smaller than
SRAM [8].

• Width Limitation. Width constraints are present in the
high-speed lookup hardware TCAM of programmable
switches. TCAM has width limitations, typically allowing
input widths of only 36, 72, 144, or 288 bits [13], thus
often limiting the capability for high-dimensional (multi-
width) data matching.

• Operation Restrictions. Programmable switches impose
operational constraints that exclude complex instructions
such as division and floating-point operations [8]. Packet
processing in the Match-Action Pipeline is limited to basic
instructions, such as integer addition and bit shifting. These
permitted instructions have also been limited in terms of
their number within specific operations.

B. Related Work

TABLE I: Comparison with prior art in programmable
switches.

Prior Works Line- Unsupervised Flow- High
Speed Model Level Dimensionality

Mousika [8] ✓ ✗ ✗ ✗
SwitchTree [11] ✓ ✗ ✓ ✗
Flowrest [12] ✓ ✗ ✓ ✗
Netbeacon [9] ✓ ✗ ✓ ✗
HorusEye [7] ✓ ✓ ✓ ✗
SentinelX ✓ ✓ ✓ ✓

Implementing a malicious traffic detection system on pro-
grammable switches is a promising endeavor. TABLE I pro-
vides an overview description of existing solutions.



1) Malicious Traffic Detection: Although Mousika [8] and
SwitchTree [11] can achieve line-rate speeds, they cannot
deploy high-dimensional models due to memory constraints.
In contrast, Flowrest [12], Netbeacon [9], and HorusEye [7]
improve model accuracy by utilizing flow-level features. How-
ever, their disadvantage lies in performing inference only at
fixed points, where attackers can easily identify and circum-
vent, posing significant security risks. HorusEys uses an un-
supervised model for malicious traffic detection, but it suffers
from limited accuracy due to the lack of consideration for
packet retransmission. Our method, DualTree, employs a dual-
threshold approach, performing a secondary assessment for
decisions made at decision tree leaf nodes to reduce false pos-
itives. Experiments show that our approach improves the accu-
racy of detecting anomalous traffic by approximately 30.24%
compared to traditional unsupervised decision trees [7], [14]–
[19].

2) Processing of Flow-Level Features: Mousika [8] only
detects at the packet level, thereby missing the opportunity to
enhance accuracy through flow-level features. SwitchTree [11]
and HorusEye [7] use non-statistical flow-level features for
detection, but overlooks the role of statistical flow-level char-
acteristics. Flowrest [12] and NetBeacon [9] can only support
fixed inference points at powers of two due to the shift
operation in programmable switches. Because these inference
points are fixed, attackers can easily bypass the system to
carry out attacks. Our flow-level detection method specifically
studies attackers’ tactics against statistical flow features and
has made corresponding countermeasures. Compared to ap-
proaches that ignore such actions, our method has improved
detection accuracy by about 30.03%.

3) Model Deployment in Programmable Switches:
SwitchTree [11] leverages if-else statements in programmable
switches to represent decision tree branches. Deploying if-else
statements requires occupying different stages in the switch,
which limits deployments to low-dimensional, simple decision
trees. Mousika [8], Netbeacon [9], and Flowrest [12] encode
decision trees into ternary rules, which are installed in the
programmable switch’s TCAM for matching. The width of
the ternary rules generated by these methods matches the
number of branch nodes in the decision tree. However, since
the TCAM width is limited, models cannot be deployed if the
ternary rule width exceeds TCAM’s capacity, preventing the
deployment of high-dimensional decision trees. HorusEye [7]
uses range matching that integrates branch node features
into final range matching rules using a Cartesian product.
However, this approach has two significant flaws: (1) Not
all programmable switches support range matching; and (2)
An exponential increase in complexity occurs when adding
branch node features due to the use of a Cartesian product
for integration, making deployment less feasible on switches
with limited memory. Our method encodes decision trees into
ternary matching rules and employs multiple small flow tables
instead of large ones. This solves the limited TCAM width
issue and significantly reduces the switch space occupied by
eliminating redundancy in large flow tables.
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Fig. 2: An example of cutting the match field of a flow table.

III. MOTIVATION AND SYSTEM OVERVIEW

A. Motivation Example

When decision trees generate flow tables composed of
ternary rules through encoding, we find that there is no overlap
between any two rules, nor does complex rule dependency
occur. We begin with this as a basis for our work. With
this characteristic, we do not need to consider complex de-
pendencies between table entries [20], [21], allowing us to
streamline the flow table. By removing complex and redundant
information from the flow table and reorganizing it, we use
multiple simplified small flow tables to replace the previous
large flow tables. Below is a simple example to illustrate our
idea.

As shown in Fig.2, on the left is a flow table generated by a
decision tree through encoding, which was a large flow table
containing redundant information before transformation, with
a width of 5 bits. It is evident that Field 1 and Field 3 are
the redundant information in this table because even without
the part of Field 1, the packet can complete the match of
the information in Field 4; similarly, even without the part of
Field 3, the match can be completed through the information in
Field 2. On the right are two refined, fine-grained flow tables
after the transformation. We added an entry from Field 3 to the
Field 4 part to serve as a pointer pointing to the Field 2 part. In
programmable switches, packet matching through table entries
follows a top-down priority order. When a match occurs, the
packet first matches in the Field 4 part, then matches in the
Field 2 part, resulting in a match outcome consistent with that
before the transformation. For example, in the diagram, we
have a packet with a matching domain of "00111", which,
in the order from top to bottom, hits the entry "00*11" in
the table before the transformation. After the transformation,
it first passes through the Field 4 part, hitting the last entry,
namely the one pointing to the Field 2 part, thus requiring
continued matching; otherwise, it could directly terminate. In
the Field 2 part, it hits the "11" entry, matching the same
entry as in the large table before the transformation, thereby
proving that our large flow table before the transformation and
the small flow table after the transformation are semantically
consistent.

Through such a simple splitting and transformation, we have



reduced the maximum width of the overall flow table from
5 bits to 3 bits. This reduction in maximum width helps us
break through the maximum match width limitation of TCAMs
in programmable switches, allowing us to deploy models of
higher complexity and dimensionality. As for memory usage,
the flow table space has been reduced from 30 bits to 18
bits, resulting in a compression rate of 40% while maintaining
semantic consistency. This is undoubtedly beneficial for the
tight memory space in programmable switches.

Overall, we divide large flow tables into smaller ones
through a multi-level structure, enhancing match and lookup
efficiency. Thanks to the high performance of the hardware,
the slight increase in latency caused by additional searches (in
nanoseconds) can be negligible.

B. System Overview

As shown in the Fig. 3, SentinelX is primarily divided into
two parts: the control plane and the data plane. In the control
plane, we have proposed a novel unsupervised decision tree
algorithm called DualTree, which is capable of detecting 0-day
attacks while better adapting to the hardware characteristics of
programmable switches. To address the challenges of insepara-
ble data points and potential duplications, we have introduced
a dual-threshold method to enhance detection accuracy. To
ensure the model’s lightweight nature, we designed a decision
tree-oriented splitting algorithm, TreeDivider, which creates
subtrees consisting of non-leaf and leaf nodes. The non-leaf
nodes are defined by the splitting features and integer values,
whereas the leaf nodes include three types: (1) benign traffic;
(2) malicious traffic; and (3) linked subtrees.

At the data plane, we proposed, for the first time, the use of
multi-level flow tables in programmable switches to represent
the model. By deploying the model split by TreeDivider, we
can reduce the memory usage of the switches and deploy
larger-scale models. In terms of flow-level processing, packets
first need to undergo a blacklist scan. If identified as malicious,
they are dropped; otherwise, the features in the register are
updated. Next, the inference point is selected. If it isn’t an
inference point, it indicates a benign flow that should be for-
warded. Then, the feature encoding phase begins, and the flow
table of the model is queried to produce a result. Subsequently,
the blacklist is updated, allowing for the effective detection of
short flows and the prevention of bypass attacks.

IV. PACKET PROCESSING

The characteristics of a data packet originate from two as-
pects: (i) packet-level features and (ii) flow-level features. The
flow-level features are further divided into two parts. One part
includes flow-level features that every packet has, such as the
total packet length of the flow to which the packet belongs, and
the total number of packets in that flow. The other part consists
of statistical flow features, such as the average packet length
and average number of packets in the flow. Previous works
in Flowrest [12] and Netbeacon [9] calculate the statistical
features of the flow using bit-shifting operations supported
by programmable switches. However, such calculations are

limited because they can only be performed at powers of two,
thus these studies set their inference points at powers of two,
which makes it impossible to detect attacks on packets that
are not powers of 2. Our flow-level scheme aims to solve the
above problems, enhancing the robustness of detection as well
as improving the accuracy of detection.

Algorithm 1: Data Level Packet Processing
Input: PIn: PacketIn

1 HashKey = Hash(PIn) // get HashKey
2 if PIn in blackList then
3 PIn.drop() // malicious flow
4 end if
5 UpdateFeatures(HashKey, PIn) // update features
6 if PIn.id ≤ 8 or genRandom(PIn.timestamp) match

tableRandom then
7 PIn.infer = 1 // need to infer
8 end if
9 if PIn.infer == 1 then

10 PIn.result = infer(PIn) // infer packet result
11 if PIn.result == 1 then
12 PIn.forward() // benign flow
13 else
14 PIn.drop() // malicious flow
15 UpdateBlackList(PIn) // update blackList
16 end if
17 else
18 PIn.forward() // no need to infer
19 end if

As shown in Algorithm 1, packets are first hashed upon
arrival to compute a 32-bit HashKey (Line 1). We have dis-
cussed our hash collisions in Section VI. Then, it is determined
whether the packet’s stream is on the blacklist; if identified
as a malicious stream, it is directly dropped (Line 2-4). The
features of packets that are not from a malicious stream are
updated (Line 5). Next, it is assessed whether the packet is one
of the first eight, or a random selection is made for packets
beyond the first eight to determine the inference points (Line
6). If it is not an inference point, the packet is forwarded (Line
17-19) to avoid data delays. This method prevents attackers
from bypassing flow-level inference attacks. Then, inference
is carried out on the packets at the inference points (Line 9-
10). Following this, the results of the packet inference are used
to decide the destination of the packets and whether to update
the blacklist (Line 11-16).

V. MODEL BUILDING

It is difficult to separate certain data points when dealing
with network traffic datasets using unsupervised decision
trees that use integers for splitting. To address this, we
designed DualTree in Section V-A, which uses dual thresh-
olds to detect network traffic datasets, effectively enhancing
detection efficiency. Deploying unsupervised decision trees
in programmable switches presents the following problems:
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Fig. 3: The architecture of SentinelX.

TABLE II: Duplicate rate of data points in different types of
dataset.

Dataset Duplicate Rate Dataset Duplicate Rate

NSL-KDD 0.8239 CICDS 2017 0.1171
Aposemat IoT-23 0.9990 CIC IoT 2023 0.5396
Encrypted 2021 0.1949 Encrypted 2022 0.1305

(1) Due to width limitations in the TCAM of programmable
switches, flow tables with excessively wide match fields can-
not be supported (for example, the TCAM of Tofino 1 can
only support up to 524-bit match width); (2) Programmable
switches have memory limitations (e.g., TCAM in Tofino 1
has only 6.2 MB [9]) and computational limitations (unable to
support floating-point numbers and division operations, etc.).
To resolve these issues, we propose a multi-level flow table
to represent the decision tree in Section V-B, and introduce a
specific method for splitting, TreeDivider, in Section V-C.

A. DualTree

In traditional unsupervised anomaly detection, data points
are split as much as possible to distinguish between normal
and abnormal traffic. Within the maximum allowed tree height,
each leaf node must contain at most one data point. However,
deploying unsupervised decision trees on switches requires
integer split values, as programmable switches do not support
floating-point operations. This introduces a problem: during
training, integer split values cannot thoroughly partition data
points, resulting in some leaf nodes containing more than
one data point. This situation arises due to the following
three reasons: (1) Flow-level features might be floating-point
numbers. (2) The dataset may contain duplicate data points due
to reasons such as packet retransmission. (3) After feature se-
lection, originally distinct data points might become identical
due to the reduction in features.

To verify the hypothesis mentioned above, we conducted
experiments on network traffic datasets, IoT traffic datasets,
and encrypted traffic datasets, as illustrated in the TABLE. II.
We converted all floating-point features to integer features

to examine the prevalence of duplicate data points within
these datasets. The results revealed a significant presence of
duplicate data points across all types of traffic. IoT traffic
exhibited the highest proportion of duplicates, with 77% of
data points showing repetitions.

Algorithm 2: DualTree
Input: t1: Threshold 1, t2:Threshold 2, T :Trained Tree
Result: T :DualTree

1 for node in T.LeafNodes() do
2 node.result = 0 // init as normal node
3 if node.height/allHeight ≤ t1 then
4 node.result = 1 // t1: init malicious node
5 if node.number/allNumber > t2 then
6 node.result = 0 // t2: rejudge normal node
7 end if
8 end if
9 end for

10 return T

To address the issue of difficult data point partitioning dur-
ing training, we designed DualTree, which uses dual thresholds
to improve the original threshold problem [7], [14]. As shown
in Algorithm 2, it starts by traversing all leaf nodes (Line
1) and initializing each node as a normal node (Line 2).
Then, it checks Threshold 1: if the height of the current leaf
node is less than t1 relative to the total height, the node is
considered abnormal. This is also how traditional methods [7],
[14] determine abnormal nodes. Otherwise, a second judgment
is made: if the number of data points assigned to the leaf node
during training exceeds t2 of the total data points (Line 5), the
node is considered normal (Line 6). This is because the node
has a larger number of data points assigned to it, rather than
the single data point envisioned by the decision tree, making
it likely that normal data points are difficult to partition due
to integer split values. Generally, abnormal data points are
discrete, so leaf nodes with abnormal data points are more
likely to contain a single data point.
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B. Multi-Level Flow Table Representation

Our multi-level flow table representation method differs
from the current mainstream feature encoding methods [8], [9],
[12]. SentinelX uses a multilevel flow table format to represent
a decision tree, allowing more complex models to be deployed
in programmable switches at a lower cost.

As shown in the Fig. 4, the upper right is the flow table
generated using the entire decision tree. When a packet enters
the switch, it first goes through feature encoding that converts
the packet into a binary string format. This binary string then
enters the flow table for matching. For example, a packet with
attributes A=90, B=20, C=30, D=66, E=60 undergoes feature
encoding starting with B1, where B=20 is less than 49, hence
the first bit encoded is "0". Next, comparing B2, B=20 is less
than 29, resulting in the second bit encoded as "0", and so
on, until comparing E where E=60 is greater than 57, making
the final bit encoded as "1". The final binary string encoded
is "00101". In standard feature encoding, this results in Node
3; the flow table occupies a width of 5 and requires 30 bits of
space.

The lower right of Fig. 4 shows two linked flow tables
for the multi-level flow table representation scheme. We split
the area above the non-leaf node (2, 3, 5), dividing it into
SubTree 1 and SubTree 2, and then converting SubTree 1 and
SubTree 2 into SubTable 1 and SubTable 2, respectively. The
two resulting flow tables have a maximum width of 3 and
occupy a total space of 18 bits. From this example, it is clear
that the multilevel flow table model representation method not
only reduces the space required but also shortens the maximum
width occupied by the flow table.

To ensure semantic accuracy, we split from the original
decision tree rather than from an existing flow table. By
converting the flow tables from the decision tree, there is no
need to consider rule dependency between any two flow tables,

as there is no overlap in the ranges between any two rules, and
thus no need for priority information. Flow tables converted
from a decision subtree do not have complex dependencies
since it is still a decision tree. In contrast, splitting an existing
flow table would create complex dependencies, thereby losing
the semantic correctness.

In the example on the right side of Fig. 4, if the same packet
{A=90, B=20, C=30, D=66, E=60} enters, it would first be
encoded as "001" and then go into SubTable 1 for matching.
In SubTable 1, it matches the last item, which necessitates a
match in SubTable 2. Before entering SubTable 2, it would
be encoded as "10" thereby matching Node 3, consistent with
the result on the left side. This demonstrates that even though
the representation method has changed, the accuracy and the
outcome remain the same.

Algorithm 3: TreeDivider
Input: T : Tree, K: Number of subtrees after splitting
Result: newTrees: Subtrees after splitting

1 Function cutTree(G, subNonLeaf):
2 subRoot = findBestSubRoot(G, subNonLeaf)
3 parent = G.predecessors(subRoot) // find parent
4 newTree = G.subTree(subRoot) // get subtree
5 G.removeEdge(parent, subRoot) // remove edge
6 G.addLeaf(parent) // add leaf node after parent
7 return G, newTree
8 End Function
9 treeGraph = T.getGraph() // get graph

10 nonLeaf = treeGraph.getNonLeafNumber()
11 subNonLeaf = nonLeaf / K // get subtree non-leaf
12 newTrees = [] // init result
13 for t = 1 to K-1 do
14 treeGraph, newSubtree = cutTree(treeGraph,

subNonLeaf)
15 newTrees.add(newSubtree) // Add subtree
16 end for
17 newTrees.add(treeGraph) // Add root subtree

C. TreeDivider

If the original uncut decision tree T has N0 non-leaf nodes,
then the number of leaf nodes is (N0 + 1), and the size of
the flow table generated is S0 = N0(N0 + 1). If the original
decision tree is cut (k − 1) times, resulting in k decision
subtrees, and the number of non-leaf nodes for these k subtrees
are: N1, N2, ..., Nk. Since the total number of non-leaf nodes
remains unchanged through the cutting process, we have:

N1 +N2 + ...+Nk = N0 (1)

The size of the flow tables occupied by these k decision
subtrees are respectively:

S1 = N1(N1 + 1), ..., Sk = Nk(Nk + 1) (2)



Then,

S1 + S2 + · · ·+ Sk = N2
1 +N2

2 + · · ·+N2
k +N0

≥ N2
0

k
+N0 (3)

In Equation 3, the equality holds if and only if N1 =
N2 = ... = Nk = N0/k. Hence, to minimize the volume
of flow tables that are occupied after the cuts, all non-leaf
nodes should be close to N0/k. Therefore, we only need to
cut N0/k subtrees of non-leaf nodes on the original decision
tree each time.

Algorithm 3, named TreeDivider, takes T and K as inputs,
representing the decision tree to be divided and the desired
number of subtrees after division, respectively. The output
is newTrees, which includes all the subtrees resulting from
the division. Lines 1-8 describe the function for performing
the division and returning the results. Lines 9-17 contain the
main function that manages the input division and the output.
Line 9 converts the input decision tree into a graph form
for manipulation, Line 10 calculates the number of non-leaf
nodes in the current tree, and Line 11 computes the number
of non-leaf nodes for each subtree. Line 12 initializes the final
output, and Lines 13-16 perform K − 1 divisions to form K
subtrees. For example, in Fig. 4, with K = 2, the computed
optimal number of non-leaf nodes for each subtree is 2. In
each division, Line 1 inputs the current graph G to be divided
and the number of non-leaf nodes required for the subtree
being separated. Line 2 finds the optimal node for the current
division, Line 3 identifies the predecessor of the optimal split
node, Line 4 locates the subtree of the current optimal split
node, Lines 5-6 perform the division, and Line 7 returns the
results of the division.

VI. EVALUATION

A. Experimental Settings

At the control level, we have implemented the unsupervised
decision tree algorithm DualTree and the decision tree splitting
algorithm TreeDivider using Python. Our experiments were
conducted on a Supermicro SYS-7049GP-TRT server, which
is equipped with two Intel Xeon Gold 6230R CPUs.

In terms of data processing, we employed the P4 language to
facilitate flow-level feature processing and deployed a trained
SentinelX model on the H3C S9830-32H-H1 switch.

B. Task and Dataset Setup

We configured three distinct detection tasks in Sen-
tinelX: Network Malicious Traffic Detection(NSL-KDD [22],
[23] and CICIDS 2017 [24]), IoT Malicious Traffic Detec-
tion(Aposemat IoT-23 [25] and CIC IoT 2023 [26]), and
Encrypted Malicious Traffic Detection(Encrypted 2021 [27]
and Encrypted 2022 [28]). This configuration aimed to conduct
a comprehensive performance evaluation of SentinelX. Each
of these detection tasks incorporated two widely utilized open-
source datasets.
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Fig. 5: Comparison between HorusEye, Netbeacon, SentinelX-
1 and SentinelX-2 in terms of lightweight.

C. Baseline Setup

In the lightweight evaluation of SentinelX, our SentinelX
utilizes a multi-level flow table deployment model to evaluate
two scenarios: (1) SentinelX-1: the scheme using TreeDivider
to split once; (2) SentinelX-2: the scheme using TreeDivider
to split twice. Our benchmarks are the current state-of-the-
art (SOTA) work in feature encoding, Netbeacon [9], and the
SOTA work in range encoding, HorusEye [7], for comparison.

In zero-day attack detection, we choose HorusEye as our
benchmark for evaluation because HorusEye [7] represents
the state-of-the-art (SOTA) work in deploying unsupervised
learning models in programmable switches. Other works in
programmable switches are primarily based on supervised
learning, which cannot detect zero-day attack traffic.

In the hardware evaluation of SentinelX, we demonstrate
that it can achieve high throughput and low latency on pro-
grammable switches, compared to programs that only support
basic L3 forwarding. Additionally, we conduct a compre-
hensive evaluation of SentinelX’s performance on hardware,



including resource utilization, and packet loss rate.

TABLE III: Comparison of average bit usage of HorusEye,
Netbeacon, SentinelX-1 and SentinelX-2.

Dataset HorusEye Netbeacon SentinelX-1 SentinelX-2

[22], [23] 1103885.83 51560.74 27132.57 18764.91
[24] 124003.65 2364.57 1279.74 833.09
[25] 8562641.17 2480617.30 1245249.00 907113.65
[26] 342661.57 5895.61 3011.61 2126.70
[27] 1151987.65 16654.39 8927.52 6046.39
[28] 74349.57 720.52 375.13 260.26

D. Task Evaluation

We conducted extensive evaluations of SentinelX to prove
that: (i) the model representation method at the data level
in SentinelX is efficient and meets the requirements for
lightweight deployment; (ii) SentinelX can detect zero-day
attacks and achieves high performance in detecting malicious
traffic; (iii) SentinelX effectively utilizes the high performance
of the deployed hardware switches, including high throughput,
low latency, and low packet loss rate, among others.

1) Lightweight Performance: Fig. 5 compares the space
occupied by models generated by HorusEye, Netbeacon,
SentinelX-1, and SentinelX-2. The x-axis represents the max-
imum height of the decision trees, and the y-axis shows the
space occupied by the decision trees, using a logarithmic
scale. It is evident that, across almost all tasks, HorusEye
occupies the most space, while SentinelX-2 occupies the least.
In HorusEye, deployment uses range rules, and rule generation
is based on Cartesian products, so the space it occupies grows
explosively when there are many features. Netbeacon deploys
using feature encoding, which does not experience explosive
growth in table size with the increase in features, but it is still
slightly inferior to SentinelX, as SentinelX’s multi-level flow
table deployment method eliminates the redundancy in feature
encoding, thereby reducing the space occupied.

TABLE III presents a comparison of the bit occupancy
numbers for model deployment across various datasets us-
ing four different methods. Methods in the SentinelX series
show a clear advantage. For example, SentinelX-1, which
splits only once, has a bit space reduction of 47.71% on
average compared to Netbeacon, while SentinelX-2, which
splits twice, shows an average reduction of 63.88%. The more
splits SentinelX performs, the greater the reduction in bit
space. However, SentinelX cannot split indefinitely due to
the stage limitations of programmable switches. Tables that
are connected in nature must be placed in consecutive stages,
meaning the longest chain of tables in a multi-level flow table
matching method cannot exceed the number of stages in the
switch.

2) Zero-Day Attack Detection:
a) Unlabeled Attack: In this evaluation, the training set

contains only normal traffic, while the test set has a normal to
abnormal traffic ratio of 1:1. In HorusEye, the threshold setting
method for iForest is set to "auto". Generally, SentinelX selects
thresholds based on normal traffic in the training set. In the
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Fig. 6: Bypass Attack and Hash Collision

experiments, SentinelX’s Threshold 1 is set between 0.1 and
0.2, and Threshold 2 is set between 0 and 0.1.

As can be seen from the TABLE IV, SentinelX outperforms
HorusEye with higher Accuracy and TPR, and a lower FPR.
The average Accuracy increased by 32.29% compared to
HorusEye, and the FPR decreased by 28.68%. Due to the use
of integer split values in programmable switches, it is difficult
to separate some data points in the network traffic datasets,
resulting in poor model performance. Our DualTree effectively
addresses this issue by employing a dual-threshold mode.
Unlike traditional unsupervised decision trees, our system re-
evaluates the leaves that cannot be finely divided to enhance
detection accuracy.

b) Bypass Attack and Hash Collision: To validate the
appropriateness of our selected inference points, we compare
the inference methods of SentinelX and traditional approaches
in the context of evasion attacks, utilizing the Aposemat
IOT-23 dataset. We assume that attackers are aware that
programmable switches are more likely to perform inference at
the second power of the data packets in a flow. Therefore, they
insert normal data packets at the second power points of the
anomalous flow to masquerade as normal traffic and achieve
their attacking purpose. We use the same model for inference,
comparing the differences in anomalous traffic before and
after the attack under the traditional inference points and
SentinelX’s inference points.

Fig. 6(a) compares SentinelX with the traditional model.
Since SentinelX uses the same model, it doesn’t offer much
advantage before bypass attacks. However, at the inference
points, SentinelX provides a more thorough detection of short
flows by checking the first eight packets of the flow in detail.
As a result, SentinelX achieves about 6.35% higher detection
rate in identifying abnormal flows compared to traditional
methods. After the onset of bypass attacks, SentinelX’s de-
tection rate in abnormal flows is 30.03% higher than that
of the traditional method. Since traditional inference points
are rigid, they may not be able to adapt to slight changes
in attacker tactics. SentinelX, incorporating pseudorandom
inference points, maintains nearly unchanged accuracy in the
face of such bypass attacks.

Below, we have discussed hash collisions and compared the



TABLE IV: Performance comparison between HorusEye and SentinelX.

Dataset Attack Type HorusEye SentinelX

Accuracy TPR FPR Accuracy TPR FPR

[22], [23]
[24]–[26]

Ipsweep 0.922 0.956 0.111 0.956 (+3.69%) 0.978 (+2.3%) 0.067 (-39.63%)
Back 0.950 1.000 0.100 1.000 (+5.26%) 1.000 — 0.000 (-100%)
Nmap 0.750 0.583 0.083 0.958 (+27.73%) 0.917 (+57.3%) 0.000 (-100%)
Pod 1.000 1.000 0.000 1.000 — 1.000 — 0.000 —
Teardrop 0.583 0.333 0.167 0.833 (+42.88%) 0.667 (+100.3%) 0.000 (-100%)
Warezclient 0.750 0.750 0.250 1.000 (+33.33%) 1.000 (+33.33%) 0.000 (-100%)
Slowhttptest 1.000 1.000 0.000 1.000 — 1.000 — 0.000 —
GoldenEye 0.500 0.000 0.000 1.000 (+100%) 1.000 (+∞) 0.000 —
FileDownload 0.705 0.591 0.182 0.750 (+6.38%) 0.682 (+15.4%) 0.182 —
DDoS-ACK 0.500 0.143 0.143 0.857 (+71.4%) 0.857 (+499.31%) 0.143 —
DNS-Spoofing 0.429 0.000 0.143 0.643 (+49.89%) 0.429 (+∞) 0.143 —
ArpSpoofing 0.750 0.667 0.167 0.833 (+11.07%) 0.833 (+24.89%) 0.167 —
DDoS-UDP 0.438 0.000 0.125 0.938 (+114.16%) 1.000 (+∞) 0.125 —
HostDiscovery 0.500 0.000 0.000 0.667 (+33.4%) 0.333 (+∞) 0.000 —
SlowLoris 1.000 1.000 0.000 1.000 — 1.000 — 0.000 —

[27] Encrypted 2021 0.651 0.417 0.114 0.717 (+10.14%) 0.544 (+30.46%) 0.110 (-3.51%)
[28] Encrypted 2022 0.522 0.162 0.119 0.729 (+39.66%) 0.524 (+223.46%) 0.066 (-44.54%)

TABLE V: Performance of SentinelX on hardware switches.

Model Stages SRAM TCAM Forward Delay(ns)

L3 Basic Forward 2 5% 0% 751
NSL-KDD 11 8.52% 0.76% 1032
CICDS 2017 11 7.61% 0.76% 1032
Aposemat IoT-23 11 3.98% 0.76% 1030
CIC IoT 2023 11 11.02% 1.14% 1035
Encrypted 2021 11 10.68% 1.14% 1038
Encrypted 2022 11 10.57% 1.14% 1036

reasoning points of our stream with the fixed reasoning points
of previous work on the dataset. In terms of hash collisions,
we use a 32-bit method to save the HashKey. As shown in the
Fig. 6(b), the probability of hash collisions generally increases
with the number of streams. At the same time, comparing
the storage of different bit lengths, the probability of hash
collisions for five-tuples significantly decreases as the number
of storage bits increases. Using 32 bits for storage, there is
almost no chance of a hash collision occurring.

3) Hardware Performance: We evaluated the SentinelX
models, each trained on six distinct datasets, by deploying
them on hardware switches. The evaluation focused on three
key metrics: (1) Throughput, which refers to the packet
reception and transmission rates of the switch after loading
the program; (2) Resource Utilization, measured by the usage
rates of SRAM and TCAM on the switch; and (3) Latency,
denoted by the time taken by the switch to process each packet.

TABLE V shows the results of our tests conducted on
a hardware switch after installing various models. We used
the SPIRENT N11U traffic generator for high-speed traffic
simulation, sending approximately 10,775,862,068 packets
without experiencing any packet loss, resulting in a packet
loss rate of 0%. Regarding throughput, we tested six SentinelX
models on the switch’s 100Gb port. Each model achieved a
stable throughput of 99,999,999,991 bps, which is close to
the L3 Basic Forward’s throughput of 99,999,997,440 bps,

representing 99.99% of the port’s maximum throughput. In
terms of resource usage, with each model including a flow-
level feature awareness module (occupying 0-4 stages), the
average SRAM usage across the six models was only 8.73%,
the average TCAM usage was only 0.95%, and the average
number of stages occupied was only 11. Regarding latency, the
average wait time delay for our six models was only 1,033.83
ns, just 1.38 times that of L3 Basic Forward.

VII. CONCLUSION

SentinelX first introduced a multi-level flow table represen-
tation method, making the deployed model more lightweight
and addressing the issue of TCAM width restrictions in
model deployment. It also proposed the TreeDivider algorithm
to divide the model more precisely. In terms of flow-level
processing, SentinelX designed a more optimal inference
point method to better detect short flows and counter bypass
attacks. To better address the challenges of dividing data points
under the constraints of programmable switches, SentinelX
designed a dual-threshold unsupervised decision tree. Finally,
we implemented the SentinelX model on hardware switches
and evaluated its performance across a broad range of tasks.
Future work will further optimize SentinelX’s algorithms to
adapt to more complex network environments and explore its
performance for different types of network attacks. Addition-
ally, research will be conducted on how to apply and scale
SentinelX in larger networks to validate its effectiveness and
stability in real-world environments.
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