Helios: Learning and Adaptation of Matching Rules for Continual
In-Network Malicious Traffic Detection

Zhenning Shi Dan Zhao* Yijia Zhu

Tsinghua Universzhaoity Peng Cheng Laboratory Xidian University
Shenzhen, China Shenzhen, China School of Artificial Intelligence

Peng Cheng Laboratory zhaod01@pclac.cn Xian, China
Shenzhen, China 22009200697 @stu.xidian.edu.cn

shizn23@mails.tsinghua.edu.cn
Guorui Xie Qing Li Yong Jiang”

Peng Cheng Laboratory Peng Cheng Laboratory Tsinghua University
Shenzhen, China Shenzhen, China Shenzhen, China
xiegr@pcl.ac.cn lig@pcl.ac.cn Peng Cheng Laboratory

Shenzhen, China
jlangy@sz.tsinghua.edu.cn
Abstract Keywords

Network Intrusion Detection Systems (NIDS) are critical for web
security by identifying and blocking malicious traffic. In-network
NIDS leverage programmable switches for high-speed traffic pro-
cessing. However, they are unable to reconcile the fine-grained
classification of known classes and the identification of unseen at-
tacks. Moreover, they lack support for incremental updates. In this
paper, we propose Helios, an in-network malicious traffic detection
system, for continual adaptation in attack-incremental scenarios.
First, we design a novel Supervised Mixture Prototypical Learning
(SMPL) method combined with clustering initialization to learn
prototypes that encapsulate the knowledge, based on the weighted
infinity norm distance. SMPL enables known class classification and
unseen attack identification through similarity comparison between
prototypes and samples. Then, we design boundary calibration and
overlap refinement to transform learned prototypes into priority-
guided matching rules, ensuring precise and efficient in-network
deployment. Additionally, Helios supports incremental prototype
learning and rule updates, achieving low-cost hardware reconfigu-
ration. We implement Helios on a Tofino switch and evaluation on
three datasets shows that Helios achieves superior performance in
classifying known classes (92%+ in ACC and F1) as well as identi-
fying unseen attacks (62% - 98% in TPR). Helios has also reduced
resource consumption and reconfiguration time, demonstrating its
scalability and efficiency for real-world deployment.

CCS Concepts

« Security and privacy — Network security.

“Dan Zhao and Yong Jiang are the corresponding authors.

® This work is licensed under a Creative Commons Attribution
o International 4.0 License.

WWW 25, Sydney, NSW, Australia.

© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1274-6/25/04
https://doi.org/10.1145/3696410.3714742

Malicious traffic detection, Programmable switches, Prototypical
learning

ACM Reference Format:

Zhenning Shi, Dan Zhao, Yijia Zhu, Guorui Xie, Qing Li, and Yong Jiang.
2025. Helios: Learning and Adaptation of Matching Rules for Continual
In-Network Malicious Traffic Detection. In Proceedings of the ACM Web
Conference 2025 (WWW °25), April 28-May 2, 2025, Sydney, NSW, Australia.
ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/3696410.3714742

1 Introduction

Network Intrusion Detection Systems (NIDS) are essential for secur-
ing web services, as they classify malicious traffic from mixed user
traffic to preserve network integrity. However, traditional NIDS,
such as those based on Deep Packet Inspection (DPI), overly rely
on experts to manually mine the attack fingerprints and struggle
to accurately detect increasingly sophisticated cyber threats [5, 32].
Recently, deep learning (DL)-based supervised [10, 41] and unsu-
pervised [17, 22] methods have emerged, leveraging the powerful
feature extraction capabilities of neural networks to uncover hidden
patterns in network traffic for accurate attack identification. How-
ever, their high computational complexity necessitates uploading
traffic from the network environment to the control plane (e.g., x86
servers equipped with GPUs) for processing, resulting in significant
network bandwidth consumption and processing delays that hin-
der timely attack detection and can lead to financial losses [8, 27],
particularly in large-scale data centers. Furthermore, while an in-
crease in model parameters improves classification accuracy, it also
increases training time and restricts efficient updates.

In response to the increasing demand for real-time and high-
speed traffic processing, the in-network traffic classification para-
digm has emerged [26, 37, 39, 43]. Unlike DL-based NIDS, which are
typically deployed on GPUs, the in-network paradigm utilizes pro-
grammable switches to directly perform inference within the data
plane. This deployment enables terabit-per-second (Tbps) through-
put while maintaining nanosecond-level latency. However, pro-
grammable switches rely on match-action logic and support only

https://orcid.org/0009-0004-9194-7810
https://orcid.org/0000-0001-9016-5594
https://orcid.org/0009-0006-6289-8209
https://orcid.org/0000-0001-7532-9116
https://orcid.org/0000-0002-6071-473X
https://orcid.org/0000-0002-4260-1395
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3696410.3714742
https://doi.org/10.1145/3696410.3714742

WWW °25, April 28—-May 2, 2025, Sydney, NSW, Australia.

simple instructions, such as integer addition and bit shifts, mak-
ing it infeasible to deploy DL-based models which heavily require
floating-point operations [17, 41]. To overcome the computational
limitations of programmable switches, for example, [1, 11, 39, 42, 43]
transform tree-based machine learning models into match-action
rules, while [23, 24] directly extract rules from data. In [37, 38],
knowledge distillation is used to distill neural networks into a light-
weight binary decision tree (BDT). Additionally, [40] achieves a
conversion between regular expressions (RE) and byte-level recur-
rent neural networks (BRNN).

However, most existing in-network methods lack consideration
of continual model updates. They may fail to identify unseen at-
tacks because they completely partition the feature space based on
existing classes, leaving no space for unseen attack types. Moreover,
they require full retraining to update the model. In real network
scenarios, continual updating and maintenance of NIDS after its
initial deployment are essential as zero-day attacks emerge con-
tinuously [2, 33]. This attack-incremental nature of networks ne-
cessitates that NIDS refine its countermeasures over time. While
some latest unsupervised methods [11, 23, 24] can identify previ-
ously unseen attacks, and [24] supports incremental model updates,
they are limited to binary classification tasks and fail to meet the
fine-grained classification demands of NIDS [41].

In this paper, we aim to design a new in-network NIDS that
meets the following requirements: 1) proficient classification
ability: The system should perform robust classification on both
known and new attacks. It should achieve high accuracy in multi-
class classification for known classes while effectively identifying
unseen attacks without prior knowledge. 2) scalable hardware de-
ployment: Given the limited computational resources and memory
of programmable switches, the system should efficiently manage
hardware resources to achieve high-throughput traffic processing
without incurring excessive overhead. 3) incremental model up-
dates: The system should support incremental updates without
requiring full retraining when adapting to new classes (i.e., admin-
istrator’s changing requirements like newly detected attacks). This
reduces model retraining time and minimizes switch interruption
caused by reconfiguration, which is critical in high-speed environ-
ments (e.g., large web service provider networks serving millions of
users). Despite advancements, none of the current state-of-the-art
in-network solutions meet all of these requirements simultaneously.

We propose Helios!, a framework designed for continual in-
network malicious traffic detection in attack-incremental scenarios.
Helios consists of three key modules: Attack Knowledge Prototyping,
Priority-Guided Rule Transformation and Continual Rule Adaptation.

Attack Knowledge Prototyping learns a set of prototypes that en-
capsulate the knowledge of classes (including benign and known at-
tacks). We propose Supervised Mixture Prototypical Learning (SMPL),
based on Supervised Prototypical Learning (SPL) [6] and incorporat-
ing clustering-based initialization to achieve precise classification.
Unlike most SPL methods [12, 28] that rely on complex transfor-
mations incompatible with programmable switches and compact
each class into a single prototype, Helios operates directly on raw
features and assigns multiple prototypes to each class in order to

Helios is a fictional Greek god, known for his ability to illuminate the world with his
light, uncovering hidden dangers and revealing them earlier than others.

Zhenning Shi, Dan Zhao, Yijia Zhu, Guorui Xie, Qing Li, and Yong Jiang

effectively capture diverse patterns. Specifically, Helios uses the
weighted infinity norm to measure similarity, which aligns with
the matching capabilities of programmable switches.

We design the Priority-Guided Rule Transformation method to
convert the learned prototypes into range-based matching rules
after completing prototype training, enabling efficient deployment
on switches for high-speed packet processing. Specifically, Helios
calibrates the acceptance boundaries of prototypes to enhance gen-
eralization ability. Then, Helios computes and assigns priorities
to the existing prototype-transformed rules, while also introduc-
ing higher-priority rules for extended coverage, thereby ensuring
optimal classification results in all overlapping regions.

During operations, when a new attack appears and network
administrators collect and label data samples for the new attack,
the Continual Rule Adaptation module performs incremental rule
updates. We retain existing rules that are not matched by any new
attack samples and then conduct incremental prototype learning on
the updated training set. The newly learned rules are incrementally
incorporated, ensuring low-cost hardware reconfiguration.

We implement Helios using the P46 [9] language and deploy it
on a real Tofino switch for hardware evaluation, achieving a packet
processing of 100Gbps per port. To evaluate the performance of
Helios, we conduct experiments across three public attack traf-
fic datasets [3, 29, 30]. The experimental results show that Helios
achieves high accuracy for known classes (95.78%) while effectively
identifying unseen attacks (98.21%). Furthermore, Helios achieves
reduced switch resource consumption and less table entry reconfig-
uration time compared to baselines [38, 39, 42, 43] (up to 4.5x faster),
demonstrating its scalability and efficiency for real deployment.

In summary, we make the following contributions:

e We propose Helios, the first in-network solution for continual ma-
licious traffic detection in attack-incremental scenarios, capable
of accurately identifying known classes and unseen attacks.

e We develop an innovative learning method that integrates Su-
pervised Mixture Prototypical Learning (SMPL) with clustering
initialization, specifically designed to enhance performance.

e We develop a Priority-Guided Rule Transformation method to
resolve overlapping between rules. We also design an incremental
update mechanism to enable efficient switch reconfiguration.

e We prototype Helios and perform comprehensive experiments

to demonstrate its performance?.

2 Background and Motivation

Network Intrusion Detection Systems (NIDS) are essential for de-
tecting malicious activities and anomalies. Traditional NIDS, such
as those based on feature engineering or deep packet inspection
(DPI), rely heavily on expert knowledge, limiting their adaptability
to evolving threats. The advent of deep learning-based NIDS has
significantly improved detection accuracy but at the cost of higher
computational complexity and latency. For instance, even real-time
NIDS [16] are constrained to throughput rates around 10 Gbps, far
below the 100+ Gbps requirements of large-scale cloud and web
service networks.

Programmable switches, built on the P4 language [4] and Pro-
tocol Independent Switch Architecture (PISA), offer a solution for

Zhttps://github.com/sznnzs/Helios

https://github.com/sznnzs/Helios

Helios: Learning and Adaptation of Matching Rules for Continual In-Network Malicious Traffic Detection

high-speed packet processing directly within the data plane. They
support custom table-based match-action pipelines deployed on
switch ASICs, enabling network functions to operate at line rate.
However, programmable switches are limited in computational ca-
pability, supporting only basic operations like integer addition and
bit shifts, without support for loops or floating-point computations.
This makes it challenging to deploy DL-based NIDS directly on
switches, as they often require complex calculations and logic to
effectively detect attacks [17, 41].

Existing methods address the challenges through two primary ap-
proaches. The first focuses on directly deploying tree-based models
by converting them into rules that programmable switches can exe-
cute. For example, IIsy [39] introduces a mapping strategy to offload
a decision tree (DT), while NetBeacon [43] offloads random forests
(RF) by combining feature encoding and decision tables. Similarly,
Flowrest [1] implements flow-level inference using RF. The second
aims to develop models that are inherently suitable to the compu-
tational limitations of programmable switches by incorporating
advanced machine learning techniques. For example, Mousika [37]
leverages knowledge distillation to train the ternary matching-
based binary decision tree (BDT) with the assistance of neural net-
works, enabling lightweight resource usage on switch. Metis [40]
transforms regular expressions (RE) into trainable byte-level recur-
rent neural networks (BRNN), preserving domain-specific expert
knowledge while allowing supervised optimization.

These methodologies mark notable progress in in-network at-
tack detection, enabling precise and high-speed traffic processing.
However, they still face several challenges, as detailed below.

C1: proficient classification ability. As highlighted in [41], an
ideal model should be capable of both multi-class classification of
known classes and identification of unknown attacks. This provides
fine-grained classification results that enable administrators to take
more targeted countermeasures and enhance system reliability
by ensuring robustness against zero-day attacks. However, most
existing supervised solutions [37-40, 42, 43] assume a fixed set of
attack types, with the expectation that traffic data for all attack
classes is available in advance. As demonstrated in section 5.2,
despite our best efforts to extend these models, they still struggle to
effectively detect unseen attacks. Furthermore, while unsupervised
methods [11, 23, 24] can identify unseen attacks, they are limited
to binary classification tasks and lack support for fine-grained
malicious detection.

C2: scalable hardware deployment. To achieve high throughput
packet processing, the model should enable in-network deployment.
While some recent NIDS [22, 41] can detect unseen attacks, they
rely heavily on floating-point operations and complex logical com-
putations, making them impractical for deployment on resource-
constrained network devices (e.g., programmable switches). Addi-
tionally, some rule-learning methods [31, 35] based on interpretabil-
ity have been proposed, but they still require weighted probability
adjustments after rule matching, which hinders their deployment.
Additionally, the deployment should reduce hardware resource
usage to preserve capacity for other essential network functions
(e.g., routing). Although Metis [40] can be deployed on the switch,
it consumes excessive hardware resources, occupying nearly all
pipeline stages (i.e., 11 out of 12) even for binary classification tasks,
thus restricting its scalability.

WWW °25, April 28—-May 2, 2025, Sydney, NSW, Australia.

C3: incremental model update. The model should support incre-
mental updates and efficient hardware reconfiguration to reduce
retraining costs and avoid disruption to the attack detection. Most
existing methods require full model retraining (i.e., learning from
scratch), which necessitates updating all hardware table entries.
This is particularly problematic in high-speed networks, where
even a brief interruption can affect large volumes of traffic. Among
in-network methods, only Genos [24] supports incremental updates.
However, as mentioned earlier, it is limited to binary classification.

In summary, state-of-the-art NIDS fail to address all of the afore-
mentioned challenges. Therefore, we propose Helios, which lever-
ages learning techniques such as Supervised Prototypical Learning
(SPL) and boosting to enable continual in-network malicious traffic
detection.

3 Overview

In this paper, we propose Helios, a framework for learning and
adaptation of matching rules for incremental attack classes, and
achieving continual in-network malicious traffic detection. We de-
sign a novel Supervised Mixture Prototypical Learning (SMPL)
method to encapsulate the knowledge of known classes (including
benign traffic and known attacks) into a set of prototypes. Each
prototype corresponds to a centroid of its class in the traffic fea-
ture space. By calculating the similarity between the input sample
and prototypes, Helios achieves multi-class classification of known
classes and identification of unseen attacks. As illustrated in Fig-
ure 1, Helios consists of three modules: attack knowledge proto-
typing, priority-guided rule transformation, and class-incremental
rule adaptation.

Attack Knowledge Prototyping. The attack knowledge prototyp-
ing module distills prototypes that encapsulate the knowledge of
each known class. To improve inter-prototype discrimination, He-
lios leverages the density-based clustering method DBSCAN [13]
for prototype initialization, ensuring that each class is assigned
a number of prototypes proportional to its data complexity. He-
lios employs the weighted infinity norm distance as the similarity
metric to facilitate the subsequent rule conversion. During SMPL,
Helios uses gradient descent to increase the similarity between
each prototype and the features of samples from the same class
while reducing similarity with features of samples from different
classes. After training, if a test sample exhibits low similarity to all
prototypes, it is classified as unknown.

Priority-Guided Rule Transformation. The priority-guided rule
transformation module first converts the trained prototypes into
range-based matching rules. Specifically, Helios partitions the fea-
ture space by leveraging the sample-prototype associations and
calibrates the boundaries to generate prototype-generated rules. To
resolve overlaps between these rules, which may cause issues when
multiple switch table entries are matched simultaneously, Helios
calculates the priorities of these rules using topological sorting.
Additionally, Helios introduces the overlapping regions that do not
achieve optimal classification results as higher-priority rules. Fi-
nally, Helios iteratively performs boosting on misclassified residual
samples, re-prototyping them. After each iteration, the resulting
rules are merged and all rule priorities are reassigned.

WWW °25, April 28—-May 2, 2025, Sydney, NSW, Australia.

Zhenning Shi, Dan Zhao, Yijia Zhu, Guorui Xie, Qing Li, and Yong Jiang

(Priority-Guided Rule Transformation h

Continual Rule Adaptation

Residual Samples

(e)
o ___ - Attack Knowledge Prototyping
[® ® ® Known Class Samples
1 3¢ 9 ¥ Prototypes |
{10100 Scope of Prototypes |
| |
©OO Scope of Samples Clustering Initialization
| Scope of Overlaps |
| Unknown Attack Samples/
N e e e — — — P
Residual
/_\
Control Plane = NG
Boosting
T * % %
Traffic including unkown attack
- AKX S
Programmable . Mixture Prototypical Learning
Switches ' . J

ined Rules

Merged Rules

Growing
—_

Residual Samples

T Rule Growing
Boundary Calibration T
Delete Rule 2&5
Topological | Sorting >
— Switch Table ‘
| ID | Rule |Priority
* Refine == 1 [Rule 1 | 10003
L 2 | Rule2 | 10002 /;73\'@, Latsl
: 3 | Rule 3 | 10002
< <H<H=-N=-N < 4 |Rule4| 3
Priority Assi ‘ & Overlap Refi V SHIRulch) 2 g\/‘&w\\
L riority Assignment 3 verlap Refinement) 6 | Rule 6 1

First Time Deployment |

Incremental Rule Update

Figure 1: The workflow of Helios.

Class-Incremental Rule Adaptation. The class-incremental rule
adaptation module performs incremental prototype learning and
rule updates when a new attack class emerges (e.g., identified by the
network administrator). Helios only makes necessary modifications
to the existing rules, retaining those that are not matched by any
new attack samples. On this basis, the new training set includes both
new attack instances and existing misclassified residual samples.
Similar to the boosting process, Helios then conducts incremental
learning on the updated training set. The newly learned rules are
incrementally incorporated, ensuring low-cost reconfiguration of
hardware table entries.

4 Methodology

In this section, we present the details of Helios, including the attack
knowledge prototyping module, the priority-guided rule transfor-
mation module, and the class-incremental rule adaptation module.

4.1 Attack Knowledge Prototyping

Existing prototypical learning methods typically assign only a sin-
gle prototype per class. This is effective in GPU-based servers due
to the integration of powerful feature extraction modules (e.g., deep
neural networks) in an end-to-end learning manner, resulting in
minimal overlap. However, programmable switches do not support
extended feature transformations, as they involve floating-point
operations and require complex computational logic. In Helios, we
directly compare the raw features with prototypes and assign multi-
ple prototypes to each class with an innovative supervised mixture
prototypical learning (SMPL) method. Algorithm 1 illustrates the
overall process.

Let D = {(x;, yi)}fi | represent the training dataset, where x; €
R is the feature vector of the i-th sample, and y; € C is the cor-
responding label from the set of known classes (including benign
and known attacks). Due to the large range of feature values (e.g.,
0 to 65535), we apply min-max normalization to standardize them
before inputting them into the model.

Prototype Initialization. Proper prototype initialization is crit-
ical to reflect data complexity. Insufficient prototypes fail to cap-
ture essential patterns, while excessive ones lead to overfitting.
Additionally, careful initialization promotes efficient parameter
convergence. Helios utilizes unsupervised clustering to initialize
prototypes around cluster centers. Instead of using K-means [18],
which requires specifying the number of clusters in advance, we
adopt DBSCAN [13] for its ability to identify clusters based on data
density. DBSCAN defines clusters using two parameters: the radius
of neighborhoods, and the minimum number of points required to
form a core cluster.

Specifically, for the i-th class, the initial value of the j-th pro-
totype P;; is set as the average of the j-th cluster obtained by
applying DBSCAN on the training samples labeled as class i: P;; =
|U_1ij| > xreUy; Xk> where Uj; is the j-th cluster from DBSCAN on
{xk | yg = i}. Initializing prototypes from cluster centers facilitates
better convergence and enhances representational capacity.
Supervised Mixture Prototypical Learning. To measure the
similarity between features and prototypes, a classic choice is to
use the Euclidean distance. However, the programmable data plane
does not efficiently support square computations. Therefore, we
adopt the infinity norm || - ||, Which calculates the maximum
difference between the feature vector and the prototype across all
dimensions. This approach aligns well with the nature of the upper
and lower bounds in matching rules. Additionally, we introduce a
feature weight parameter w;; for each prototype P;j, which scales
the differences across dimensions to handle feature values more
flexibly. The initial values of the weight parameters w are set to 1,
which means that the input remains unchanged without any scaling
or transformation at the beginning. By taking the absolute value
of original differences and weights, we ensure the final distance is
positive. Consequently, the distance metric is defined as follows:

X — Xmin 1)

00

Dist(x, P;j) =

_Pij

I py | |
Xmax — Xmin

Helios: Learning and Adaptation of Matching Rules for Continual In-Network Malicious Traffic Detection

where X;min and xmax denote the minimum and maximum values
of the features, respectively. P;; represents the j-th prototype of the
i-th class, and w;;j is the corresponding feature weight parameter.

To determine the classification probability distribution for a
given sample, we first calculate the distance between the sample
feature vector and all prototypes using distance metric (1). We then
define the sample’s distance to a specific class as the minimum
distance to all prototypes within that class. The classification proba-
bility distribution is then obtained by applying the softmax function
to these distances. Additionally, we introduce a temperature param-
eter T to control the smoothness of the probability distribution [20].
It scales the distances before applying the softmax function, thereby
enhancing the convergence of prototype training. Consequently,
the classification probability for the i-th class is as follows:

exp (min; Dist(x, P;;)/T)
ik €Xp (minj Dist(x, ij)/T) .

We use the cross-entropy loss to simultaneously train prototypes
P and weight parameters w via gradient descent. Therefore, in each
iteration of training for a sample, only the nearest prototype of
each class participates in the probability calculation and undergoes
corresponding gradient updates. Among these prototypes, the one
with the same label as the sample is pulled closer, while those
from other classes are pushed away. This ensures that prototypes
unrelated to the current training sample remain unaffected.

Prob(y=i|x) = 2)

4.2 Priority-Guided Rule Transformation

The trained prototypes need to be deployed on the data plane to
assign labels for incoming traffic samples. The basic idea is to com-
pare the input sample with the prototypes of all classes and find the
nearest one according to the distance metric. If the minimum dis-
tance falls below the acceptance threshold, the sample is assigned to
the corresponding class of this prototype. Otherwise, it is identified
as a new attack type. However, directly deploying this inference
process on switches is impractical since distance calculations and
comparisons are difficult to implement within the limited stages of
the switch pipeline. To address this, Helios design a priority-guided
method that transforms the inference process of prototypes into
range-based rule matching, making it more suitable for deployment.
Algorithm 2 illustrates the overall process of rule transformation.

Boundary Calibration. Since each sample is accepted by its near-
est prototype, it is essential to set acceptance thresholds for each
prototype to identify unseen attacks. One straightforward approach
is to set the threshold as the maximum distance among all accepted
samples. However, overly large acceptance boundaries can reduce
the generalization ability. We observe that most accepted samples
are relatively close to their prototypes in practice, with only a few
outliers. Therefore, in Helios, we define the threshold as the mean
distance of the accepted training samples, resulting in a tighter
boundary. This approach provides a robust threshold by ensur-
ing that the acceptance boundary is dominated by closer samples,
thereby preventing it from being influenced by a few distant outliers.
The corresponding formulas are given below:

Dp,; = {xx | yx = i A Dist(xg, Pij) < Dist(xg, Py j»),VPyjr}, (3)

WWW °25, April 28—-May 2, 2025, Sydney, NSW, Australia.

Threshold(P;;) = | Z Dist(xg, Pij), ()

1
|DPij Xk eDP,-J-

where Dp,; represents the set of samples accepted by P;;.

Rule Transformation. After calibrating the acceptance bound-
aries, Helios transforms the prototype inference process into range-
based matching rules, which are directly supported by programmable
switches. For a range rule with d dimensions, an input sample is
considered a match if it falls within the specified bounds for each
dimension. If the sample exceeds the bounds in any dimension, it
is treated as a miss. The formal expression is given below:
d
Match(x;, L u) = A(lv < Xip < Up), (5)
=1

where I, and u, represent the lower and upper bounds for dimen-
sion v, and x;y is the v-th dimension of the input sample x;.

Using the acceptance relationship between samples and pro-
totypes, Helios partitions the feature space and transforms each
prototype into a corresponding rule. Specifically, the bounds for
each feature dimension in the rule are determined by the minimum
and maximum values of all accepted samples within the prototype’s
acceptance threshold. Formally, for the v-th feature dimension, the
bounds of the rule corresponding to prototype P;; are defined as:

{lp, up} = { min Xrp, max xsv} , v=12,...,d, (6)
erDpij xserij

where [and u represent the lower and upper bounds, respectively.
Overlap Refinement and Priority Assignment. Since SMPL gen-
erates multiple prototypes, overlap issues inevitably arise. When
rules overlap, their classification results may conflict, and the op-
timal class for an overlapping region may not align with any of
the original rules that generated it. Given that overlapping regions
represent a finer partition of the feature space, refining these re-
gions can further improve performance. Ideally, each region should
have an optimal classification result, defined as the class containing
the largest number of samples within that region. Fortunately, pro-
grammable switches support a priority mechanism that can resolve
conflicts by returning the result of the highest priority rule. There-
fore, to mitigate these conflicts and maximize classification perfor-
mance, Helios prioritizes the rules generated by prototypes and
introduces additional higher-priority rules to cover the remaining
overlapping regions that still do not achieve optimal classification.

First, all samples in the training set are matched against the rules
to generate conflict sets. Each conflict set S; consists of a group
of overlapping rules {R;1, Rz, ..., Rim}, where R;; denotes the j-th
rule in the i-th conflict set. The class C; with the highest number of
samples in the overlapping region is selected as the representative
class for S;. Next, a directed acyclic graph (DAG) G is constructed.
The conflict sets are then sorted in ascending order based on their
sizes, and each conflict set is processed sequentially. For each S;,
directed edges (R;; — R;i) are inserted to G from all rules R;; € S;
belonging to class C; to all other rules R;;. € S; that do not belong to
class C;. If a path already exists from R;j to R;;, the insertion of this
edge is skipped. Finally, the priorities of the prototype-generated
rules are assigned in descending order based on the results of topo-
logical sorting on G, starting from 1. For any conflict set Sy that

WWW °25, April 28—-May 2, 2025, Sydney, NSW, Australia.

remains unresolved, we introduce the corresponding overlapping
regions as additional rules. These rules are assigned a priority of
10000 + |S|, where |Si| denotes the size of conflict set Si. This
ensures that their priority surpasses all prototype-generated rules,
allowing for complete coverage. Additionally, we observe that some
rules accept only a small number of samples, making them less cost-
effective. We prune these rules to mitigate overfitting, which also
reduces the switch’s resource consumption.

Rule Boosting. After completing the initial round of prototype
training and rule transformation (including refinement), Helios
utilizes the misclassified residual training samples based on the
current rules to perform rule boosting. New prototypes are trained
on these residual samples, and the resulting rules are merged into
the existing rule set. Following this, Helios applies overlap refine-
ment and priority assignment to the combined set of rules and then
iteratively proceeds to the next round of boosting. Recall that Helios
employs tight boundary calibration, which, in combination with
boosting, maximizes the fit to the sample distribution and enhances
overall classification performance.

4.3 Class-Incremental Rule Adaptation

For the initial classes, Helios is trained and deployed for the first
time. When an unseen attack emerges, if a sample does not match
any of the rules, it is identified as an unseen attack class. The classi-
fication results from the data plane provide network administrators
with timely feedback and alerts. After network administrators col-
lect and label new attack samples, Helios performs incremental
learning on the updated dataset, enabling efficient rule updates
and lightweight switch reconfiguration. Algorithm 3 illustrates the
overall process of rule adaptation.

Isolated Rule Retention. During rule updates, a totally incremen-
tal approach would retain all existing rules while adding new ones
learned from the new attack. However, this may lead to significant
conflicts between merged rules, reducing learning capability and
deployment efficiency. Thus, existing rules need to be adjusted nec-
essarily, such as modifying their boundaries or splitting them [24].
Specifically, Helios retains those isolated rules that are not matched
by any new attack samples in the training set, that is,

R; is retained if Vxi. € Dyew attack, “Match(xg, R;). (7)

By retaining rules that are unaffected by new attack samples, Helios
achieves the trade-off between minimizing unnecessary changes
and maintaining flexibility for updates.

Incremental Rule Update. After retaining the existing isolated
rules, Helios performs incremental learning on the new dataset,
which includes misclassified residual samples and new attack sam-
ples. Similar to the boosting-based SMPL, new rules are generated
and incrementally merged into the existing set. Helios then applies
overlap refinement and priority assignment across all rules. For the
newly added rules, only incremental deployment to the switch is
required, ensuring efficient reconfiguration. For retained prototype-
generated rules, some may need priority adjustments based on the
updated topological sorting results, unless they do not conflict with
any new rules and thus remain unchanged. Additionally, if the op-
timal classification results change, corresponding modifications are
also necessary. Compared to adding or deleting rules, modifying
priorities or updating classification results is more efficient.

Zhenning Shi, Dan Zhao, Yijia Zhu, Guorui Xie, Qing Li, and Yong Jiang

5 Experiments

5.1 Settings

Datasets. (1) CICIDS2018 [30], which includes network traffic gen-
erated within a simulated enterprise environment, featuring various
attacks such as Distributed Denial of Service (DDoS) attacks (in-
cluding LOIC and HOIC methods), Denial of Service (DoS) attacks
(e.g., GoldenEye, Hulk, Slowloris), and SSH brute force attempts.
(2) TON-IoT [3], specifically designed for Internet of Things (IoT)
applications, incorporating benign traffic alongside nine distinct
attack scenarios. (3) UNSW-NB15 [29], which integrates real normal
activities with synthetic contemporary attack behaviors, featuring
benign traffic and encompassing nine types of attacks.

Baselines. Given that methods supporting only binary classifica-
tion are unsuitable for class-incremental learning scenarios, we
select four state-of-the-art multi-classification in-network methods
as baselines: 1) IIsy [39], which designs a feature encoding approach
for deploying decision trees; 2) Planter [42] and Netbeacon [43],
which utilize different ensemble encoding methods for offloading
random forests; and 3) Mousikav2 [38], a lightweight method based
on knowledge distillation.

Configurations. We divide the training and updating process into
several tasks, each consisting of classification for the currently
known classes and the identification of an unseen attack. We set
the training epochs for each task to 50 and utilize the Adam [21]
optimizer with a learning rate of 0.001. The default values for other
key hyper-parameters are provided in Section A. Considering the
limited well-labeled samples in the real-world environment, we set
a 2:8 ratio of training set and testing set to simulate few-shot learn-
ing scenarios. Additionally, since the baselines do not inherently
support unknown class identification, we extend them in a manner
similar to previous out-of-distribution detection arts [19, 25, 34, 36]
by employing a threshold on the classification probabilities. Specif-
ically, if the classification probabilities for all classes fall below the
threshold, the input sample is classified as unknown. We calculate
the optimal threshold for each baseline by maximizing 5} ACC+TPR
while ensuring that the ACC remains no lower than 85%.

5.2 Classification Performance Evaluation

We compare the classification performance of Helios with enhanced
baseline methods across three datasets, as shown in Table 1. The
tasks are divided based on the number of classes in each dataset,
with the specific attack details in Table 3. Initially (Task 1), the
model classifies the initial classes (including benign and one attack)
and identifies the first unseen attack. In each subsequent task, the
unseen attack from its previous task is added as known, while
a new attack is introduced as unseen for that task. Finally (Task
ALL), ACC and F1 represent performance across all classes, while
TPR is calculated as the weighted average of all previous tasks,
representing the overall identification rate for unseen attacks.

For overall performance in Task ALL, Helios achieves the high-
est ACC and F1 across all datasets, as well as the best TPR on CI-
CIDS2018 and UNSW-NB15, demonstrating superior classification
precision. For individual tasks, Helios shows more stable perfor-
mance compared to the baselines, highlighting its ability to han-
dle continually emerging unseen attacks. In summary, even after
optimizing the existing state-of-the-art in-network methods and

Helios: Learning and Adaptation of Matching Rules for Continual In-Network Malicious Traffic Detection

WWW ’25, April 28—-May 2, 2025, Sydney, NSW, Australia.

Table 1: Comparisons of Helios with prior arts on each task in terms of classification performance. Here, ACC, F1, and TPR
represent the Accuracy (%), F1-score (%) of known class classification, and the True Positive Rate (%) of new attack identification.

Planter | Netbeacon | Mousikav2 | IIsy | Helios
Dataset | Task | ycc F1 TPR | ACC F1 TPR | ACC F1 TPR | ACC F1 TPR | ACC F1 TPR
1
2
3
4
DS Z
7
8
9
ALL
1
2
3
4
IoT 5
6
7
8
ALL
1
2
3
4 87.67
NB15 5
6 78.33
7
8
ALL
——Helios =——Mousikav2 ——Netbeacon -——Planter ——IIsy
100 == 100 100
] —
S/ - e
75} 75 75
NN
& 50 — e e 50 / = ~ 50f1
: e\ 1 E —
25 2 - 2
Il /- %/ ?1//
%% 10 20 30 40 0 10 20 30 40 % 10 20 30 40
FPR (%) FPR (%) FPR (%)

(a) CICIDS2018 dataset

(b) UNSW-NB15 dataset

(c) TON-IoT dataset

Figure 2: Receiver Operating Characteristic (ROC) curve of new attacks identification on three datasets.

selecting their optimal thresholds, Helios consistently outperforms
them in classifying known classes and identifying unseen attacks.

To further demonstrate the model’s capability in identifying un-
seen attacks under different threshold settings, we plot ROC curves,
as shown in Figure 2. Across all datasets, Helios outperforms the
baseline methods, achieving higher TPR while maintaining lower
FPR. On CICIDS2018, Helios achieves an AUC of 0.98, significantly
outperforming the second-best method, Planter, which achieves
0.59. On TON-IoT and UNSW-NB15, Helios also surpasses its top
competitors, with AUC of 0.90 and 0.88, compared to 0.88 for Netbea-
con on TON-IoT and 0.81 for Planter on UNSW-NB15, respectively.

5.3 Reconfiguration Time Evaluation

We conduct training on servers equipped with Intel (R) Xeon (R) Sil-
ver 4210 CPU @ 2.20GHz and V100 GPUs, and deploy the model on
a commodity Tofino switch (Edgecore Wedge100BF-65X3). Figure 3

3https://www.edge-core.com/product/dcs802/

presents the average switch table reconfiguration time for different
methods, along with the number of rules learned on total classes.
Overall, Helios outperforms the most lightweight but less accurate
method, Mousikav2, while significantly surpassing other methods.
As shown in Figure 3(a), Helios achieves minimal rule update time
overhead, ranging from 0.8 to 3.1 seconds. This result can be at-
tributed to the number of rules learned, as depicted in Figure 3(b),
where Helios demonstrates higher learning efficiency by requiring
fewer rules. Additionally, due to its incremental update mechanism,
Helios achieves a 13.4% to 37.3% reduction in rule deployment, fur-
ther reducing time overhead. In conclusion, Helios enables efficient
switch reconfiguration and minimizes switch interruption time.

5.4 Ablation Study

To further validate the design of Helios, we conducted ablation
studies on the TON-IoT dataset to assess the contribution of each
module, as detailed in Table 2. First, initializing prototypes with

https://www.edge-core.com/product/dcs802/

WWW ’25, April 28—-May 2, 2025, Sydney, NSW, Australia.

Zhenning Shi, Dan Zhao, Yijia Zhu, Guorui Xie, Qing Li, and Yong Jiang

EHCICIDS2018 EZITON-IoT [ZAUNSW-NB15

15

10 P
5

5 i g ol o) ol

Reconfiguration Time (s)
w
=]

S

Planter ~ Netbeacon Mousikav2 IIsy Helios

(a) The switch reconfiguration time overhead of methods

18000

9400

=
=3
S

Number of Rules
3
(=]

[\ Y
[=1
S

Planter =~ Netbeacon Mousikav2 sy Helios

(b) The number of rules learned by different methods

Figure 3: Comparison of switch reconfiguration time and the number of learned rules between Helios and the baseline methods
across three datasets. For Helios, the dashed portion of the bar represents the savings during incremental updates.

DBSCAN yields significant improvements in both ACC and TPR
compared to Normal or Uniform initialization, and it also surpasses
K-means initialization (we set sufficient clusters for K-means to en-
sure consistency). Second, using Euclidean distance decreases ACC,
suggesting that lo, distance provides a better delineation of deci-
sion boundaries and is more suitable for conversion to range-based
rules. Next, initializing prototypes without subsequent boosting, or
performing only a single training iteration after initialization, fails
to achieve high ACC. While continual boosting without SMPL im-
proves ACC, it significantly lowers TPR. These results demonstrate
that both SMPL and boosting are effective methods for enhanc-
ing performance. Finally, without boundary calibration, although
slightly increasing ACC, results in a notable decrease in TPR. This
highlights the importance of refining the accepting boundary of
prototypes. Overall, Helios achieves an optimal balance between
ACC and TPR, ensuring high precision in classifying known classes
while effectively identifying unknown attacks.

5.5 Hardware Performance

The hardware performance of Helios is depicted in Figure 4. Figure
4(a) illustrates the memory consumption, showing that Helios typ-
ically consumes less than 10% of TCAM and SRAM. Even for the
most complex dataset, UNSW-NB15, Helios requires only around
40% of TCAM. This efficiency ensures sufficient resources remain
available for other essential network functions, such as routing.

Table 2: The ablation study of key components in Helios,
where NOR represents the number of rules.

Method | ACC(%) TPR(%) NOR
w/ Normal init. 76.91 36.38 90
w/ Uniform init. 82.00 33.18 61
w/ K-means 91.46 58.30 394
w/ Euclidean dist. 90.08 64.66 306
w/o SMPL and Boosting 66.08 87.76 161
w/o Boosting 70.39 78.18 146
w/o SMPL 88.52 38.39 325
w/o Boundary Calibration 92.48 38.91 528
Helios | 92.20 62.93 321

Additionally, we use a traffic generator (SPIRENT N11U?) to simu-
late high-speed network traffic at 10 Gbps, 50 Gbps, and 100 Gbps,
with the throughput and latency results presented in Figure 4(b). As
shown, Helios achieves high-speed processing without packet loss,
while maintaining notably low latency (around 0.66 ys) across vary-
ing input traffic rates. Therefore, Helios enables high-throughput,
low-latency detection of malicious traffic.

60 = 150 1.2
[MITCAM ESISRAM & [MThroughput ESLatency N
R40 £ 100 T 083
r E g
S < 5
& 20 2 50 0.4 3
Il : my - |l 3

=
oL m L] & LN NN
DS IoT NB15 10Gps 50Gbps 100Gbps

Dataset Traffic rate

(a) Resource consumption (b) Throughput and latency

Figure 4: Hardware performance of Helios.

6 Conclusion

In this paper, we propose Helios, a continual in-network malicious
traffic detection framework for attack-incremental scenarios. Specif-
ically, Helios integrates supervised mixture prototypical learning
with boosting to derive prototypes that represent the knowledge
of each class, facilitating the classification of known classes and
the identification of unknown attacks. The inference process of
prototypes is then transformed into priority-based rule matching,
ensuring accurate and efficient switch deployment. Helios also
supports incremental prototype learning and rule updates when
new attacks are incorporated, achieving low-cost hardware recon-
figuration. Extensive evaluations of Helios using three datasets
demonstrate its effectiveness in identifying unknown attacks and
performing efficient updates.

7 Acknowledgement

This work is supported by the Major Key Project of PCL under
grant No. PCL2023A06, the National Key Research and Develop-
ment Program of China under grant No. 2022YFB3105000, and the
Shenzhen Key Lab of Software Defined Networking under grant
No. ZDSYS20140509172959989.

“https://support.spirent.com/SpirentCSC/SC_KnowledgeView?ld=DOC10479

https://support.spirent.com/SpirentCSC/SC_KnowledgeView?Id=DOC10479

Helios: Learning and Adaptation of Matching Rules for Continual In-Network Malicious Traffic Detection

References

(1]

A

[11]

[12

[13

[14]

[15]

[16]

[17]

[18]

[19

[20]

[21

[22

Aristide Tanyi-Jong Akem, Michele Gucciardo, and Marco Fiore. 2023. Flowrest:
Practical flow-level inference in programmable switches with random forests. In
Proceedings of the International Conference on Computer Communications. IEEE,
1-10.

Leyla Bilge and Tudor Dumitras. 2012. Before we knew it: an empirical study of
zero-day attacks in the real world. In Proceedings of the 2012 ACM conference on
Computer and communications security. 833-844.

Tim M Booij, Irina Chiscop, Erik Meeuwissen, Nour Moustafa, and Frank TH
Den Hartog. 2021. ToN_IoT: The role of heterogeneity and the need for stan-
dardization of features and attack types in IoT network intrusion data sets. IEEE
Internet of Things Journal 9, 1 (2021), 485-496.

Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer
Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George Varghese, et al.
2014. P4: Programming protocol-independent packet processors. ACM SIGCOMM
Computer Communication Review 44, 3 (2014), 87-95.

Anna L Buczak and Erhan Guven. 2015. A survey of data mining and machine
learning methods for cyber security intrusion detection. IEEE Communications
surveys & tutorials 18, 2 (2015), 1153-1176.

Chaofan Chen, Oscar Li, Daniel Tao, Alina Barnett, Cynthia Rudin, and Jonathan K
Su. 2019. This looks like that: deep learning for interpretable image recognition.
Advances in neural information processing systems 32 (2019).

Tianqi Chen and Carlos Guestrin. 2016. Xgboost: A scalable tree boosting system.
In Proceedings of the 22nd acm sigkdd international conference on knowledge
discovery and data mining. 785-794.

Catalin Cimpanu. [n. d.]. Australian banks targeted by DDoS extortionists. https:
//www.zdnet.com/article/australian-banks-targeted-by-ddos-extortionists/. Ac-
cessed: 2024-08-04.

The P4 Language Consortium. [n. d.]. P4;6 Language Specification. https://p4.
org/p4-spec/docs/P4-16-v1.0.0-spec.html. Accessed: 2024-06-10..

Mahendra Data and Masayoshi Aritsugi. 2021. T-DFNN: an incremental learning
algorithm for intrusion detection systems. IEEE Access 9 (2021), 154156~154171.
Yutao Dong, Qing Li, Kaidong Wu, Ruoyu Li, Dan Zhao, Gareth Tyson, Junkun
Peng, Yong Jiang, Shutao Xia, and Mingwei Xu. 2023. {HorusEye}: A Realtime
{IoT} Malicious Traffic Detection Framework using Programmable Switches. In
Proceedings of the 32nd USENIX Security Symposium. 571-588.

Xuefeng Du, Gabriel Gozum, Yifei Ming, and Yixuan Li. 2022. Siren: Shaping
representations for detecting out-of-distribution objects. Advances in Neural
Information Processing Systems 35 (2022), 20434-20449.

Martin Ester, Hans-Peter Kriegel, Jorg Sander, Xiaowei Xu, et al. 1996. A density-
based algorithm for discovering clusters in large spatial databases with noise.
In Proceedings of the International Conference on Knowledge Discovery and Data
Mining, Vol. 96. 226-231.

Yoav Freund and Robert E Schapire. 1997. A decision-theoretic generalization of
on-line learning and an application to boosting. Journal of computer and system
sciences 55, 1 (1997), 119-139.

Jerome H Friedman. 2001. Greedy function approximation: a gradient boosting
machine. Annals of statistics (2001), 1189-1232.

Chuanpu Fu, Qi Li, Meng Shen, and Ke Xu. 2021. Realtime robust malicious
traffic detection via frequency domain analysis. In Proceedings of the 2021 ACM
SIGSAC Conference on Computer and Communications Security. 3431-3446.
Xueying Han, Susu Cui, Jian Qin, Song Liu, Bo Jiang, Cong Dong, Zhigang Lu,
and Baoxu Liu. 2024. ContraMTD: An Unsupervised Malicious Network Traffic
Detection Method based on Contrastive Learning. In Proceedings of the ACM on
Web Conference 2024. 1680-1689.

John A Hartigan and Manchek A Wong. 1979. Algorithm AS 136: A k-means
clustering algorithm. Journal of the royal statistical society. series ¢ (applied
statistics) 28, 1 (1979), 100-108.

Dan Hendrycks and Kevin Gimpel. 2016. A baseline for detecting misclassified and
out-of-distribution examples in neural networks. arXiv preprint arXiv:1610.02136
(2016).

Geoffrey Hinton. 2015. Distilling the Knowledge in a Neural Network. arXiv
preprint arXiv:1503.02531 (2015).

Diederik P Kingma. 2014. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980 (2014).

Peiyang Li, Ye Wang, Qi Li, Zhuotao Liu, Ke Xu, Ju Ren, Zhiying Liu, and Ruilin
Lin. 2023. Learning from Limited Heterogeneous Training Data: Meta-Learning
for Unsupervised Zero-Day Web Attack Detection across Web Domains. In Pro-
ceedings of the 2023 ACM SIGSAC Conference on Computer and Communications
Security. 1020-1034.

(23]

[24]

[25]

[26

[27

[28

[29]

[30

[31

@
&,

[33

(34

[35]

&
2

(37

[38

[39

=
=

[41

[42

[43

WWW °25, April 28—May 2, 2025, Sydney, NSW, Australia.

Ruoyu Li, Qing Li, Yu Zhang, Dan Zhao, Yong Jiang, and Yong Yang. 2024. Inter-
preting unsupervised anomaly detection in security via rule extraction. Advances
in Neural Information Processing Systems 36 (2024).

Ruoyu Li, Qing Li, Yu Zhang, Dan Zhao, Xi Xiao, and Yong Jiang. 2024. Genos:
General In-Network Unsupervised Intrusion Detection by Rule Extraction. arXiv
preprint arXiv:2403.19248 (2024).

Xixi Liu, Yaroslava Lochman, and Christopher Zach. 2023. Gen: Pushing the limits
of softmax-based out-of-distribution detection. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 23946—23955.

Zaoxing Liu, Hun Namkung, Georgios Nikolaidis, Jeongkeun Lee, Changhoon
Kim, Xin Jin, Vladimir Braverman, Minlan Yu, and Vyas Sekar. 2021. Jagen: A
{High-Performance} { Switch-Native} approach for detecting and mitigating
volumetric {DDoS} attacks with programmable switches. In Proceedings of the
30th USENIX Security Symposium. 3829-3846.

Grainne McKeever. [n. d.]. Imperva releases its Global DDoS Threat Landscape
Report 2023. https://www.imperva.com/blog/imperva-releases-its-global-ddos-
threat-landscape-report-2023/. Accessed: 2024-08-04.

Yifei Ming, Yiyou Sun, Ousmane Dia, and Yixuan Li. 2023. How to Exploit
Hyperspherical Embeddings for Out-of-Distribution Detection?. In Proceedings
of the Eleventh International Conference on Learning Representations.

Nour Moustafa and Jill Slay. 2015. UNSW-NB15: a comprehensive data set for
network intrusion detection systems (UNSW-NB15 network data set). In Proceed-
ings of the 2015 Military Communications and Information Systems Conference.
IEEE, 1-6.

Iman Sharafaldin, Arash Habibi Lashkari, Ali A Ghorbani, et al. 2018. Toward
generating a new intrusion detection dataset and intrusion traffic characterization.
ICISSp 1 (2018), 108-116.

Shaoyun Shi, Yuexiang Xie, Zhen Wang, Bolin Ding, Yaliang Li, and Min Zhang.
2022. Explainable neural rule learning. In Proceedings of the ACM Web Conference
2022. 3031-3041.

Nathan Shone, Tran Nguyen Ngoc, Vu Dinh Phai, and Qi Shi. 2018. A deep
learning approach to network intrusion detection. IEEE transactions on emerging
topics in computational intelligence 2, 1 (2018), 41-50.

Ruming Tang, Zheng Yang, Zeyan Li, Weibin Meng, Haixin Wang, Qi Li, Yongqian
Sun, Dan Pei, Tao Wei, Yanfei Xu, et al. 2020. Zerowall: Detecting zero-day web
attacks through encoder-decoder recurrent neural networks. In Proceedings of
the IEEE INFOCOM 2020-IEEE Conference on Computer Communications. IEEE,
2479-2488.

Haoqi Wang, Zhizhong Li, Litong Feng, and Wayne Zhang. 2022. Vim: Out-of-
distribution with virtual-logit matching. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition. 4921-4930.

Zhuo Wang, Wei Zhang, Ning Liu, and Jianyong Wang. 2021. Scalable rule-
based representation learning for interpretable classification. Advances in Neural
Information Processing Systems 34 (2021), 30479-30491.

Hongxin Wei, Renchunzi Xie, Hao Cheng, Lei Feng, Bo An, and Yixuan Li. 2022.
Mitigating neural network overconfidence with logit normalization. In Proceed-
ings of the International conference on machine learning. PMLR, 23631-23644.
Guorui Xie, Qing Li, Yutao Dong, Guanglin Duan, Yong Jiang, and Jingpu Duan.
2022. Mousika: Enable general in-network intelligence in programmable switches
by knowledge distillation. In Proceedings of the International Conference on Com-
puter Communications. IEEE, 1938-1947.

Guorui Xie, Qing Li, Guanglin Duan, Jiaye Lin, Yutao Dong, Yong Jiang, Dan Zhao,
and Yuan Yang. 2023. Empowering in-network classification in programmable
switches by binary decision tree and knowledge distillation. IEEE/ACM Transac-
tions on Networking 32, 1 (2023), 382-395.

Zhaogqi Xiong and Noa Zilberman. 2019. Do switches dream of machine learning?
toward in-network classification. In Proceedings of the 18th ACM workshop on hot
topics in networks. 25-33.

Zhengxin Zhang, Yucheng Huang, Guanglin Duan, Qing Li, Dan Zhao, Yong
Jiang, Lianbo Ma, Xi Xiao, and Hengyang Xu. 2024. Metis: understanding and
enhancing in-network regular expressions. Advances in Neural Information
Processing Systems 36 (2024).

Ziming Zhao, Zhaoxuan Li, Zhuoxue Song, Wenhao Li, and Fan Zhang. 2024. Tri-
dent: A Universal Framework for Fine-Grained and Class-Incremental Unknown
Traffic Detection. In Proceedings of the ACM on Web Conference 2024. 1608-1619.
Changgang Zheng and Noa Zilberman. 2021. Planter: seeding trees within
switches. In Proceedings of the SGCOMM 21 Poster and Demo Sessions. 12—-14.
Guangmeng Zhou, Zhuotao Liu, Chuanpu Fu, Qi Li, and Ke Xu. 2023. An efficient
design of intelligent network data plane. In Proceedings of the 32nd USENIX
Security Symposium. 6203-6220.

https://www.zdnet.com/article/australian-banks-targeted-by-ddos-extortionists/
https://www.zdnet.com/article/australian-banks-targeted-by-ddos-extortionists/
https://p4.org/p4-spec/docs/P4-16-v1.0.0-spec.html
https://p4.org/p4-spec/docs/P4-16-v1.0.0-spec.html
https://www.imperva.com/blog/imperva-releases-its-global-ddos-threat-landscape-report-2023/
https://www.imperva.com/blog/imperva-releases-its-global-ddos-threat-landscape-report-2023/

WWW °25, April 28—-May 2, 2025, Sydney, NSW, Australia.

A Parameters Analysis

We analyze the impact of three key parameters on the performance
of Helios: boosting iteration, pruning lower bound, and calibration
threshold. The experimental results are presented in Figure 5.
Boosting iteration. As shown in Figure 5(a), increasing boosting
iterations initially improves ACC as the model handles misclassified
samples better. However, beyond a certain point, both ACC and TPR
reach a state of convergence, indicating sufficient learning. To pre-
vent overfitting and excessive rule generation, the default boosting
iteration is set to 4, balancing accuracy and model complexity.
Pruning lower bound. Figure 5(b) shows that without pruning,
both ACC and TPR are lower compared to when a smaller prun-
ing lower bound (e.g., 10) is applied. This is because overfitted
rules from the training set reduce generalization on the test set and
occupy unnecessary feature space. As the pruning lower bound
increases, rule complexity decreases, but ACC also declines. There-
fore, a smaller pruning lower bound provides better results, and
the default value is set to 10.

Calibration threshold. Recall that we use the mean distance of
a prototype’s accepted samples as the threshold (Section 4.2), and
here we multiply this threshold by a scaling weight for parameter
analysis. As shown in Figure 5(c), when the scaling weight is below
1.0, ACC increases significantly because smaller thresholds fail to
capture all relevant data. When the scaling weight exceeds 1.0, ACC
stops improving, while TPR decreases due to overly broad rules
influenced by noisy samples. Therefore, consistent with Eq.(4), the
default value is set to 1.0.

B Matching Table Implementation

As illustrated in Listing 1, features are used as keys for the match-
ing table, and table entries are processed sequentially according to
their assigned priorities. When a match is found, the correspond-
ing Set_class action is executed, classifying the sample as either
a known attack or benign traffic. If no table entry matches, the
Set_as_unseen_attack action is triggered, classifying the sample
as an unseen attack. This mechanism ensures that new or unknown
traffic is properly flagged for further analysis in the control plane.

Listing 1: The P4 matching table.

1 table Helios {
key = {
meta.feature_1: range; // Range-based matching
4 meta.feature_2: range;

meta.feature_m: range;

3}
8 actions = {Set_class_1; ..., Set_class_n;} // Hit
9 default_action = {Set_as_unseen_attack;} // Miss

C Pseudocode of Algorithms

We present the pseudocode for various modules of Helios, includ-
ing the attack knowledge prototyping module (Algorithm 1), the
priority-guided rule transformation module (Algorithm 2), and the
class-incremental rule adaptation module (Algorithm 3). These
modules collectively enable Helios to achieve high classification
performance while maintaining efficient switch reconfiguration.

Zhenning Shi, Dan Zhao, Yijia Zhu, Guorui Xie, Qing Li, and Yong Jiang

Algorithm 1: Attack Knowledge Prototyping

Input: Training set D = {(x;, y;) }gl
Output: Prototypes P, Weight parameters w
1 Run DBSCAN on D to initialize P as cluster centroids;
2 we1;
3 for each epoch do
4 for each mini-batch { (xx, yx)} in D do

5 Jr < Prob(xy) via Eq.(2);

6 L < Loss(9, Yk);

7 Update P and w using gradients VpL, V,,L;
8 end

9 end

10 return P, w;

Algorithm 2: Priority-Guided Rule Transformation

Input: Training set D = {(x;, y;) }f\zjl

Output: Range-based matching rules R

Initialize prototype-generated rules Rgen as empty;
2 Dpow < D;

3 for each boosting iteration do

-

4 P « Perform Algorithm 1 on Dyow;

5 for P;j in P do

6 Compute Dp;; via Eq.(3);

7 Compute Threshold;; via Eq.(4);

8 Compute boundaries (L;;, U;;) for P;; via Eq.(6);

9 Add (Lij: Uij) to Rgen;
10 end
11 Refine the optimal class for all overlapping regions in Rgen;
12 Perform topological sorting on Rgen and assign priorities;
13 Roverlap < Introduce regions still not achieve optimal;
14 Prune low cost-effective rules in Rgen and Roverlap;
15 Drow < Residual samples of Dyoyw based on Rgen and Roverlaps
16 end

17 Roverlap < Overlap refinement and priority assignment on Rgen;
18 R« Rgen U Roverlap§
19 return R;

Algorithm 3: Class-Incremental Rule Adaptation

Input: Known class samples Dyyown, new attack samples Dpey,
rules learned on known class samples Reyist
Dupdate < Diknown U Drew;

[

)

Risolate < Rexist \ {rules that match any xx € Dyey };

w

Dresidual — {x € Dupdate | x is misclassified by Risolate };

4 Rpew « Perform Algorithm 2(Dyesidual, Rexist);

5 Rretain <~ Rexist N Rnews

Rnodify < {r € Rretain | priority(r) # priority (Rnew) }

Rdelete <R \ Rretain;

8 Radd < Rnew \ Rretain;

Perform the corresponding switch table-entry reconfiguration for

N

N

©

Rmodify: Rielete and Radd;
10 return;

Helios: Learning and Adaptation of Matching Rules for Continual In-Network Malicious Traffic Detection

~ACC(IDS) -+-TPR (IDS) —ACC (IoT)

WWW °25, April 28—-May 2, 2025, Sydney, NSW, Australia.

-o-TPR (IoT) - ACC (NB15) -«- TPR (NB15)

100

-
IS
=3

3
a
=3
a

Metrics (%)
~
=
Metrics (%)
~J
=

o
a
w
a

'S
=]
'S
=)

100555

N}
a

Metrics (%)
wu
(=3

1N}
a

1 2 3 4 5 6 7 8 0 10 20
Boosting iteration

(a) Iterations of boosting

Pruning lower bound

(b) Lower bound of pruning

0.2 04 06 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2
Scaling weight

40 50 60 70 80

(c) Scaling weight of boundary calibration

Figure 5: Analysis of key hyper-parameters for Helios.

D Learning Techniques

Supervised Prototypical learning. In prototypical learning [6], a
sample is classified into the class of the prototype to which it is most
similar in the hidden space. If a sample shows little similarity to any
prototype, it is classified as an out-of-distribution (OOD) sample,
and therefore considered as belonging to an unseen class. Existing
methods [12, 28] typically assign a single prototype to each class,
which works well because the features are processed by neural
networks, allowing a single prototype to effectively differentiate
between classes with minimal overlap in acceptance ranges.

However, in the context of the data plane, which does not sup-
port feature processing (e.g., linear or nonlinear transformations),
prototypes need to directly compare with original features. Con-
sequently, we assign multiple prototypes to each class to enhance
representation capability. However, this introduces new challenges,
as the acceptance boundaries for prototypes become difficult to
define, and an increase in the number of prototypes can lead to
considerable overlaps. We address these issues in Section 4.2.
Boosting. Boosting is a powerful learning technique commonly
used in machine learning [7, 14, 15] to enhance model accuracy by
iteratively correcting the errors of weak classifiers. At each itera-
tion, it focuses on the misclassified samples from previous rounds
and trains a new model that better captures these challenging in-
stances. By combining the strengths of multiple weak models, it
produces a robust classifier with improved accuracy and general-
ization. Since Helios is essentially a rule learner, which also acts
as a weak classifier, we combine SMPL with boosting to further
enhance classification performance.

E Dataset Details

Table 3 presents the attack classes assigned to each task across
datasets. Initially, each dataset begins with benign traffic and a sin-
gle attack. As tasks progress, additional attack classes are introduced
incrementally, simulating a continually evolving network environ-
ment. This incremental setup effectively evaluates the methods’
ability to handle both known classes and newly emerging threats,
reflecting the attack-incremental nature of real-world scenarios.
Table 4 presents the extracted traffic features used in our ex-
periments. For UNSW-NB15, we extract features across various
levels, including IPv4 (e.g., length, flags, TTL, protocol, and ports),
TCP (e.g., offset, flags, and window size), and UDP (e.g., length).

If a packet is of the TCP type, the UDP fields are padded with ze-
ros, and vice versa. For TON-IoT, features such as total packet size
and inter-arrival time are considered, with average, maximum, and
minimum values captured to characterize the flow. Additionally,
packet-level attributes such as packet count, protocol, and destina-
tion port are included. For CICIDS2018, flow-level features such
as forward and backward packet sizes are extracted, along with
packet-level attributes.

Table 3: Task-specific class details for each dataset.

Task | CICIDS2018 TON-IocT | UNSW-NB15
Init Benign Benign Benign
Init DDoS LOIC HTTP Mitm Analysis

1 DDoS HOIC DoS Worms

2 DDoS LOIC UDP Runsomware Backdoor

3 DoS GoldenEye Backdoor DoS

4 DoS Hulk Injection Exploits

5 DosS Slowloris DDoS Fuzzers

6 SSH BruteForce Password Generic

7 Web Attack XSS Scanning Reconnaissance
8 Web Attack SQL XSS Shellcode

9 Web Attack Brute Force - -

Table 4: Detailed features extracted from different fields, in-
cluding both packet-level and flow-level features.

Packet-Level

Dataset ‘ Field Features
Pvd length, flags, TTL, protocol, sr-
cport, dstport
B ‘ TCP ‘ offset, flags, window_size

‘ UDP ‘ length
‘ Total Packet Size ‘ avg, max, min

IoT ‘ Inter-Arrival Time ‘ avg, max, min
‘ Packet-Level ‘ pkt_count, protocol, dstport
‘ Forward Packet Size ‘ avg, max, min

IDS ‘ Backward Packet Size ‘ avg, max, min
| |

pkt_count, protocol

	Abstract
	1 Introduction
	2 Background and Motivation
	3 Overview
	4 Methodology
	4.1 Attack Knowledge Prototyping
	4.2 Priority-Guided Rule Transformation
	4.3 Class-Incremental Rule Adaptation

	5 Experiments
	5.1 Settings
	5.2 Classification Performance Evaluation
	5.3 Reconfiguration Time Evaluation
	5.4 Ablation Study
	5.5 Hardware Performance

	6 Conclusion
	7 Acknowledgement
	References
	A Parameters Analysis
	B Matching Table Implementation
	C Pseudocode of Algorithms
	D Learning Techniques
	E Dataset Details

