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Abstract—In recent years, hybrid congestion control (CC) algo-
rithms that combine rule-based CC and learning-based CC have
gained significant attention. They incorporate the fast adaption ability
of learning-based CC and the stability of rule-based CC, tending to
select the better-performing rate based on the network feedback.
However, the practical implementation of such algorithms has
revealed primary issues. Specifically, they require both CCs to run
alternately, which results in a poorly performing CC continuing to
run in the network. Moreover, hybrid CCs cannot converge to the
optimal rate when both CCs perform poorly. This paper proposes
Anole to address these issues. Anole has threemain algorithmic contri-
butions: 1) Anole always selects the better-performing CC, 2) Anole
temporarily deprecates the consistently underperforming CC, 3)
when both CCs perform poorly, Anole infers the optimal sending rate
based on the network feedback. We carry out comprehensive experi-
ments in both emulated and real-world wired networks, as well as in
real-world WiFi networks, to assess the performance of Anole. The
experiment results demonstrate that Anole achieves approximately
6% higher throughput in real-world links and 34% lower delay in the
48Mbps link compared to the state-of-the-art CC. Anole also exhibits
superior performance in adaptability and fair convergence.

Index Terms—Congestion control, machine learning, hybrid
algorithm.

I. INTRODUCTION

CONGESTION control (CC) represents a long-standing and
essential area of focus within networking research. Deca-

des of studies on controlling congestion provide us with a

plethora of CC algorithms. So far, more than 15 distinct rule-
based classic CC algorithms (e.g., CUBIC [1], Vegas [2]) have
been integrated into the Linux Kernel [3], [4]. The predictable
behavior and minimal overhead characterization make these
classic algorithms highly pragmatic [4]. Nevertheless, they
exhibit good performance only in certain networks (e.g.,
CUBIC can cause throughput degradation in high BDP net-
works [5], and BBR exhibits subpar performance in cellular
networks [6], [7], [8]), necessitating extensive manual tuning
to adapt to diverse networks.

Given the increasing application requirements and more com-
plex network infrastructures, machine learning has sparked a
new wave of revival in CCs [9], [10], [11], [12], [13], [14], [15],
which have great potential to adapt to dynamic network condi-
tions with one single control policy [9]. However, it is almost
impossible for the training datasets to simulate the complicated
real-world Internet dynamics faithfully. Hence, these learning-
based CCs occasionally yield significantly inaccurate bandwidth
estimation [16]. Besides, the convergence performance of these
CCs largely depends on the choice of the utility function (and its
parameters), showing limited adaptability [4], e.g., current util-
ity functions usually impose heavy penalties for delay and
packet loss, resulting in link underutilization.

To incorporate the advantages and compensate for shortcom-
ings, recent years have witnessed the rise of hybrid CCs that
integrate rule-based and learning-based CCs [3], [4], [16], [17],
[18], [19]. Hybrid CCs usually adopt a time-division method to
run rule-based and learning-based CCs separately, and then
select the better-performing one based on the network feedback:
Orca [3] employs a learning-based TD3 [20] model to enforce a
new congestion window (cwnd) every specific period, which
serves as the base cwnd for rule-based CCs. Libra [4] uses a util-
ity function to quantify the performance of different sending
rates and choose the one with a higher utility value. Such algo-
rithms intend to complement the adaptability of learning-based
CCs and the robustness of rule-based CCs. Nevertheless, this
complementary operation may backfire. Considering the limita-
tions of the training set (usually generated through simulations)
and the complexity of the actual application scenario, the learn-
ing model is likely to face serious out-of-domain generalization
challenges, leading to predictions with large deviations. Taking
Orca as an example, such erroneous predictions will limit the
ability of rule-based CC to explore the correct rate, ultimately
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leading to worse performance than using the rule-based CC
alone. We reproduce several hybrid CCs and conduct experi-
ments (Section II) to demonstrate that this performance degrada-
tion indeed exists and will be more evident when both candidate
CCs perform poorly.

To handle situations where one or both CCs perform poorly,
the design of a hybrid CC should follow three key principles. (i)
the hybrid CC’s performance must not be inferior to either of
the two CC algorithms. (ii) except for rate selection, the evalua-
tion of the sending rates should be fully leveraged to infer the
right rate. (iii) the impact of the long-time poor-performing CC
should be minimized. To satisfy these design principles, we pro-
pose Anole, a hybrid CC that can correct its behavior when the
candidate CCs perform poorly.

Like early attempts of the hybrid CCs [4], [17], Anole
employs a utility function to evaluate the performance of the can-
didate rates (generated from the rule-based CC, learning-based
CC, and the historical best) based on the network feedback. If the
CC candidates perform well, the rate with the highest utility
value is selected to ensure that the best CC is chosen according to
the current evaluation criteria. When the candidates show unsat-
isfactory performance, Anole aims to explore a better rate. Fortu-
nately, the access to multiple rates and their network feedback
provide us with additional information to infer the available
bandwidth. For instance, the network feedback can tell whether
the right rate falls between any two of the candidate rates. Regard-
ing the third principle, under circumstances where the network
environment experiences minimal alterations (e.g., link capacity
and base delay), CCs that exhibit sustained underperformance
struggle to achieve performance enhancement within a short time
frame. The continued execution of such CCwould result in perfor-
mance degradation. To achieve this, Anole assigns a confidence
score to eachCC.Anole reduces the confidence score of the poorly
performed CC and will temporarily deprecate the CC when its
confidence score falls below a preset threshold. The primary inno-
vations of Anole can be summarized in two key points: First,
Anole avoids uncritically relying on any single algorithm; instead,
it infers the optimal rate by analyzing feedback from multiple rate
assessments. Second, Anole addresses the issue of excessive rate
evaluations in current hybrid congestion controls by: 1) extending
the control cycle, allowing the optimal rate to be applied for a lon-
ger duration, and 2) temporarily suspending the evaluation of algo-
rithms that consistently perform poorly.

Our key contributions in this paper are:
� We analyze the shortage of current hybrid CCs and con-

duct experiments to demonstrate that a more effective
strategy is required to prevent sustained performance
degradation when candidate algorithms underperform.

� We design a new three-stage hybrid CC framework.
Anole can determine the best decision from the rule-
based, learning-based, and previous decisions, and infer a
better sending rate when CC candidates show unsatisfac-
tory performance.

� We implement Anole in Linux Kernel and evaluate it
with state-of-the-art CCs through Pantheon [21]. Our
comprehensive experiments show that compared with
other CCs, Anole achieves consistently high performance

in various network conditions, especially where one or
both CC candidates perform poorly.

II. BACKGROUND AND MOTIVATION

The predictability and low overhead characteristics of rule-
based CCs render them prevalent choices for production envi-
ronments. Nonetheless, they demonstrate good performance
exclusively within environments conducive to the specific rule,
exhibiting a deficiency in adaptability to alternative networks
[3], [4], [9], [22], [23], [24]. Meanwhile, learning-based CCs
have demonstrated impressive performance in adapting to dif-
ferent environments, but their robustness has hindered the prac-
tical deployment: (i) out-of-domain challenges: the performance
of learning models is heavily dependent on the training set and
the duration of training. (ii) trial-and-error mechanism: rein-
forcement learning models (commonly used in CC), often yield
bandwidth estimates that significantly deviate from the ideal
value, resulting in bandwidth overshoot or underutilization [16].
Therefore, an increasing number of researchers have shifted
their focus toward Hybrid CCs [3], [4], [16], [18], [19], [25],
which aim to combine the benefits of both rule-based and
learning-based CC approaches. The fundamental idea of hybrid
CC is to select the optimal rate among multiple rate candidates
generated by rule-based and learning-based CCs. However, as
the following subsection shows, hybrid CCs will encounter sev-
eral challenges during employment.

A. Rate Deviations in Loss&Long Links

To showcase the challenges that hybrid CCs will face, we run
a loss-oriented flow, a delay-oriented flow, and a learning-based
flow in different network scenarios. CUBIC [1] and Vegas [2],
respectively represent the loss-oriented and delay-oriented CCs.
Considering that DRL is widely applied in the CC domain, we
choose the state-of-the-art deep reinforcement learning (DRL)
algorithm, Sage [18], which is built on the critic regularized
regression model of Google (CRR [26]). The experimental sce-
narios are simulated through the Pantheon [21] platform. The
link capacity in all scenarios is 48Mbps.

Fig. 1 shows the performance of these CCs, wherein Fig. 1(a)
shows that all flows achieve good throughput performance with
25ms one-way-delay and no random loss. CUBIC and Vegas
both exhibit high latency (cubic-a and vegas-a in Fig. 1(d)), but
for different reasons. CUBIC’s high latency is primarily attrib-
uted to its buffer-filling characteristic, while Vegas experiences
high latency due to the accumulation of queues during the slow
start stage. Based on this scenario, we alter the random loss rate
and one-way delay of the links to investigate their impact on the
CCs’ performance.
Scenario 1: link with 25ms one-way-delay and 0.1% random
packet loss: When random packet loss is introduced into a net-
work environment, both algorithms are subject to varying
degrees of impact. Due to the presence of head-of-line blocking,
most rule-based TCP algorithms are highly sensitive to packet
loss [1], [2], [27], [28] (BBR [5] is an exception since it relaxes
the inflight restriction). As depicted in Fig. 1(b), Vegas only
achieves about 20% link utilization. CUBIC imposes additional
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penalties on cwnd, resulting in only a 10% link utilization. With
such low link utilization, all flows approach the base one-way
delay (25ms). Sage demonstrates superior performance com-
pared to rule-based algorithms. However, it still experiences
throughput degradation. Our subsequent experimental findings
indicate that an elevated loss rate exacerbates the oscillation of
the sending rate.
Scenario 2: link with 50ms one-way delay and no random
packet loss: After the base one-way-delay rises to 50ms, Sage
shows the most noticeable performance change. The predicted
sending rate by the DRL model experiences substantial fluctua-
tions, and the delay rises to a level nearly equivalent to that of
CUBIC. Although there are no significant throughput oscilla-
tions in CUBIC and Vegas, Fig. 1(d) shows that their delays
remain consistently high.

In the examples of the above scenarios, existing hybrid CCs
struggle to select the appropriate sending rate. For example, Orca
[3] allows the rule-based CC to update the sending rate based on
the initial rate, which the DRL model generates at the beginning
of each monitoring period. Consequently, in scenario 1, despite
the good initial rate provided by the learning-based congestion
control algorithm, the rule-based algorithm leads to a rapid drop
in the sending rate. In scenario 2, the performance of Orca is pri-
marily driven by the DRL model, which results in fluctuating
throughput. Based on Orca, Libra [4] further evaluates each rate
and records the historical best rate. However, the optimization for
the performance is limited in cases where the optimal rate has
never been attained. It is also worth noting that Libra evaluates
the rates every three Round Trip Times (RTTs) and cannot evalu-
ate all rates sampled at any given time. As such, the unevaluated
rates will not be historical records even if they perform better. In
summary, the performance of a hybrid CC is constrained when
both types of algorithms exhibit suboptimal performance.

B. Instability of Learning-Based CC

To present the performance of Sage’s DRL model under dif-
ferent parameters and network scenarios, we run Sage flows

with varying prediction intervals and in simulation environ-
ments with different one-way delays. The link capacity is
48Mbps and the base one-way delay is 25ms. The experiment
results are shown in Fig. 2.

Fig. 2(a) shows how the prediction intervals influence the per-
formance of Sage. Based on our measurements, Sage requires
an average time of about 18ms for one inference and shared
memory interaction1. The default prediction interval in Sage is
20ms and we gradually increase it with a step size of 2ms. The
experiment result shows that the convergence time of Sage
noticeably increases as the prediction interval increases. For
example, an increment of the prediction interval from 20ms to
22ms results in a delay of 5s in the convergence time. Moreover,
the flow requires more than 17s to converge to the correct rate
when the prediction interval is raised to 32ms. Fig. 2(b) illus-
trates the sending rate curves under different one-way delays.
When the base one-way-delay reaches 45ms, the curve begins to
oscillate, and such oscillation intensifies as the one-way-delay
increases. After the one-way-delay reaches 60ms, the oscillation
range of the rate expands to between 20Mbps and 120Mbps.

Apart from Sage, other learning-based CCs also exhibit vary-
ing degrees of instability. For example, PCC Vivace [23] and
Indigo [10], tend to impose strict penalties on the growth
of RTT and exhibit poor tolerance for network fluctuations.
Related experimental results will be presented in section V.

C. Retained Poor CC

The principle of hybrid CC is to run multiple CCs simulta-
neously and select the sending rate with better performance,
which implies that the performance of the unselected rate is
often unsatisfactory. However, current hybrid CCs require peri-
odic application of these rates. For instance, Orca sets the send-
ing rate to the rate inferred by the RL model at the beginning of
each monitoring period, which is highly dependent on the RL
model’s performance. Libra employs a cyclic process of running
and evaluating the learning-based and rule-based CC. This
approach will result in performance degradation if one or both
of them perform poorly, especially in stable network environ-
ments where the rates are unlikely to change extensively. As a
result, these hybrid CCs suffer from persistent performance
degradation.

Fig. 1. Classic and DRL algorithms exhibit different throughput and latency
performance in various scenarios. The scenario in (a) is characterized by a 25 ms
one-way-delay and no random loss. (b) Adds a 0.1% random packet loss; and (c)
alters the one-way-delay to 50 ms.

Fig. 2. The performance of Sage’s DRL model with different prediction inter-
vals and in networks with different one-way delays. The prediction interval varies
from 20 ms to 32 ms. The one-way delay varies from 25 ms to 60 ms.

1Due to the constraints imposed by Sage’s kernel, utilizing GPU during
the model inference process is not feasible.
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In practice, a CC that exhibits rate deviation over several con-
secutive RTTs can be deemed unsuitable for the current network
environment (e.g., the random packet loss in sample 2). In such
cases, the CC’s performance may not significantly improve until
the network environment changes. Specifically, in the presence
of random packet loss or when the DRL model encounters an
out-of-domain generalization challenge, the CC’s sending rate
will not converge to the available bandwidth over time. Hence,
when a CC consistently exhibits low performance, we should
consider deprecating it for a period and re-evaluating its effec-
tiveness after the network environment changes. These observa-
tions highlight the need for more effective approaches in hybrid
CC to adapt to the dynamic and complex network environment.

III. DESIGN

In general, Anole utilizes a utility function to evaluate the per-
formance of three sending rates, which calculates the utility val-
ues for the rate of the rule-based CC (rcl), the rate of the
learning-based CC (rrl), and the rate applied in the probing stage
(r). Our key innovation lies in 1) inferring the optimal sending
rate through these rates and their corresponding utility values.
2) temporarily deprecate the consistently underperforming algo-
rithms to reduce performance degradation.

A. Overview of the Finite State Machine

Fig. 3 shows the finite state machine of Anole, which is com-
posed of the evaluation stage, the probing stage, and the accel-
eration stage. Anole starts with a slow start phase to detect the
available bandwidth swiftly and then enters the finite state
machine.

Anole starts from the evaluation stage (Section III-B), where
a utility function assesses all the rates. The utility function
considers the throughput, queue length, and queue dynamics,
aiming at achieving high throughput and low latency simulta-
neously. After obtaining the utility values of r, rcl, and rrl
(U,Ucl,Url) at 1RTT, 1.5RTT, and 2RTT, Anole checks if there
exists an algorithm (rule-based or learning-based CC) with con-
sistently poor performance. If no, Anole enters the probing stage
(Section III-C). The sending rate in the probing stage is denoted
as r. During the probing stage, Anole determines whether to use
the rate with the maximum utility value (r ¼ rUmax ) or to deduce
an optimal rate (r ¼ ropt, the optimal rate refers to the fair

bandwidth share in the current network scenario and it equals
to the link capacity if there only exists a single flow) for data
transmission in the next N RTTs. Otherwise, Anole enters the
acceleration stage (in Section III-D). In this stage, the underper-
forming CC will be temporarily deprecated, which can reduce
the computational overhead, minimize the performance loss,
and accelerate the convergence. After a few RTTs, we will
re-evaluate this deprecated CC to determine whether it can work
properly in the current network scenario.

B. Evaluation Stage

Anole initializes with the slow start phase to quickly reach the
available bandwidth. During the slow start process, the learning-
based CC runs in the background, allowing Anole to directly
enter the evaluation stage after quitting the slow start phase. The
value of r is initialized to ðrcl þ rrlÞ=2 when entering the evalua-
tion stage for the first time. In subsequent control cycles, r is
assigned the sending rate applied in the previous probing
stage. Algorithm 1 shows the workflow of Anole in each control
cycle.

In the evaluation stage, rates generated by rule-based (rcl) and
learning-based CC (rrl) run in ascending order for 0.5 RTT,
respectively (as shown in lines 4-7 in Algorithm 1). Running at

Algorithm 1: Anole Algorithm.

Fig. 3. The finite state machine of Anole. Anole transfers among the evaluation
stage, the exploration stage, and the acceleration stage.
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a lower rate initially helps to reduce the side effect of the bottle-
neck queue caused by the first-running CC. During this RTT
period, Anole continuously receives ACK feedback (the blue
arrows) from the last probing/acceleration stage. Therefore,
Anole can calculate the Uprev the previous rate just after the first
RTT (line 8). Similarly, in 1-1.5 and 1.5-2 RTTs, Anole receives
the feedback of rcl and rrl (the green and orange arrows) and cal-
culates their utility values at 1.5 and 2RTTs (line 11). Note that
if r is not a calculated ropt, there is no need to re-compute the
utility value of r, as its utility (Ucl or Url in the last evaluation
stage) has already been obtained in the previous round. At 2
RTT, Anole has completed data collection and evaluation (with
the utility function) for all rates.
Utility function: By default, Anole leverages a utility function
as follows (we use x in the utility function to represent any type
of rate for convenience):

uðxÞ ¼ axt − bx � max dðRTTÞ
dt

, 0

� �
− �x � RTT

RTTmin
IQ (1)

where 0< t < 1, x is the sending rate in Anole, the hyper-
parameters a, b, � > 0, IQ is an indicator function defined as
follows:

IQ ¼
0

RTT
RTTmin

� 1þ l

1
RTT

RTTmin
> 1þ l

, l> 0

8>><
>>:

(2)

Our utility function consists of three components. The first
term in Equation 1 encourages a higher sending rate, which
ensures that the utility function is a convex function. The sec-
ond term penalizes the RTT growth. The minimum value for
the delay gradient is set to 0, as a decrease in RTT indicates
that the current sending rate is lower than the optimal rate and
should not be considered as a reason for an increase in the
utility value. The third term penalized the in-network queue
length. Considering the need to fully utilize the network band-
width, the in-network queue cannot be completely eliminated.
Therefore, in Equation 2, we employ l to control the tolerable
queue length. When RTT

RTTmin
is less than 1þ l, it implies that the

in-network queue length is within an acceptable range and will
not impose any penalty on the utility value.

This utility function has two characteristics: 1) It does not
penalize packet loss, because the constraints imposed on the gra-
dient and absolute value of RTTs are deemed sufficient to pre-
vent individual flows from causing network congestion. With

these constraints, the packet loss events are highly likely to
result from other traffic or random packet loss (e.g., due to link
failures). Besides, this ensures the convergence of both the send-
ing rate and in-network queue length to an optimal state, pre-
venting scenarios where only one side converges (e.g., the
sending rate equals the available bandwidth with a persistent
deep queue at the bottleneck). 2 All the penalty terms are multi-
plied by the sending rate x, because the penalties applied to the
utility value should correspond to the contribution of each flow
to the network congestion.

C. Probing Stage

Anole has to determine the sending rate in the probing stage.
Due to the inherent inaccuracies in inferring the optimal rate and
the associated computational overhead, Anole prefers to use
either the rule-based or the learning-based CC and only estimates
the optimal rate when both CCs perform poorly. Therefore, Anole
utilizes a threshold T (T is a multiple of Umax) to check whether
there is an acceptable rate. If either the utility value of rcl or rrl (or
both) is greater than T, Anole adopts the rate with the higher util-
ity value (rUh ) (lines 14-15 in Algorithm 1). Otherwise, Anole
chooses to infer the optimal sending rate based on the information
collected from the two different rates (lines 16-17). Next, we will
introduce how to infer the optimal rate.

Now we have gathered three rates rrl, rcl, r and their utility
values url, ucl, u. Then Anole infers the optimal rate based on
these values. If we arrange rrl, rcl, r in ascending order as
ra, rb, rc, the optimal rate can occur at four possible locations.
(i) Situation I: In Fig. 4(a), ra, rb, rc are all higher than the
optimal rate (the highest point of the curve). ra possesses the
largest utility value and the measured delay gradient (DD¼
dðRTTÞ=dt) is positive. (ii) Situation II: the optimal rate locates
between ra and rb. In Fig. 4(b), ra possesses the largest utility
value and DD is non-positive. In Fig. 4(c), rb holds the largest
utility value and DD is positive. (iii) Situation III: Only rc is
higher than the optimal rate. Fig. 4(d) and 4(e) illustrate this
scenario, where rb and rc holds the largest utility value, respec-
tively. (iv) Situation IV: ra, rb, rc are all lower than the optimal
rate. In Fig. 4(f), rc possesses the largest utility value and DD is
non-positive.

For situation II and situation III, if the difference between the
two rates closest to the optimal rate is small, we directly select
the rate with the highest utility value. Otherwise, we infer the

Fig. 4. Distributions of rcl, rrl, and r (denoted as ra, rb, and rc in ascending order) and the location of optimal rate.
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optimal rate to avoid consistently choosing rates that deviate sig-
nificantly from the optimal value:

In situations I and II, the optimal rate can be directly inferred.
Expressing Eq1 in a piece-wise manner, we have:

uðxÞ ¼
axt xþ R � C

axt − bx � dðRTTÞ
dt

− �x � RTT
RTTmin

� IQ xþ R > C

8<
:

(3)

where R is the aggregated rate of all other flows. When
xþR> C, we can represent the delay gradient with x, R, and C:

DD¼ dðRTTÞ
dt

¼ xþR−C
C

(4)

By substituting Equation 4 into Equation 3, the resulting equa-
tion contains two unknown variables, namely the link capacity C
and the sum of other rates R. If two rates are higher than the opti-
mal rate (Fig. 4(a), 4(b), 4(c)), it becomes possible to deduce the
values of C and R, thereby facilitating a more refined analysis of
the system. The location where the utility function reaches its
maximum point is the intersection of two segments, that is:

axt ¼ axt − bx � dðRTTÞ
dt

− �x � RTT
RTTmin

� IQ (5)

specifically, when the in-network queue length is within the
threshold (IQ ¼ 0), x should satisfy:

xþR¼ C (6)

Considering that other flows also relinquish network band-
width after receiving feedback, we should assume that R
decreases proportionally to r to ensure sufficient utilization and
fair allocation of the bandwidth, we have:

x0 ¼ C − R � C
Rþ x

(7)

When IQ ¼ 1, it indicates the presence of a congested queue
in the network. However, this does not imply the current send-
ing rate is incorrect. Rather, it necessitates a temporary reduc-
tion in the sending rate to alleviate the in-network congestion.
According to the recorded RTT, we can estimate the total vol-
ume of the queued packets at the bottleneck as:

RTT
RTTmin

− 1

� �
�BDP¼ ðRTT −RTTminÞ �C (8)

The contribution of the current flow to the queue can be quan-
tified as ðRTT −RTTminÞ � x. Then we choose to send data at a
rate of:

max
RTTmin
RTT

� x, 0:5x

� �
(9)

for an RTT to consume these accumulated packets. To ensure
the sending rate does not become excessively low, a minimum
rate of 0.5x is enforced.

In situation III, only one rate lies in the second segment of
Equation 3, making it impossible to simultaneously deduce C
and R. However, if situations I and II have occurred previously,

we consider employing the historical value of C, as the link
capacity is unlikely to change frequently2. With this historical
value C, we can deduce the value of R and then calculate the
optimal rate through Equation 7. If neither situation I nor II has
ever occurred, we take the median of the two rates closest to the
optimal rate (rb and rc) as the optimal rate.

In the situation IV, In this scenario, all rates are located in the
first segment of Equation 3, which means that all rates are lower
than the optimal one. Therefore, we consider a growth on top of
rc. To minimize network oscillations, we believe that the growth
step should decrease as the rate approaches the optimal point. The
first segment of Equation 3 is a convex function since 0< t < 1,
which allows us to apply gradient ascent to rate control:

r ¼ rc þ c � dðuðrÞÞ
dr

, c> 0 (10)

where c is the confidence amplifier (the concept of the confidence
amplifier has been employed in multiple previous algorithms
[22], [23], [29]). When the sender repeatedly decides to increase
the rate, the confidence amplifier is increased.

The probing stage will last for N RTTs, where N � 2. During
this period, rule-based algorithms would continue to operate
based on rate r as (i) their computational overhead is minimal,
(ii) a single RTT is usually insufficient to induce a significant
change in the rate of rule-based CCs. In contrast, learning-based
algorithms would be executed only in the final few (one) RTTs
of the probing stage to conserve computational resources. The
probing stage allows the algorithm to make occasional errors in
network judgment, and only when a CC shows consistent per-
formance loss does it enter the acceleration stage.

D. Acceleration Stage

A particular algorithm may exhibit persistent suboptimal
performance. For learning-based CCs, due to the constraints of
the training data and the complexity of real-world application
scenarios, the learning model is susceptible to significant out-of-
domain generalization challenges, which can result in predic-
tions with substantial deviations (e.g., the training dataset ranges
from 1Mbps to 40Mbps, while the test link has a capacity of
200Mbps). Scaling the dataset can potentially mitigate the issue,
but the heterogeneity of network conditions poses a challenge to
the complete coverage of the training data. Meanwhile, rule-
based CCs fail to adapt to specific environments. For instance,
CUBIC exhibits significant throughput loss in the presence of
random packet loss, while BBR experiences sustained high
latency in wireless networks. In conclusion, both rule-based and
learning-based CCs can seriously deviate from the optimal rate.
In the face of these scenarios, persisting with the evaluation and
probing stage would result in a squandering of network and
computational resources. Therefore, Anole specifically designs
a stage for this case: acceleration stage.

Intuitively, CCs that continuously exhibit poor performance
should be deprecated. To this end, we propose assigning a confi-
dence score (denoted as g) to each CC. All CCs have the same

2Considering the severe bandwidth fluctuations of wireless networks, we
will not use historical values in wireless environments.
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initial confidence score, which is updated at the end of each
evaluation stage (line 12 in Algorithm 1). When a CC’s rate
shows a long-term deviation from the optimal rate (its utility
value is significantly lower than the maximum utility value), we
consider it to perform poorly in the current environment, and its
confidence score should be reduced. When one or both CCs’
confidence score falls behind the threshold goff , Anole enters the
acceleration stage (lines 23-24). Then we will introduce how
Anole updates the confidence score for each algorithm and
adjusts the rates in the acceleration stage.
Confidence score update: The performance of the current CC
is assessed based on the ratio y between the current utility value
and the optimal utility value:

y ¼ ur
umax

þ h, h > 0 (11)

where h represents the allowable deviation of the utility value.
When y> 1, the confidence score increases; otherwise, it decreases.
The state conversion of each CC is shown in Algorithm 2. The
maximum value of g is set to 1. At the end of each evaluation stage,
we multiply g by y to adjust it (line 3). If the observed y> 1, g
increases, otherwise, g is reduced multiplicatively. As g decreases
below the deprecate threshold goff , g is set to goff , and the state of
the CC is marked as deprecate (line 6). g increases by Dg for each
2RTTs until it grows to gon (line 8), after which the state is set to
activate. Next, based on the current sending rate, we will run the
rule-based and learning-based CC for one RTT, respectively (to
provide the rate for evaluation), and re-enter the evaluation stage.
This approach guarantees equal periods of deprecation for each
algorithm and provides equal opportunities for reactivation.
Rate adjustment: The initial rate selection in the acceleration
stage is similar to that in the probing stage. If there is a CC in
the ’activate’ state, the rate of the activated CC is adopted as the
initial rate. Otherwise, the inferred optimal rate is chosen as the
initial rate. During the acceleration stage, Anole performs an
additive increase/decrease operation every two RTTs based on
the value of the current smoothed RTT. Specifically, when
ðRTT=RTTminÞ> 1þ l, Anole performs an additive decrease,

otherwise, it performs an additive increase. We use a velocity
parameter v to accelerate Anole’s rate adjustment. v is initialized
as 1. If Anole performs consecutive increase/decrease opera-
tions, v increases exponentially by a factor of 2. Then Anole
adjust the cwnd by v packets each time. Once the adjustment
direction changes, v is reset to 1.

IV. IMPLEMENTATION

Anole only requires modifications to the sender and does not
need any additional cooperation from the receiver. Anole supports
the use of any rule-based CC, including but not limited to the loss-
based CUBIC [1], delay-based Vegas [2], and learning-based CC,
including but not limited to Indigo [10], Aurora [9], and Sage
[18]. In our experiments, we choose CUBIC as the rule-based CC
since CUBIC is the default CC in the current Linux system. Sage
is chosen as the learning-based CC because 1) Sage is the current
state-of-the-art DRL model. 2) the deployment of Sage does not
require modifications to the kernel. At the same time, we also
demonstrate that even the most advanced learning model shows
performance degradation in certain network environments.

We use Pantheon [21], an independent platform that serves as
a training ground for research on congestion control, to evaluate
the performance of Anole. The RL-based CC in Anole is imple-
mented in userspace and the rule-based CC is implemented in
Linux kernel. We modify the Linux kernel to enable flows to
send data at a fixed rate over a while. To evaluate Orca [3], Sage
[18], we deploy the Kernel of Sage (compatible with Orca) on a
server and integrate them into Pantheon. We reproduced Libra
[4] based on the ns3 simulation code provided by the authors
and similarly deployed it in the kernel. Due to the fact that Spine
[17] has not open-sourced the code or the dataset, we face chal-
lenges in reproducing Spine’s learning models.

Our experiments are conducted on servers with Intel (R) Xeon
(R) CPU and RTX 3090 GPU. Due to the deployment of differ-
ent kernels (version 4.19 for Sage and version 5.15 for Anole),
Anole and Sage are evaluated on different servers. The server
has 48 CPU cores and a total memory of 252 GB. We evaluate
Anole through simulations with Pantheon [21]. During our
experiments, we set the parameters of Anole as follows: t ¼ 0:9,
a¼ 1, b¼ 900, and c¼ 11. The thresholds of confidence score,
gon and goff , were set to 0.6 and 0.8, respectively. T in the prob-
ing stage is set to 0.85. The probing stage lasted for 3 RTTs.

We referenced the parameter settings in several previous
works that utilized utility functions [4], [22], [23] and tested
multiple values around them. After setting a to 0.9, we conduct
experiments to observe the performance of Anole with b rang-
ing from 600 to 1200. From 600 to 900, we see periodic delay
inflation with a peak of ten times the base RTT. The delay infla-
tion will subsequently decrease with the penalties of the absolute
RTT, while the delay fluctuation cannot be eliminated. From
900 to 1200, the delay gradient is excessively punished, leading
to throughput loss. Therefore, we suggest a b around 900. When
c is set to 11, a single flow can achieve a 95% link utilization.
Theoretically, a larger c allows for a faster response to the exces-
sive delay caused by a higher rate. However, as c increases, the
flow’s resistance to burst traffic decreases, which can also lead to

Algorithm 2: State Transition
state: if stage ¼ deprecate, Anole enters the acceleration
stage; if stage ¼ activate, Anole enters the evaluation and
probing stages.
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throughput losses. goff reflects the tolerance for a consistently
poorly performed algorithm. The higher the value of goff , the
more easily an algorithm can be disabled. The distance between
gon and goff determines the minimum time an algorithm can be
disabled: ðgon − goffÞ=0:1*RTT. T represents the acceptable dis-
tance between the utility value of the current rate and Umax.
Unlike goff , T indicates the tolerance of a single poor perfor-
mance. A larger T suggests a higher probability of inferring the
optimal rate, ensuring small fluctuations in the algorithm’s perfor-
mance. A smaller T indicates fewer inference executions, which
can reduce the computation overhead.

V. EVALUATION

In this section, we compare the performance of Anole with
the Linux implementation of several CCs: CUBIC [1], BBR [5],
Vegas [5], and user-space implementation of several CCs: Sage
[18], Orca [3], Fillp [30], Copa [29], PCC [22], Vivace [23],
Aurora [9], Indigo [10], Libra [4], Remy [11]. Each algorithm
was tested with its default parameter configuration. Each experi-
mental result represents the average of more than 10 runs, with
each run lasting for 30 seconds.

A. High Performance in Simulated Networks

To evaluate Anole’s throughput and delay performance, we
repeat the network scenarios in Section II-A and run all the com-
pared CCs 10 times. The link capacity in all scenarios is set to
48Mbps and the buffer size is set to 2� BDP. Fig. 5 shows the
performance of all the compared CCs.

In Fig. 5(a), all CCs run on the link with a 25ms one-way-
delay. Under this scenario, Sage simultaneously achieves the
goal of high throughput (about 47Mbps) and low latency
(approximately 40ms). CUBIC also attains high throughput.
However, its latency surpassed 120ms due to the buffer-filling
characteristic. In this context, Anole primarily preferred the rate
inferred by Sage. Given the strict limitation on the gradient and
absolute value of RTT, Anole will infer an optimal rate if both
CUBIC and Sage perform poorly in terms of delay, which brings
a slightly lower latency and throughput than Sage. As described
in Section II-B, learning-based CCs (including Aurora, Remy,

PCC, Vivace, and Copa) tend to penalize the RTT growth and
lead to link under-utilization excessively.

Random packet loss is introduced into the network scenario
in Fig. 5(b). CUBIC and Vegas are severely affected, with only
a 0.1% loss rate, causing their link utilization to be under 20%.
CUBIC and Vegas’ latency instability is attributed to the time
required to digest the queue buildup during the slow start. The
throughput of Orca, Remy, Aurora, and Copa only shows a
slight decrease, but their latency shows a certain fluctuation. In
this scenario, though Sage maintains an overall good perfor-
mance, its prediction results show unavoidable fluctuations
(usually lower than the available bandwidth). In Fig. 5(a), Anole
primarily chooses the rate of Sage but also counteracts Sage’s
oscillations with the inferred optimal rate. Therefore, Anole
presents high throughput with a small variance.

As shown in Fig. 5(c), when the one-way delay rises to 50ms,
the delay-based CCs experience varying degrees of oscillation.
Sage’s rate prediction bias in long links (as shown in Section II-A)
leads to a drastic increase in the latency. In this context, both
CUBIC and Sage’s performance are unsatisfactory. Therefore,
aside from the probing stage, Anole primarily utilized the inferred
optimal rate, ensuring low latency even when Sage and Orca do
not perform well.

Table I presents the throughput and latency for different
numbers of Anole flows over a 96Mbps link, with a base RTT
of 50ms and a buffer of 2BDP. We also include BBR’s per-
formance for comparison because we observe that BBR’s
latency rises significantly as the flow number increases. As
the number of flows increases from 1 to 10, both Anole and
BBR show an approximate 3% increase in link utilization.
However, Anole’s RTT increased by only 30 ms, whereas
BBR’s escalated by 70 ms. This difference is attributed to
BBR’s reliance on the measured maximum sending rate. In

Fig. 5. Throughput and 95th delay for all the compared CCs in normal link (a), loss link (b), and long link (c).

TABLE I
THE THROUGHPUT AND DELAY OF BBR AND ANOLE WITH DIFFERENT FLOW

NUMBERS IN A 96 MBPS LINK

2*Method 1 flow 3 flows 5 flows 10 flows

thpt
(Mbps)

95th delay
(ms)

thpt
(Mbps)

95th delay
(ms)

thpt
(Mbps)

95th delay
(ms)

thpt
(Mbps)

95th delay
(ms)

Anole 64 90.62 78 92.07 86 93.72 93 94.03
BBR 72 91.33 108 93.88 129 94.63 142 94.77
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contrast, Anole consistently adjusts towards the optimal rate
defined by its utility function.

B. High Performance in Real-World Links

To evaluate the performance of various algorithms in com-
plex real-world scenarios, we established two distinct links: 1)
A link between Shenzhen and Mumbai, characterized by a base-
line RTT of approximately 90 ms, as determined by multiple
RTT measurements. The link capacity is constrained to 48
Mbps, and we introduced a random packet loss rate of 0.1%
using tc. This link can be classified as a long-distance link with
inherent packet loss. 2) A WiFi link, where we equipped the
servers with wireless NICs to assess the performance of conges-
tion control algorithms under wireless conditions. The latency in
the wireless network exhibits continuous fluctuations, with
measurements indicating a baseline RTT of less than 40 ms. 3)
An ultra-low bandwidth link between Shenzhen and Mumbai.
The link capacity is constrained to 4Mbps, and the baseline RTT
is around 90ms (45ms one-way delay).

Fig. 6 presents the experimental results obtained from real-
world links. In Fig. 6(a), the presence of packet loss leads to per-
sistently low throughput for CUBIC and Vegas, which also
impacts the throughput of Orca and Libra. Although Anole is
also affected by CUBIC, its lower evaluation frequency allows
it to maintain relatively high throughput levels. Compared to the
simulated links, both Sage and Orca exhibit increased perfor-
mance fluctuations in the real link. PCC, Vivace, and Copa all
demonstrate low link utilization in such a long link. Aurora and
Remy display consistent performance with their behavior in
simulated scenarios: Aurora consistently achieves higher laten-
cies, while Remy maintains low link utilization. Fig. 6(b) shows
the performance of CCs under an ultra-low latency link. In
this link, all CCs achieve a high bandwidth utilization (more
than 80%). Consuming queued packets takes longer on low-
bandwidth links. Therefore, the measurement error of the link
bandwidth by BBR has a more significant impact on latency.
Meanwhile, the impact of running CUBIC on Orca’s latency is
also more pronounced. Anole ensures stable high bandwidth
and low latency in low bandwidth scenarios.

Fig. 6(c) shows the performance of CCs in a real WiFi net-
work. All learning-based algorithms experience varying degrees
of throughput degradation due to their difficulty in adapting to

fluctuating network capacity. Conversely, classic CCs exhibit
performance advantages in throughput. Due to the high RTT
variability in the WiFi network, Copa demonstrates the lowest
throughput. Notably, Anole frequently enters the acceleration
stage because the learning-based CC usually makes bad deci-
sions, thereby enhancing its stability.

C. Resistance to Random Loss Rates

In this section, we demonstrate that despite using CUBIC as the
rule-based CC, Anole can effectively withstand random packet
loss. The loss rate varies from 0.1%-5%. In Fig. 7, BBR, Fillp,
and Indigo exhibit relatively stable performance in the face of
packet loss, where BBR and Fillp achieve the highest throughput,
maintaining over 90% link utilization even at a 5% loss rate.
CUBIC and Vegas already exhibit link utilization below 20% at a
loss rate of 0.1%, and this throughput loss further exacerbates as
the loss rate increases. Sage and Orca experience a drastic
decrease in throughput after the packet loss rate reaches 0.5%.

When the loss rate is below 0.5%, Sage experiences only lim-
ited affection while CUBIC remains mostly deprecated due to
its low throughput. Therefore, Anole’s throughput only experi-
ences a slight decrease. However, due to the presence of
CUBIC, Anole’s throughput inevitably falls slightly below that
of BBR. When the loss rate exceeds 0.5%, both Sage and CUBIC
exhibit low link utilization, indicating that Anole requires a longer
time to explore rates with higher utilization. Although we observe
a more pronounced throughput decrease in Anole, Anole still

Fig. 6. Throughput and 95th delay for all the compared CCs in real-word links.

Fig. 7. The throughput of CCs under different random loss rates. The link
bandwidth is 48Mbps and the loss rate ranges from 0.1% to 5%.
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surpasses other CCs. These findings demonstrate the robustness
od Anole when facing random packet loss.

D. Impact of Buffer Sizes

In this section, we evaluate the impact of buffer size on differ-
ent CCs. As buffer size has a more pronounced effect on both
throughput and delay, in Fig. 8, the x− axis is 95th delay and
the y− axis is throughput. The buffer sizes are in [0.04, 0.08,
0.16, 0.32, 0.5, 1, 1.5, 2, 2.5] x BDP. The performance of CCs at
the buffer size of 0.04xBDP is marked with a larger point and
the rest of the data is read in the order of zigzag lines.

The experiment results show that the performance of PCC-
Vivace, PCC-Allegro, and Indigo is almost unaffected by buffer
size. The delay of Aurora, BBR, and Vegas significantly increases
with the growth of buffer size. At a buffer size of 2.5xBDP,
CUBIC’s delay is three times higher than that at 0.5xBDP. In the
same scenario, Orca and Anole experience a delay increase of
approximately two times. Sage and Anole also experience a slight
increase in delay, but when the buffer size rises to 2.5xBDP,
Anole achieves an approximately 34% lower delay than Sage
(38ms and 60ms, respectively). A low buffer size makes it difficult
for some CCs to fully utilize the link. Despite Fillp using BBR as
its congestion control algorithm, buffer size has a much greater
impact on its performance than on BBR, due to Fillp’s implemen-
tation of ACK compression. Copa requires a certain in-network
queue to estimate the optimal rate, which makes it more sensitive
to the buffer size. Besides, due to the limitation of inflights,
CUBIC and Vegas are also highly sensitive to buffer size.

E. Convergence and Fairness

To demonstrate the performance of CCs in terms of fairness
and convergence, we start four flows at 4s intervals on a
48Mbps link and observe how their throughput changes. Flows
are considered converged when the sending rate of a flow fluctu-
ates around the fair bandwidth share.

The experiment results are shown in Fig. 9. Except for Anole,
Fig. 9(b) to 9(d) show the performance of online-learning CC. PCC
only penalizes loss and adopts a MIMDmethod, which results in a
non-convergent state. Based on PCC, Vivace optimizes the utility
function to a convex function, improving PCC’s convergence.

Although Vivace requires quite a long time to converge (after 25s),
the sending rates of all four flows are approaching the fair point.
Copa determines a common target rate for all flows based on the
queuing delay, reaching a fast and stable convergence.

Fig. 9(e) to 9(h) show the performance of DRL-based CC.
DRL-based CCs cannot observe the state of the background flows
during the training process and infer rates in a black-box mode,
making fairness a strong weakness of them. Among DRL-based
CCs, Orca shows a relatively good convergence since Orca runs
CUBIC based on the rate inferred by the model. Aurora slowly
moves towards the fair point and shows convergence after 28s.
Indigo has been in a state of continuous and significant oscillation
and has not converged (flow 4 has a divergent trend). Sage flows’
sending rates change smoothly, but the rates of each flow con-
verge erroneously far from the fair bandwidth share.

Fig. 9(i) to 9(l) are the rule-based CCs. CUBIC, Vegas, and
BBR’s sending rates slowly approach the convergence direction.
However, their flows do not converge until 30s under the current
network scenario. The convergence of these rule-based CCs is
largely affected by the network environment, e.g., the buffer size
and the base-RTT of the link. Due to the adjustment of the ACK
frequency, flows of Fillp are completely non-convergent. Anole
also faces the problems of slow convergence of CUBIC and erro-
neous convergence points of Sage. However, whenever a new
flow is added, the real-time sending rates of CUBIC and Sage
will exceed the link capacity, and the decision on the sending rate
will be made by inferring the optimal rate. In the process of infer-
ring the optimal rate, Anole will estimate the current bandwidth
share of other flow and reduce its own rate proportionally. After
several iterations, Anole can achieve the convergence of multiple
flows within 2s. In the subsequent operation process, since the
rates of CUBIC and Sage still need to be evaluated, the through-
put will still fluctuate. However, CUBIC does not disrupt the
established convergence and Sage makes predictions based on the
current rate, therefore, there will not be large fluctuations.

F. Coping With Bandwidth Changes

In this section, we conduct an experiment to evaluate the abil-
ity of CCs to quickly grab the spare bandwidth. The appearance
of available bandwidth may come from modifications made by
the network operators or the departure of the competing flows.
We simulate this by changing the link capacity. The flow starts
in a 48Mbps link, and the link capacity changes to 96Mbps at
15s. Fig. 10 shows the sending rate curves of the tested CCs.
Due to the significant overlap in the rate curves of each CC, we
divide the experimental results into Fig. 10(a) and Fig. 10(b).

In the face of spare bandwidth, PCC, Indigo, and Vegas show
poor bandwidth adaption abilities. The rate of PCC and Indigo
have hardly increased, maintaining a sending rate of 48Mbps
though the link capacity has raised to 96Mbps. Vegas shows an
increasing trend in the sending rate; however, the additive increase
in cwnd severely limits its ability to preempt bandwidth. Vivace,
Sage, Fillp, Remy, Libra, and Aurora quickly detect the appear-
ance of available bandwidth, but it takes them a long time to
occupy it. Fillp, Libra, and Aurora take about 2 seconds to occupy
the available bandwidth, and the rate then fluctuates significantly.

Fig. 8. The throughput and 95th delay of CCs under different buffer sizes.
Each line in the figure starts with a larger marker indicating the start point and the
buffer size of other points increases in a zigzag order. The buffer sizes are [0.04,
0.08, 0.16, 0.32, 0.5, 1, 1.5, 2, 2.5]� BDP.
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Remy fails to fully utilize the available bandwidth until the flow
ends. Vivace and Sage take 3s and 5s, respectively, to fully occupy
the bandwidth. Anole, Orca, Copa, CUBIC, and BBR quickly
detected the increase in available bandwidth and increased their
sending rates to the link capacity within 0.5 seconds. However,
during subsequent sending, Copa, BBR, and CUBIC all experi-
enced varying degrees of rate oscillation. Anole and Orca outper-
form other CCs in this experiment, as they can maintain the best
sending rate after quickly occupying the available bandwidth.

G. Time Allocation for Applied Rates

Fig. 11 shows the time fraction applied for the rule-based
(CL), learning-based (RL), and Anole-inferred optimal (Opt)

rates in the basic scenario (a 25ms link with no loss, denoted as
Normal), loss scenario (a 25ms link with 0.1% loss, denoted as
Loss) and long-link scenario (a 50ms link with no loss, denoted
as Long). We run a single flow in each scenario for 100 times.
Our statistical method for the time spent on each rate is: for
example, if CUBIC is evaluated to have the maximum utility
value in the normal scenario, CUBIC’s rate will be applied in
the probing stage (or the acceleration stage), then the time of the
probing stage is recorded in Normal-CL. The statistics for RL
and Opt are similar.

In the normal scenario, CUBIC’s cwnd periodically exceeds
the link’s BDP, but under the buffer limitation, this cwnd over-
flow will not last for a long time. Meanwhile, Sage shows stable
good performance. These indicate that there are limited situa-
tions where Anole needs to infer the optimal rate. Our log shows
that the optimal rate inference only occurs when CUBIC’s cwnd
exceeds the BDP and Sage’s prediction shows jitter. Fig. 11
shows the fraction of time applied for Normal-CL and Normal-
RL is about 36% and 62% while the fraction of optimal rate is
only about 2%.

In the loss scenario, CUBIC’s rate is hardly applied in the
probing and acceleration stage, which only runs for half an RTT

Fig. 10. The change of CCs’ sending rates when link capacity changes. We
divide the fourteen CCs into two graphs to display the curves more clearly. The
experiment result shows that Anole can quickly grab the idle bandwidth.

Fig. 11. The time fraction of rule-based, learning-based, and the referred opti-
mal rate in a 30s flow. The flow in each network environment runs 100 times.

Fig. 9. Variation of the throughput as four flows gradually join the network at an interval of 4s. Anole significantly ameliorated the issue of suboptimal convergence
in learning-based algorithms. The link capacity is 48Mbps.
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in the evaluation stage in each round. Besides, CUBIC is often
deprecated because of its bad performance, which further reduces
the applied time to about 7%. For Sage, a 0.1% loss rate does not
significantly impact its performance and only causes a few minor
jitters in its prediction (usually resulting in lower predicted rates).
Therefore, Anole applies Sage’s rate in the majority of cases,
approximately with a fraction of 80%, only inferring the optimal
rate when Sage experiences prediction jitter.

In the long-link scenario, the fraction of applying the optimal
rate increases to nearly 40%. This result is due to two aspects: 1)
the slower rate adjustment of CUBIC. 2) the increased propor-
tion of deviated rate prediction in Sage. CUBIC takes a longer
time to recover from a cwnd reduction caused by packet loss,
but the slower cwnd growth also means that CUBIC’s rate curve
is smoother and more stable. Therefore, overall, the proportion
of time applying CUBIC’s rate has increased, reaching about
35%. The severe oscillation in Sage’s prediction reduces the
probability that we can obtain an expected rate in the evaluation
stage, leading to the applied fraction decrease to about 23%.

H. Overhead Analysis

Considering that the number of packets will affect the compu-
tational overhead in each CC, we record the overhead of each CC
at links with different capacities: 48Mbps, 96Mbps, 144Mbps,
and 192Mbps. We divide the overhead into three parts: computa-
tion overhead, RL-model overhead, and overhead caused by other
operations. The computation overhead includes the overhead
caused by data collection (e.g., counting the delay or loss infor-
mation for RL-model prediction) and computation (e.g., target
rate calculation and rate evaluation) in the user mode. The
RL-model overhead refers to the overhead caused by invoking
the RL-model and executing the prediction. The overhead caused
by other operations includes the CC state maintenance, ACK gen-
eration and transmission, and the overhead caused by the interac-
tion between user space and kernel space. Since the overhead of
specific operations in the kernel-integrated CCs can not be
counted separately, all the overheads of CUBUC, BBR, and
Vegas are recorded as overhead caused by other operations.

Fig. 12 shows that as the link capacity increases, the overhead
of all CCs shows a slight increase trend. The kernel-integrated
CCs undoubtedly obtain the lowest CPU overhead. They always
keep the CPU utilization below 20%, even in the 192Mbps link.
For learning-based CCs, Orca shows the lowest CPU utilization,

while Sage, Libra, Aurora, and Indigo have both high computa-
tional and RL-model prediction overhead. Copa, Fillp, PCC,
Remy, and Vivace avoid the RL model inference overhead, but
they all involve a large amount of computational overhead.
Anole deploys Sage’s RL model and needs to calculate the util-
ity values in every control cycle while its overhead is still lower
than most algorithms.

Analysis for overhead performance: 1) Computationally
intensive CCs: According to the paper, Copa [29] updates the
queueing delay and target sending rate at each ACK arrival (at
every half RTT in the kernel implementation), involving a large
amount of computational overhead. PCC [22] and Vivace [23]
calculate the utility function in each RTT, and their utility-based
rate adjustment strategy brings additional computing overhead.
2) Learning-based CCs: Compared with other learning-based
CCs, Orca deploys a smaller RL model with about 140k param-
eters. Based on Sage’s source code, we found that its model
parameter count is approximately 4.5 million, which is several
hundred times that of Orca. The prediction intervals for these
models are established as a configurable parameter, with a rec-
ommended value of 20 ms. This configuration suggests that
multiple inferences are frequently performed within a single
RTT. For online learning algorithms [9], [10], the necessity to
continuously receive information transmitted by each acknowl-
edgment (ACK) and to persistently update model parameters
incurs considerable computational overhead, even for models of
relatively small size. 3) Anole: When rate inference is not exe-
cuted, U is one of the Ucl and Url from the previous control
cycle, eliminating the need for redundant calculations. Assum-
ing the probing stage lasts for 3 RTTs, Anole only needs to com-
pute Ucl and Url once within 5 RTTs. This approach saves 60%
of computational resources compared to algorithms that require
the utility value to be calculated every RTT. Additionally, Anole
only needs to run the RL model once in the final RTT of each
control cycle, resulting in at least an 80% reduction in overhead
compared to other RL algorithms. Note that in Aonle, the over-
head of the RL model is proportional to the number of flows.
However, in the same link, the computational overhead increases
only marginally with the number of flows. This is primarily
because the computational load in Anole mainly arises from proc-
essing ACKs. Under constant link capacity, the number of ACKs
does not exhibit significant variation.

VI. RELATED WORK

Rule-based CCs: Rule-based CCs can be divided into loss-
oriented and delay-oriented CCs. NewReno [28] and CUBIC [1],
as the representatives of loss-oriented CCs, update their conges-
tion windows in an Additive Increase Multiplicative Decrease
(AIMD) manner. NewReno’s addictive operation increases the
cwnd with a single packet per RTT and halves the cwnd upon
packet drop occurs, while CUBIC figures out the addictive step
size according to a cubic function. Vegas [2], FastTCP [31],
Westwood [32], and Copa [29] are delay-oriented CCs. The for-
mer three update their cwnd based on RTT measurements, which
reduce the transmission rate when RTT growth is detected. Copa
[29] proposes a target rate model and adjusts the cwnd in the

Fig. 12. The overhead of each CC under links with different capacities and the
proportion contributed by each type of overhead.
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direction of the obtained target rate. Note that Copa proposes a
competitive mode to guarantee its competitiveness.
Learning-based CCs: Remy [11], Indigo [21], and Aurora [9]
are the representatives of offline learning CCs. Based on a pre-
specified objective for congestion control, Remy performs a
table lookup to find the corresponding action. In its offline opti-
mization phase, Remy pre-computes the lookup table by finding
the mapping that maximizes the expected value of the objective
function. Indigo observes the network states and adjusts the con-
gestion window. Indigo uses a Long Short-Term Memory
(LSTM) [33] recurrent neural network (RNN) to store the map-
ping from states to actions. Different from Indigo, Aurora is a
rate-based CC based on DRL. Aurora employs a simple linear
objective function and trains a DRL agent using Proximal Policy
Optimization (PPO)[34]. PCC [22] and Vivace [23] are note-
worthy online learning methods. They both learn in an online
fashion using multiple micro-experiments, where the perfor-
mance of each experiment is characterized by a utility function.
The utility function of PCC comprises the throughput and loss
rate, while Vivace further incorporates RTT gradient.
Hybrid CCs: In general, hybrid algorithms [3], [4], [16], [17],
[18], [25] can be divided into two cases: (i) Switching between
alternate rates: These algorithms [3], [4], [17], [25] run both the
traditional and learning-based CCs separately and select one of
the two rates based on the utility function (or at regular inter-
vals). The first work on hybrid CC was proposed by Orca [3],
which sets the sending rate to the learning-based CC after each
monitoring period and lets the rule-based CC operate based on
this rate. Subsequently, Libra [4] and MPLibra [25] further eval-
uate each rate using a utility function to determine the rate that
performs better in the current environment. Spine [17] aims to
reduce the overhead of learning-based CC by evaluating
whether to invoke the machine learning CC at each monitoring
period. (ii) Deep integration by feature fusion: To mitigate the
uncertainty and lack of interpretability of learning-based CCs,
such algorithms [16], [18] transform the rule-based CCs into
equivalent black-box neural network (NN) models. Sage [18]
collects the states and actions of multiple rule-based CC in dif-
ferent network scenarios and then uses them to train an offline
DRL model. Loki [16] converts white-box rule-based CCs into
black-box NNs to achieve feature-level fusion between the two
types of CCs instead of decision-level fusion. These approaches
demonstrate the diversity and creativity in hybrid CC but are
largely limited by the performance of learning models.
DRL-model of Sage: Sage has collected a policy pool consist-
ing of over 60 million data points across more than 1000 differ-
ent environments by simulating 13 CC algorithms that have
been implemented in the Linux kernel. Each data point is orga-
nized in the format of (state, action, reward), where the state is
represented by a 69-dimensional input signal vector. This vector
encapsulates the mean, maximum, and minimum values for
three categories: delay-oriented, throughput-oriented, and loss-
oriented input signals. The action is represented by the ratio of
the congestion window (cwnd) at the current time step to the
cwnd at the previous time step, emphasizing that Sage is more
inclined to learn behaviors rather than merely recording specific
values under varying settings. The reward is comprised of two

components: one that focuses on optimizing the transmission
quality for individual flows and another that rewards the degree
of shared bandwidth to ensure fairness. After constructing the
policy pool, Sage trains a deep neural network agent with two
neural networks built on top of Encoders, GRUs(Gated Recur-
rent Units) and Residual blocks, and it outputs stochastic actions
with a Gaussian mixture model (GMM). The training is finished
using Critic-Regularized Regression (CRR) [26] on a general
large-scale GPU cluster.
Broader Perspectives: Regarding network scenarios, the con-
struction of satellite networks and low-altitude networks has
dramatically enhanced the heterogeneity of the network. Due to
the movement of satellites and drones, these networks exhibit
highly dynamic characteristics. This requires CCs to be able to
adapt to frequent link changes and achieve real-time link self-
adaptation. Besides, the higher costs of satellite and low-altitude
networks put forward a greater demand for fully utilizing the
network. Regarding network technology, the promoting of the
QUIC protocol provides possibilities for the research of cross-
layer transmission algorithms. Applications can offer richer
multi-dimensional features for optimizing the CCs in the trans-
port layer. With these features, the transport layer can con-
versely meet the differentiated requirements of the application
layer. We hope that researchers will invest more and progress in
these future directions.

VII. CONCLUSION

In this paper, we present Anole, a three-stage hybrid CC frame-
work to provide high throughput and low latency. Based on a
refined utility function, Anole periodically determines the best
rate from rule-based, learning-based, and previous decisions
while deducing the optimal rate for the current scenario to achieve
better performance. To address throughput degradation and high
overhead, we will temporarily deprecate underperforming algo-
rithms under the update of confidence score. Extension experi-
ments on Pantheon have shown that Anole can achieve stable
high performance and better convergence with lower overhead
simultaneously compared with the state-of-the-art algorithms. We
believe Anole hints at a new direction that infers a new sending
rate based on the known rates and their performance.
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