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Distributed Multi-Task In-Network Classification on
Programmable Switches by Ensemble Models
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Abstract—Offloading machine learning models for network
classification on high-throughput programmable switches is a
promising technology, enabling line-speed in-network classifica-
tion. Existing solutions are centralized, deploying a complete but
heavy model on a single switch with limited hardware resources,
causing unsatisfactory accuracy, network-wide resource wastage,
and non-generic single-task classification. Therefore, we propose
In-Forest-M, a general distributed multi-task in-network classi-
fication framework. Firstly, we develop a Lightweight Ensemble
Generic Optional Model (LEGO), which can be transformed into
base models with full functionality. Each switch only needs to
deploy lightweight base models rather than complete ensemble
models. The significant reduction in resource consumption allows
the deployment of larger models with higher accuracy and more
models that support diverse tasks. We employ a fine-grained
enhancement mechanism to enhance the classification perfor-
mance of base models. As traffic traverses different switches,
In-Forest-M aggregates the classification results of multiple
enhanced base models to improve accuracy further. Secondly, we
introduce a two-phase resource-aware model allocation strategy
that assigns different task-specific enhanced base models to
switches under resource constraints and task requirements. To
respond to dynamic traffic changes, we design an optimization-
driven reinforcement learning algorithm. Moreover, we propose
a lightweight update mechanism for flexible model scaling.
Comprehensive experiments reveal that, compared with state-of-
the-art in-network classification solutions in three real network
topologies, In-Forest-M achieves increased accuracy and reduced
switch rules while exhibiting great generality in multi-task
classification.

Index Terms—Distributed deployment, in-network classifica-
tion, programmable switch, deep reinforcement learning.
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I. INTRODUCTION

NETWORK classification based on Machine Learning
(ML) gains increasing popularity for widely supporting

various tasks, e.g., traffic type classification [1], [2], [3], [4],
flow size prediction [5], [6], [7], [8], and anomaly attack
detection [9], [10], [11], [12]. These classification results can
be further exploited to boost network Quality of Service (QoS)
[13], balance network load [14], or assure network security
[15].

Conventional network-assisted classification solutions are
implemented on the off-path servers, redirecting the incom-
ing traffic to remote GPU servers and employing complex
ML models (e.g., LSTM [7], Bert [16], and AutoEncoder
[4]) for improved classification performance. However, they
face two challenges: i) High latency. Transmitting traffic
to remote servers introduces additional round-trip latency,
which becomes problematic in latency-sensitive scenarios like
anomaly attack detection [12], [17]. ii) Low throughput. GPU
servers are more expensive but have limited packet process-
ing capacity compared with specialized network forwarding
devices (e.g., switches), particularly when handling high-speed
traffic of 100Gbps or even Tbps [18], [19].

Recently, network devices (e.g., Intel Tofino switches [20])
have evolved to not only support nanosecond-level latency
with Tbps-level throughput but also be programmable [13].
Several solutions offload ML models on Programmable Data
Plane (PDP) [21], [22], [23], [24], [25], [26], [27], [28] to
enable intelligent network classification at line-speed, i.e., in-
network classification. They translate models into interpretable
rules installed on programmable switches, facilitating on-path
traffic analysis.

As rule-based classifiers, tree-based models [29], [30], [31],
[32], [33], [34] fit naturally with the match-action architec-
ture of PDP and eliminate the need for hard-to-implement
operations like nonlinear activation functions [35]. Existing
solutions mainly use three representation methods to deploy
tree-based models, i.e., direct mapping, feature encoding, and
model quantization. pForest [21] and SwitchTree [17] directly
map every layer of the Decision Tree (DT) into a stage of
the programmable switch. However, the limited stage number
(e.g., 12 for Tofino 1 [20]) constrains the model depth,
resulting in restricted classification accuracy. IIsy [22], Planter
[24], and Netbeacon [36] utilize feature tables to encode fea-
tures and another model table for decision-making. Although
multiple tables can be stored in a stage, the feature number
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must be constrained due to the memory limitation, hindering
the scalability [37]. Mousika [26] and Mousikav2 [27] design
a quantized DT for PDP, namely Binary Decision Tree (BDT).
Despite utilizing the distillation method to transfer knowledge
from complex teacher models to BDT, they encounter the
challenge that the number of switch rules rises dramatically
as the model size increases, leading to memory overflow [27],
[36].

Crucially, all these solutions are centralized, deploying
a complete but heavy model on a single switch, which
causes three problems: i) Low accuracy. Due to the limited
hardware resources of one single switch, it is difficult to
deploy large-scale models with high accuracy [37]. ii) Redun-
dant deployment. For network-wide deployment, the identical
model is redundantly deployed on different switches to cover
all the traffic. This wastes plenty of resources to repeatedly
process traffic that has been processed by upstream switches
without any extra benefit [38]. iii) Non-generic classification.
Existing solutions solely consider single-task classification,
which limits their generality in real network scenarios. For
instance, to enable differentiated routing for boosted network
QoS, it is essential to support tasks of traffic type classification
and flow size prediction simultaneously [39].

To address the above limitations, we believe that distributing
the complete model across different switches and processing
traffic by multiple sub-models cooperatively is a more efficient
way (discussed in § III-A). There are two potential methods: i)
Layer splitting. The model can be split into layers, with each
switch deploying one or more layers. ii) Rule splitting. The
model can be split after being translated into switch rules, with
subsets of rules assigned to different switches. However, they
both require rescheduling the traffic to pass through all the
sub-models for full-function analysis, introducing additional
complexity in network routing and management.

In this paper, our goal is to achieve high-accuracy multi-task
classification on PDP without single-point resource limita-
tion, network-wide resource wastage, and traffic rescheduling.
Therefore, we propose In-Forest-M, a general distributed
multi-task in-network classification framework. Building upon
our previous work,1 In-Forest-M takes a further step towards
enhancing classification performance while improving dis-
tributed deployment scalability and multi-task generality.

Firstly, we design an ensemble model that can be trans-
formed into base models deployed on different switches,
with each model providing full classification functionality.
Distributed deployment eliminates the necessity of deploying
a complete ensemble model on a switch with limited hardware
resources, reducing the resource burden on every single switch
and network-wide resource consumption. This allows for the
deployment of larger models with higher accuracy and more
models that support diverse tasks. In addition, it also avoids
single-point failures that may cause the entire system to crash,
reflecting robustness. We further employ a new fine-grained
enhancement mechanism to improve the classification perfor-
mance of base models. Secondly, through our designed model
allocation strategy, we assign different task-specific enhanced

1Our previous work, In-Forest, published in proc. of IEEE ICNP 2023 [38].

Fig. 1. The design of Protocol-Independent Switch Architecture (PISA).

base models to switches for multi-task classification. As traffic
traverses a sequence of switches with multiple enhanced base
models, In-Forest-M uses ensemble learning to aggregate clas-
sification results, gaining more comprehensive knowledge to
correct the errors of individual models for improved accuracy.
Moreover, we propose a lightweight update mechanism for
flexible model scaling. As a whole, In-Forest-M benefits from
the following key designs:
• We design an ensemble model for PDP, i.e., Lightweight

Ensemble Generic Optional Model (LEGO), which con-
sists of many simple but cooperative base models. The
classification performance of base models is enhanced
by a new fine-grained enhancement mechanism.

• We propose a two-phase resource-aware model alloca-
tion strategy that assigns different task-specific enhanced
base models to switches, enabling multi-task classifica-
tion. The offline topology-aware allocation maximizes
the model diversity across switches under resource con-
straints and task requirements. In the online phase,
we introduce a novel optimization-driven reinforcement
learning algorithm that responds to dynamic traffic
changes.

• We devise a lightweight update mechanism to ensure flex-
ibility in model deployment. The rules of enhanced base
models are assigned corresponding priorities, enabling
optimal model scaling in/out when available resources
change. In addition, each model can be updated with
another one by simply modifying rules as traffic changes
without restarting the switch.

II. BACKGROUND

A. Programmable Data Plane

Recently, the rise of Programmable Data Plane (PDP)
has further enhanced network programmability [40]. With
PDP, network managers implement personalized data plane
algorithms on programmable network devices through domain-
specific languages (e.g., P4 [41]), supporting a wide range of
high-speed network applications [28], [36]. PDP is centered on
the abstract forwarding model, namely Protocol-Independent
Switch Architecture (PISA) [42]. In PISA (Fig. 1), the pro-
grammable parser maps an incoming packet into a Packet
Header Vector (PHV), which typically contains fields from
packet headers (e.g., IP, VLAN, and TCP/UDP) and intrinsic
metadata (e.g., ingress/egress ports) [13]. Then, the PHV
traverses a series of pipeline stages that store match-action
tables, performing lookups to match rules containing spe-
cific actions, such as forwarding, copying, dropping, and
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modifying packets. Finally, the PHV reaches the pro-
grammable deparser and is reconstructed along with the
payload to form a complete packet. PDP makes in-network
classification for line-speed traffic analysis a reality [15].
Despite its flexibility in programming, PDP has operational
limitations. It only supports basic operations like shift, addi-
tion, and boolean, while lacking support for multiplication,
looping, or floating operations [35]. Additionally, hardware
resources (e.g., stage number and memory) are tight on each
switch [37]. For instance, the Static Random Access Memory
(SRAM) is only about 100MB on Tofino 1, while the Ternary
Content Addressable Memory (TCAM) is less [36]. These
limitations pose challenges in deploying large-scale models
to enable in-network classification with high accuracy.

B. Ensemble Model

Ensemble models are ML algorithms that improve clas-
sification accuracy by combining multiple sub-models with
relatively weak performance. They encompass a range of
methods, e.g., bagging and boosting. Bagging methods, such
as Random Forest (RF) [30], train sub-models in parallel on
different subsets of the dataset. Sub-models possess diverse
classification knowledge. The final decision of the ensemble
model is determined by aggregating their results through
majority voting. This process can correct the errors of sub-
models, leading to improved accuracy. All sub-models are
trained independently, without dependencies on each other.
Boosting methods, such as Adaboost (ADB) [32] and Gra-
dient Boosting Decision Tree (GBDT) [33], differ from
bagging methods in that sub-models are trained in serial. Each
sub-model focuses on correcting the misclassified samples
of the preceding model, gradually improving classification
performance. Thus, the construction of subsequent models
depends on previous models. Ensemble models show superior
performance in network classification tasks compared with
individual models like DT [43]. However, the large resource
consumption of ensemble models poses a challenge for in-
network deployment. To address this problem, scaling down
the models becomes necessary, albeit at the cost of classifica-
tion performance [28].

C. In-Network Classification

For in-network classification, it is essential to offload ML
models on network devices, e.g., programmable switches [13].
Since tree-based models have an architectural resemblance to
PDP, most related solutions deploy them to enable intelligent
traffic analysis. Table I provides a partial snapshot.

NetWarden [19] and FlowLens [44] collect traffic infor-
mation on the data plane and conduct traffic analysis on
the control plane. Due to the communication latency [45],
traffic cannot be processed at line-speed (not LS). Besides,
other works deploy models on the data plane, which embed
tree-based models into PDP’s match-action tables using three
different representation methods, i.e., direct mapping, fea-
ture encoding, and model quantization. pForest [21] and
SwitchTree [17] utilize the direct mapping method, where
each layer of the DT is deployed in a stage of the switch.

TABLE I
COMPARISON OF IN-NETWORK CLASSIFICATION SOLUTIONS

The model depth is limited by the stage number, making
it challenging to accommodate larger models with higher
accuracy. The method employed by IIsy [22], [23], Planter
[24], [25], and Netbeacon [36] is feature encoding, which
uses feature tables to encode features and another model table
for decision-making. The feature number must be constrained,
otherwise tables will take up excessive memory [46]. Both
methods face a challenge in installing a huge number of
switch rules translated from large-scale models due to limited
hardware resources, resulting in restricted accuracy (not UA).
Mousika [26] and Mousikav2 [27] design a quantized model
for PDP, namely BDT. They apply the distillation method
to transfer knowledge from complex teacher models to BDT
(note that they require more switch rules in some tasks, leading
to memory overflow [27], [36]). However, the same as IIsy
and Planter, they lack support for dynamic traffic changes,
hindering adaptability (not TA). Compared with the few closest
works that are centralized, In-Forest-M takes a step further
by introducing distributed deployment. Extending them for
network-wide deployment leads to huge resource wastage as
the identical model is required to be redundantly deployed
on different switches to cover all the traffic (not NW). Traffic
processed by upstream switches continues to traverse the same
pipeline without any additional benefits [38]. Moreover, real
network scenarios often involve various classification tasks
simultaneously, such as traffic type classification and anomaly
attack detection [46]. However, existing solutions concentrate
on completing a single task and fail to fully utilize the available
resources for multi-task classification (not MT).

III. IN-DEPTH ANALYTICS-DRIVEN MOTIVATION

A. Motivation

1) Ensemble Models Outperform Individual Models But
With Large Resource Consumption: Ensemble models have
advantages in terms of classification performance and robust-
ness. We take anomaly attack detection as an example and
evaluate models using raw pcap files of network traffic [47].
Flow-level features are extracted to form the dataset, which
is divided into 80% for training and 20% for testing. We
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Fig. 2. The comparison of RF and DT in anomaly attack detection. RF-x and
DT-x denote the maximum depth of RF and DT is x. Models are translated
into switch rules by four existing in-network classification solutions.

Fig. 3. The preliminary experiments for network-wide deployment. Enhanced
base models of LEGO are deployed on different switches.

employ an ensemble model (RF) and an individual model
(DT) trained by the widely-used ML framework scikit-learn
[48] to classify benign activity and specific malicious attacks.
Fig. 2a demonstrates that RF outperforms DT in terms of
accuracy. Both RF-10 and DT-10 have a maximum depth of
10, where RF comprises 10 sub-models. For sub-models of
RF, we reduce the maximum depth from 10 to 8, decreasing
their performance intentionally. Despite the reduction, RF-8 is
still superior to DT-10. This case shows us that i) ensemble
models outperform individual models in network classification
tasks, and ii) the performance of sub-models directly affects
the performance of the ensemble model. Fig. 2b presents
the number of required switch rules to deploy RF and DT,
where models are translated by existing in-network classifica-
tion solutions, i.e., SwitchTree [17], Planter [24], Netbeacon
[36], and Mousikav2 [27]. For instance, RF requires 17.66×
more rules than DT, i.e., 5844 (RF-10) vs. 331 (DT-10),
in SwitchTree. The huge resource consumption hinders the
pratical deployment of large-scale ensemble models on a single
switch.

2) Distributed Deployment Reduces Hardware Resource
Consumption and Improves Classification Performance: We
consider the network-wide deployment of DT and RF. Fig. 3a
depicts an example topology with three subnets A∼C and six
switches 1 ∼ 6. Traffic between subnet pairs is routed based
on the Open Shortest Path First (OSPF) protocol [49]. To cover
all the traffic, models need to be deployed on two switches,
such as DT on switches 1 and 5. However, this deployment
results in a slow reaction of traffic transmitted from subnet
B to A (or B to C) [46]. Thus, an additional model needs to
be deployed, such as DT on switch 3. Notably, two identical
models are used to process traffic between subnet pair A-B (as
well as B-C and A-C), wasting resources and not improving
accuracy. Furthermore, as the number of subnets increases, it
will lead to more huge resource wastage (Figure 4).

A more efficient solution is to deploy sub-models on dif-
ferent switches and allow traffic to traverse most of them.

Fig. 4. The number of redundant paths in network topologies with different
scales. RF is chosen as the model deployed by existing in-network classifica-
tion solutions, while In-Forest-M utilizes LEGO for distributed deployment.

By aggregating the classification results of sub-models, we
can combine their strengths to correct the errors of individ-
ual models, thereby improving accuracy without single-point
resource limitation and network-wide resource wastage. We
develop a Lightweight Ensemble Generic Optional Model
(LEGO) consisting of multiple enhanced base models with
full classification functionality. Enhanced base models are
deployed on different switches for distributed deployment. Fig.
3b demonstrates that LEGO outperforms DT, approaching or
even surpassing RF’s performance as the number of enhanced
base models increases. This improvement is attributed to the
fact that the accuracy of RF is restricted by the limited single-
point resources, whereas LEGO leverages the resources of
multiple switches, achieving higher accuracy through aggre-
gation.

Fig. 4 illustrates network-wide resource wastage in real
network topologies. Abilene [50], GEANT [51], and Dialt-
elecomCz [52] are connected to different numbers of subnet
pairs. The number of redundant rules denotes the average
number of identical rules traversed by each flow. RF is cho-
sen as the model deployed by existing centralized solutions,
while In-Forest-M utilizes LEGO for distributed deployment.
Centralized solutions exhibit more redundant paths than In-
Forest-M, leading to significant resource wastage. This issue
becomes more prominent as the network topology scales up.

3) Distributed Deployment Empowers Flexible Adjustment
and Multi-Task Classification: Under varying resource con-
straints and dynamic traffic changes, the allocation schemes of
enhanced base models can be flexibly adjusted. As traffic tra-
verses multiple switches with different enhanced base models,
In-Forest-M uses ensemble learning to aggregate classification
results. Compared with centralized deployment, distributed
deployment eliminates the single-point resource limitation,
enabling the deployment of larger, high-accuracy models. For
example, we can deploy three optimal models on switches
1 ∼ 3 to best serve the traffic between subnet pair A-
B with limited resources. Alternatively, we can also deploy
different models on all switches to guarantee network-wide
traffic coverage and classification accuracy. Additionally, In-
Forest-M consumes significantly fewer resources, allowing the
assignment of task-specific enhanced base models to switches
for multi-task classification, i.e., different models tailored to
different tasks. Multiple task-specific models can be deployed
on a single switch, enabling efficient multi-task handling and
resource optimization.
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Fig. 5. The architecture of In-Forest-M, which consists of three modules.

B. Design Goals

Compared with existing solutions, we propose In-Forest-M,
a distributed multi-task deployment framework that addresses
the challenges of single-point resource limitation and network-
wide resource wastage. Through cooperation, each switch
can achieve high-accuracy classification by deploying only
enhanced base models rather than complete ensemble models.
In-Forest-M supports multi-task classification, which allows a
single switch to handle different tasks simultaneously.

IV. THE DESIGN OF IN-FOREST-M

A. System Overview

In-Forest-M is a general distributed multi-task in-network
classification framework that leverages the available resources
of multiple switches to deploy large-scale ensemble mod-
els. As Fig. 5 shows, on the control plane, we redesign
conventional ensemble models into a Lightweight Ensemble
Generic Optional Model (LEGO) for distributed deployment,
which consists of multiple enhanced base models with full
classification functionality (§ IV-B). To achieve optimal model
allocation under various resource constraints, specific task
requirements, and dynamic traffic changes, we employ a two-
phase resource-aware model allocation strategy (§ IV-C). On
the data plane, we translate enhanced base models into inter-
pretable rules installed on programmable switches to enable
line-speed traffic analysis and introduce a lightweight model
update mechanism to ensure flexibility (§ IV-D).

B. LEGO Design Module

In-Forest-M uses a “splitting-reorganization-enhancement”
mechanism to generate LEGO, as depicted in Algorithm 1.

Path-Based Model Splitting. Given the raw packet set
C = {(c1, y1) , . . .}, with yi indicating the class of packet
ci, we assign a flow ID hi to each packet by hashing its
features, such as the 5-tuple. The initial F packets per flow
are stored in the set F (lines 1∼ 1). We extract crucial flow-
level features for network classification [36] based on the given

Algorithm 1 LEGO Design Logic

feature set U , forming the training set X = {(x1, y1) , . . .},
where xi denotes the flow-level features of hi (line 1). A
backward recursive method [53] is used to prune redundant
features (line 1), which iteratively removes the least impactful
one based on cross-validation scores until the feature number
reaches S. S denotes the number of selected features deter-
mined by feature importance [54], balancing model complexity
and accuracy. The training set X and the selected feature set
U ′ are used to train the tree-based ensemble model G through
bagging or boosting methods (line 1). For classification, the
process starts at the root node (i.e., the first internal node)
and traverses a sequence of internal nodes. Each internal
node contains a classification feature and a threshold. The
sample’s feature is compared with the threshold, determining
its direction towards the left or right branch. This process
continues until reaching a leaf node, which contains the
classification result. Consider a process with the following
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Fig. 6. An example of the LEGO design, where only one enhanced base model
is shown, i.e., K = 1. Leaf nodes in paths output the predicted classification
results (blue for class1 and red for class2), with each path corresponding
to a subset of traffic. The enhancement mechanism inserts valuable paths to
correct misclassifications (e.g., samples 6 and 7).

knowledge: if u1 ≤ 5, u2 > 7, then class ← 2. We can
encode it as a classification path:

if u1 ∈ [a, 5], u2 ∈ (7, b], then class← 2, (1)

where a denotes the minimum value of feature u1 and b
denotes the maximum value of feature u2. The ensemble
model G is split into multiple classification paths and stored
in PathPool, as depicted in Fig. 6 (line 1).

Coarse-Grained Model Reorganization. The classification
paths correspond to distinct traffic subsets. We reorganize the
paths in PathPool into multiple base models B (line 1), each
of which possesses full classification functionality. Then, we
apply the Top-K filtering method to select K base models with
the best classification performance, i.e., B′ (lines 1∼ 1). To
align with network topologies, we define K , min(|B|, H),
where H is the maximum number of switches between subnet
pairs. For Abilene [50], GEANT [51], and DialtelecomCz [52]
topologies, H is 6, 8, and 15, respectively. Take Fig. 6 as an
example, where we consider only one enhanced base model,
i.e., K = 1. The combination of paths 1 ∼ 3 possesses full
functionality to enable the classification task, which forms a
base model (upper right ellipse). Then, it is picked as one of
the Top-K best base models through the filtering method.

Fine-Grained Model Enhancement. Motivated by insights
discussed in § III-A1, we aim to enhance base models for
improved ensemble performance. Initially, we obtain indexes
of the classification paths from B \ B′ (i.e., base models
not chosen by the filtering method), denoted as I0 (line 1).
Subsequently, for each base model B′k ∈ B′, we selectively
insert paths from B \ B′ for enhancement (lines 1∼ 1).

Specifically, we define indexes of the classification paths
from B′k as Ik (line 1). For each path Pj ∈ B \ B′ and the
original path Po ∈ B′k, where j ∈ I0 and o ∈ Ik, we calculate
the insertion priority as follows:

Prjo ← cj + γ(cj − co), (2)

where cj and co denote the numbers of correct classifications
for Pj and Po in Xj ∩Xo, respectively. Xj and Xo denote the
corresponding traffic subsets of classification paths. γ is the

enhancement rate. The indexes and the priority are stored in
PathInsert. We sort PathInsert in descending order according
to the priority (lines 1∼ 1), for ensuring the earlier inserted
path brings a greater accuracy improvement. In § V-B, we
demonstrate this and discuss the values of γ.

Then, we insert paths sequentially. The function CanInsert(·)
is used to calculate cj and co for checking whether the path
should be inserted or not. If cj > co, we add Pj ∩Po into the
Supplement of B′k. Pj ∩ Po is the intersection path of Pj and
Po. Moreover, we modify the original path Po to Po\(Pj∩Po),
making sure different classification paths from the same base
model do not process the same traffic (lines 1∼ 1).

For greater clarity, we take an example to show the work-
flow of model enhancement. In Fig. 6, for classification paths
whose base models are not chosen by the Top-K filtering
method, e.g., path4, they remain valuable. path4 accurately
classifies samples 6 and 7 and can serve as a Supplement
to correct misclassifications (colored in green) of path2. The
number of correct classifications for path4 in Xj ∩ Xo (i.e.,
samples 6 and 7) is 2, which is 0 for path2. Due to c4 > c2, we
can insert path4. To avoid two different paths corresponding
to the same traffic, we create a new path path4∩2 by taking
the feature intersection of path4 and path2. Then, we modify
path2 to be the difference set path2\(4∩2). As a result, samples
6 and 7 are correctly classified by path4∩2 instead of the
original path2. After that, we combine base models B′ with
Supplements to get enhanced base models B′′ (line 1). Each
enhanced base model comprises multiple classification paths
(from base models B′ and Supplements), which are sequences
of feature discriminants, as shown in Equation (1). For each
flow to be classified, different classification paths are traversed,
and flow-level features are compared with the threshold to
determine the final result. Notably, these classification paths
are translated into range match rules and installed in pro-
grammable switches [26], [55] (detailed in § IV-D). LEGO
is further obtained by aggregating B′′ to prevent overfitting
[30] for improved accuracy (line 1).

In summary, our base model is a variant of DT. Compared
with traditional DT, we utilize path-based model splitting,
coarse-grained model reorganization, and fine-grained model
enhancement to optimize the models, improving their suit-
ability for distributed deployment with high accuracy. The
suitability is characterized by four key features: i) Lightweight.
Through feature selection, path splitting, and model filter-
ing, LEGO reduces resource consumption while retaining
the full classification functionality of each base model. ii)
Ensemble/Enhanced. The accuracy of the ensemble model
(i.e., LEGO) is improved by enhancing base models through
inserting valuable paths. iii) Generic. The classification paths
are obtained from bagging or boosting methods, and the
number of insertion paths is flexibly adjusted under different
resource constraints. iv) Optional. Depending on the task
requirements and traffic changes, enhanced base models can
be selectively aggregated to achieve superior classification
performance.

It is worth noting that if adapting other types of models to
LEGO, e.g., NN-based models, they can be converted into
tree-based models using our previous work, Mousika [26]
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TABLE II
SUMMARY OF VARIABLES IN THE MODEL ALLOCATION PROBLEM

and Mousikav2 [27], before applying LEGO for splitting and
enhancement, which further demonstrates the generality.

C. Two-Phase Resource-Aware Model Allocation Module

When deploying LEGO across the entire network, metrics
like traffic coverage, classification accuracy, and hardware
resource consumption are vital in determining the allocation
scheme of enhanced base models. However, directly modeling
the correspondence between the scheme and network traffic is
challenging. Due to the dynamic nature of traffic, the current
allocation scheme may not adapt to future traffic. To overcome
this, we employ a two-phase resource-aware model allocation
strategy, including an offline phase and an online phase.

Offline Topology-Aware Allocation. In-Forest-M employs
the offline phase to obtain topology-aware model allocation
schemes under different resource constraints. Compared with
our previous work [38], we additionally accommodate multi-
task classification scenarios. Different task-specific models
can be deployed on a single switch to enable simultaneous
handling of multiple tasks, optimizing resource utilization.

Table II summarizes the variables. The task requirement is
denoted as Tasks, consisting of V different tasks specified
by network managers. For each task v, the corresponding
classification model is denoted as B′′v . By converting traffic
coverage to path coverage between subnet pairs and classifica-
tion accuracy to model diversity across switches, we formulate
the objective function for task v as follows:

objv = α1

∑N
n=1 Step

(∑W
w=1 Pn,w

∑K
k=1Dv,k,w

)
+ α2

∑N
n=1

∑K
k=1 Step

(∑W
w=1 Pn,wDv,k,w

)
− α3

∑K
k=1

∑W
w=1Dv,k,wOv,k. (3)

We aim to maximize the objective function, i.e., maximize
path coverage (term 1) and model diversity (term 2), while
minimizing the total number of required switch rules (term 3).
The model allocation scheme is denoted as D ∈ RV×K×W .
The number of enhanced base models i.e., K, is defined in
§ IV-B. W is set to the number of switches in real network
topologies, i.e., 11 for Abilene [50], 23 for GEANT [51], and
106 for DialtelecomCz [52]. The binary-encoded matrix P ∈
RN×W indicates whether switches lie on the selected routing

path, where N is the number of subnet pairs. The function
Step(·) converts values that are greater than 0 to 1 and others to
0. To ensure comparability among the three terms of metrics,
we normalize them into the range of [0, 1], with α1, α2, and
α3 representing the respective weights. Then, we define the
multi-task model allocation problem as follows:

max
D

∑V
v=1 objv (4)

s.t.
∑W
w=1 Step

(∑V
v=1

∑K
k=1Dv,k,w

)
≤M ; (4a)∑V

v=1

∑K
k=1

∑W
w=1Dv,k,wOv,k ≤ E; (4b)∑K

k=1Dv,k,w ≤ 1, ∀v, ∀w; (4c)
Dv,k,w ∈ {0, 1}, ∀v, ∀k, ∀w. (4d)

Equations (4a) and (4b) are employed to enforce resource
limitations on the model allocation scheme. M and E denote
the maximum number of deployed switches and the maxi-
mum number of network-wide rules, corresponding to distinct
resource constraints. For each task, we restrict the deployment
of at most one enhanced base model per switch (Equa-
tion (4c)). Notably, a single switch can accommodate multiple
models that support different tasks for multi-task classification.

The multi-task model allocation problem has a similar defi-
nition to the multiple knapsack problem [56]: When assigning
an enhanced base model (item) to different switches (knap-
sacks), a corresponding gain is yielded, and the objective is to
maximize the overall gain. The multiple knapsack problem
is known as NP-hard, and hence our problem is also NP-
hard. Since existing studies [57], [58], [59], [60] employ a
heuristic algorithm, i.e., Genetic Algorithm (GA), for solving
the multiple knapsack problem, we share the same design.

We generate a diverse initial population by randomly cre-
ating multiple instances of D with different values. Each
instance is then flattened into D̃ ∈ R1×Q, where Q =
V × K × W . These instances represent candidate model
allocation schemes, which are evaluated by the fitness (i.e.,
the objective function in Equation (4)). Through iterative
evolution, schemes with higher fitness are more likely to
reproduce in subsequent iterations. Offspring are generated
through crossover and mutation, replacing partial schemes
to maintain the population size. This process continues until
fitness converges. To ensure the satisfaction of constraints
(4a)∼ (4d), we penalize non-compliant schemes by assigning a
large negative value to the fitness. The scheme with the highest
fitness is deemed the optimal model allocation scheme in the
offline phase.

Online Traffic-Aware Allocation. To improve the adapt-
ability of In-Forest-M to dynamic traffic changes, we introduce
an online phase. By selecting suitable enhanced base models
to classify corresponding traffic, we can further enhance the
accuracy. GA faces limitations in the online phase due to
its high time complexity and the inability to anticipate long-
term returns. To overcome these challenges, we employ a
model-free Deep Reinforcement Learning (DRL) approach
[61]. DRL excels at solving online decision-making problems
by optimizing both current and future rewards, enabling fast
adaptation to dynamic environments [50], [62].
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We formulate the traffic transmission as a Markov Decision
Process (MDP). The MDP is defined by the tuple (S,A,R, T )
[50], where S represents the state space, A represents the
action space, R represents the reward function, and T rep-
resents the state transition probability. In-Forest-M receives
network information s ∈ S (for notational simplicity, we omit
the subscript t) and determines the model allocation scheme
a ∈ A, which then gets a reward r. The MDP aim to find an
optimal policy πθ that maximizes the objective function J(θ),
where θ denotes the policy parameters.

We adopt the Proximal Policy Optimization (PPO) algo-
rithm to update πθ [61] due to its enhanced sampling efficiency
and reduced training variance. PPO leverages importance
sampling to efficiently utilize the sampled data based on the
old policy parameters θ′. The update of the policy πθ can be
expressed as follows:

∇θJ(θ) = Eτ∼Pθ′ (τ )[W(θ′)A(s,a)∇θ log πθ(a|s)], (5)

where τ is the state-action pair (s, a) sampled from Pθ′(τ ).
The advantage function A(·) quantifies the superiority of the
selected action compared to others within a given state [63].
The importance weight, denoted as W(θ′) = πθ(a|s)

πθ′ (a|s) .
It is crucial to emphasize that the new policy parameters

θ and the old policy parameters θ′ should not deviate sig-
nificantly. We modify the objective function to limit the gap
between them. The updated objective function is:

JCLIP (θ)

= Eτ∼Pθ′ (τ )[min(W(θ′)A(s,a),W′(θ′)A(s,a))], (6)

where W′(θ′) = Clip(W(θ′), 1− ε, 1 + ε) is used to prevent
a significant increase (or decrease) in the probability of good
(or bad) actions [61]. Here, ε is set to 0.2.

We introduce the Covered Flow Accuracy (CFA) metric as
the reward function to assess the model allocation scheme:

CFA ,

∑L
l=1ml(yl == ŷl)

L
, (7)

where ml is a binary variable indicating whether flow l is
covered by any enhanced base models and L is the number of
flows. yl and ŷl are the true and predicted classes, respectively.

In the state space S, we consider the flow feature (5)-tuple
of each flow), the traffic distribution (flow number in links),
and the current model allocation scheme. Regarding the action
space Av ∈ A for task v, the action output from each switch
is a vector of K + 1 dimensions. The first K dimensions
denote the deployment probability of each enhanced base
model, while the last dimension represents the non-deployment
probability. To determine the model allocation scheme in the
online phase, we select the action with the highest probability
on each switch and combine them as the global action.

Fig. 7 shows the pipeline of online traffic-aware allocation.
Following [50], we assume a discrete-time model where time
is partitioned into consecutive timesteps, i.e., t = 1, 2, . . ..
The t-th flow arrives at the beginning of timestep t and the
model allocation scheme is updated every 100 timesteps. To
ensure the convergence of the online phase, we employ an
optimization-driven mechanism. We determine the deployed
switches through the offline phase and then use the online

Fig. 7. The pipeline of online traffic-aware allocation. Colored rectangles
indicate the optimization-driven mechanism.

phase to tune the enhanced base models deployed on them.
This can reduce the dimensions of action space for faster and
more stable convergence. The optimal allocation scheme in
the offline phase serves as an initial value for PPO, which
explores and refines the scheme. If the action output does
not outperform the offline phase, the model allocation scheme
remains unchanged. The scheme in the online phase is also
required to meet the constraints. We set a penalty value
(i.e., -1) as the reward for schemes with lower performance
than the offline phase or that do not satisfy the constraints
(4a)∼(4d). The checked online action interacts with the envi-
ronment, and then samples are collected to update the policy.

All in all, our two-phase resource-aware model allocation
strategy consists of an offline phase and an online phase.
The offline phase provides topology-aware model allocation
schemes under different resource constraints, serving as a solid
base. The online phase is followed to fine-tune the scheme
for enhanced adaptability. The offline phase is topology-
aware, employing a heuristic algorithm GA to address the
multi-task model allocation problem, and the online phase is
traffic-aware, utilizing DRL to solve online decision-making
problems by optimizing both current and future rewards. The
base scheme from the offline phase aids faster and more
stable convergence in the online phase, while the online phase
achieves higher accuracy by adapting to dynamic traffic.

D. Model Deployment Module

In-Forest-M deploys enhanced base models on differ-
ent programmable switches to enable distributed in-network
classification. Each downstream switch aggregates the clas-
sification results of models deployed on upstream switches,
improving accuracy. Furthermore, we devise a lightweight
model update mechanism to ensure flexibility.

Model Representation. In-Forest-M employs flow-level
features (e.g., average/minimum/maximum packet lengths) for
classification, as detailed in [36]. These features are derived
by combining attributes from a sequence of packets within the
same flow. To balance memory consumption and classification
accuracy, we extract features of the first F packets per flow,
where F is set to 4 [64]. After extracting the features, their
values are utilized as input to the models. Each enhanced base
model can be deployed as a single match-action table that
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Listing 1. P4 pseudocode for model deployment.

matches all the features. The classification paths, as shown in
Equation (1), are translated into range match rules and stored
in the table (lines 10 ∼ 17 in Listing 1). If there is a matched
rule in table Get−Task1−Res, the corresponding action is
triggered, e.g., Set−Task1−Cls1 (lines 2 ∼ 5 in Listing 1).

Result Aggregation. We utilize diverse packet header fields
to record classification results, where the results from upstream
switches are aggregated on each downstream switch. For
a classification task with Z distinct classes, we define Z
variables, namely prob1, . . . , probZ. When the model outputs
a result of class z, we increment the z-th variable by 1 while
decrementing the other variables by 1.

Suppose a task involves two classes of flows, namely class1
and class2. We define two actions, i.e., Set−Task1−Cls1 and
Set−Task1−Cls2, along with two variables, i.e., prob1 and
prob2. Variables are initialized with the value of H, where
H denotes the maximum number of switches between subnet
pairs. If the model classifies a flow as class1, the action
Set−Task1−Cls1 is triggered, resulting in an increment of
prob1 by 1 and a decrement of prob2 by 1. Subsequently, we
place the aggregate table in an additional switch stage (our P4
program requires 2 stages in total). The aggregation operation
can be implemented by range match rules [55], which look up
variables with values in [H + 1, 2H]. If prob1 exceeds H, it
indicates that at least one model classifies the flow as class1,
and a larger prob1 signifies higher confidence. When prob1
and prob2 both equal H, the flow continues to be forwarded,
indicating that the class cannot be determined at this point.
Note that this aggregation operation does not introduce an
excessive number of switch rules (only Z more rules). In
addition, we implement corresponding processing solutions
for abnormal traffic. By aggregating the results of enhanced
base models, we can achieve high-confidence classification.
Identified abnormal traffic is reported to the control plane
for secondary processing. While 100% accuracy is hard to
guarantee, for a small amount of misclassified traffic, we will
intervene through an allow list, which can be installed on
switches through range match rules.

Actually, we only provide an example of model deployment.
Network managers can set different numbers of variables
for specific tasks or add more tables to support multi-task
classification (e.g., lines 18 ∼ 22 in Listing 1).

Lightweight Model Update Mechanism. To enhance flex-
ibility in model deployment, we introduce a lightweight model
update mechanism. Benefiting from the model representation
method we use, each switch rule is derived from a clas-
sification path. Classification paths with higher priority in
Equation (2) will be translated into switch rules with higher
priority in match-action tables. Rules with higher priority are
given preference for matching PHVs. Our designed priority
ensures that the earlier inserted path brings a better accuracy
improvement. Thus, optimal model scaling out (or in) can be
achieved by adding (or deleting) switch rules with higher (or
lower) priority when available resources change. The addition
and deletion of paths can be implemented with a modification
of Supplements, ensuring each enhanced base model still has
full classification functionality. During the online phase, it is
crucial to ensure timely model updates that respond to dynamic
traffic changes. For each enhanced base model, we can update
it with another one that has the same number of switch rules.
This updating can be accomplished by changing only the rules,
eliminating the need for switch restarts.

V. EVALUATION

In-Forest-M is evaluated based on the i) lightweight and
enhancement of LEGO (§ V-B); ii) superiority and scalability
of network-wide distributed deployment (§ V-C); iii) generality
of multi-task in-network classification (§ V-D); and iv) low
resource consumption with high throughput (§ V-E).

A. Experiment Setup

We build three real network topologies on Linux servers
to simulate traffic transmission. Abilene [50] is a small-
scale topology with 11 switches and 14 bidirectional links.
GEANT [51] is a medium-scale topology with 23 switches
and 37 bidirectional links. DialtelecomCz [52] is a large-scale
topology with 106 switches and 119 bidirectional links. The
high-performance servers are equipped with NVIDIA GeForce
RTX 3080 GPUs and Intel Xeon 4210R CPUs. We use the
popular ML framework scikit-learn [48] to train tree-based
models. For the online traffic-aware model allocation, we
implement the PPO algorithm in PyTorch [65]. Besides, model
deployment is implemented on two commodity P4 switches,
i.e., H3C S9850-32H2 and OpenMesh BF-48X6Z3

We use real-world network traffic from three datasets
(i.e., UNSW-NB15 [47], BoT-IoT [66], and CIC-IDS [67]),
which have been widely used for evaluating recent in-network
classification solutions [13], [36], to construct three network
classification tasks with distinct numbers of classes. In-Forest-
M is employed to classify specific target classes within these
tasks. Table III provides the relevant details. All datasets

2https://www.h3c.com/cn/Products Technology/Products/Switches/Data
Center Switch/S9800/S9850/

3http://www.tooyum.com/products/OpenMesh BF48X6Z.html
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Fig. 8. The comparison in the number of classification paths required to achieve the same accuracy on three network classification tasks.

TABLE III
SETTING OF NETWORK CLASSIFICATION TASKS

contain raw pcap files of network traffic4, 5, 6. As suggested
in [36] and [64], we set the maximum number of packets
stored per flow, i.e., F, to 4 and extract flow-level features for
classification. Specifically, we consider the following features:
i) Average/minimum/maximum packet lengths of F packets. ii)
IP flag (MF and DF) counts of F packets. iii) TCP flag (SYN,
ACK, PSH, FIN, RST, and ECN) counts of F packets. iv)
Average/minimum/maximum TCP window sizes of F packets.
Flows in each task are divided into two parts, including 80%
for training and 20% for testing.

B. LEGO Performance

LEGO is the core of In-Forest-M, and we first compare it
with four conventional ensemble models: i) Random Forest
(RF) [30] is a bagging-based model, while Extremely Ran-
domized Trees (ET) [31] is a variant of RF. ii) Adaboost
(ADB) [32] and Gradient Boosting Decision Tree (GBDT)
[33] are boosting-based models. Since RF, ET, ADB, and
GBDT consist of multiple base models (i.e., DTs), accordingly,
we consider DTs as base models and enhance them through
our LEGO design module (detailed in § IV-B), i.e., our
enhanced base model is a variant of DT. We fairly compare
LEGO with these DT-based ensemble models to verify its
effectiveness. LEGO is not supported by scikit-learn, so we
implement its design logic from scratch, where classification
paths are obtained from RF. The number of selected features,
i.e., S, is 8 for LEGO, and the same for other models [38].

Fig. 8 compares the number of classification paths required
to achieve the same accuracy. Two versions of LEGO are
evaluated, i.e., LEGO (W/O), a trimmed version without fine-
grained model enhancement, and LEGO (W/), the full version.
We control the performance of each model by changing the

4https://research.unsw.edu.au/projects/unsw-nb15-dataset
5https://research.unsw.edu.au/projects/bot-iot-dataset
6https://www.unb.ca/cic/datasets/ids-2017.html

maximum depth while keeping the other hyperparameters
unchanged. Categories of the x-axis are chosen to showcase
that LEGO (W/O) and LEGO (W/) require fewer classification
paths than other models to achieve varying classification per-
formances. The results demonstrate that LEGO is lightweight
and performance-enhanced, achieving comparable classifica-
tion performance with only part of the paths. For instance,
in Fig. 8a, LEGO (W/O) reduces paths by an average of
84.11% (from 3116 to 495) with the same accuracy com-
pared to RF, showcasing the contribution of path-based model
splitting and coarse-grained model reorganization in forming
lightweight base models. LEGO (W/) enhances base models
by inserting valuable paths, which results in a larger reduction
of paths by an average of 95.09% (from 3116 to 153).
Besides, conventional ensemble models suffer from heavy
sizes, hindering their single-point deployment, whereas LEGO
is not constrained by this limitation.

To further demonstrate the effectiveness of fine-grained
model enhancement, we show the accuracy improvement of
LEGO by the i-th inserted path under different enhancement
rates γ in Fig. 9. We use LEGO (W/O) with the best
classification performance on each of the three tasks and
insert paths sequentially. The insertion order is determined
by the priority in Equation (2) (detailed in Section § IV-B).
∆Accuracy represents the difference in accuracy between
after and before inserting a path. The results show that the
earlier inserted path brings a greater improvement and it is
cumulative, facilitating flexible model scaling in/out (detailed
in § IV-D). As γ = 5 has the highest ∆Accuracy, we use this
setting for all experiments. After inserting 100 paths (only
a portion of the total classification paths), under γ = 5, it
leads to an accuracy improvement of 1.64% on UNSW-NB15,
1.59% on BoT-IoT, and 1.21% on CIC-IDS, demonstrating
notable enhancement. It is worth noting that the insertion
of low-priority paths may lead to accuracy degradation, e.g.,
∆Accuracy <0 in Fig. 9c. We attribute this to overfitting.
Thus, we determine the maximum number of insertion paths
through 5-fold cross-validation [68] during model training.

Moreover, we compare the performance of LEGO and DT.
For a fair comparison, we set K = 1, i.e., LEGO consists of
only one enhanced base model. The value within () represents
the maximum number of classification paths. Fig. 10 shows
that the enhanced base model outperforms DT under different
model resource settings. For instance, LEGO (100) achieves
a 7.51% ↑ higher accuracy than DT (100) on BoT-IoT. In
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Fig. 9. The accuracy improvement of LEGO by the i-th inserted path on three network classification tasks. γ is the enhancement rate.

Fig. 10. The comparison of DT and LEGO under different model resource
settings. (x) represents the maximum number of classification paths is x.

general, our proposed enhancement mechanism effectively
improves the classification performance of base models.

C. Model Distributed Deployment Performance

Next, we consider the network-wide deployment. In-Forest-
M is compared with state-of-the-art in-network classification
solutions that adopt different model representation methods:
i) SwitchTree [17] utilizes direct mapping. ii) Planter [24]
and Netbeacon [36] use feature encoding. iii) Mousikav2
[27] employs model quantization. Since existing solutions are
centralized and lack a network-wide deployment mechanism,
we extend them by introducing four baselines, i.e., RF-100%,
RF-70%, RF-20%, and DT-100%:
• RF-100%. Deploy RF on all switches.
• RF-70/20%. Deploy RF randomly on 70/20% switches.
• DT-100%. Deploy DT on all switches.
RF is selected as the ensemble model deployed by existing

solutions because it is widely supported by each of them [28].
We also consider the deployment of DT to verify whether
the model for distributed deployment can outperform the indi-
vidual model through ensemble learning. For each baseline,
the complete RF or DT is deployed on single switches by
existing solutions. The maximum depth of models is set to
10, as deeper trees are impractical for in-network deployment
[21]. RF is configured with only 3 sub-models due to the
single-point memory limitation [28]. In-Forest and In-Forest-
M employ offline model allocation to determine the allocation
scheme of enhanced base models. We use the grid search
to find the optimal weights in Equation (3), i.e., α1 = 0.6,
α2 = 0.2, and α3 = 0.2. We use UNSW-NB15 as the flow
dataset and Abilene as the network topology connected to 8
subnets. For assigning each flow to a subnet pair, we use a hash
function based on the 5-tuple. The routing path is determined
by the OSPF [49] protocol.

Fig. 11 compares the number of network-wide switch rules
required to achieve equal CFA (Equation (7)) and flow cover-
age (percentage of flows with models deployed on the routing
path). The number is calculated by summing the number
of rules required on different switches. Compared with RF-
100%, In-Forest-M achieves the same CFA and flow coverage
with reduced switch rules. In Fig. 11c, even only with the
partial deployment of RF, i.e., RF-70% and RF-20%, the rule
number of existing solutions remains higher than In-Forest-M.
Notably, RF-70% and RF-20% do not guarantee flow coverage
(Fig. 11b), which requires traffic rescheduling, leading to
complex network routing and management. Compared with
DT-100%, In-Forest-M achieves a 16.39% higher CFA on
average. Since the models are identical, flows do not obtain
any accuracy improvement after traversing multiple DTs. In
contrast, In-Forest-M aggregates the classification results of
enhanced base models to improve accuracy.

Fig. 12 performs a comparison under different resource
scenarios by limiting the maximum number of network-wide
rules. In-Forest-M achieves flexible adjustment of the model
allocation scheme by changing M and E (detailed in § IV-C).
Simultaneously, the model depth is adjusted and the optimal
model scaling in/out is enabled (detailed in § IV-D). Larger
M and E indicate that the entire network has more available
resources for model deployment, resulting in a higher CFA.
The other four baselines do not have a similar mechanism,
which adapts by only adjusting the model depth. The results
show that In-Forest-M has a superior CFA. For instance,
compared with RF-100% in Fig. 12b, In-Forest-M improves
accuracy by 19.31% (from 62.21% to 81.52%) while reducing
the rule number by 94.96% (from 1727 to 87).

To present the scalability of In-Forest-M, we evaluate the
network-wide deployment performance in larger topologies.
GEANT is connected to 15 subnets and DialtelecomCz is
connected to 50 subnets. As shown in Fig. 13 and Fig. 14,
In-Forest-M still achieves the highest CFA. The advantages
of distributed deployment become even more apparent as the
topology scales up, due to the increasing resource waste of
centralized in-network classification solutions.

Furthermore, we demonstrate the traffic awareness of In-
Forest-M in topologies with different H settings. H depends
on the topology scale, ensuring the diversity of enhanced base
models across switches. Specifically, H is 6 in Abilene, 8 in
GEANT, and 15 in DialtelecomCz. We set the flow duration,
which is 10 timesteps in Abilene, 15 timesteps in GEANT,
and 50 timesteps in DialtelecomCz [50], allowing the traffic
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Fig. 11. The network-wide deployment performance in Abilene. We design four baselines (RF-100%, RF-70%, RF-20%, and DT-100%) for existing solutions.
RF-x% and DT-x% denote deploying RF and DT randomly on x% switches, respectively.

Fig. 12. The Covered Flow Accuracy (CFA) under different numbers of network-wide rules in Abilene. We design four baselines (RF-100%, RF-70%,
RF-20%, and DT-100%) for existing solutions. RF-x% and DT-x% denote deploying RF and DT randomly on x% switches, respectively.

Fig. 13. The Covered Flow Accuracy (CFA) under different numbers of network-wide rules in GEANT. We design four baselines (RF-100%, RF-70%,
RF-20%, and DT-100%) for existing solutions. RF-x% and DT-x% denote deploying RF and DT randomly on x% switches, respectively.

Fig. 14. The Covered Flow Accuracy (CFA) under different numbers of network-wide rules in DialtelecomCz. We design four baselines (RF-100%, RF-70%,
RF-20%, and DT-100%) for existing solutions. RF-x% and DT-x% denote deploying RF and DT randomly on x% switches, respectively.

to change over time. To simulate diverse changes, we add
a random number σ ∈ [0, 3] to the duration of each flow.
In addition, we set three random seeds (i.e., 0, 1, and 2)
for σ and average the obtained results, avoiding evaluation
bias. We choose the model allocation scheme in the offline
phase as the initial value of PPO and employ the online
phase to detect dynamic traffic changes. Table IV shows the
average CFA improvement, i.e., 1.15%↑ in Abilene, 1.57%↑
in GEANT, and 1.52% ↑ in DialtelecomCz, respectively.

The results demonstrate the effectiveness of traffic awareness,
which brings a better CFA compared with the offline phase.

D. Multi-Task Classification Performance

For In-Forest-M, we evaluate the generality of multi-task
in-network classification. The flows from three network clas-
sification tasks are mixed to simulate real network demands.
We conduct experiments in diverse network topologies where
mixed flows are assigned to subnet pairs. In-Forest-M uses the
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Fig. 15. The multi-task classification performance in diverse topologies. The flows from three network classification tasks are mixed to simulate real network
demands. SwitchTree, Planter, Netbeacon, Mousikav2, and In-Forest employ the optimal single-task allocation schemes while randomly deploying models on
switches for three tasks. In-Forest-M assigns task-specific enhanced base models to different switches to enable multi-task classification.

TABLE IV

AVERAGE CFA IMPROVEMENT OF THE ONLINE PHASE

Fig. 16. The resource consumption of different solutions on the H3C switch.

two-phase resource-aware model allocation strategy to assign
different task-specific enhanced base models to switches,
enabling them to handle different tasks simultaneously. In
contrast, SwitchTree, Planter, Netbeacon, Mousikav2, and
In-Forest are specifically designed for a single task. Con-
sequently, they employ the optimal single-task allocation
schemes in Fig. 12, Fig. 13, and Fig. 14, respectively, while
randomly deploying models on switches for three tasks.

Fig. 15 demonstrates that In-Forest-M outperforms other
solutions. Existing centralized in-network classification solu-
tions require the deployment of complete models, which
makes it challenging to deploy multiple high-accuracy mod-
els on a single-point switch for different tasks, resulting in
compromised network-wide classification performance. More-
over, compared with In-Forest, In-Forest-M effectively utilizes
available resources to identify a better multi-task deployment
scheme for the entire network. For instance, in Abilene, In-
Forest-M has a 3.16% higher CFA than In-Forest.

E. Hardware Performance

Fig. 16 shows the single-point resource consumption on the
H3C S9850-32H switch. SwitchTree, Planter, Netbeacon, and
Mousikav2 deploy RF, while In-Forest and In-Forest-M deploy

Fig. 17. The switch throughput on three network classification tasks.

the enhanced base model. The models are all from Fig. 11,
which achieve the same CFA and flow coverage. We compare
memory resources, i.e., the percentage of used SRAM and
TCAM, and computational resources, i.e., the percentage of
used tMatch xBar and VLIW. SRAM is used to store exact
match rules, while TCAM is used to store ternary match,
longest prefix match, and range match rules. tMatch xBar is
used to perform ternary match and range match, while VLIM
is used for actions [26]. The results illustrate that In-Forest-
M consumes the lowest switch resources. For instance, the
SRAM usage for SwitchTree and In-Forest-M is 3.23% and
0.75% in Fig. 16a, while the tMatch xBar usage for Netbeacon
and In-Forest-M is 25.63% and 6.67% in Fig. 16b.

For the three network classification tasks, we deploy the
optimal enhanced base model on two commodity P4 switches.
Fig. 17 shows switch throughput under high-speed traffic
of 100Gbps. As shown, after loading the P4 program and
installing rules from the enhanced base model, the switch
throughput remains virtually unchanged.

F. In-Forest-M Deep Dive

We further explore various aspects of In-Forest-M to demon-
strate its performance in different network scenarios.

Reconfiguration Process. In-Forest-M employs a two-
phase resource-aware model allocation strategy: The offline
phase provides topology-aware model allocation schemes
under different resource constraints, serving as solid bases,
followed by an online traffic-aware phase that fine-tunes
schemes to adapt to dynamic traffic. Although reconfiguration
and deployment (e.g., offline topology-aware allocation) are
inevitable when network topology changes, such changes
are generally much less frequent in real-world applications

Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on December 31,2025 at 02:49:51 UTC from IEEE Xplore.  Restrictions apply. 



LI et al.: DISTRIBUTED MULTI-TASK IN-NETWORK CLASSIFICATION ON PROGRAMMABLE SWITCHES 3315

Fig. 18. The multi-task classification performance in diverse topologies before
and after network failures (i.e., 10% of switches fail randomly).

than traffic fluctuations. Therefore, compared with the online
phase, the offline phase has lower requirements for comput-
ing latency. In other words, the reconfiguration process and
the distributed deployment caused by topology changes will
not significantly affect the overall framework’s performance.
To demonstrate this, we evaluate the time overhead due
to network topology changes, which is 5.03s from Abilene
to GEANT and 8.47s from GEANT to DialtelecomCz. All
experimental settings align with those in Fig. 15. Switching
between larger topologies takes more time but can still be
completed quickly. We also validate the cost of changing some
links in DialtelecomCz, i.e., randomly modifying 10% of 119
bidirectional links. In-Forest-M adapts to such minor changes
based on existing allocation schemes, requiring less time than
a complete topology alteration. Statistical results show that
reconfiguration and deployment are fully updated within 1.15s.

Error Handling Mechanism. Distributed deployment splits
the ensemble model into enhanced base models across multiple
switches, avoiding single-point failures that may cause the
entire system to crash. In response to dynamic traffic changes
and network failures, we apply traffic-aware model allocation
and a lightweight model update mechanism to mitigate the
degradation caused by traffic distribution deviation, which can
maintain classification accuracy. In addition, we also imple-
ment corresponding processing solutions for abnormal traffic.
By aggregating the results of enhanced base models from mul-
tiple switches, we achieve high-confidence classification, and
the identified abnormal traffic is reported to the control plane
for secondary processing. While 100% accuracy is hard to
guarantee, for a small number of misclassified traffic, we will
intervene through an allow list to further optimize. We refer to
all the settings in Fig. 15 and simulate realistic network condi-
tions like network failures and abnormal traffic. As shown in
Table III and Fig. 15, flows from three network classification
tasks are mixed to simulate real network demands, including
abnormal traffic. We configure three network topologies with
10% of switches randomly failing and evaluate multi-task
classification performance post-reconfiguration. Fig. 18 shows
that through the reconfiguration process and error handling
mechanism, the multi-task classification performance before
and after the failure can remain consistent, which demonstrates
the robustness of our framework in real-world applications.

VI. DISCUSSION AND FUTURE WORK

In-Forest-M exhibits promising potential for distributed in-
network classification with powerful performance. Although
we focus on deploying it on programmable switches in this

paper, our framework can also be deployed on standard net-
work hardware with only minor adjustments. Specifically, we
still adopt a similar distributed deployment solution, splitting
the ensemble model into various enhanced base models and
deploying them as table entries on different switches according
to offline topology-aware allocation. We then modify the
model update mechanism, e.g., online traffic-aware allocation.
Our distributed framework allows the classification perfor-
mance to be optimized by replacing only some switches, i.e.,
core switches that occupy key positions in network topologies,
to match dynamic traffic. We periodically replace table entries
on certain switches to achieve performance improvements with
as little overhead as possible. In our future work, we will
explore the application of In-Forest-M in more network hard-
ware, such as Smart Network Interface Cards (SmartNICs).

Besides, we aim to explore more fine-grained distributed
deployment strategies, such as deployment based on subsets
of switch rules, and plan to leverage heterogeneous resources
to further enhance the applicability of In-Forest-M. Current
experimental results fully validate the feasibility of In-Forest-
M in prototype deployment. We are developing a large-scale
testbed using commodity P4 switches based on real network
topologies and will further explore In-Forest-M’s potential in
our future work.

VII. CONCLUSION

In this paper, we propose In-Forest-M, a general distributed
multi-task in-network classification framework, achieving
high-accuracy network traffic classification on programmable
switches. Firstly, we design a Lightweight Ensemble Generic
Optional Model (LEGO), which can be transformed into
multiple enhanced base models, each enabling line-speed
classification on a single switch. Secondly, we propose a
two-phase resource-aware model allocation strategy to assign
different task-specific enhanced base models to switches for
multi-task classification. In addition, we devise a lightweight
model update mechanism to ensure flexibility in adapting to
different resource constraints and dynamic traffic changes.
Comprehensive experiments reveal that, compared with state-
of-the-art centralized solutions, In-Forest-M outperforms in
terms of accuracy and hardware resource consumption under
network-wide deployment while presenting great generality in
multi-task classification.
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A. Pescapé, “XAI meets mobile traffic classification: Understanding and
improving multimodal deep learning architectures,” IEEE Trans. Netw.
Service Manage., vol. 18, no. 4, pp. 4225–4246, Dec. 2021.

[2] C. Liu, L. He, G. Xiong, Z. Cao, and Z. Li, “FS-Net: A flow sequence
network for encrypted traffic classification,” in Proc. IEEE Conf. Com-
put. Commun. (INFOCOM), Apr. 2019, pp. 1171–1179.

[3] Z. Wu, Y.-N. Dong, X. Qiu, and J. Jin, “Online multimedia traffic
classification from the QoS perspective using deep learning,” Comput.
Netw., vol. 204, Feb. 2022, Art. no. 108716.

[4] O. Aouedi, K. Piamrat, and D. Bagadthey, “A semi-supervised stacked
autoencoder approach for network traffic classification,” in Proc. IEEE
28th Int. Conf. Netw. Protocols (ICNP), Oct. 2020, pp. 1–6.

[5] P. Poupart et al., “Online flow size prediction for improved network
routing,” in Proc. IEEE 24th Int. Conf. Netw. Protocols (ICNP), Nov.
2016, pp. 1–6.

Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on December 31,2025 at 02:49:51 UTC from IEEE Xplore.  Restrictions apply. 



3316 IEEE TRANSACTIONS ON NETWORKING, VOL. 33, NO. 6, DECEMBER 2025

[6] T. Panayiotou, M. Michalopoulou, and G. Ellinas, “Survey on machine
learning for traffic-driven service provisioning in optical networks,”
IEEE Commun. Surveys Tuts., vol. 25, no. 2, pp. 1412–1443, 2nd Quart.,
2023.

[7] Y. Yan, F. Li, W. Wang, and X. Wang, “TalentSketch: LSTM-based
sketch for adaptive and high-precision network measurement,” in Proc.
IEEE 30th Int. Conf. Netw. Protocols (ICNP), Oct. 2022, pp. 1–12.

[8] X. Zhang, L. Cui, F. P. Tso, and W. Jia, “PHeavy: Predicting heavy flows
in the programmable data plane,” IEEE Trans. Netw. Service Manage.,
vol. 18, no. 4, pp. 4353–4364, Dec. 2021.

[9] Y. Mirsky, T. Doitshman, Y. Elovici, and A. Shabtai, “Kitsune: An
ensemble of autoencoders for online network intrusion detection,” in
Proc. Netw. Distrib. Syst. Secur. Symp., 2018, pp. 1–15.

[10] B. M. Xavier, R. S. Guimar aes, G. Comarela, and M. Martinello,
“Programmable switches for in-networking classification,” in Proc.
IEEE Conf. Comput. Commun., May 2021, pp. 1–10.

[11] Y. Dong, Q. Li, R. O. Sinnott, Y. Jiang, and S. Xia, “ISP self-operated
BGP anomaly detection based on weakly supervised learning,” in Proc.
IEEE 29th Int. Conf. Netw. Protocols (ICNP), Nov. 2021, pp. 1–11.

[12] T. Zheng and B. Li, “Poisoning attacks on deep learning based wireless
traffic prediction,” in Proc. IEEE Conf. Comput. Commun., May 2022,
pp. 660–669.

[13] C. Zheng, X. Hong, D. Ding, S. Vargaftik, Y. Ben-Itzhak, andN.
Zilberman, “In-network machine learning using programmable network
devices: A survey,” IEEE Commun. Surveys Tuts., vol. 26, no. 2,
pp. 1–35, 2nd Quart., 2024.

[14] C. Zheng, B. Rienecker, and N. Zilberman, “QCMP: Load balancing
via in-network reinforcement learning,” in Proc. 2nd ACM SIGCOMM
Workshop Future Internet Routing Addressing, Sep. 2023, pp. 35–40.

[15] R. Parizotto, B. L. Coelho, D. C. Nunes, I. Haque, and A. Schaeffer-
Filho, “Offloading machine learning to programmable data planes: A
systematic survey,” ACM Comput. Surv., vol. 56, no. 1, pp. 1–33, Jan.
2024.

[16] X. Lin, G. Xiong, G. Gou, Z. Li, J. Shi, and J. Yu, “ET-BERT: A
contextualized datagram representation with pre-training transformers
for encrypted traffic classification,” in Proc. ACM WWW, Apr. 2022,
pp. 633–642.

[17] J.-H. Lee and K. Singh, “SwitchTree: In-network computing and traffic
analyses with random forests,” Neural Comput. Appl., 2020.

[18] M. Zhang et al., “Poseidon: Mitigating volumetric DDoS attacks with
programmable switches,” in Proc. Netw. Distrib. Syst. Secur. Symp.,
2020, pp. 1–18.

[19] J. Xing, Q. Kang, and A. Chen, “NetWarden: Mitigating network covert
channels while preserving performance,” in Proc. USENIX Secur., Jan.
2020, pp. 2039–2056.

[20] Barefoot Netw. Tofino Switch. [Online]. Available:
https://www.intel.com/content/www/us/en/products/network-io/
programmable-ethernet-switch/tofino-series/tofino.html

[21] C. Busse-Grawitz, R. Meier, A. Dietmüller, T. Bühler, and L. Van-
bever, “PForest: In-network inference with random forests,” 2019,
arXiv:1909.05680.

[22] Z. Xiong and N. Zilberman, “Do switches dream of machine learning?
Toward in-network classification,” in Proc. 18th ACM Workshop Hot
Topics Netw., Nov. 2019, pp. 25–33.

[23] C. Zheng et al., “IIsy: Practical in-network classification,” 2022,
arXiv:2205.08243.

[24] C. Zheng and N. Zilberman, “Planter: Seeding trees within switches,”
in Proc. SIGCOMM Poster, Aug. 2021, pp. 12–14.

[25] C. Zheng et al., “Automating in-network machine learning,” 2022,
arXiv:2205.08824.

[26] G. Xie, Q. Li, Y. Dong, G. Duan, Y. Jiang, and J. Duan, “Mousika:
Enable general in-network intelligence in programmable switches by
knowledge distillation,” in Proc. IEEE Conf. Comput. Commun., May
2022, pp. 1938–1947.

[27] G. Xie et al., “Empowering in-network classification in programmable
switches by binary decision tree and knowledge distillation,” IEEE/ACM
Trans. Netw., vol. 32, no. 1, pp. 382–395, Jan. 2023.

[28] A. T.-J. Akem, B. Bütün, M. Gucciardo, and M. Fiore, “Henna:
Hierarchical machine learning inference in programmable switches,” in
Proc. 1st Int. Workshop Native Netw. Intell., Dec. 2022, pp. 1–7.

[29] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, Classification
and Regression Trees. Boca Raton, FL, USA: CRC Press, 2017.

[30] L. Breiman, “Random forests,” Mach. Learn., vol. 45, pp. 5–32, Oct.
2001.

[31] P. Geurts, D. Ernst, and L. Wehenkel, “Extremely randomized trees,”
Mach. Learn., vol. 63, no. 1, pp. 3–42, Apr. 2006.

[32] Y. Freund and R. E. Schapire, “A decision-theoretic generalization of
on-line learning and an application to boosting,” J. Comput. Syst. Sci.,
vol. 55, no. 1, pp. 119–139, Aug. 1997.

[33] J. H. Friedman, “Greedy function approximation: A gradient boosting
machine,” Ann. Statist., vol. 29, no. 5, pp. 1189–1232, Oct. 2001.

[34] T. Chen and C. Guestrin, “XGBoost: A scalable tree boosting system,”
in Proc. 22nd ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining,
Aug. 2016, pp. 785–794.

[35] A. Gupta, R. Harrison, M. Canini, N. Feamster, J. Rexford, and
W. Willinger, “Sonata: Query-driven streaming network telemetry,” in
Proc. ACM SIGCOMM, Aug. 2018, pp. 357–371.

[36] G. Zhou, Z. Liu, C. Fu, Q. Li, and K. Xu, “An efficient design of
intelligent network data plane,” in Proc. 32nd USENIX Sec. Symp., 2023,
pp. 1–18.

[37] R. Miao, H. Zeng, C. Kim, J. Lee, and M. Yu, “SilkRoad: Making
stateful layer-4 load balancing fast and cheap using switching ASICs,”
in Proc. Conf. ACM Special Interest Group Data Commun., Aug. 2017,
pp. 15–28.

[38] J. Lin et al., “In-forest: Distributed in-network classification with ensem-
ble models,” in Proc. IEEE 31st Int. Conf. Netw. Protocols (ICNP), Oct.
2023, pp. 1–12.

[39] G. Xie et al., “Efficient flow recording with InheritSketch on pro-
grammable switches,” in Proc. IEEE 43rd Int. Conf. Distrib. Comput.
Syst. (ICDCS), Jul. 2023, pp. 1–11.

[40] B. A. A. Nunes, M. S. Mendonca, X.-N. Nguyen, K. Obraczka, and
T. Turletti, “A survey of software-defined networking: Past, present, and
future of programmable networks,” in Proc. IEEE Commun. Surveys &
Tuts., vol. 16, Jan. 2014, pp. 1617–1634.

[41] P. Bosshart et al., “P4: Programming protocol-independent packet
processors,” ACM SIGCOMM Comput. Commun. Rev., vol. 44, no. 3,
pp. 87–95, Jul. 2014.

[42] N. McKeown, “Pisa: Protocol independent switch architecture,” in Proc.
P4 Workshop, vol. 516, 2015.

[43] Y. Li, J. Sun, W. Huang, and X. Tian, “Detecting anomaly in large-scale
network using mobile crowdsourcing,” in Proc. IEEE Conf. Comput.
Commun., Apr. 2019, pp. 2179–2187.

[44] D. Barradas, N. Santos, L. Rodrigues, S. Signorello, F. M. V. Ramos,
and A. Madeira, “FlowLens: Enabling efficient flow classification for
ML-based network security applications,” in Proc. Netw. Distrib. Syst.
Secur. Symp., 2021, pp. 1–18.

[45] S. Wang et al., “Martini: Bridging the gap between network measure-
ment and control using switching ASICs,” in Proc. IEEE 28th Int. Conf.
Netw. Protocols (ICNP), Oct. 2020, pp. 1–12.

[46] X. Jia, F. Li, S. Chen, C. Gao, P. Wang, and X. Wang, “RED: Distributed
program deployment for resource-aware programmable switches,” in
Proc. IEEE Conf. Comput. Commun., May 2023, pp. 1–10.

[47] N. Moustafa and J. Slay, “UNSW-NB15: A comprehensive data set for
network intrusion detection systems (UNSW-NB15 network data set),”
in Proc. Mil. Commun. Inf. Syst. Conf. (MilCIS), Nov. 2015, pp. 1–6.

[48] F. Pedregosa et al., “Scikit-learn: Machine learning in Python,” J. Mach.
Learn. Res., vol. 12, pp. 2825–2830, Nov. 2011.

[49] B. Fortz and M. Thorup, “Optimizing OSPF/IS-IS weights in a changing
world,” IEEE J. Sel. Areas Commun., vol. 20, no. 4, pp. 756–767, May
2002.

[50] C. Liu, M. Xu, Y. Yang, and N. Geng, “DRL-OR: Deep reinforcement
learning-based online routing for multi-type service requirements,” in
Proc. IEEE Conf. Comput. Commun., May 2021, pp. 1–10.

[51] S. Uhlig, B. Quoitin, J. Lepropre, and S. Balon, “Providing public
intradomain traffic matrices to the research community,” ACM SIG-
COMM Comput. Commun. Rev., vol. 36, no. 1, pp. 83–86, Jan. 2006.

[52] S. Knight, H. X. Nguyen, N. Falkner, R. Bowden, and M. Roughan, “The
Internet topology zoo,” IEEE J. Sel. Areas Commun., vol. 29, no. 9,
pp. 1765–1775, Oct. 2011.

[53] F. J. Ferri, P. Pudil, M. Hatef, and J. Kittler, “Comparative study of
techniques for large-scale feature selection,” in Machine Intelligence
and Pattern Recognition, vol. 16. Amsterdam, The Netherlands: North
Holland,, 1994, pp. 403–413.

[54] B. H. Menze et al., “A comparison of random forest and its Gini impor-
tance with standard chemometric methods for the feature selection and
classification of spectral data,” BMC Bioinf., vol. 10, no. 1, pp. 1–16,
Dec. 2009.

[55] H. Siddique, M. Neves, C. Kuzniar, and I. Haque, “Towards network-
accelerated ML-based distributed computer vision systems,” in Proc.
IEEE 27th Int. Conf. Parallel Distrib. Syst. (ICPADS), Dec. 2021,
pp. 122–129.

Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on December 31,2025 at 02:49:51 UTC from IEEE Xplore.  Restrictions apply. 



LI et al.: DISTRIBUTED MULTI-TASK IN-NETWORK CLASSIFICATION ON PROGRAMMABLE SWITCHES 3317

[56] C. E. Ferreira, A. Martin, and R. Weismantel, “Solving multiple
knapsack problems by cutting planes,” SIAM J. Optim., vol. 6, no. 3,
pp. 858–877, Aug. 1996.
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