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Abstract—The design of effective multimodal feature fusion
strategies is the key task for multimodal learning, which often
requires huge computational costs with extensive expertise. In this
paper, we seek to enhance multimodal learning via hierarchical
fusion architecture search with inconsistency mitigation. Different
from previous works, our Hierarchical Fusion Multimodal Neural
Architecture Search (HF-MNAS) considers the inconsistency in
modalities and labels, and fine-grained exploitation in multi-level
fusion architectures. Specifically, it disentangles the hierarchical
fusion problem into two-level (macro- and micro-level) search
spaces. In the macro-level search space, the high-level and low-
level features are extracted and then connected in a fine-grained
way, where the inconsistency mitigation module is designed to
minimize discrepancies between modalities and labels in cell
outputs. In the micro-level search space, we find that different
intermediate nodes in the cells exhibit different importance
degrees. Then, we propose an importance-based node selection
mechanism to form the optimal cells for feature fusion. We
evaluate HF-MNAS on a series of multimodal classification tasks.
Empirical evidence shows that HF-MNAS achieves competitive
trade-off performance across accuracy, search time, and inference
speed. In particular, HF-MNAS consumes minimal computational
cost compared with state-of-the-art MNASs. Furthermore, we
theoretically and experimentally verify that the modality-label
inconsistency deteriorates the overall fusion performance of
models such as accuracy and F1 score, and demonstrate that
the proposed inconsistency mitigation module could effectively
mitigate this phenomenon.
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I. INTRODUCTION

W ITH the explosive growth in advanced multimodal
learning applications (e.g., action recognition [1], and

image/video captioning [2]), how to obtain optimal multi-
modal feature fusion strategies becomes a major challenge
that needs to be urgently solved. Conventional multimodal
fusion approaches focus on the combination of multimodal
feature vectors. However, their performance heavily relies on
neural architectures, which are typically manual designs with
extensive expertise. Recently, multimodal neural architecture
search (MNAS) has emerged as a promising automatic design
technique, aiming to search for optimal multimodal neural
network models in an efficient way [3]. Instead of designing
hand-crafted multimodal learning models based on extensive
human expertise, MNAS is able to not only obtain competitive
multimodal models as human experts do but also find new
state-of-the-art fusion strategies [4].

However, existing MNAS methods suffer from the following
two limitations:

The search process of the feature fusion module is
typically treated as a multimodal-coupled single-level search
process, which maps all possible feature connection (fusion)
combinations of all potential modalities into a uniform search
space, and then searches the optimal connections from the
vast search space, as shown in Fig. 1 (a). However, such
a way is rather coarse-grained and neglects the discrimi-
native functions of high-level and low-level features. As a
result, many ineffective feature connections, e.g., unimodal
connections, increase the redundancy of target multimodal
search space and thus decrease the fusion performance, e.g.,
search efficiency and model accuracy. For example, Fig. 1 (a)
shows the unsatisfactory multimodal fusion result found from
the single-level search space, i.e., only a single modality is
involved in the final fusion strategy.

The search of existing methods is based on an implicit
assumption that all the intermediate nodes in each cell have
the same contribution/importance over the performance of
feature fusion, as shown in Fig. 1 (a). Little work focuses
on the validity of the above assumption of MNAS. However,
we discover that each intermediate node in the cell exhibits
a specific contribution to the feature fusion. In this sense,
as shown in Fig. 8, it is desired to apply importance-based
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Fig. 1. Comparison of HF-MNAS with existing MNAS methods. In HF-
MNAS, we re-design the macro-search space (blue dashed frame) and micro-
search space (LFBC and HFBC) for multimodal fusion, in which LFBC and
HFBC denote the low-level and high-level feature blend cell, respectively.

Fig. 2. The combination rule of beliefs. Given the beliefs of the text (yellow
block) and the image (green block), we recombine them to get new beliefs
(orange block). The white block is the measure of belief conflict between the
text and the image.

Fig. 3. Impact of the modalites inconsistency on F1-M score in MM-IMDB
datasets.

Fig. 4. Impact of the modalites inconsistency on F1-M score in HARM P
datasets.

node selection to form the final cells of feature fusion. More-
over, modalities inconsistency (also known as modality-label
inconsistency) between cell outputs also influences the overall
fusion performance, which is not considered in existing MNAS
works.

In this research, we provide a solution called HF-MNAS
(Hierarchical Fusion Multimodal Neural Architecture Search)

Fig. 5. The F1-M scores of the BM-NAS method with the IMM module on
HARM P.

Fig. 6. The F1-M scores of the HF-MNAS method with the IMM module
on HARM P.

to overcome these restrictions. HF-MNAS decouples the
issue into two levels, namely macro and micro, inside the
multi-modal search spaces. Considering the constraint , we
introduce a new macro-level search space, as seen in Fig. 1 (b).
HF-MNAS utilizes a hierarchical fusion approach to combine
different dimension modal features obtained by the unimodal
feature extraction module (UFEM). This approach involves a
low-level feature blend cell (LFBC) and a high-level feature
blend cell (HFBC). The purpose of this fusion is to improve
search speed and address the issue of underutilization of
modal features. In addition, to tackle the issue of inconsis-
tency interference between modalities and labels (Limitation

), we employ an inconsistency mitigation module (IMM)
that comprises deep canonical correlation analysis (DCCA)
and multi-head attention. This module aims to enhance the
correlation between the LFBC and the HFBC, allowing the
intermediate nodes to effectively capture shared features across
different modalities during fusion. Within the micro-level
search space, we observe that various intermediate nodes in
the cell possess varying degrees of significance. Consequently,
we suggest a technique for selecting nodes based on their
relevance in order to create an ideal cell for feature fusion.
Empirical evidence demonstrates that HF-MNAS is superior
to other MNAS. In detail, HF-MNAS improves 1.60% and
0.98% in F1-W and F1-M on the MM-IMDB dataset. On the
HARM P dataset, HF-MNAS boosts 5.32% and 3.37% in
F1-M and accuracy. On the HARM C dataset, HF-MNAS
improves 4.03% and 2.01% in F1-M and accuracy.

The contributions of this paper are as follows:
• We present an efficient multimodal fusion design via

hierarchical fusion architecture search with inconsistency
mitigation. Our architecture search framework separates
the fusion search space into macro and micro levels,
where the IMM module is specifically utilized to remove
the inconsistency in modalities and labels in cell outputs.

• We provide a theoretical analysis from the mathematical
perspective, revealing that the modality-label inconsis-
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Fig. 7. The network architecture of HF-MNAS. The micro-level search space consists of low-level feature blend cell (LFBC) and high-level feature blend
cell (HFBC), which are responsible for hierarchical fusion. The macro-level search space consists of multimodal fusion module (MFM) and inconsistency
mitigation module (IMM), where UFEM denotes unimodal feature extraction module, and CM is the classification module.

Fig. 8. The micro-search spaces (LFBC or HFBC). N denotes the intermediate
node. w means the node weight. Dropout denotes the node output is not used
in the inference phase.

tency could worsen the overall fusion performance of
models such as accuracy and F1 score. Moreover, the
effectiveness of our proposed IMM module for allevi-
ating the above phenomena is also verified on a set of
multimodal fusion methods.

• For the design of micro search space, we observe varying
degrees of significance among distinct intermediate nodes
in a cell. Depending on this observation, we propose a
technique for selecting nodes depending on their impor-
tance to create an ideal cell for feature fusion.

Outline. The other parts of this paper are as follows.
In Section II, we summarize related work on multimodal
fusion and multimodal neural architecture search. In Sec-
tion III, We theoretically and experimentally investigate the
phenomenon that the modalities’ inconsistency deteriorates
the overall fusion performance of models. In Section IV, we
illustrate our methodology in detail. In Section V, we perform
extensive experiments to validate our proposed model and
deeply analyze the results. Lastly, we conclude this paper in
Section VI.

II. RELATED WORK

A. Multimodel Fusion

Multimodal fusion has been widely integrated with various
deep neural networks to enhance performance by exploiting
multiple modalities (e.g., text, image, and audio) simultane-
ously [5], [6], [7], [8], [9], and it can be divided into two
categories: early fusion which performs combination at the
input level and late fusion which performs combination at
the decision level. Accordingly, many efforts have pushed
multimodal fusion forward. For example, [10] proposed gated
multimodal units to determine the impact of different modality
features on hidden units. Reference [11] achieved excellent
performance on the text-visual sentiment analysis task using
a gated multimodal embedding layer and an LSTM layer
with temporal attention. Reference [12] proposed an emotion
classification method based on multimodal signals using the
synergistic effect of multiple neural networks.

However, early fusion fails to consider the complementary
information owing to excessive redundancy features between
modalities, while late fusion misses the better features in
feature extraction process since it performs fusion at the
decision level. Thus, the hybrid fusion approach emerges as an
effective way. For example, [1] enhanced the effectiveness of
modal fusion by integrating information from multiple media
to generate optimal decisions. Reference [13] utilized a co-
attention mechanism to interact with features. Reference [14]
proposed a multimodal transfer module that can be embedded
in various layers to realize multimodal fusion. Reference [15]
proposed a bi-directional transformer structure for text-image
classification. In essence, these works resort to enhanced
networks to build a good modal fusion model. However, these
methods are built upon existing network architectures, limiting
the scope of architecture exploration for better fusion.

B. Multimodel Neural Architecture Search

Starting from Google Brain’s work [16], a series of neural
architecture search (NAS) methods have been proposed and
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developed to jointly optimize the network architecture and
weights for various learning tasks [17], [18], [19], [20]. Pop-
ular search paradigms to realize these NAS methods include
Bayesian optimization [21], reinforcement learning [22], [23],
and evolutionary algorithms [24], [25], [26], [27]. However,
the computational burden of these types of methods is still
unaffordable. Thus, [28] proposed an intuitive solution, Dif-
ferentiable Architecture Search (DARTS), which introduces a
continuous and relaxation strategy to make the gradient-based
search paradigm feasible, thus dramatically boosting the search
process.

With the rapid development of NAS, it has shown tremen-
dous potential in multimodal learning [29], [30], [31] since it
is able to search for the best multimodal network models auto-
matically, instead of human expertise to design manually. For
example, [3] proposed an unimodal features search strategy
using the SMBO algorithm. Reference [30] proposed a generic
MMnas framework that exploits NAS to find the optimal archi-
tecture for different tasks. Reference [32] proposed a novel
search space and used evolutionary NAS to obtain optimal
models for electronic health record tasks. Recently, a bi-level
multimodal neural architecture search framework (BM-NAS)
was proposed and obtained satisfactory performance [4].
Specifically, in the upper level, BM-NAS selects the input
pairs for cells from the pre-trained unimodal backbone model,
and in the lower layer, it selects the fusion operation for each
intermediate node from the search space. In fact, BM-NAS
maps all possible combinations of feature connections into
a uniform search space during the feature selection process,
which ignores the discriminative function between high- and
low-level features. Different from BM-NAS, our HF-MNAS
decouples the multimodal coupled single-level search process
into a macro- and micro-level multimodal search spaces, where
the identification and fusion of low- and high-level features are
considered at macro space. Moreover, HF-MNAS considers
the negative impact of the modalities’ inconsistency from
cell outputs, and handles it with inconsistency mitigation
operation.

III. MODALITIES’ INCONSISTENCY ISSUE

In this section, we conduct theoretical analyses and empir-
ical studies to verify the negative impact of the modalities’
inconsistency over the overall fusion performance.

A. Problem Statement

In the multimodal fusion tasks, modalities’ inconsistency,
also known as modality-label inconsistency, refers to mul-
timodal data exhibiting differences in representing label
information [33], [34], [35], [36]. Specifically, suppose that
there exist two modalities, i.e., text (T) and image (I). For the
c-class classification task, we obtain a set of category prob-
abilities eT = [e1

t , . . . , e
j
t , . . . , ec

t ] and eI = [e1
i , . . . , e

j
i , . . . , e

c
i ]

through the target model for T and I, where e j
t ∈ eT and e j

i ∈ eI

denote the j-th category probability in T and I, respectively,
and j represents the ground-truth label. If the two modalities
can consistently characterize label information, then e j

t should
be maximum in eT , and e j

i should be maximum in eI . If

the modalities and labels information are inconsistent, it is
possible that e j

t or e j
i is not maximum in eT or eI , and may

even be minimum.
If we integrate text and images that are modalities and

labels inconsistent via the fusion operator, the probability of
belonging to the ground-truth label is potentially decreased
when using the fused features for classification. Therefore,
how to mitigate the overall fusion performance degradation
issue arising from the modalities’ inconsistency is crucial for
multimodal fusion.

B. Theoretical Analysis

Motivated by the principle of Dempster-Shafer evidence
theory (DST) [37], we observe that belief mass (b) and
uncertainty (u) are pivotal to estimating the trustworthiness
of the target model’s prediction results [38], [39]. For this
perspective, we can utilize the DST principle to scrutinize
mechanisms for the impact of modalities’ inconsistency on
the overall performance of multimodal fusion architectures.

For the multimodal c-class classification task with text-
image pairs, suppose that the category probabilities for
each modality have been acquired, e.g., the text modal-
ity is eT = [e1

t , e
2
t , e

3
t , . . . , e

c
t ] and the image modality is

eI = [e1
i , e

2
i , e

3
i , . . . , e

c
i ]. Then, we apply DST to obtain each

modality’s opinion, each of which consists of uncertainty and
belief mass, e.g., {uT , {b

j
T }

c
j=1} for text modality opinion and

{uI , {b
j
I }

c
j=1} for image modality opinion. For the text modality

opinion, its uncertainty uT and belief mass b j
T can be acquired

by:

b j
T =

e j
t

S T
, uT =

c
S T

, (1)

uT + b1
T + b2

T + . . .+ bc
T = 1, (2)

S T = (e1
t + 1) + (e2

t + 1) + . . .+ (ec
t + 1), (3)

where b j
T is the belief mass of the j-th class of the text

modality, and the probability of belonging to the j-th class
increases as b j

T grows. uT indicates the trustworthiness of the
classification, and the smaller uT means the better classifica-
tion accuracy. For the image modality, the corresponding uI

and b j
I are obtained similarly to the case of text modality.

Given the opinions derived from the text (i.e., {uT , {b
j
T }

c
j=1})

and image (i.e., {uI , {b
j
I }

c
j=1}) modalities, we leverage the

combination principle of DST to theoretically analyze whether
integrating text and image modality to form a new opinion
(i.e., {u f uison, {b

j
f uison}

c
j=1}) influences the model’s classification

accuracy. Here, b j
f uison and u f uison indicate new belief mass and

uncertainty, as following:

b j
f usion =

1
1 − K

(b j
T b j

I + b j
T uI + b j

IuT ), (4)

u f usion =
1

1 − K
(uIuT ), (5)

where 1
1−K denotes the normalized scaling factor, and K =P

i, j bi
T b j

T is a measure of the conflict amount between text
and image belief mass, as shown in the white block of Fig. 2.

Therefore, we derive the following propositions:
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Proposition 1: Suppose that the modalities are consistent,
in the case bg

I ≥ bmax
T , where bg

I is the belief mass of the index
g of ground-truth label in image, and bmax

T is the maximum
belief mass in text, integrating the image modality in the text
modality makes the new belief mass satisfy bg

f usion ≥ bg
T .

Proof 1.

bg
f usion =

bg
T bg

I + bg
T uI + bg

I uTPC
c=1 bc

T bc
I + uT + uI − uT uI

≥
bg

T (bg
I + uI + uT )

bmax
T + uI + uT

≥ bg
T ,

Proposition 2: When text and image modalities are diver-
gent in subjective opinions or semantic representations (i.e.,
the modalities’ inconsistency), the new overall uncertainty
u f usion increases accordingly. That is, u f usion is positively
correlated with uT and uI .

Proof 2.

u f usion =
uT uIPC

c=1(bc
I uT + bc

T uI + bc
I b

c
T ) + uT uI

=
1PC

c=1

�
bc

T bc
I

uT uI
+

bc
I

uI
+

bc
T

uT

�
+ 1

.

Notably, more detailed proofs are provided in Appendix (see
Supplementary Material).

From the aforementioned propositions, we can obtain the
following conclusions: (1) if the modalities and labels are
consistent, we can have the belief masses bg

T and bg
I in both text

and image modalities should be larger than the corresponding
uT and uI , respectively. According to Proposition 1, we can
get bg

f usion ≥ bg
T . That is, integrating image modality into text

modality boosts the accuracy of model classification. (2) If
modalities and labels are inconsistent, it may imply that only
one of the modalities in the text and image reflects the ground-
truth label (i.e., uT or uI increases) or both modalities fail
to reflect the ground-truth label (both uT and uI increase).
According to Proposition 2, where the u f usion is positively
related to the overall uncertainty (uT or uI) of each modality,
we can have u f usion becomes larger as uT or uI increases,
degrading the model classification accuracy.

C. Experimentation on the Modalities’ Inconsistency Issue

To empirically verify that modalities inconsistency signifi-
cantly deteriorates model performance, necessitating adjusting
the inconsistency of text-image pairs in MM-IMDB and
HARM P datasets. For MM-IMDB, we first partition it into
genre-based subsets according to the ground-truth labels of
image-text pairs. Then, we select an original sample from a
subset and randomly choose a substitute sample sharing at
least one same genre label from the same subset. Finally,
replacing the original text with the substitute sample text
to generate inconsistent data with semantic misalignment.
Regarding HARM P, we divide it into three subsets according
to the not harmful, somewhat harmful, and very harmful labels,
before generating inconsistent pairs by selecting original sam-
ples from very harmful or somewhat harmful subsets and
replacing their text from the not harmful subset.

As shown in the horizontal coordinate of Figs. 3–6, 0%
represents the original MM-IMDB or HARM P dataset, 10%
indicates that 10% of the text-image pairs in the dataset are
inconsistent, 30% denotes 30% inconsistent text-image pairs
in the dataset, and so forth. Subsequently, we analyze the
experimental results in detail. As shown in Fig. 3, the macro F1
scores of both BM-NAS [4] and HF-MNAS (without incon-
sistency mitigation module) exhibit a dramatic performance
degradation on the MM-IMDB dataset as the modal incon-
sistency rate increases. Similarly, Fig. 4 reveals a consistent
performance decline for these methods on the HARM P
dataset, clearly demonstrating that modality inconsistency
severely impairs the overall fusion performance of the models.
To mitigate this negative effect, we propose an inconsistency
mitigation module (more details are given in Section IV-C).
As shown in Figs. 5 and 6, we embed the inconsistency
mitigation module into BM-NAS and HF-MNAS, and find that
both of them outperform their original versions to some extent
on HARM P dataset. These encouraging results validate the
effectiveness of our proposed inconsistency mitigation module.

IV. METHODOLOGY

As shown in Fig. 7, we propose HF-MNAS, which dis-
entangles the NAS problem into macro-level and micro-level
multimodal search spaces. In the following, we describe the
unimodal feature extraction module in Section IV-A, the
micro-level search space in Section IV-B, the macro-level
search space in Section IV-C, and the architecture search and
evaluation in Section IV-D.

A. Unimodal Feature Extraction Module

Following previous multimodal fusion approaches [1], [3],
[4], HF-MNAS uses the same pre-trained unimodal backbone
model as the feature extractor for fair comparison. Specifically,
we employ Maxout MLP as the backbone model for extracting
text modalities (Tlow and Thigh) and VGG Transfer as the
backbone model for extracting image modalities (Ilow and
Ihigh). The formulas are as follows:

Ilow = VGGnet 1(XI), (6)
Ihigh = VGGnet n(XI), (7)
Tlow = Maxout MLPnet 1(XT ), (8)
Thigh = Maxout MLPnet n(XT ), (9)

where XI and XT denote the inputs to the unimodal backbone
model, i.e., image modality and text modality. Ilow and Ihigh

are the lower-level and the higher-level image features that are
obtained by using VGG Transfer with different numbers of
blocks. Tlow and Thigh are the lower-level text features and the
higher-level text features which are obtained by using Maxout
MLP with different numbers of blocks.

B. The Micro-Level Search Space

After obtaining low-level and high-level text/image features,
we elaborate the micro-level search space based on DATRS
[28], i.e., the operation search space of LFBC or HFBC on
edges and intermediate nodes. As shown in Fig. 8-(a), the
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LFBC and HFBC are directed acyclic graphs consisting of N
nodes (two input nodes, one output node, and N − 3 inter-
mediate nodes) and {(N-2)!-1} edges, where each intermediate
node is connected to all its predecessor nodes via a directed
edge. It is worth noting that the input of LFBC is (Tlow, Ilow)
and the input of HFBC is (Thigh, Ihigh).

1) Operation Search Space on Edge: In our work, each
directed edge contains ten different types of primitive search
operations, which are 3×3 max pooling, 3×3 average pooling,
3 × 3 separable convolution, 3 × 3 dilated convolution, skip
connection, none operation, and Linear transformations with
four different activation functions (ReLU, Sigmoid, Tan, and
ELU) [4], [40].

After determining the search space of edge operations, as
shown in Eq. 10, we get the influence of predecessor nodes and
their corresponding edges towards the current node using the
continuous concept of DARTS. That is, we obtain the weights
of 10 different types of operations in each directed edge. Then,
we use the relaxation concept to discrete the operations, where
each intermediate node is connected to two predecessor nodes
by the two operation edges with the largest weights. For more
details, please refer to [28].

õp(i, j)(xi) =
X
op∈O

exp{γ(i, j)
op }P

op′∈O exp{γ(i, j)
op′ }
· op(xi), (10)

where O denotes the operation search space on edges. γ(i, j)
op

indicates the continuous coefficient. xi represents the feature
matrix of the i-th node, and op(·) denotes to operate on xi.

2) Operation Search Space on the Intermediate Node:
After determining the predecessor nodes and their correspond-
ing edges for each intermediate node, we additionally assign
an operations search space to the intermediate nodes. Our goal
is to find the best fusion operation for the two input feature
matrices of the current node. The equations are as follows:

f̃ (node)(x1, x2) =
X
f∈F

exp{β(node)
f }P

f ′∈F exp{βnode
f ′ }

· f (x1, x2), (11)

f (node) = arg max
f∈F

β(node)
f , (12)

where x1 and x2 are the feature matrices. f represents the
fusion operation of the feature matrix in the node. β indicates
the weight of the fusion operation. F denotes the operation
search space of the intermediate nodes, which are as follows:

S um(x1, x2): We fuse the feature matrices from different
modalities by the sum operation.

S um(x1, x2) = x1 + x2. (13)

MHAtt(x1, x2): The multi-head attention mechanism can
improve the model’s feature extraction capability by com-
puting attention weights through several independent attention
heads, each capturing distinct feature relationships. The equa-
tions are as follows:

head1
j = so f tmax

 
Q1 KT

2p
dK2

!
· V1, (14)

head2
j = so f tmax

 
Q2 KT

1p
dK1

!
· V2, (15)

MHAtt(x1, x2) = Concat(head1
1 , head1

2 ,

. . . , head1
h , head2

1 , head2
2 , . . . head2

h) ·Wo, (16)

where Q1/2 = WQ1/2 · x1/2 denotes the query matrix, K1/2 =

WK1/2 · x1/2 represents the key matrix, and V1/2 = WV1/2 ·

x1/2 corresponds to the value matrix.
√

dk is the dimension
of the matrix. Furthermore, Scaled dot product attention
(i.e., S caleDotAtt(x1, x2)) and Bidirectional attention (i.e.,
Bidirectional Attention(x1, x2)) are two potential fusion oper-
ations, which are also integrated into the operation search
space for seeking better fusion architecture.

S queeze Excitation(x1, x2): This makes the network pay
more attention to the meaningful features for the classification
task by learning the importance weights between the feature
channels. As follows, S x1 means compressing the feature
vector x1 by global average pooling to obtain the global
features for each channel. Ex1 refers to enhancing the response
for important features by the activation function.

S E(x1, x2) = Ex1 · x2, (17)
Ex1 = σ(S x1 ·W + b) · x2, (18)

S x1 =
1
L

LX
i=1

x1(B,C, i). (19)

LinearGLU(x1, x2): This operation transforms the features
x1 and x2 by using a gated linear unit to facilitate the
contribution of different modalities to fusion.

LinearGLU(x1, x2) = GLU(x1W1, x2W2)
= x1W1 � sigmoid(x2W2). (20)

ConcatFC(x1, x2): This operation means that two different
modalities are cascaded, and the linear layer with the ReLU
activation function is used to make a linear transformation.

ConcatFC(x1, x2) = ReLU(Concat(x1, x2)W + B). (21)

Multiply(x1, x2): We fuse the feature matrices from different
modalities by the element-wise multiplication operation.

Multiply(x1, x2) = x1 · x2. (22)

Mamba f usion(x1, x2): This operation [41] has potential
strengths for extracting fine-grained multimodal features and
efficiently modeling cross-modal correlations. As follows,
Dwc (·) indicates depthwise convolution operation, ES2D (·)
denotes efficient spatial scanning 2D operation and SiLU (·)
represents the activation function.

M̃ = Dwc(linear(x1)) · Dwc(linear(x2)),
m1/2 = ES 2D(S iLU(M̃)) · S iLU(linear(x1/2),
Mamba f uison(x1, x2) = m1 + m2 (23)

C. The Macro-Level Search Space

As shown in Fig. 7, our macro-level search space consists of
MFM which uses LFBC and HFBC to perform feature fusion,
and NEM to alleviate modal inconsistency. The main processes
and mechanism are as follows.
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Fig. 9. Example of a multi-head attention mechanism. Q, K, and V represent
the query matrix, key matrix, and value matrix respectively.

1) Multimodal Fusion Module: In this module, we use a
hierarchical fusion approach to combine different dimension
modal features obtained by UFEM. This approach involves
LFBC and HFBC. For low-level text and image features (Tlow,
Ilow), we perform fusion using LFBC. For high-level text
and image features (Thigh, Ihigh), we use HFBC for fusion.
Furthermore, we observe that different intermediate nodes in
the cells exhibit different importance degrees. Based on this,
we propose an importance-based node selection mechanism to
form the optimal cells. As shown in Fig. 8, we assign a weight
to each intermediate node and remove the node’s output with
less influence in the inference phase based on the weight. The
formulas are given below:

C1 = LFBC (Tlow, Ilow)

= W1
c1N1

c1 ⊕W2
c1N2

c1 ⊕ · · · ⊕Wn
c1Nn

c1, (24)
C2 = HFBC (Thigh, Ihigh)

= W1
c2N1

c2 ⊕W2
c2N2

c2 ⊕ · · · ⊕Wn
c2Nn

c2, (25)

where C1 and C2 denote the output of LFBC and HFBC,
respectively, N denotes the intermediate node, ⊕ indicates
cascade, W means the weight of the node importance, and
HF-MNAS determines whether to retain the node output or
not based on weights.

2) Inconsistency Mitigation Module: DCCA [42] is a sta-
tistical analysis technique that sufficiently combines neural
networks with canonical correlation analysis to reflect the
overall correlation between two groups of feature vectors. In
our work, we utilize the method to optimize the correlation
between different modal features. As shown in Eqs. 26- 27, f
denotes the neural network. C denotes the output of LFBC or
HFBC. w indicates the parameters. O represents the output.
Shown in Eq. 28, the purpose of DCCA is to jointly learn w1
and w2 to make a high correlation between O1 and O2.

O1 = f1(C1,w1), (26)
O2 = f2(C2,w2), (27)

(w∗1,w
∗
2) = arg max

w1,w2

corr( f1(m1,w1), f2(m2,w2)). (28)

After obtaining the features optimized by DCCA, as shown
in Fig. 9, we employ multi-head attention (MHA) [43] to
strengthen the network’s focus on common attributes between
O1 and O2. Firstly, we compute the query (Q), key (K), and
value (V) matrices for both O1 and O2. Subsequently, lever-
aging the capability of each attention head to capture distinct

feature relationships, we aggregate the outputs from multiple
heads to construct the final multi-head attention representation.
It is noteworthy that the synergistic usage of DCCA and
MHA achieves dual benefits: (1) effectively mitigating the
interference caused by modality-label inconsistency, while (2)
facilitating enhanced feature interaction between LFBC and
HFBC to optimize multimodal fusion performance.

D. Architecture Search and Evaluation

1) Architecture Parameters: The weights of the primitive
operations (γ) on the edges are shown in Eq. 10, the weights
of the primitive operations (β) on the intermediate nodes are
shown in Eq. 11, and the weights of the intermediate nodes
importance (wi) are shown in Fig. 8. γ is used for the operation
selection of the features for the input cells (i.e., LFBC and
HFBC). β is used for the operation selection of multimodal
fusion within the intermediate nodes. wi is used to rank the
importance of intermediate nodes.

2) Search Algorithm: After constructing the neural net-
work model through the defined micro-level search space and
macro-level search space, we use DRATS [28] to alternately
optimize the architecture parameters and network parameters,
where the architecture parameter contains γ and β aiming to
find the optimal structure, and the network parameter involves
the parameter wi of the intermediate node importance. The
equations are shown as follows.

min
α

Lossval(w∗(γ, β), (γ, β)), (29)

s.t. w∗(γ, β) = arg min
w

Losstrain(w, (γ, β)), (30)

where Losstrain and Lossval represent the training and valida-
tion losses, respectively, which are jointly determined by the
network parameter (w) and the architecture parameter (γ, β).
The optimization of the network parameter and architecture
parameter iterations are shown in the following steps:

Firstly, We initiate the network parameter (w) and the
architecture parameter (γ, β) of the model.

Secondly, we minimize the training loss by fixing γ and
β to obtain the network weights w∗(γ, β).

Then we minimize the validation loss by fixing w∗(γ, β)
to obtain the architecture parameter γ and β. Finally, the
optimization of w and (γ, β) is iteratively performed to get
better structure parameters. Specifically, in Algorithm 1, we
describe the architecture search process of HF-MNAS.

Note that once the above iterations converge, we utilize the
architecture parameter obtained from training to discretize the
operations to obtain the optimal network structure and retrain
the structure for the final evaluation.

3) Evaluation: In the architecture evaluation, we select
the LFBC and HFBC structures with the best validation
performance as our multimodal fusion module. In particular,
since text features contain abundant semantic information, we
use bidirectional long and short-term memory (Bi-LSTM) for
processing in the classification module. Finally, the classifica-
tion is performed by cascading it with IMM output.

In the inference phase, as shown in the blue dashed box in
Fig. 8, we hierarchically stacked the LFBC and HFBC as the
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Algorithm 1 The Architecture Search Process of HF-MNAS

final multimodal fusion module. Then, we used the training
set and validation set to jointly train the unimodal model and
the searched structures.

V. EXPERIMENTS

In this section, we conduct experiments on five pub-
licly available multimodal datasets, which are MM-IMDB,
HARM P, HARM C, NTU RGB-D, and EgoGesture. Com-
pared with the state-of-the-art methods, our proposed approach
performs better on different evaluation metrics.

A. Datasets and Settings

1) Datasets: The MM-IMDB dataset was proposed by
Ovalle et al. [10]. The dataset contains 26 different film genres
such as drama, comedy, horror, etc. and the film genres are
classified based on the image posters and the plot of films.
The HARM P and HARM C datasets were proposed by
Pramanick et al. [44] and composed of harmful memes related
to US politics and COVID-19, respectively, where the image
modality is collected from Google Chrome and several social
platforms such as Reddit, and the text modality consists of
words extracted from the images. NTU RGB-D was proposed
by Shahroudy et al. [45] as a large-scale dataset for multimodal
human action recognition, with action sequences captured by
both depth and RGB cameras, encompassing 56 diverse human
action categories. EgoGesture was proposed by Zhang et al.
[46] as a multimodal gesture recognition dataset consisting of

TABLE I
STATISTICS OF DATASETS, WHERE I, T, V, AND P REPRESENT IMAGE,

TEXT, VIDEO, AND POSE, AND R AND D DENOTE RGB AND DEPTH
IMAGE, RESPECTIVELY

RGB and depth images covering 50 different subjects and 6
distinct scenarios.

As shown in Table I, each of the five datasets is divided
into a train set, a development set, and a test set. For a
fair comparison, the division of the datasets used in our
experiments is consistent with baselines. For example, the
MM-IMDB dataset is divided into 60% as a train set, 10% as
a development set and 30% as a test set, and the HARM P
and HARM C datasets are divided into 85% as a train set,
5% as a development set and 10% as a test set, the NTU
RGB-D/EgoGesture dataset is divided into 55/40% as a train
set, 5/20% as a development set and 40/20% as a test set.

2) Implementation Details: Our method adopts a single
A100 GPU (80GB) for training, with the batch size set to
8, epoch set to 30, and dropout set to 0.1. The learning rate
and weight decay rate for the architecture parameters are set
to 3e−4 and 1e−3, respectively. The max learning rate, min
learning rate, and weight decay rate for the network parameters
are set to 1e−3, 1e−6, and 4e−3, respectively. Furthermore, we
use Adma to optimize the network and architecture parameters.

3) Evaluation Metrics: We assessed our model by utilizing
widely used evaluation metrics. Specifically, for the MM-
IMDB dataset, we used the weighted F1 score and macro
F1 score to evaluate the effectiveness of HF-MNAS. For the
HARM P and HARM C datasets, we use the accuracy and
the macro F1 score to evaluate the effectiveness of HF-MNAS.
For the NTU RGB-D and EgoGesture datasets, we employ
accuracy to evaluate the effectiveness of HF-MNAS.

B. Baselines

For performance comparison, we use the following base-
lines:

Unimodal baselines
• Maxout MLP [47], maxout is a function approximator.

A standard multilayer perceptron (MLP) network can
approximate arbitrary functions as a way to improve task
performance if the hidden layer contains enough neurons.

• BERT [48], a pre-trained language model, excels at
capturing textual semantics and contextual knowledge.

• BERT+Prompt [49], Petroni et al. further improved
BERT to enhance its ability to model sequences.

• VGG [50] attempts to build a deep network by using
small convolutional kernels to explore the importance of
the network’s depth on image recognition accuracy.
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• DenseNet-161 [51] is a dense convolutional network
which proves that convolutional networks can be trained
more efficiently where there are connections between
layers near the input and close to the output.

• ResNet-152, He et al. [52] proposed a residual learning
framework to simplify the training of networks that are
deeper than previously used networks.

• ResNeXt-101, Xie et al. [53] proposed a highly modular
network architecture for image classification by repeating
a building block.

• Inflated ResNet-50, Baradel et al. [54] used the recurrent
spatial attention model to process features extracted from
different local glimpses for action recognition.

• Co-occurence, Li et al. [55] proposed an end-to-end
convolutional co-occurrence feature learning framework
for human action recognition.

Multimodal baselines

• Two-stream [56] is a two-stream ConvNet architecture
containing spatial and temporal networks that efficiently
improves the performance of the model.

• GMU [10] is a gated neural network model for
multimodal learning that ensembles multimodal represen-
tations by fusing features from different modalities.

• CentralNet [1] is a multimodal fusion method that gener-
ates an optimal strategy by aggregating information from
diverse multimodalities.

• MFAS [3] utilizes NAS to address the multimodal classi-
fication problem, which aims to find the best architecture
for a given dataset using search space operations.

• MMBT [15] is a supervised multimodal bidirectional
transformer that fine-tunes an unimodal encoder by com-
bining image and text information.

• BM-NAS [4] is a bilayer multimodal NAS framework
that allows efficient search of unimodal features and
multimodal features for fusion operations.

• MMBV [57] is a Multimodal BERT-ViT model that
improves task performance by focusing on the use of
weaker modal information and regularized loss function.

• ViLBERT, Lu et al. [13] proposed a visual language
BERT to learn image features and text semantics.

• VisualBERT [58] is built through a stack of transformer
layers, which can easily align text and images by using
the self-attention mechanism.

• CLIP [59] is a contrastive language-image pretraining
model that leverages natural language supervision to learn
visual concepts, building upon and simplifying ConVIRT.

• MOMENTA [44] is a multimodal neural network that can
utilize global and local information from input features to
enhance model performance.

• PVLM [60] is a few-shot multimodal learning method
with prompts for modeling visuo-perceptual language.

• Prompt Approach, Ji et al. [61] proposed a prompt-based
approach to detect harmful memes and boost performance
by converting visual cues into textual features.

• Harmonic-NAS [62] is a hardware-aware approach for
jointly optimizing unimodal backbone and multimodal
fusion networks.

• PMF-large [63] is an efficient multimodal fusion method
devoted to fusing unimodal pre-trained transformers.

• DynMM [64] is a novel method for adaptively fusing
multimodal data and generating data-dependent forward
paths in the inference process.

• DC-NAS [65] is an evolutionary-based MNAS approach
that achieves time reduction and performance improve-
ment through a divide-and-conquer network structure.

• MM-ENAS [66] is a multimodal multi-scale evolution-
ary network structure search approach that achieves the
unified hierarchical feature representation and the optimal
fusion operation selection through a two-stage manner.

• I3D, Carreira and Zisserman [67] proposed a new Two-
Stream Inflated 3D ConvNet for action recognition.

• MTUT, Gupta et al. [68] proposed a simple but effective
multi-task learning framework to model gesture progres-
sion and frame-level recognition.

• EDF, Liang et al. [69] proposed an evolutionary algo-
rithm for searching the optimal combination scheme of
different fusion operators to fuse multi-view features.

• CSG-NAS [70] is an effective MNAS method based on
shrink-and-expansion search space concepts and employs
an adaptive strategy with evolutionary algorithms to facil-
itate knowledge sharing and reuse.

C. Experimental Results

1) Experimental Results on HARM P and HARM C
Datasets: As shown in Table II, HF-MNAS obtains the
optimal results on the harmful meme detection tasks across
unimodal and multimodal. Specifically, on the HARM P
dataset (3)-Class classification), HF-MNAS is superior to
BERT by 19.93% and 1.87% in terms of the F1-M score
and accuracy when trained with text modality. Our model
outperforms ResNeXt-101 by 9.65% and 2.43% in the F1-
M score and accuracy under image-only training. Compared
to multimodal fusion methods, our method outperforms all of
them. For instance, our model exceeds the method proposed by
[61] in terms of F1-M score and accuracy by 2.1% and 1.83%.
Our method outperforms BM-NAS by 5.32% and 3.37% in F1-
M score and accuracy. On the HARM C dataset (3)-Class
classification), HF-MANS also achieved consistent perfor-
mance improvements. For instance, our proposed method is
superior to BERT by 2.87% and 3.51%, to ResNeXt-101 by
7.17% and 0.34%, and to BM-NAS by 4.03% and 2.01% in
F1-M score and accuracy. For the HARM C and HARM P
datasets with the 2-class classification mentioned in Table II,
our model still achieves a comparable experimental result.
From these encouraging results, it is clear that our model is
able to better fuse the relevant information between different
modalities. Moreover, the ablation study in Section V-D also
provides sufficient evidence for the validity of our method.

2) Experimental Results on MM-Imbd Dataset: Table III
reports the results of HF-MNAS on the MM-IMDB dataset
compared with the SOTA methods. It is clear that HF-MNAS
consistently outperforms baselines in most test cases. Specif-
ically, HF-MNAS outperforms Maxout MLP by 4.70% and
14.87% in terms of the F1-W and F1-M scores, respectively,
when trained with text modality. The proposed method is
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TABLE II

EXPERIMENTAL RESULTS WITH MACRO F1 (F1-M) AND ACCURACY ON HARM P DATASET AND HARM C DATASET. † INDICATES EXPERIMENTAL
RESULTS OF OWN REPRODUCTION. THE 3-CLASS CLASSIFICATION DATASETS CONTAIN VERY HARMFUL, PARTIALLY HARMFUL, AND UNHARM-

FUL CATEGORIES. THE 2-CLASS CLASSIFICATION DATASETS CONTAIN HARMFUL AND UNHARMFUL CATEGORIES. THE RED INDICATES
THE BEST RESULTS AND THE GREEN INDICATES THE SECOND BEST

higher than VGG by 0.62% and 0.57% in terms of the F1-W
and F1-M scores under image-only training. This result shows
that our method could select the appropriate operation for dif-
ferent modalities to boost the performance of tasks. Compared
to the NAS-based approaches, our method outperforms MFAS
and BM-NAS by 1.67% and 1.60% in F1-W and by 6.99%
and 0.98% in F1-M, respectively. Compared with CSG-NAS,
DC-NAS, and MM-ENAS methods, HF-NAS still shows com-
parable performance. The performance improvement can be
explained that our hierarchical fusion method can bring better
interaction between modalities. Moreover, the use of DCCA
and multi-head attention can further mitigate the interference
of modality inconsistency.

3) Experimental Results on NTU RGB-D and EgoGesture
Datasets: To validate the generalizability of HF-MNAS, we
compare the experimental results of NTU RGB-D (involving
video and pose modalities) and EgoGesture (containing RGB
and depth image modalities) multimodal datasets. As shown
in Tables IV and V, our proposed method consistently outper-
forms the baseline models across most test cases. Specifically,
on NTU RGB-D dataset, when both video and pose modalities
are used for training, HF-MNAS achieves 0.67% higher than
BM-NAS in Acc metrics (1.65% higher than MFAS, and
0.3% higher than DC-NAS, respectively). On the EgoGesture

dataset, when both RGB and Depth image are used for
training, HF-MNAS achieves 0.35% higher than BM-NAS in
Acc metrics (0.15% higher than EDF, and 0.09% higher than
DC-NAS, respectively). Then, it is clear that our proposed
hierarchical Fusion multimodal neural architecture search
method exhibits strong generalizability and can effectively
seek competitive fusion architectures for multimodal tasks.

D. Ablation Study

1) Impact of Different Components: To systematically eval-
uate the contribution of each component in our model, we
conducted extensive ablation experiments on the HARM P
(3)-Class classification) and MM-IMDB datasets in both
unimodal and multimodal settings. As shown in Tables VI
and VII, the base architecture comprises three fundamental
modules: UFEM, LFBC, and HFBC. Through incremental
integration of core components (DCCA, MHA, and LSTM),
we demonstrate that each component contributes positively
to model performance. Notably, the complete architec-
ture integrating all components (Base+DCCA+MHA+LSTM),
designated as our HF-MNAS framework, achieves optimal
performance. Specifically, on the HARM P dataset, HF-
MNAS achieves a 4.14% and 4.73% improvement over Base in
F1-M and Acc scores under text-only training. For image-only
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TABLE III
EXPERIMENTAL RESULTS WITH WEIGHTED F1 (F1-W) AND MACRO F1

(F1-M) ON MM-IMDB. ∗ DENOTES MNAS METHODS, AND † INDI-
CATES EXPERIMENTAL RESULTS OF OWN REPRODUCTION

TABLE IV

EXPERIMENTAL RESULTS ON NTU RGB-D DATASET

training, HF-MNAS surpasses the base by 2.95% and 3.95%
in F1-M and Acc scores. When both image and text modalities
are used for training, HF-MNAS achieves 4.08% and 3.63%
higher than Base in terms of F1-M and Acc metrics. Addi-
tionally, the core components also show tremendous potential
on the MM-IMDB dataset. It is a strong demonstration that
our employed components can improve the model’s overall
performance.

2) Impact of Unimodal Features Selection: In order to
validate the effectiveness of fusing low-level features using
LFBC and high-level features using HFBC, we perform a set

TABLE V

EXPERIMENTAL RESULTS ON EGOGESTURE DATASET

TABLE VI

COMPARISON AMONG DIFFERENT COMPONENTS ON TOP OF THE BASE
METHOD (CONSISTING OF UFEM +LFBC +HFBC) IN THE UNIMODAL

SETTING ON THE HARM P DATASET

TABLE VII

COMPARISON AMONG DIFFERENT COMPONENTS ON TOP OF THE BASE
METHOD (CONSISTING OF UFEM +LFBC +HFBC) IN THE MULTI-

MODAL SETTING ON MM-IMDB AND HARM P DATASETS

Fig. 10. The impact of unimodal feature selection.

of ablation experiments at the feature inputs of LFBC and
HFBC on the HARM P (3)-Class classification) dataset. As
shown in Fig. 10, the abscissa indicates the input features
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Fig. 11. Impact of hyperparameters (β, γ, and w and the stacking number of
LFBC and HFBC on model performance on the MM-IMDB dataset.

Fig. 12. Impact of hyperparameters (β, γ, and w and the stacking number of
LFBC and HFBC on model performance on the HARM P dataset.

of LFBC, and the verticle represents the input features of
HFBC. The different color dots indicate the F1-M scores.
For instance, the yellow dot indicates that the F1-M score
is 91.74% on the HARM P dataset when the inputs of LFBC
are low-level text (tl) and image features (il) and the inputs of
HFBC are high-level text (th) and image features (ih), where
i and t represent text and image, l and h indicate low-level
and high-level features, respectively. From Fig. 10, we can
see that an unexpected result can be achieved by using two
independent cells to fuse the low- and high-level features of
different modalities.

3) Hyper-Parameters Analysis: We then investigate the
impact of hyperparameters (β, γ, and w) on the performance of
the multimodal task. To systematically evaluate their influence,
we fix the number of intermediate nodes in both LFBC and
HFBC cells to 4 during the search phase. Subsequently, we
employ a continuous relaxation strategy to alternately optimize
the architectural parameters (β and γ) and network weight
parameters (w). In the inference phase, we select the operation
with the largest architectural weight (i.e., top1 β) as the fusion
operation of the intermediate node, and the features with the
top 2 architectural weights (i.e., top2 γ) as the inputs of the
intermediate node. Next, according to the network weights w,
we select the top K most important intermediate node outputs
(e.g., top3 w) cascade as the output features of the LFBC or
HFBC cells. Finally, we adjust the stacking number of LFBC
and HFBC cells to analyze the impact of hyperparameters on
the model performance.

TABLE VIII

THE EFFECT OF CANDIDATE OPERATIONS OF INTERMEDIATE NODES

TABLE IX
THE COMPARISON OF SEARCH COST (GPU-HOURS)

As shown in Figs. 11 and 12, on the MM-IMDB dataset,
the optimal performance is achieved when the stacking number
of LFBCs and HFBCs is 1, and the architectural and network
parameters are top1 β, top2 γ, and top3 w; on the HARM P
(3)-class classification) dataset, the highest performance is
gained when the number of stacks of LFBCs and HFBCs is
2, and the architectural and network parameters are top1 β,
top2 γ, and top3 w. Therefore, from Figs. 11 and 12, we can
find that the selection of the architectural parameters (β and
γ), network weight parameters (w) and the stacked number of
cells indeed influence the model performance to a different
extent. This is due to the fact that the intermediate nodes and
the stacked number of cells can capture different information
during feature fusion thus leading to different results.

4) Search Cost: Table IX provides a comprehensive com-
parison of the search cost between the NAS-based approaches
on the MM-IMDB dataset, where HF-MNAS only utilizes
one LFBC and HFBC and the number of intermediate nodes
is 4. As shown in table IX, compared with MFAS, our
method achieves a search speed at least 12x faster and also
improves the F1-M score by 1.67%. Compared to BM-NAS,
HF-MNAS achieves at least 1.24x search speed-up and 1.60%
enhancement in F1-M score.

5) Impact of Intermediate Node Operations: To explore the
impact of candidate fusion operations of intermediate nodes on
the model performance, in the ablation experimental settings,
we fix the stacking number of LFBCs and HFBCs, as well
as the number of intermediate nodes, to be 1. Subsequently,
we conduct extensive experiments on the MM-IMDB and
HARM P (3)-class classification) datasets and evaluate the
specific contribution of each candidate fusion operation to
overall model performance. As shown in Table VIII, on
the MM-IMDB dataset, the Mamba fusion and Multi-head
Attention operations demonstrate superior efficacy; on the
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Fig. 13. Impact of head numbers on HARM P dataset.

Fig. 14. Impact of Batch size on HARM P dataset.

Fig. 15. Impact of dropout rate on accuracy.

HARM P dataset, the Sum, Multi-head Attention, and Con-
catFC operations show competitive performance. Notably, our
carefully designed search space offers significant extensibility,
allowing flexible integration of advanced fusion methods (e.g.,
Mamba fusion) via feature dimension adjustment to further
optimize the fusion architecture.

Furthermore, the observed performance disparity between
HARM P and MM-IMDB datasets primarily arises from the
fact that HARM P represents a simpler 3-class classification
task, while MM-IMDB involves more challenging multi-label
classification across 26 fine-grained categories with frequent
label co-occurrences. This difference also highlights the sensi-
tivity of different tasks to the fusion operation selection. Thus,
it is possible to integrate more potential fusion operations
in the designed search space to improve the classification
accuracy for different tasks in the future.

6) Impact of Head Numbers of Multi-Head Attention:
To evaluate the impact of the head numbers of multi-head
attention in multimodal fusion, we conduct experiments using
different numbers of heads on HARM P (3)-class classifica-
tion). As shown in Fig. 13, the blue and yellow denote the
F1-M and accuracy, respectively. From the figure, we observe
that different head numbers generate different impact degrees
over the model performance, e.g., when the head number is 4,
the model performs best.

7) Impact of Batch Size and Dropout Rate: We explore the
effect of batch size and dropout rate on model performance
on HARM P (3)-class classification). As shown in Fig. 14,
the blue indicates the F1-M and the yellow denotes the
accuracy. As shown, as the batch size increases, the model
performance tends to increase and then decrease slowly, the

Fig. 16. Impact of dropout rate on F1-M.

best performance is achieved when the batch size is 8. Fig. 15
and 16 show the simulation results of HF-MNAS and BM-
NAS in terms of the impact of dropout rate, where the blue
indicates the accuracy and F1-M achieved by our method for
different dropout rate settings. From the figures, we find that
the model achieves a great performance when dropout is set
to 0.2.

VI. CONCLUSION

The goal of this paper is to design an efficient multimodal
feature fusion approach for multimodal learning tasks. This
goal is realized by the proposed hierarchical fusion architec-
ture search method with an inconsistency mitigation strategy
(called HF-MNAS). Different from existing approaches, our
HF-MNAS performs fine-grained exploitation in multi-level
fusion architectures, and tackles the issue of inconsistency
in modalities and labels. The proposed HF-MNAS method is
examined on a set of multimodal datasets. The experimental
results validate the competitiveness of HF-MNAS in dealing
with various multimodal learning tasks, the efficiency of the
proposed search space and optimization strategies, and the
effectiveness of the designed components in HF-MNAS.

However, the proposed HF-MNAS approach can still be
improved in two aspects. First, the search space size of
multimodal feature fusion can be expanded. In particular, the
cell-based search space in HF-MNAS only contains seven
optional fusion operations and is dominated by attention mech-
anisms, which limits the potential of seeking more prospective
architectures. However, we should notice that an enlarged
search space often leads to an increase in computational
cost. Second, the feature extraction ability of the unimodal
backbone model can be further enhanced. In fact, HF-MNAS
employs the common unimodal backbone model and yet
achieves superior performance. It is still necessary to integrate
advanced unimodal feature extraction methods into our method
for further performance improvement. In the future, we will
pay more attention to the holistic study of the enlarged yet
efficient search space as well as the enhanced backbone model
for compound benefits.
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