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Abstract—With advances in the edge computing (EC) and
federated learning (FL) technologies in jointcloud, the edge FL
service market has emerged recently and it requires trading edge
resources between model requesters and data owners to complete
FL tasks, which needs to incentivize sufficient data owners to
participate in model training tasks. However, the limitations
of resource trading and incentive design for edge FL service
market have not been well addressed. In this paper, we propose
a two-level blockchain-aided resource trading mechanism for
encouraging appropriate edge servers to compete for dynamic
FL tasks from the market while incentivizing data owners to
participate in the FL tasks. At the upper level, we apply the
deep learning-based reverse auction to model the dynamics of
the task server selection process, with the aim of maximizing
the total social welfare of the edge FL service market, where the
edge server, as a seller, considers not only the data contribution of
edge devices but also the cost of using blockchain when bidding.
At the lower level, the edge servers offer rewards in exchange
for the data owners’ participation, while the parameter aggre-
gation is completed through the blockchain in a decentralized
manner, which improves the FL’s robustness. Then, we utilize
the Stackelberg game to model the dynamic process that the data
owners compete for the servers’ revenue. We conduct extensive
simulation experiments and the experimental results show that
the proposed mechanism is able to get maximized social welfare
and provide effective insights and strategies for the resource
trading in the edge FL market to complete the federated training.
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I. INTRODUCTION

HE past decade has witnessed an explosive growth of

cutting-edge mobile and edge devices of Internet of
Things (IoT) [1], which generate massive raw data at the
edge network [2], [3]. Currently, with the development of
jointcloud computing, the worldwide network has 7 billion IoT
devices and 3 billion smartphones, and it is expected to reach
80 billion devices, which will result in 180 trillion gigabyte
global data in 2025 [4]. The data from these edge devices
can exhibit very valuable insights. However, processing such
massive data through cloud computing would be ineffective
due to the significant transmission delay and unreliability [5].
A natural solution is to deploy cloud computing services at
the edge of the network where data is generated. This can be
achieved by the edge computing (EC) [6], where the data at
the edge network is exploited via artificial intelligence (AI)
to enable various intelligent services, such as edge caching,
model training, and model inference [7].

In EC, a large number of edge devices are required
to process some important artificial intelligence (AI) tasks
(e.g., object detection, image classification, and event predic-
tion [8]) to enable data-driven intelligent applications, and one
key to enable Al models is the ability of learning/training
models using massive training data [9]. With the fast growth
of data generated by various IoT devices, the learning/training
of Al models becomes a dominant workload in distributed
EC systems with limited resources [10], [11], [12]. Federated
learning (FL) [13], [14], [15] is a promising solution to
tackle the above problem, since it allows distributed users
to collaboratively train a shared model while preserving all
training data on their devices, which also protects data privacy
[16], [17], [18].

Despite its prominent benefits, when applied in EC, FL
comes with new challenges to handle [19], [20]. In the context
of FL in EC (here called edge FL), the distributed participants,
including edge servers (ESs) and edge devices (EDs), are
profit-driven and aware of the value of their local data [21].
But the values of these local resources are not fully utilized
in the edge FL system. One of the main reasons is the
lack of an efficient service market mechanism for edge FL
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Fig. 1. Competitive relationships between different members of the edge FL
service market. Edge server and its connected edge devices form an edge
subsystem aiming to compete for rewards when performing the FL tasks
published by the task allocation system; Different edge devices within the
subsystem compete for rewards from the edge server.

applications, where users can sell their computing resources
and local data for model training, and in return receive
payment from buyers who require trained models [22]. In this
way, users can trade their computing and data resources with
rewards paid by model requester. However, the key challenge
in establishing a successful FL service market lies in how
to efficiently incentivize data owners to contribute sufficient
training data [23], [24].

The above issue is more serious in the newest edge FL
service market, as shown Fig. 1, which operates with a two-
level topology, involving the cooperation at both cloud-edge
level and edge-end level. Specifically, the cloud-edge cooper-
ation refers to the resource trading between model requesters
(from task allocation system) and ESs (which are connected
by a set of resource/communication-constrained EDs). That
is, the qualified ESs compete for those FS tasks published
by model requester in the FL service market. The edge-end
cooperation means that a set of EDs within the communication
range submit trained gradients to their corresponding ESs for
parameter aggregation. Hence, designing an incentivization
model that captures this two-level cooperation in edge FL
service market poses a significant challenge.

Moreover, it can be found that the above edge FL service
market also faces significant challenges related to the central-
ized ESs that are responsible for model parameter aggregation,
which can be fragile and result in loss for all associated
EDs [17]. In addition, the presence of potentially malicious
EDs would mislead the model training process via uploading
incorrect masked gradients and unmasked shares.

To address the above issues, we in this paper introduce a
two-level blockchain-aided resource trading model to facilitate
the trading of edge resources for FL tasks. Different from
existing studies [33], [36], [37], [38], which ignore some
essential costs (e.g., storage and communication overheads)
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consumed by blockchain, we consider the cost of using
blockchain in the blockchain-aided FL. (BCFL) model, where
an efficient edge FL service market is created to allow users
to securely buy and sell computing resources. We then pro-
pose a deep learning-based reverse auction to select ESs and
determine resource pricing, aiming to ensure maximum social
welfare while meeting rationality and incentive compatibility
requirements. Moreover, the Stackelberg game is utilized to
model the competition behaviors among EDs for ESs revenue,
where the blockchain is employed for parameter aggregation
in smart contracts deployed on ESs, mitigating single-point
failures and malicious participation. The effectiveness of the
above mechanisms has been verified through extensive exper-
iments.

To sum up, we highlight three key advantages compared to
previous studies:

1) We propose a Two-level BlockChain-aided Incentive
Mechanism termed as TBCIM that models the
complex trading cooperation of different edge FL
participants.  Intuitively, this mechanism utilizes
thecloud-edge-end cooperation to enable an efficient
edge FL service market, where users can buy and sell
computing resources in a credible way. Especially,
the coordination by the ESs in proximity allows for
more efficient computing resource allocation among
communication-constrained EDs.

2) We design a deep learning-based reverse auction
to model the cloud-edge cooperation process between
model requesters and ESs. Different from conventional
auctions, this deep learning-based auction can maximize
total social welfare while satisfying the individual ratio-
nality and incentive compatibility constraints. Besides, a
dynamic threshold scheme is devised to check whether
the data quality (e.g., data distribution) of data owners
can meet the requirements of consecutive training tasks.

3) We utilize the Stackelberg game to model
the edge-end cooperation process that the EDs
compete for the ESs’ revenue, where the blockchain
is introduced to implement parameter aggregation
mechanism in smart contract (deployed in ESs), which
avoids single-point failure and malicious participation.
To ensure reasonable rewards in exchange for the data
owners’ participation, the gas fee of using blockchain
for parameter aggregation is measured and considered
as training cost in the design.

To the best of our knowledge, our proposed TBCIM is
the first cloud-edge-end cooperation mechanism for incen-
tization of blockchain-aided FL service market. Note that,
different from existing works [9], [22], [24], we deploy the
blockchain in ESs rather than all the edge devices to perform
parameter aggregation, and only allow ESs to participate in
computationally-expensive mining competition for operating
the blockchain, which thus reduces unnecessary mining over-
head and recourse waste of resource-constrained EDs.

The rest of this paper is organized as follows. Section II
presents the system model. Section III and Section IV elab-
orate the upper auction process and the lower Stackelberg
process in detail, respectively. Section V gives the experiment
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Fig. 2. An illustration of the proposed TBCIM incentive framework for edge FL service market, which is composed of upper-level reverse auction and

lower-lever Starkelberg game.

results of the proposed method. Section VI reviews the related
work. Section VII concludes the work.

II. SYSTEM MODEL

The following is the detailed description of the proposed
two-level blockchain-aided model.

A. System Overview

Taking Fig. 2 as an example, we can see that the proposed
TBCIM is composed of a set of EDs and a set of ESs in
the FL service market, e.g., ES = {ESy,ES,,...,ESg}.
Each ES; (s = ,S) is connected to a set ED, =
{ED;:1,ED;>,...,ED, n} with N EDs. The key compo-
nents of proposed framework are shown as follows:

1) Task Allocation System: The system is deployed at
cloud (or jointcloud), and it is responsible to perform
the publication of the FL tasks to ESs while selecting
data owners to act as FL. workers. The main goal of
this system is to achieve optimal model performance
and earn the corresponding bonus from the customer.
Consequently, the system from cloud (or jointcloud)
delivers the gains to ESs, indirectly encouraging EDs
to actively participate in the model training process.

2) Edge Servers: There are a set of ESs as nodes of the
blockchain, in which each ESs is connected to a set
of EDs (clients). We make the assumption that this con-
nection is maintained throughout training. Each ES sells
its resources to execute smart contracts and consensus
(e.g., mining) of the blockchain. As an intermediary
component that connects the cloud and EDs, the ESs
collect the profile of each ED and ensure a balanced

distribution of gains between the overall system and the
connected EDs.

3) Edge Devices/Data Owners: Each ED as client in FL
trains the model using its local dataset and subsequently
generates transactions to store the parameters of the local
model in the blockchain. Then, the smart contract in
blockchain aggregates all local model parameters and
stores the aggregated parameters in blockchain as global
model parameters for next updates. EDs start next local
updates by downloading blocks containing latest global
parameters to update the local model.

In the edge FL system, the centralized ES, which is
responsible for model parameter aggregation, is fragile due to
single-point failure and may bring loss to all its corresponding
EDs [27], [28]. Moreover, some EDs may be malicious and
their dishonest behavior would mislead model training. If no
auditability, dishonest ED may upload incorrect masked gra-
dients and unmasked shares to central ES [29]. To tackle the
above issue, we introduce blockchain into the edge FL service
market that leverages smart contracts to facilitate efficient
interactions in resource trading, which protects against unre-
liable behaviors of untrustworthy ESs and preserve privacy of
ESs and EDs [30].

Blockchain-aided federated learning:Given EDs’ limited
resources, we deploy the blockchain on multiple edge servers
to avoid single-point failures. Our architecture addresses the
single-point failure limitation of traditional FL frameworks
by enabling multiple ESs to cooperatively train a single FL
model through decentralized orchestration. When an ES fails,
only its connected EDs are affected, while others continue
FL operations seamlessly via blockchain smart contracts. ED
act as blockchain users, storing local updates via transactions.
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Fig. 3. The BCFL training process. Edge devices download the global model
from blockchain for local training and upload the local update results via
creating transactions and submitting them to nearby blockchain nodes. The
blockchain verifies the current update for malicious behavior by comparing
it with historical update records. Verified transactions are then broadcast to
other blockchain nodes and then stored in the transaction pool. Smart contracts
aggregate the current round of updates and then store the global update results
on blockchain to initiate the next iteration.

As shown in Fig. 3, the blockchain verifies and broadcasts
transactions from end devices, storing them in the transaction
pool for recording. We use Proof of Stake (PoS) to determine
the ES with bookkeeping rights. In each consensus round, a
pseudorandom number within [0, 1] is generated, and the prob-
ability of each ES being selected is its revenue share relative
to the total. From ESs with probabilities exceeding the random
number, one is stochastically selected as the block-producing
node, ensuring higher-revenue ESs have proportionally greater
selection chances. The blockchain identifies malicious nodes
by calculating the cosine distance between an end device’s
submitted gradient and its historical records. Let wj denote
updates on the blockchain and w! denote the local update from
ED s,i in round t. Using the cosine distance formula, we obtain

UJ UJ .
- 1 Zw’Ew < ¢, where € is a hyperparameter.

JH Hi

Then, based on the framework as shown in Fig. 2, we can
model the interactions between task allocation system, ESs
and EDs through a two-level cooperation model, where at
the upper (cloud-edge) level, a deep learning-based reverse
auction is employed to model the resource trading process
between cloud and ESs, aiming to maximize the total social
welfare of the market, where the ESs act as sellers and the
task allocation system acts as a buyer; at the lower (edge-
end) level, the Stackelberg game is utilized to model such
dynamic process that the EDs with available data compete for
the servers’ rewards, where the EDs act as followers to build a
follower subgame and the ES acts as a leader to build a leader
subgame.

The detailed steps are presented as following:

1) Task allocation system publishes FL task to candidate
ESs at the upper level.

2) All candidate ESs submit biddings and data resource
profiles to task allocation system according to the

3411

quality of their data resources, which are provided by

its corresponding EDs at the lower level.

3) The task allocation system in cloud determines optimal
ESs according to the reverse auction, and then sends the
initialized model to the selected ESs.

4) In the edge subsystem, each ES first determines its
strategy for how much resources it will provide. Then,
the EDs solve the follower subgame according to the
ES’s strategy.

) The solution of the follower subgame obtained in the
previous step is substituted into the leader subgame to
compute the reward of ES.

6) At the lower level, the BCFL training process begins

after solving the Starkelberg game.

7) The BCFL training process is completed when the model
accuracy meets the FL task requirement. Then the ES
sends the global model to the task allocation system.

8) The task allocation system verifies the accuracy of the
received model and pays rewards to ESs.

9) ESs pay the rewards to EDs.

Among the above steps, the blockchain-aided federated
training process, where the aggregation of one training model
is conducted in blockchain deployed on ESs, can be described
as follows: The global model parameters shared by EDs in
a learning round involve creating transactions and reading
blocks. The global model w is optimized via minimizing the
loss F(w) on the union of all local datasets. After every
w' local update on each ED, each ED creates a transac-
tion and send to the transaction pool. For each transaction,
ESs only need to store it in the blockchain through min-
ing, and then the smart contract aggregates all the local
gradients. It is assumed that the smart contract automati-
cally executes the aggregation function at a fixed time 7y
and stores the aggregated result wy; in the blockchain for
reading by EDs.

9]

B. Upper-Level Reverse Auction Through Deep Learning

At the upper level, the task allocation system is responsible
to determine optimal ESs (or edge subsystems, each of which
consists of an cluster head (i.e., ES) and the corresponding
members (i.e., EDs)) to complete the FL tasks from task
allocation system, according to the data quality and reported
value of data resource provided by ESs. In our target edge FL
service market, there are multiple ESs competing for each FL
task, it is needed to determine the optimal subsystem specified
by the ES, which can have best data quality and obtain the
maximization of its social welfare. To achieve this goal, we
propose a deep learning-based reverse auction mechanism to
model the dynamic process between the task allocation system
and ESs, where S ESs bid for the task 7" in the market. Specif-
ically, each ES can calculate the combination of EDs with the
best contribution to the model and the lowest cost according
to the data quantity and data quality of the ED it owns, and
the system selects ESs that provide services for the FL task
according to the bids of all ESs. In fact, our proposed deep
learning-based reverse auction mechanism has advantages of
guaranteeing bidder honesty and maximizing revenue for the
seller (i.e., ES).
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Moreover, we also devise a metric (as shown in (27)) to
quantify potential contribution of each ES’s datasets to the
task completion, where two significant attributes of local data,
i.e., the data size and data distribution, need to be considered.
As shown in [31] and [32], the dataset size plays a significant
role in the improvement of data quality, where more training
data easily generates better learning performance. For the
data distribution, the training data is typically assumed to
follow independent and identically distributed (IID) pattern.
However, in the edge FL scenario, the local data in each ED
is with unique feature and usually exhibits non-IID mode,
which severely degrades the prediction performance of the FL
models [41]. Therefore, our proposed metric that integrates
the above attributes can well evaluate the data quality of data
owners.

C. Lower-Level Stackelberg Game

At the lower level, each ES offers rewards in exchange
for the participation of EDs (i.e., the data owners), aiming to
attract more Eds to participate in the edge subsystem. In each
subsystem, the ES (cluster head) aims to attract more EDs
to contribute their datasets, so that the subsystem can provide
high-quality datasets with good data coverage for each FL task.
Note that the improvement of data coverage and data quality
will benefit the prediction performance of trained model, but
also incurs the increase of the cost consumed by ES.

To incentivize the participation of the EDs, each ES prepares
a shared reward pool for all EDs in the edge subsystem.
The reward for each distributed ED is dependent upon the
proportion of the ED’s contribution in the subsystem, i.e., its
data quality relative to that of the total data in the subsystem.
Note that, a subsystem that can provide a high reward pool
is more preferred to EDs. Accordingly, when more EDs
participate in that subsystem, the reward pool has to be shared
by a large number of EDs. We employ a Stackelberg game
model to model the above dynamic process that the EDs
compete for the ES’ reward in the subsystem.

III. UPPER-LEVEL REVERSE AUCTION
THROUGH DEEP LEARNING

A. Reverse Auction Framework

In the edge FL service market, ESs try to compete for
opportunities to provide various resources with the aim of
getting maximum revenue for their distributed training tasks.
We utilize a reverse auction to model the interactions between
the task allocation system and ESs, where the task allocation
system serves as both auctioneer and buyers (buying datasets
and resources), and the ESs play as both bidders and sellers
(selling datasets and resources).

Based on the reverse auction framework, the interactions
between the task allocation system and ESs can be formulated
as follows:

e The auctioneer starts the reverse auction and broadcasts
the FL task requirement I'(P,., B,.) to all ESs, where PP,. is
the actual distribution, served as a reference distribution,
and B, is the bandwidth requirement.

e Each ES submits the type profile T = {t;,...,tg}. The
ES’s type ts involves the bid b, revealing its private

IEEE TRANSACTIONS ON NETWORKING, VOL. 33, NO. 6, DECEMBER 2025

service cost/valuation cg, the size dy and the Earth
Mover’s Distance (EMD) value 6, that evaluates the
distance between the data distributions of local data and
task-required data.

e The auctioneer employs multi-layer neural networks to
encode the reverse auction to determine whether each
bid wins or not, where bidder valuations are the input
and allocation/payment decisions are the output, i.e., it
selects winning bids W as workers, computes the allo-
cation result G and payment P, and then informs the
auction outcomes (i.e., the set of winning bids and their
payments) to ESs.

e The auctioneer sends the initialized model M and some
hyper-parameters, such as learning rate, step size, etc.,
to the winners, i.e., the ESs that provide computing and
data services for current task.

e Each winning ES performs the BCFL training process
according to the corresponding FL training task using
datasets from EDs.

e The auctioneer pays the payment p, to each winning ES.

B. Reverse Auction Formulation as Learning Problem

The ES can estimate the cost to provide the bidding price
in the auction according to the amount of data owned by the
connected EDs and the gas fees of the blockchain. Formally,
each ES has a bidding space denoted as V, and the bidding
space for all ESs is given by V = Hle Vs. A reverse
auction (g, p) can be denoted as a pair of winner determination
rules g, : V — 25 and payment rules p, : V — R>q (which
can be randomized). Given bids b = (b1,...,bs) € V, the
reverse auction computes a winner determination g(b) € 2,
and payment p(b) € RY,,.

The task allocation system possesses information about
the distributions F = (Fy,...,F,) but lacks knowledge
of the bidders’ actual costs, denoted as c. Bidders submit
their valuations, which may not always be truthful. A reverse
auction is employed to determine the task allocation to the
bidders and to payments for them. Each ES gives a bid by
according to the cost. We ignore the cost of running the task
allocation system. Then the social welfare is

U(b) = Ua(g(b)) = > ps(bs), )

where ¢(b) represents the winner determination results based
on the bid b, and Uy(g(b)) = ¢(D,0) represents the data

utility proxy for the total utility derived from the winner
determination results g(b), where the total utility is determined
by the workers’ EMD values 6 =}, _, 0;/|W/| and data size
D = ZieW D; as detailed in Section IV-B. Let b_, denote
the valuation profile b = (b1, ..., bg) without element b, and
Vee =11 ks V; represents the possible bid profiles of all ESs
other than ES;.

Then, we formulate the optimization of the reverse auction
design as a machine learning problem, where the conven-
tional loss function, aiming to estimate error against a target
label, is replaced with the negated social welfare on bidding
derived from F. Given a parametric class of reverse auctions,
ie., (g%¥,p¥) € M, where w represents the parameters in
R? (for d € N), and a sample of ES valuation profiles,
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ie, L = {b(l), ...,btE)} which are independently derived
from F. Our goal is to achieve an optimal reverse auction
from all auctions in M satisfying incentive compatibility by
minimizing the negated social welfare —U (b).

To guarantee the incentive-compatibility, we introduce sev-
eral constraints in the machine learning problem for the reverse
auction mechanism. Specifically, for each ES, the ex post
regret is used to estimate the extent to which a reverse auction
deviates incentive compatibility. By fixing the bids of others,
the ex-post regret of an ES is defined as the maximum potential
utility improvement brought by its strategically deceptive bid
from the set of all possible dishonest of bids. In this work, we
focus on expected ex-post regret of an ES, formulated as

rgts(w) = B | max U" (b, b—s) =U" (bs,b-s) |, (2)

b, eV,

where for given the model parameters w, the expectation is
calculated with respect to b ~ F and U" (b) = Uy(g™ (b)) —
> p¥ (bs). It is assumed that F has full support on the
bid profile space V, with recognizing that the regret is non-
negative. The reverse auction ensures incentive compatibility
if and only if rgts(w) =0,Vs € ES.

Considering the above, we reconstruct the objective function
of the deep neural network model to minimize the expected
loss:

min By r 37 p,(0,) — Valg()]

weR
s.t. rgts(w) =0, Vse ES. 3)

The loss function objective is to minimize the expected neg-
ative social welfare provided that the expected ex post regret

of each ES is zero.
c
—~ 1 w (1 10 w (1(0)
rgt,(w) = = ;,1 e U (bs,b_s) —U (b ) L@

and aim to minimize the empirical loss, with the empirical
regret (equal to zero for all ESs) constraints:

1 L S
min 7 Z lzps(bs) - Ud(g(b))]

d
wek® &0 1=

st.rgt,(w) =0, Vse ES. (5)

C. Neural Network Architecture and Training

We then give the neural network architecture, termed as
RANet, to model reverse auctions. The architecture consists
of two logically distinct components, i.e., the winner determi-
nation and payment networks.

The architecture comprises two key components: a ran-
domized allocation network denoted as ¢g* : R® — [0, 1]
and a payment network represented as p* : R® — R> 0°.
Both neural networks are structured as feed-forward, fully-
connected models incorporating tanh activation functions. The
input layer of these neural networks consists of bids, denoted
as b, signifying the cost associated with c;.

The allocation neural network gives a result of alloca-
tion probabilities z1 = g1(b),...,zs = gs(b) for each ES.
These results of allocation probabilities are calculated using a
softmax activation function. On the other hand, the payment
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Algorithm 1 RANet Training
Input: Batches L4, ..., Ly of size B
Initialize: w° € R4, \° ¢ R"
for t=0to T do
Receive batch £; = {b(l), cee b(B)}
Initialize misreports o’ Ff) eVs,VWeBl,ie N
for r=0to R do

V¢ e [Bl,i€ N:
HO 5O 129,07 (5,50)

end for
Compute regret gradient: ¥/ € [B],i € N:

o= 9o (1.62) 00 (1))

Compute Lagrangian gradient using (7) and update w?:
witt — wt —nV,C,, (Wi, A)
if 7 is a multiple of Q then
AL M+ pergty (w')
else
AAFL )
end if
end for

w=w?

Vs € ED,

neural network generates payment values for each ES, repre-
senting the expected payment that the ES should receive for
a given bid profile.

In order to guarantee that the bids of the EDs in the designed
reverse auction mechanism are truthful, i.e., the ED’s cost
should not be less than its expected revenue for the allocation.
After the computation of the sigmoid layer, each network will
provide each ED with a price score p; € [0,1] regarding the
price paid by the ES to the ED. It then outputs a payment
ps = DPsZsbs, where the vectors of z, are obtained from
the allocation neural network. An architectural overview is
depicted in Fig. 4, demonstrating how the social welfare and
regret are calculated based on the parameters of the winner
allocation network and payment network.

We utilize the Lagrangian augmentation algorithm to solve
the learning problem with constraints in (5) in terms of
parameters w of neural network. We give the Lagrangian
function and add a quadratic penalty term to ensure the
incentive compatibility of the reverse auction:

1 L S
Cp(w; /\) = 7 Z [Zps(bs) - Ud(g(b))]
(=1 Ls=1

2
+ )\Sr/\ts w) + p 1"/\tS w , (6

5;3;5 gts(w) 2<S§Sg ( )) (©)
where A\; € R™ is a vector of Lagrange multipliers, and
p > 0 is the coefficient adjusting the quadratic penalty term.
The model parameters and Lagrange multipliers are updated
as follows: (a) w"" € argmin,C, (w"ld ;X’ld) and (b)
AW = XM+ prgt, (W), Vs € ES.

We employ Algorithm 1 to solve the constrained train-
ing problem. Our approach involves dividing the training
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Fig. 4. The edge server allocation network and payment network. On the left is the allocation network, where the input is the bids from s edge servers

(b17 b27 ceey
payment network, where the input is the bids from s edge servers (b1, ba, . ..

bs) and the output is the winning probabilities of the edge servers (z1,z2, - -
,bs) and the output is the payment ratios for each edge server (p1,p2, . ..

., Zs). The network weights are denoted as w9. On the right is the
,Ds)-

The payment ratio is multiplied by the allocation probability and the bid gives the final payment price. The network weights are denoted as wP. By calculating
social welfare and the rgt value from the payment and allocation results, the overall loss function is obtained, which is then used to update the weights of

both networks.

sample £ into mini-batches of size B. We iterate over the
training samples for multiple passes, ensuring data shuffling
after each pass. At iteration ¢, we denote the batch as
Ly = {dM, ... bP)}. The update w™¥ for model parame-
ters involves unconstrained optimization of Cp with respect
to w, which is tackled by a gradient-based optimizer. We use
@/ts (w) to represent the empirical regret in (4) calculated on
batch S;. The gradient V,,C, (w; \') for fixed A is expressed
as follows:

B
v C ( Z Zps s) (g(b))
Z: s=1
B
ZZ sgzs—l-pzzrgt w)ge,s,
€ES 1=1 SsEES (=1
(7N
where

bLeV.

s =V [max Uv (b' bW) v (b@)] . ®

The computation of Tgts and gy s involves the presence of
dishonest bids from the ESs. To generate these dishonest bid
reports, we employ a gradient-based iterator, facilitating gra-
dient propagation by evaluating the utility difference resulting
from dishonest bids. In principle, we search for the dishonest
bid that maximizes the utility difference among the ESs. To
calculate the optimal deceptive bids, we conduct ) gradient

updates: b\ = b\ 4 4V, U (bg"), bi@), with 7 > 0.

D. Theoretical Analysis

Typically, the optimization problem of (5) in the reverse auc-
tion model is nonconvex, and then the solver is not guaranteed
to achieve a globally optimal solution. In fact, the proposed

deep learning-based method exhibits an excellent problem-
solving performance, as shown in the following experiments,
since the reverse auction is learned well, with the aim of
closely matching the optimal reverse auction structure in
settings where this is known, and thus it incurs very low regret.

In fact, the deep learning-based approach aims to constrain
the difference between empirical and expected regrets in terms
of the quantity of sampled valuations, which can be extended
to the revenue scenario. Our constraints are used for the reverse
auction coming from a finite capacity class, and indicate that
solving (5) by using substantial sample results can obtain a
reverse auction that can achieve near-optimal expected revenue
with minimal expected regret.

Then, we can theoretically validate the target reverse auc-
tions according to a set of general allocation rules, including:
the allocation rule g : V' — [0, 1]2M transforms the valuation
profiles into a vector of allocation probabilities for ES, where
g(b) € [0,1] denotes the probability that the ES wins the
auction, and the payment function p : V' — R"™ transforms
the valuation profiles into a payment for each ES ps(b) € R.
For simplicity, the superscripts “w” can be omitted. As before,
M denotes a class of auctions (g, p), and it is assumed that
the allocation and payment rules in M are continuous, while
the set of valuation profiles V' is a compact set.

The inner product of any two vectors, denoted as a and b
is represented as (a,b) = Zd 1 a;b;. Therefore, the L;-norm
of matrix A is defined as ||A||; = maxi<j<s ZZ 1A

Let U be the class of social welfare functions for ES defined
on auctions in M, i.e.,

U={U:V XV S RIU@GE) - Y b (b)
(9,p) € M} ©
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We treat b as a vector of length 2| and use the inner product
to represent the social welfare function U (by) = (bs, gs(b)) —
ps(b).

Consider rgtolf as the set encompassing all regret functions
for ES. Then it can be defined with respect to social welfare
functions within U:

rgtol ={fs: V = R| fs(b)
= H};LXU([)/S,I)_S) — U (bs,b_s)}.

The (., distance between two social welfare func-
tions, denoted as U and U’, is formally defined as
maxp > ,; |U (b, b—s) — U (bs, b_)|. For this distance met-
ric, N (U, €) represents the minimum number of balls, each
having a radius of €, required to encompass the set U/. Let
N (U, €) represent the minimum number of balls, each with
a radius of €, needed to cover the set U under this distance
metric.

Furthermore, we represent the class of allocation functions
as G for each ES, G, = {g,: V — 2™ | g € G}. Likewise,
we represent the class of payment functions using P and
Ps={ps: V — R | p e P}. We represent the covering num-
ber of P as N (P, €) the context of the £, ; distance metric.
Additionally, we utilize N (Ps,€) to denote the covering
number for P, in the context of the /., distance metric.

Consider a class of functions denoted as JF, where each
function f : Z — [—c¢,c]. Given a sample denoted as
S = {z1,...,z1}, comprising a set of data points from Z,
the empirical Rademacher complexity of F is defined as:

bupZ& 25],

zeS

(10)

RL(F) = zEs (1)

where £ belon gs to the set {—1,1}%, and each o; is mdepen—
dently sampled from a uniform distribution over {-1,

Lemma 1: Suppose L = {z1,...,z2} is an 1ndependent and
identically distributed sample drawn from some distribution D
and covering Z. Then for all f € F, the probability of drawing
S from D is at least 1 — 6,

1 L
7 Z f(zi) + 2R (F) + 4c

2log(4/9)

Beenlf(2)] < E

(12)
We evaluate the performance of the reverse auction class
by employing a concept often used in the ranking literature
known as covering numbers. Specifically, we introduce the
01 distance between reverse auctions (g,p) and (¢’,p’)
belonging to the set M. This distance is defined as:

max > [g(b) - |+Z|ps pi()]-

For any given e > 0, we denote N (M, €) as the minimum
number of balls, each having a radius of e, that are required

to cover the entirety of M when measured using the /. ;
distance.

The proof entails directly applying Lemma 1 to the set of
revenue functions established on M, denoted as:

Tevoj\/lz{f V>R fv) Zpl

for some (g,p) € M}.

13)

(14)
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Theorem 1 Assume the bid b, is less than or equal to 1 for
each bidder ES,. Define M as a reverse auction class that
satisfies individual rationality. The value range of ¢ is (0, 1).
For any (g%, p*) belonging to M, the probability of sampling
L samples in F is at least 1 — §, then the bound of revenue
is:

Bz [ > pa(bs) = Ualg(®))]
L[S
1 log(1/4)
< ZZ:I Szz:lps(bs)_U (g(b)) +25A£+CS Ta
5)
and the regret of revenue is:
1 . [log(1/6)
5 ; <5 ; )+ 200 + O =
(16)

where Ay = info9 § +2 W}, C, and C'

are distribution-independent constants.

Subsequently, it limits the Rademacher complexity compo-
nent within this class by establishing a connection with the
covering number associated with the payment class P, and
this limitation is influenced by the covering number related to
the reverse auction class of M.

Given our assumption that auctions within M adhere to
individual rationality and that valuation functions are confined
to the interval [0,1], it follows that, for any v, p;(v) < 1.
According to the definition of the covering number N, (P, €)
for the payment class, we can establish that, for any p € P,
there exists an f, € P with a cardinality |P| < N (P, ).
This guarantees that max, ), [pi(v) — fp, (v)| < e. Initially,
we focus on bounding the Rademacher complexity for a given
e € (0,1).

Re(revo M)

Yo (w)]
OB WAD

pe1

bupzae Zp ( “))

=—-E,
L

- 0’

O'

()

SZ - supZaz Zpl( ) + E lloll1e
PEP p=1
<9 n\/mog WZ"(P’E)) te (17)

The final inequality holds because

ZZ: (ZP (v‘)>2_ Z (Zpl +ne>2§2 VL.

(18)
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Next, we prove that Noo (P, €) < N (M, €) holds true. For
any (g,p) € M, consider (g,p) such that, for all v,

D gs(0) = ()] + Y Ips(b) = ps(B) < €. (19)

Therefore, for any p € P, for all b, |ps(b) — ps(b)| < €,
which implies N (P,€) < Noo(M,€). Applying Lemma 1
and ) ps(b) < n for any b, with probability of at least 1 — 0,

By [ 3 pa(bs) — Ualg(®))]

1 L S
<z Zm(bs)—Ud(g(b))]
+2-£g{e+2n¢2bgME§Am6»}_Fcn Eﬁ%ﬁa_
(20)

Therefore, the revenue bound is proven.
Proof of regret bound:Let’s define the class of summation

regret functions:

FgtoU = {f VSR o) = 3 riw)
i=1

S Tn) ETgtolU}. (21
As defined by the covering number N, (Us, €), there exists

a set Us containing no more than No, (Us, €/2) elements. This

set U, is constructed to ensure that for any us € Us, there

exists a corresponding U5 € U, satisfying

sup ‘U (blsa b—s) -U (bs; b—s)| < 6/2'
iy

"

for some (rq,..

(22)

For any u, € U, taking us € LA{S satisfying the above
condition, then for any b,

max (g (V) = us (b)) = max (i (b-s) — s (b_s))‘

< |maxu, (b.,) —maxs (b-s) + ity (b-s) — s (b—s)

s i

< max (b_y) — rrlgaxﬁs (b—s)| + |tis (b—s) — us (b—s)|

s 7

+¢/2. (23)

< max u, (b_y) — max i (b—s)

s i

Let b € argmaxy u; (bLS) and lA): € argmaxy_Us (b,s),
then “

(24)

Thus, for all us € U, there exists iy € Z/?S such that for any
bid profile b,

— (bfs)) — max (ﬁs (575) — g (b,s))

s

max (us (V)
<e (25)

which implies N (rgt oU;, ) < Ny (U;,€/2). Therefore,
the regret bound is proven.
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Algorithm 2 Client Selection
for each ED set, s =1 to S do
The server sends IP, to each ED; .
for each ED in ED,, n =1 to N do
EDy , calculates the EMD value based on Eq.(25)
and sends it to the E'S,.
end for
ES; calculates the average EMD value and selects the
workers.
if 65 ,, > 0, then
Add EDy ,, to W,.
end if
end for

IV. LOWER-LEVEL STACKELBERG GAME

The selection of EDs that are more relevant to the data dis-
tribution required for the target task can lead to higher model
performance. This section outlines the process of selecting
such relevant clients, i.e., first selecting clients with a certain
degree of correlation and then determining the data size sold
by each client through a game, followed by allocating the
resulting profits to each client accordingly.

A. Relevant Clients Selection

In the process of selecting an ED (client), each ES takes into
consideration the data quality provided by the ED. Specifically,
it assesses whether the distribution of local datasets available
to the ED aligns with the distribution required for the given
task. Notably, the reduction in accuracy primarily results
from divergence in weights, a metric quantifiable by the
EMD. A larger EMD value indicates a greater divergence in
terms of weights, which in turn makes a detrimental impact
on the overall quality of the global model. Consequently,
we employ a dynamic client selection approach in each
round. This approach can ensure the provisioning of high-
quality data, at the same time bolster the training efficiency
with cost saving. The process of client selection is shown
in Algorithm 2.

We are addressing an L class classification problem defined
within the confines of a compact space X and a label
space Y. The data samples from the ED, denoted as D ,, =
{Xsn, Y}, are distributed across X x Y according to the
distribution P ,. Let 6, represent the EMD for D ,. To
be precise, given the actual distribution P, for the entire
population, the EMD is computed as follows:

O =Y IPon(y =35) —Paly = 5|l

jEY

(26)

where P, represents the distribution of FL task demands. It
is acquired through historical data from the task allocation

system.

Let 65 = {051,...,05,} denote the set of EMD values
of all ESs. Based on the data size and the EMD value of
the workers set (EDs) W, the quality of the model can be
formulated as

= a(f) — aye=(@DW:)* @7)
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where D(:) is the function of getting the data size
(ie., D(Wy) = ZieWs d;, and d; is the data size of
each worker), 0(-) is the function of obtaining average

EMD (i.e., 0,(W,) = z‘\%’*‘o and 6(0) = 0), a() =

_ 2
exp (— (ﬁ-ﬁ-ag) ) < 1, and ay,...,ay are positive

curve fitting parameters. The first term «(f) shows that the
increasing average EMD leads to the degradation of model per-
formance. The exponential component, —a;e~(#2P (Ws))*(®)
accounts for diminishing returns as the overall data size
expands. Consequently, we can express the data utility,
denoted as Uy, as a linear function of ¢(-):

Ud(ws> = Ud(D(Ws)’§<Ws)>
a5q(Ws)
as (a@) - a1e_(“2D(WS))a(§)> )

where as is the profit per unit performance.

(28)

B. Profit Distribution Based on Stackelberg Game

With the expansion of data volume, EDs will inevitably suf-
fer from the increase of data and computing related expenses.
Therefore, each E Dy ,, is associated with a unit cost of local
data denoted as s 5, and the cost of local data, cg,n, can be
expressed as

Cg,n = ds,n’)/s,n~ (29)

In addition, the ED has to evaluate the computation and
communication expenses to estimate its service cost in the role
of a worker. Based on experimental findings concerning the
energy consumption during FL training [24], the computation
cost, denoted as c;n, for the data owner E Dy ,, can be defined

as a linear function of the data size d ., as expressed below:

Cg,n = dS,nél(ngﬂS,an (30)

,n)

where [, ,, represents the unit computational cost of the data
owner ED; ,,. Given that the structures of the global model
and the local model remain identical when applying FedAvg,
we utilize M to denote the model size and Cj ,, to represent
the amount of computing resources allocated by E D ,, to the
training process.

For the wireless transmission in our work, the wireless
channel is assumed to remain slow-fading and stable, and it
adopts the frequency-division multiple-access communication
scheme due to its implementation simplicity and minimal
communication interference. However, more advanced wire-
less communication configurations may also be employed.
Subsequently, the communication cost is defined as

o, = P S a1
where %5g is the total time for model transmission, and ¢
is the data owner E Dy ;,’s unit energy cost for communication.

In BCFL, EDs are trained by creating transactions and
invoking smart contracts to complete for the FL parame-
ter aggregation, while the blockchain is deployed on ESs
to occupy the computational and storage resources of ESs.

3417

To estimate the cost of using blockchain, we employ the
calculation of the gas fees used by the blockchain:

b

Cg = a696pg|ws|7 (32)

where g, is the amount of gas required by each ED to invoke
a smart contract, p, is the cost of one unit of gas, ag is the
factor to convert gas into cost, and |W,| denotes the size of
workers set.

Each ED invests different computational resources in train-
ing to complete the task. Then, the more computational
resources an ED invests, the faster its computation, and thus
the shorter its running time. Accordingly, the amount of com-
putational resources invested by an ED affects its own revenue.
Deriving from (28), we can obtain the revenue of E.S;:

W]
T =UW,) =Y Vi—d, (33)
i=1
where V; = p; "2l is the fee paid by ES to each worker ¢

K]ai
. Cid; . )
in W,. Here, 0. denotes the total ED utility (C; is the
w0,

amount of compulting resources that worker ¢ devotes to
training, and 6; is the EMD value of worker i) and p; is the
price of one unit of utility.

Then, the profit function of worker i in Wy is

m =V, = — c? ¢, i e W

P =

(34)

We model the interactions between ESs and EDs via the
Stackelberg game, where ESs play as leaders, EDs as follow-
ers, and both of them have the goal of maximizing their own
utility.

C. Equilibrium Solution

We utilize the backward induction method to determine
the Stackelberg equilibrium, obtaining solutions for both ES
and its workers. In detail, we begin by setting the first
derivative to zero to solve for the equilibrium solution of the
follower’s game. Subsequently, we substitute the solution from
the leader’s subgame with that from the follower’s subgame
and then calculate the leader’s subgame solution.

To achieve the equilibrium solution for the followers sub-
game, we take the first derivative of the profit function of each
ED in workers set with respect to C;:

om; OV — e — e — ¢
ac; ac;
= P 2516, MBC (35)

By taking (35) equal to zero, we get the equilibrium computing
resources:

o _ ped;
¢ 2d1515gMBm€Z
Furthermore, to ensure the existence and uniqueness of the
Nash equilibrium, the revenue function of each ED should be
strictly concave.
After establishing the functional correlation between the
computational resources of individual workers and the unit

(36)
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Fig. 5. The training accuracy comparison between the IID and No-IID
settings.

price of computational resources, we can proceed to derive
the leader’s subgame solution for ES. Bringing (36) into (33),
we have

W
s = U(W,) — lzl o nd &, (37)
i—1 2d251(5gMﬁ7J€01 s

Clearly, 7 is a strctly concave function of p;, and thereby
there is an unique p; to maximize the profit of ES. Thus, the
uniqueness of this Stackelberg game is proved.

V. EXPERIMENTAL EVALUATION

In this section, we experimentally demonstrate that our
methodology is capable of retrieving near-optimal auction out-
comes for nearly all scenarios with known optimal solutions.
Moreover, it excels at discovering novel auction solutions in
cases where analytical solutions are absent. Subsequently, we
introduce the experimental setting, present various experimen-
tal results, and engage in discussions regarding our proposed
TBCIM.

A. Experimental Setting

BCFL Setup:For simplicity, we consider 3, 5, and 10 ESs,
respectively, and each ES randomly generates 3 to 10 EDs
in our experiment. Smart contracts use FedAvg algorithm to
aggregate models. We set the federated learning rate to be
n = 0.01, while fixing the number of global epochs and local
epochs at 6, = 100 and J; = 5, respectively. We divide
CIFAR-10 according to the mixture distribution principle, and
then assign it to the EDs as the No-IID setting between the
EDs. We allocate non-independently and identically distributed
data to each ES’s EDs based on the Dirichlet distribution. In
addition, we conduct a comparison of accuracy changes using
various data owner selection strategies. Fig. 5 illustrates the
results in the No-IID setting, where EDs are randomly chosen
at a rate of 0.5. These observations show that the No-IID
setting indeed plays a negative impact on the training accuracy.
Furthermore, the data distribution of the task requirements is
randomly generated by the mixture distribution. We empir-
ically set a; = 0.87, as = 107°, a3 = 0.13, a4y = 10°,
as = 0.64, ag = 3.48 x 1072, g, = 7.68 x 10* and M = 0.5
in the experiments.

Reverse Auction Setup. We implement an end-to-end
reverse auction using the TensorFlow deep learning library.
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Fig. 6. The social welfare and regret of different FL scales.

The training involves a dataset containing 500,000 bidding
samples, while the performance evaluation is conducted based
on a distinct dataset consisting of 10,000 bidding samples.
The parameter p in the augmented Lagrangian framework is
deliberately set to 1. We utilize the Adam optimizer with a
fixed learning rate of 0.001 to iteratively update the weights w?
for each batch. Following each w! update, we execute a
sequence of R = 10 misreport update steps. Subsequently,
we preserve the optimized misreports for the current batch
and employ them to initialize misreports for the same batch
in subsequent updates.

B. Simulation Results and Discussion

In this section, we show the numerical results from our
evaluations based on the simulations.

1) Discusion of Impacts on Social Welfare: We conduct
several simulations to evaluate the performance of our pro-
posed TBCIM framework. Besides, we also investigate the
impact of the proposed framework on the bids and revenues
of each ES, as well as the truthfulness of the bids.

Fig. 6 shows the convergence curves of social welfare
(blue curve) and regret (green curve) for our proposed
TBCIM mechanism under various settings of edge servers
and edge devices. As illustrated, the high initial social wel-
fare values indicate that the mechanism has not learned
incentive-compatible features, allowing for higher revenue
through dishonest bidding, which results in relatively high
regret values. As the training epochs progress, social wel-
fare gradually approaches the optimal solution. The machine
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bidding.

The relationship between the probability of ES winning and the

learning solver adjusts the regret by iterating the Lagrange
multiplier, initially prioritizing social welfare and then shifting
focus to regret in later iterations. Consequently, as iterations
increase, the machine learning model reduces regret, ultimately
approaching zero. When rgt = 0, the optimal solution is
achieved. This demonstrates that the machine learning model
can learn incentive-compatible features during the auction
process. Throughout the training process, the reverse auc-
tion mechanism shows remarkable performance, with social
welfare nearing the approximate optimal solution and regret
becoming negligible. However, in some instances, due to the
presence of small non-zero regret, the social welfare obtained
by the learned reverse auction mechanism may differ from that
of the optimal incentive-compatible auction.

2) Truthfulness: In order to evaluate the truthfulness of ES
bids, we randomly select an ES and observe the relationship
between its bid and the probability of winning in relation to
costs. The results are shown in Fig. 7. When the ES’s bid is
approximately equal to its cost, the probability of ES winning
in the auction is maximized. Due to the influence of ex-post
regret, there exists a minimal difference between the cost and
the bid. From Fig. 7, we can find that both extremely low
and high bids cannot lead to winning in the auction. The
reason is that when an ES offers a lower bid, the difference
between its revenue and cost reduces the overall revenue of
the market, preventing the revenue from reaching an optimal
solution. Clearly, when an ES provides an excessively high
bid, it is highly improbable to secure a victory in the reverse
auction. Based on the above results, we can conclude that
RANet is able to learn the requirement for truthfulness in their
reverse auction, thereby motivating ESs to refrain from making
dishonest bids.

3) Discusion of Impacts on Number of Blockchain Worker
Selection: Fig. 8, shows the comparison of the revenue with
and without considering the blockchain cost, aiming to illus-
trate its impact on the performance of the reverse auction.
As the number of ESs increases, the realized social welfare
increases accordingly, while the number of selected workers
decreases. This outcome can be attributed to the fact that
with more ESs, they can offer higher bids, leading to more
truthful disclosure of their actual value. Consequently, ESs
perceive competing for the task as profitable, resulting in a
more effective TBCIM framework that motivates both ESs
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and data owners to actively participate in federated learning
training. The increase of data owners competing in the task
allocation system is conductive to provide more task choices,
and motivate participants to make genuine offers. This helps
enable a competitive environment, which encourages partici-
pation in the training process.

In addition, Fig. 8 also illustrates the variation in the
number of selected ESs under two scenarios: one considering
blockchain costs and the other not considering blockchain
costs. In the settings with 5 ESs and 10 ESs, compared to
the test scenario without considering the blockchain costs, the
number of selected ESs decreases by 2 in the test scenario with
the blockchain costs. This is because that, with the inclusion
of blockchain costs, ESs tend to submit higher bids, and thus
lose become less attractive to the task allocation system. In the
setting of 3 ESs, the number of workers remain unchanged due
to the requirement for a certain amount of training data. In a
word, reducing workers would lead to a decrease in BCFL
training accuracy and an increase in training time.

4) Impacts on ES’s Average Revenue With Blockchain:
In the same FL structure, we compare the cost of joining
blockchain with the cost of not joining blockchain. Fig. 9
shows the average revenue of participants under different
blockchain joining costs, represented by varying the gas
price p.. We analyze three scenarios with gas costs set as
Pe =1 X 1072, Pe = 2 X 1072, and Pe =4 X 1072, respec-
tively, and compare them with the scenario without blockchain
involvement (No-Blockchain Cost). Results indicate that when
the gas cost is relatively low (p. = 1 x 1072 or 2 x 1072),
joining blockchain brings higher average revenue compared to
the No-Blockchain scenario. However, when gas cost increases
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to a higher level (p, = 4 x 1072), the revenue advantage
significantly diminishes. This implies that blockchain involve-
ment can enhance participants’ revenue only if the gas cost is
controlled within an acceptable range.

5) Impacts on Accuracy With Blockchain: Fig. 10
presents the convergence behavior of model accuracy under
varying blockchain participation costs (p.), compared to
the No-Blockchain scenario. When p. is relatively high
(e.g., 4 x 1072), the accuracy converges more rapidly and
achieves a significantly higher final value, as the elevated cost
incentivizes participation from contributors with higher-quality
data. In contrast, lower blockchain costs (e.g., p. = 1x 10~2 or
2x1072) yield more moderate accuracy improvements, though
they still surpass the No-Blockchain baseline. These results
demonstrate that introducing blockchain participation costs
effectively filters and encourages high-quality ESs, thereby
enhancing both convergence speed and accuracy in FL.

6) Impact of the Incentive Mechanism on Accuracy:
Fig. 11 compares FL accuracy across four scenarios: Ideal,
No-IM, Greedy, and our proposed mechanism (Ours). Results
reveal that No-IM shows the poorest performance, with
slowest convergence and lowest accuracy, highlighting the
necessity of effective incentives for participant engagement
and data quality. While Greedy outperforms No-IM, its sole
focus on bid values limits accuracy gains and convergence
speed. In contrast, our method maintains within 5% of Ideal
accuracy, significantly surpassing both No-IM and Greedy.
This demonstrates our mechanism’s effectiveness in balancing
bid value and data quality, improving both convergence and
final accuracy.
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7) Training Accuracy With Attacked ESs: In addition to
the aforementioned metrics, we also pay attention to the
change in accuracy when ESs are subjected to single-point
attacks, as it impacts the stability and robustness of the
TBCIM mechanism. As shown in Fig. 12, we have plotted
the convergence curve of our proposed TBCIM mechanism
when subjected to a single-point attack. We assume that 20%
of the servers become unavailable during training between
15-30 epochs. From the figure, it can be observed that when
some servers are unavailable, there is fluctuation in the overall
model accuracy. However, after training for a certain number
of epochs, convergence is still achieved. This is due to the fact
that the failure of server results in the loss of its all workers,
reducing available training data. Additionally, there is a proba-
bility that the failed servers are among the selected ESs, which
generally possess relatively better data quality. As the subse-
quent training progresses, the TBCIM mechanism will tran-
sition into a new stable configuration. Consequently, further
training will result in the convergence of the overall model.

VI. RELATED WORK

Recently, with the development of jointcloud, the FL service
market has emerged with the urgent need of efficient resource
trading mechanisms [26]. Fan et al. [40] establish a decen-
tralized and transparent FL resource trading market, where
untrustworthy third parties can be prevented via recording
transaction records on blockchain. Then, Deng et al. [22]
develop a blockchain-based FL trading platform, aiming to
ensure data privacy for client participants. However, existing
incentive designs only focus on the incentivation of data
owners in FL system rather than the resource trading of FL
service market.

To promote fairness, as well as enhance participation
of trustworthy entities, researches have explored various
FL incentive designs, including centered around com-
petition [34], reputation [35], and contract theory [36].
Toyoda and Zhang [37] maximize participants’ profits through
duplicated competition mechanism. Gao et al. [38] propose
to quantify the contributions of participants for the fairness.
Furthermore, Kang et al. [39] integrate the reputation eval-
uation and the contract theory to incentivize high-reputation
nodes to possess high-quality data. Several recent studies focus
on incentive design of hierarchical FL paradigms, where the
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TABLE 1
THE COMPARATION BETWEEN OUR WORK AND EXISTING MECHANISMS
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EC: Applied in edge computing scenarios.

BC: Applying blockchain technology.

CR: Considering communication resources.

DD: Considering the data distribution of data owners.
NE: Nash equilibrium.

ME: Involving multiple ESs and multiple EDs.

T: Truthfulness.

ML: Using machine learning-aided methods to solve.

data owners upload their local parameters to edge servers
(i.e., cluster heads) rather the model owner for intermediate
aggregation [42], [43]. However, such designs are not appli-
cable to the actual requirement of edge FL service market,
where different edge servers compete for FL tasks published
by the dynamic market.

Recently, the utilization of blockchain in FL systems
(i.e., BCFL) emerges and tends to be popular. One line
of research on BCFL is to improve the security of FL
through distributed point-to-point network [25]. In this
way, a trusted client selection process can be achieved
through the immutability and auditability of blockchain [24].
Wang et al. [9] design a blockchain-based incentive mech-
anism to balance training overhead and model performance
in hierarchical federated learning. Similarly, Xu et al. [33]
leverage blockchain to authorize participants for detecting and
mitigating malicious nodes. In fact, the blockchain can be
regarded as a pivotal tool to enable transparent economic
mechanism design [45]. For instance, Rehman et al. [44]
propose a blockchain-aided decentralized reputation system
to ensure reliable collaborative model training in EC envi-
ronments. However, the introduction of blockchain leads to
the increase of storage and computational overheads. Existing
studies address mining-related costs using tokens, but cannot
reduce essential expenses (e.g., storage and communication
costs) in blockchain. Moreover, these studies do not consider
the competitive relationship between ESs/EDs in FL service
market.

As known, the implementation of blockchain in BCFL con-
sumes storage and computational resources, thereby increasing
the expenses of data owners. Existing researches solve this
issue through tokens. Nevertheless, data owners primarily
operate as users of the blockchain, and the tokens merely cover
the expenses associated with mining. Without adequately con-
sidering other costs like storage and communication related to
the blockchain, it is hard to obtain the real cost of completing
the training task, which will further impact the bidding of
servers and hinder the resources trading.
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To address the above limitations, we propose a two-level
blockchain-aided resource trading mechanism to perform a
federated cloud-edge-end cooperation, where the resource
trading between edge servers and FL tasks from the task
allocation system, the incentivation of data owners for the
given task, and the cost of using blockchain are considered
comprehensively. For clarity, the comparative study between
our work and existing incentive mechanisms is summarized
in Table L.

VII. CONCLUSION

This paper introduces a novel blockchain-aided two-level
incentive mechanism for federated learning in MEC-based
jointcloud. Our approach combines a reverse auction mech-
anism to maximize social welfare with the Stackelberg game
model to distribute benefits among data owners. Our TBCIM
considers both the bidding price of ESs for providing train-
ing services and the costs incurred by servers for offering
blockchain services, ensuring an incentive-compatible auction
process. To enhance the authenticity of server bids, a deep
neural network reverse auction is proposed to address the
reverse auction process and yield social welfare approximation
that closely approaches the optimal solution for single-item
auctions. Furthermore, the Starkelberg game model provides
a unique equilibrium solution while considering resource
constraints. As a future direction, the asynchronous mode of
this mechanism for blockchain-based edge federated learning
service systems will be investigated. At the same time, we will
incorporate the mobility and scalability attributes of edge com-
puting to address the challenges pertaining to communication,
security, and distance that arise during the dynamic changes
in BCFL.
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