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A Multimodal Multi-Drone Cooperation System
for Real-Time Human Searching
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Abstract—Aerial images from drones have been used to search individuals in the crowd. However, using a single drone for human
searching faces challenges including low accuracy and long latency, due to poor visibility and limited on-board computing resources. In
this paper, we propose SkyNet, a multi-drone cooperation system for real-time human searching, including locating and identifying. To
locate a person, SkyNet uses Multi-View Cross Search with only 2D images. To achieve accurate identification, SkyNet processes
faces in images from multi-view drones in three steps. First, a Multi-Modal Face Correction is designed to transform less useful face
into desired target face, guided by text instructions. Second, an Angle Masking Network is developed to minimize invalid data of a
single profile face. Third, the multiple face from drones are fused by a Fusion Weight Network. Moreover, by predicting the estimated
finishing time of tasks, SkyNet schedules and balances workloads among edge devices and the cloud server to minimize processing
latency. We implement SkyNet in real life, and evaluate the performance with 20 human participants. The results show that SkyNet can
locate people within 0.18m error. The identification accuracy reaches 95.87%, and the system process is completed within 0.84s.

Index Terms—Unmanned Aerial Vehicle (UAV), Person Identification, Multi-Drone Cooperation, Multimodal, Mobile Edge computing.

1 INTRODUCTION

UMAN searching technology, including tracking and
H identification [1], [2], has been widely used to improve
public safety [3], [4], [5]. Existing solutions mainly rely on
images captured by fixed-position cameras [6], [7], which
have limited field-of-views (FoVs) and are inefficient for
tracking moving objects. Benefiting from the wide FoVs and
high mobility, drone-based human identification and track-
ing solutions can be applied in many application scenarios,
e.g., military actions and security services [8]. A

Recent years have witnessed the remarkable success of ‘
DNN-based face identification solutions [9], [10], which
typically extract a face image as a high-dimensional feature
vector and identify the face by the distance between the
vectors. These solutions could achieve high accuracy on the
premise of sufficient amounts of face pixels. However, a sin- Drone 2 - Edge Device
gle drone often suffers from the limited face pixels due to its (Current DD)
high-flying height and varying drone-person angles, which
is revealed in the motivational studies in Section 2.2. DNN-
based face identification technologies also consume massive
on-board computing resources and bring high latency to the
system, which is not ideal for real-time identification.

To track a person in the crowd, most state-of-the-art
localization technologies require RGB-D cameras or LIDAR
on drones, which are 10 times more expensive than conven-
tional 2D cameras. Moreover, in outdoor and long-distance

Figure 1: SkyNet uses multiple drones and edge devices to
identify and locate the target person.

scenarios, the point cloud density of RGB-D cameras and
LiDAR drop dramatically, leading to poor localization accu-
racy and a small working area [11], [12].

In this paper, we design SkyNet, a multi-drone coopera-
tion system to achieve accurate and real-time human search-
ing, including localization and identification. As shown in
Figure 1, at a shooting instant, each drone takes a picture of
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tiple views when there are only 2D images of him/her in
different views? In fact, forming a unified perception of the
scene is a common challenge faced by multi-drone/robot
cooperation. ii) How to enhance the legibility of face features
extracted from the face images captured by drones? iii) How
to take advantage of the face information offered by multi-
view images for much more accurate identification? iv) With
the system taking pictures continuously, how to select the
suitable DD to ensure fast processing?

To address these challenges, in SkyNet, we propose
a Multi-View Cross Search Algorithm to find the 3D real-
world location of a face and align his/her multiple 2D
sub-images. To enhance the legibility of face features in
drone-view images, we design a Multi-Modal Face Correction,
which synergistically leverages the strengths of language-
visual models and face feature extraction models to transfer
the less illegible face feature to the legible one under the
guidance of text. To further improve identification accuracy,
we propose a Mulit-View Fusion Identification, which is a two-
stage fusion face identification pipeline that contains: i) an
Angle Masking Network (AMN) that can output mask weight
to prioritize valid information and minimize invalid data
of a single profile face. ii) a Fusion Weight Network (FWN)
that can generate fusion weight for a person’s multiple faces
from different FoVs, based on which these sub-images are
fused for the final inference result. Moreover, we propose
a Dynamic Task Scheduling Algorithm to balance workloads
over consecutive shooting instants and reduce latency.

To evaluate SkyNet, we deploy SkyNet in real life on
four drones, three edge devices and a cloud server. We not
only test SkyNet with datasets about drone-based face iden-
tification, but also conduct real-world experiments with 20
volunteers and obtain their consent. The evaluation results
show that SkyNet achieves 95.87% accuracy and the real-
time latency of localization and identification (within 0.84s).

The key contributions of this paper are as follows.

e We design a multi-drone cooperation system for ac-
curate and real-time identification and localization.

e We design a novel pipeline for drone-view face
identification, including multi-modal face correction,
angle-based single face masking, and legibility-based
multiple faces fusion. The pipeline also reduces pro-
cessing latency by multi-view parallel computing.

o SkyNet significantly reduces the latency of task pro-
cessing to achieve the real-time execution through
the cooperation of heterogeneous devices and dy-
namic task scheduling.

2 BACKGROUND AND MOTIVATION
2.1 Background

With the rapid development of smart cities, biometric identi-
fication [13], [14], especially Face Identification, is becoming
an important basic service in scenarios such as security
systems, criminal investigations, and human-computer in-
teraction [15], [16], [17]. Face identification solutions are
mainly applied to fixed-position cameras, which only have
small fields of view and are easily obstructed. Therefore,
such solutions are infeasible for outdoor scenes such as
searching for a target person in a crowd, where the target
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moves frequently and the identification range is extensive.
Recently, mature and affordable drones have brought new
opportunities for face identification in broader application
scenarios, thanks to their high maneuverability, wide FoVs,
and easy deployment. Face identification based on drones is
playing an irreplaceable role in security surveillance, daily
patrols, finding specific people on the street, and many other
scenarios. However, drones also have many challenges in
face identification, which are discussed in Section 2.2.

Image-based Localization is a widely demanded service
in many scenarios such as robotics, SLAM, security, and
smart city [18], [19], [20], [21]. The traditional image-based
solutions such as object detection and tracking use a bound-
ing box to point out the target, which cannot provide the 3D
real-world coordinates [22], [23], [24], [25], [26]. Some RGB
image-based 3D reconstruction solutions [27], [28], [29] have
the localization feature. But they suffer from high complex-
ity because of dense matching [30] and take a long time to
adjust when the environment changes. Several image-based
3D localization solutions using RGB-D cameras or LiDAR
cameras have been proposed [31], [32], [33]. However, these
special cameras cannot obtain accurate and consistent 3D
data in the immense outdoor [11], [12], [34]. Moreover,
these cameras have expensive prices and low resolution.
For example, Intel RGB-D D455 [11] ($399) only provides a
resolution of 1280x720 at an effective operation range under
4 meters. Intel LIDAR L515 [35] ($589) works at indoor only,
with a resolution of 1920x1080. None of them are suitable
for localization in drone-based solutions.

Enhancing the accuracy of vision recognition represents
an ultimate objective that the research community persis-
tently pursues. Recent advancements have seen the adop-
tion of Multimodal Models [36], which leverage additional
dimensions of information, such as textual content, to aug-
ment the process of vision recognition. The Contrastive
Language-Image Pre-training (CLIP) model [37] is among
the most representative multimodal models, which utilizes
a text encoder and an image encoder to map the text and
image into a shared vision-language embedding space. CLIP
could identify the most suitable text description for an
image due to the contrastive learning on a vast dataset
comprising 400 million image-text pairs. Encouraged by the
remarkable advancements of CLIP, several additional stud-
ies have emerged that harness CLIP for text-driven image
processing, e.g., style transfer [38], instruction-controlled
NeRF [39], and face attribute hallucination [40]. The given
work indicates that the challenges presented by drone vision
could potentially be mitigated by the guidance of text-based
instructions.

2.2 Motivational Studies

We comprehensively analyze the impacts of the drone view
on human identification accuracy and computational la-
tency using a single drone, include flight height, drone-
person angle and resolution. We use the NVIDIA Jetson
Xavier NX [41] as the edge device to process the capturing
images of the drone. The identification pipeline consists
of RetinaFace [42] for face detection, and ResNet-based
ArcFace [1] for face identification. We use two model config-
urations, RetinaFace-2.5Gf & ResNet18 and RetinaFace-10Gf
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Figure 2: Identification service provided by a single drone.

& ResNet50, corresponding to the light model configuration
and the heavy model configuration, respectively. We col-
lect 567 drone images with the DJI Mavic [43] at various
distances, heights, drone-person angles, and resolutions. By
using these aerial images, we mainly analyze the impacts of
flight height, drone-person angle, and image resolution on
human identification accuracy and computational latency.

The high-flying height offers a broad view scope
but degrades the face identification accuracy. Figure 2a
presents the accuracy achieved at different heights. The
horizontal distance between the drone and the person to
be identified is fixed at 20 meters, and the images used are
in 4K resolution. We down sample these images according
to the needs of the experiment. As the drone flies higher, the
identification accuracy decreases significantly in both model
configurations. The accuracy is less than 10% at the height
of 25m, since the over-tilted faces in high-flying drone-view
make fewer effective pixels are available for the person.

The large drone-person angle results in low identifi-
cation accuracy. Figure 2b illustrates the accuracy achieved
at different drone-person angles (0°: the drone exactly faces
the frontal face of the person, and 180°: the drone exactly
faces the back of the head of the person). In this experiment,
the height is 5 meters, the horizontal distance is 10 meters
and the resolution is 4K. The result shows that as the drone-
person angle increases, the accuracy drops significantly and
nearly reaches zero at around 150°.

The high image resolution boosts the accuracy but in-
curs the high computational latency. Figure 2c and 2d show
the identification accuracy and computational latency un-
der 9 photo resolution settings, i.e., 4000 <3000, 2666 x2000,
20001000, 1600x1200, 1333x1000, 1142x857, 1000x750,
888 %400, 800x600. For both model configurations, the bet-
ter resolution leads to the higher accuracy, while causing
significantly the higher computational latency.

The high image resolution impedes the transmission
but can be accelerated by transmitting only face images.
Figure 2e show the transmission latency under 9 photo reso-
lution settings. The higher resolution causes significantly the
higher transmission latency in transmitting full image. Due
to the removal of redundant scene information, the latency
of transmitting face images under different resolutions is
much lower than that of full image transmission.

According to the above results, the higher the flight
height, the farther the distance between the drone and
the target person, and the steeper the drone-person angle,
resulting in fewer effective pixels available, which in turn
leads to lower accuracy. Furthermore, higher image resolu-
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computational latency. transmission latency.

tions lead to larger transmission and inference latency, but
lower resolutions reduce the accuracy of face identification.

To this end, we gain two valuable insights from our
motivational experiment: i) Using multiple drones instead
of a single drone could be an alternative solution for human
identification, offering varying drone heights and angles for
improved accuracy. ii) Using powerful edge devices to assist
drones can solve the issue of limited computing power,
but prior on-board processing is necessary to minimize
transmission latency, such as detecting faces on the drone
and transmitting them to the edge device for identification.

3 SKYNET: OVERVIEW

We build a multi-drone cooperation system to locate and
identify the target person in a crowd, which consists of:

i) a group of drones with heterogeneous computing
capabilities that can capture images from different angles,
run lightweight models, and offload computation tasks to
edge devices and the cloud server.

ii) a group of interconnected edge devices, closer to
drones, can run models efficiently but with finite total
computing power. In SkyNet, a stable and power edge
device is selected as the home edge, which can collect status
information from other edges and schedule tasks.

iii) the cloud server, farther from drones and edge
devices, but with sufficient computing power. When the
workload of all edge devices is too heavy, the computation
can be offloaded to it.

Figure 3 shows the operational flow of SkyNet. In a
crowded scene, SkyNet locates the target using the Multi-
Drone Person Localization (MDPL) module, and identifies
he/she by the Multi-View Fusion Identification (MVFI) and
the Multi-Modal Face Correction (MMFC) modules. The Dy-
namic Task Scheduling for Heterogeneous Devices (DTSH)
module schedules tasks among edge devices and the cloud
server to reduce latency and balance workload.

i) Multi-Drone Person Localization (MDPL). On each
drone, aerial images of the crowd are first processed on-
board by a person detection model and a face detection
model. These extracts face sub-images with their bounding
box locations and face landmarks, and sends them to the
DD selected via the DTSH module. Then SkyNet runs the
MDPL module on the DD to locate each person’s real-world
location through a series of coordinate matrix transforma-
tions and align his/her sub-images from multiple views.

ii) Multi-View Fusion Identification (MVFI). After
aligning the multi-view sub-images of a person, SkyNet
runs the MVFI module on the DD. The MVFI first uses
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Figure 3: Operational Flow of SkyNet in a nutshell.

MMEFC to extract face features from all face sub-images
captured at different angles. Second, to reduce the invalid
information in the face feature, the AMN conducts a mask
weight for each face sub-image to mask unimportant chan-
nels in the face feature. Third, to comprehensively utilize
features from these different angles, the FWN assigns a
fusion weight to each sub-image to reflect its legibility.
Then, the fusion layer generates the fused face feature by
combining face features from different views using fusion
weights. The fused face feature contains more details than
those extracted from a single image. Finally, the fused face
feature is compared with the facial feature of the target
person through calculating their feature distance. A person
whose feature distance is within the threshold is considered
the target person to be found.

iii) Multi-Modal Face Correction (MMFC). SkyNet runs
the MMFC module to extract face features and enhance their
legibility. To achieve this goal, MMEFC tries to correct the
illegible face features to the legible face features. Take the
tilted face for example, for an input face image, MMFC
matches it an input text and a target text, e.g., the ‘tilted
face’” and ’level face’” in Figure 3. MMFC first extracts the
features of image and texts by multiple models. Then, by
text-driven transfer, MMFC transfers the difference between
input text feature and target text feature to the difference of
the face features, which can be used to correct the input face
feature to the target face feature that is more legible.

iv) Dynamic Task Scheduling for Heterogeneous De-
vice (DTSH). We define the entire operation flow of local-
ization and identification as a task. At a shooting instant,
each drone takes a photo of the crowd. The detection part
of one task, i.e., face sub-image extraction in MDPL, is
executed in parallel on each drone. The remaining parts of
one task need to use images from all views simultaneously
and thus can only be done on one device, i.e., the DD.
Therefore, the remaining parts of one task are called the
DD-side task, including the localization sub-task, the fusion

sub-task, and the identification sub-task. In order to balance
the workload of edge devices and ultimately reduce the
processing latency, selecting a suitable DD for one DD-side
task is the key. For this purpose, the home edge first predicts
the Estimated Finishing Time (EFT) required by each edge
device if it handles this DD-side task. Then, it selects the
device with the shortest EFT as the DD for this task. If all the
EFTs of edge devices are higher than the shooting interval
(e.g., 1s), it selects the cloud server as the DD of this task.
Finally, scheduling decisions are sent to all drones, which
offloads data to the DD.

4 MuLTI-DRONE PERSON LOCALIZATION

In this section, we present the process of multi-drone person
localization. First, the face sub-image extraction model is de-
signed. Then, a multi-view cross localization and alignment
strategy is proposed to find the 3D position of each person
and align his/her sub-images from different views.

4.1 Face Sub-images Extraction

The first step of the MDPL module is to extract face sub-
images, their bounding box locations, and face landmarks
on each drone. Because drones are far from the crowd, some
faces may be too small to be recognized in the image. We
first use a person detection network to find the full body
of each person on images. Then, we use a face detection
network to detect each person’s face.

Considering the limited computational and power re-
sources of drones, we choose YOLOX-Tiny detector [44]
as the person detection network and RetinaFace detector
[42] as the face detection network because of their accurate
detection rate [45], [46] and fast processing speed [46], [47].
We fine-tune the person detection network using datasets
from drones (VisDrone [48]) to better detect pedestrians at
small scales in drone images. The person detection network
uses the DNN to generate the bounding box position of
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each person in the original image, and the face detection
generates the bounding box position and facial landmark
position of each face. Next, on each drone, we can get
the bounding box location of each face and its face land-
marks, and then extract the face sub-images. Each drone
then sends this information to the DD, which is selected
by the DTSH module described in Section 7 for further
processing, namely localization, alignment, feature fusion
and identification.

4.2 Multi-View Cross Localization and Alignment

Face sub-images and bounding box locations from multiple
views are aggregated in the DD, but it is unclear which sub-
images from multiple drones belong to the same person. In
this subsection, we propose a multi-view cross search algorithm
to determine a person’s 3D real-world location and align
face sub-images of the same person from different drones
by the location. Initially, we randomly select a drone D;
and use its view as the primary view. Denote the center
point of the face in the pixel coordinates of the drone D; as
P; = [z;,y:]". Our goal is to find the 3D real-world position
of this face to align face sub-images of the same person
from different drones, denoted as PV = [zW yW W]T.
In order to find the 3D real-world position of this face, we
first establish the transformation relationship between F;
and PY, as follows:

c Pz-]:[ci WH% Tinlw

2

1 1

}, M

where C; € R3*3 denotes the camera internal matrix of
the drone D;, which can establish the mapping relation-
ship between the image pixel coordinates and the camera
coordinates for D;. R; € R3*3 and T; € R3*! represent
the rotation matrix and translation matrix of the drone D;,
which could establish the mapping relationship between the
camera coordinates and the world coordinates for D;. R;
and T; can be obtained by the Perspective-N-Points (PNP)
positioning' [49] and C; can be obtained by the camera
calibration technique [50]. Following (1), Py is given as:

PV =R |:fC7P - Ty . )
Due to the absence of depth information z&, P is still a
variable depending on z£. Hence, we find the final piece of
the puzzle by exploiting information provided by the views
of other drones.

By varying 2 in (2), PV forms a line in 3D space, called
the inverse line, denoted as [. Without any other additional
information about 2&, we traverse the points on [ using an
adaptive stride. We consider the highest and lowest possible
heights of a person in the real world, denoted as hmax and

hmin, and get the corresponding real-world locations pw

W W
and P,

by these two heights. The z¢ corresponds to P/
and Pr‘r’fi/n, denoted as Zmax and zmin, respectively, can be
calculated according to (1). By restricting the inverse line !
Wwith Zmax and zmin, the search space [ is further narrowed

down to a line segment, named the traverse segment. The

1. As SkyNet is designed to locate a person in a known space, it is
feasible to get known calibration points.

W
Traverse Segment © pW o P; o P imp © Prmp

D4

Primary D;

View Primary
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(a) Space inverse transformation. (b) Cross check for a traverse point.

Figure 4: Multi-View Cross Localization.

Algorithm 1. Multi-view Cross Search Algorithm

Input: 4, Amax, hmin, N, sV, P;, for each drone:[R, T, C|
1: | < getInverseLine(P;)
2 Zmax — set ZW of PV in (2) to hmax
¢ Zmin < set ZW of PV in (2) to Amin
ey
: while zzc < Zmax do
P}V < pizel2realworld(z{ , P;)
result = true
for kin [1,N]\{i} do
P, = realworld2pixelviewk(Pt%p)
10: if IpointInBoundingBox(Py) then
11: result = false
12: end if
13:  end for
14:  if result is true then
15: PV — P
16: break;
17:  end if
18: ZZC — zf + si;
19: end while

C _ —
Z; = Zmins Si =

O PN T R

o = i} /57
s" is the fixed real-world height stride (e.g., 10 cm).

As shown in Figure 4, for each traverse point Pt%p, we
conduct a cross-check by projecting it onto all other drones’
views using (1). If, on each view, the projected point falls
into a face bounding box, we assert Pt‘ffm is the true point
PW je., the 3D real-world position of the face. Note that
in this process of cross-checking, the corresponding sub-
images of the person in all the different views are found,
effectively accomplishing the alignment. The pseudo code
of the algorithm is shown in Algorithm 1.

traverse stride of z is set as s; = ( where

5 MuLTI-MoDAL FACE CORRECTION

Traditional face identification like ArcFace [1] extracts face
features from face sub-images and identifies these features
by distance comparison. However, as shown in Section
2.2, the faces captured in drone-view typically suffer from
reduced effective pixels due to issues like tilt and blurring,
which ultimately diminish legibility of face features. Fur-
thermore, variations in facial attributes due to factors such
as aging, changes in hairstyle, and the use of glasses or
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Figure 5: Multi-Modal Face Correction. The face images
used are from the DroneFace dataset [51].

accessories, also contribute to the increased complexity of
face identification. To overcome these obstacles and improve
face identification accuracy, we propose Multi-Modal Face
Correction (MMEFC) to transform a less legible input face
feature into a more discernible face feature. MMEFC utilizes
text prompts to provide additional information, thereby
aiding the transformation process.

Specifically, MMFC processes a face sub-image alongside
an input text of the input face’s key attributes of concern. It
then outputs a target face feature that aligns with a specified
target text, which outlines the desired attributes of a target
image. For example, the input text can be 'A photo of a
male/female taken at a tilted angle’, and the target text can
be "A photo of a male/female taken at a level angle’. Vari-
ous text prompts can achieve the hallucination of different
attributes of the face [40] for easier face identification, e.g.,
tilted face, age, hairstyle, etc. Note that the text prompts
are fixed in the inference process. For further details, please
refer to our supp. Next, we use tilted face as an example and
elaborate on the pipeline and the training process of MMFC.

5.1 Pipeline of MMFC

MMEFC begins by extracting features from the sub-image of
the face, upon which it then performs the transformation.
As shown in Figure 5, the pipeline of MMFC consists of two
stages: feature extraction and space transformation.

5.1.1 Feature Extraction

Although existing multi-modal models, such as CLIP [1],
have shown significant success in general visual semantic
description, they fall short in extracting pivotal features
specifically for face identification. Contrary to this, tra-
ditional face identification methods like ArcFace [1] can
discover key identity features but are often influenced by
the clarity of the face.

Hence, to exploit the benefit of multi-modal guidance
while mining facial feature to the largest extent, MMFC uses
two encoders to extract features from the input image, i.e.,
an ArcFace Encoder [1] and a text-aligned Visual Encoder
from CLIP [37]. The ResNet50-based ArcFace Encoder [1]
extracts a face feature f € R'*®'2 in the face identification
space from the image x. The text-aligned Visual Encoder

6

from CLIP [37] is used to extract an image feature i € R1*512
in the vision-language space from the image x. The Text
Encoder from CLIP [37] is used to extract text features
t € R1*512 from the input text in the vision-language space.
A same Text Encoder is used to extract the text feature ¢’
from the target text. It is worth noting that, since CLIP can
align images with corresponding text, the cosine similarity
between i and ¢ is higher than that between ¢ and ¢'.

5.1.2 Space Transformation

We expect to transform the input face feature f into a target
face feature f’ that matches the target text feature t'. MMFC
leverages the text features to guide this transformation,
i.e., converts the difference of text features At = t — t/
to the difference of face features Af = f — f’, which is
then used to obtain the target face feature f’. However,
the transformation from At to Af is not straightforward,
as they are obtained for fundamentally different objectives
under different feature spaces.

In MMEC, we use Ai to serve as a pivotal intermediary
to the conversion from At to Af through a dual-phase
space transformation process. On the one hand, there exists
an underlying connection between At and A¢ that can be
effectively modeled since CLIP aligns ¢ and ¢. On the other
hand, since ¢ and f are extracted from the same person’s
image, there also exist an inherent relationship between A
and Af.

First, MMFC transforms the difference of text features
At into the difference of image features in vision-language
space Ai. The transformation is defined as follows:

Ai = Ty (4, At). 3)

This transformation also incorporates the image feature ¢
as input. This is because the transformation between At
and Aj is not one-to-one mapping. At guides the transfer
direction, and ¢ offers a starting point for the transformation.

Second, we transform the difference of image features
in vision-language space Ai into the difference of face
features in face identification space A f. The transformation
is defined as follows:

Af =T (f, Ai). (4)

Same as (3), Ai guides the transfer direction, and f offers
a starting point for the transformation. At this point, we
obtain the difference Af from the input face feature to the
target face feature.

Last, we can obtain the level face features f’ by

f'=rf-Af. ©)

The justification of transformation’s rationality is provided
in [37], [40]. For further details, please refer to our supp.

5.2 Training of MMFC

For the two transformation in (3) and (4), we use two MLPs
as function approximators. For Tiz;, we use the following
loss function for supervised learning [40]:

Lygi =1— <At7 Ai>+1-— <t/7i — Ai>, 6)

where <, -> is the cosine similarity that used in CLIP. Ben-
efiting from the zero-shot vision-language representation
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Figure 6: Multi-View Fusion Identification workflow.

capability of CLIP, we can eliminate the need for large-scale
annotated data for training.

For Tjaf, we define the following loss function for su-
pervised learning, which is an enhanced version of the loss
function defined in [40]:

Loy =1—-<f+Af,

1 N
v 2> @)
i=1

where + S N | f! represents the class center of f/, ie., a
series of face features that extracted from current person’
images taken at level angles. The original loss function
Liof = 1 — <f+ Af, f'>, as defined in [40], struggles
when training on a small dataset since this loss function
compromises the integrity of the original face identifica-
tion space, leading to inaccurate face identification. The
enhanced loss function, as specified in (7), addresses this
issue by maintaining the facial features within the face
identification space pertinent to the individual in question,
thereby ensuring accurate identification.

6 MuLTI-VIEW FUSION IDENTIFICATION

In this section, we detail our proposed multi-view fusion
identification pipeline, including single-view face feature
masking, multi-view face feature fusion, and a parallel
computing strategy aimed at speeding up processing.

6.1 Face Feature Extraction

For each face sub-image, we use our designed MMFC de-
tailed in Section 5 to extract a 512-dimensional feature vector
in the face identification space, denoted as ¢(-) € R1*%12,
which has small inner-class distances and large inter-class
distances that can be used for identification.

6.2 Single-view Face Feature Masking

As shown in Section 2.2, drone-person angle can seriously
affect the accuracy of face identification due to the invalid
information about the invisible half of the face in profile
images. In SkyNet, we generate weights for all dimensions
of the face feature to emphasize valid information while
downplaying the invalid data within the feature.

6.2.1 Angle Masking Network

Our goal is to generate weights for all dimensions of the
face feature to emphasize valid information while down-
playing the invalid data within the feature. Inspired by our
motivational study in Section 2.2, we aim at establishing the
relationship between drone-person angle and face feature to
generate 512-dimensional mask weights to achieve our goal.

For this purpose, we design an Angle Masking Network
(AMN), which generates a mask weight Ma € R1*512
from the given single face feature, the landmarks of this
face, as well as the rotation angles of this face. The face
landmarks can be retrieved from the face detector, which
can also provide the face bounding box. The calculation
of rotation angle is detailed in Section 6.2.2. The value
of each dimension in the mask weight Ma ranges from
0to 1, ie, Ma; € [0,1],7 = {1,...,512}. AMN explores
the hidden relationship between face features and rota-
tion angles using supervised learning. It emphasizes valid
dimensions while downplaying invalid dimensions in the
face features through the dynamic mask weight in order to
improve identification accuracy. Intuitively, the dimensions
displaying significant variations between the profile face
features and the frontal face features should be masked,
while the others should be retained. To this end, the mask
loss for training AMN is defined as follows:

N
Lpask = %Z (||Ma- ¢(Face) — ¢(Facebm)||2) , (8)
1

where N is the number of samples in a training batch,
Face is the input image of the person, and Facey,, is
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Figure 7: Multi-View Fusion Identification. The face images used are from the CFP dataset [52].

the benchmark image of the person, ie., a frontal image
with sufficient effective pixel. By minimizing the L.,qsk,
an effective AMN can be trained to select the dimensions
with invalid information in face features by outputted mask
weight, as shown in Figure 7a. Using the trained AMN, we
can generate the mask weight for a person’s face sub-image
from a single view, then emphasize valid information while
attenuating the invalid data within the feature.

6.2.2 Rotation Angle Calculation

To obtain the rotation angles, we estimate the three-axis
rotation [Y aw, Pitch, Roll]T € R*3 of the face through the
face landmarks and face bounding box.

The yaw angle is calculated as follows:

2 x (xnose

: )

- Icenter) :|

Yaw = arcsin
w

where Z,,psc and Zcenter denote the x-coordinate of the nose
and the face center in the face sub-image, respectively, and
w denotes the width of a person’s face sub-image.

The pitch angle is calculated as follows:

X (ynose -
h

2
Pitch = arcsin [ , (10)

ycenter) :|
where Yy0se and Yeenter denote the y-coordinate of the nose
and the face center in the face sub-image, respectively, and
h denotes the height of a person’s face sub-image.

The roll angle is calculated as follows:

Yre Yle

— Tle

Tre

Roll = arctan ( (11)
where z;. and z,. denote the x-coordinate of the left eye and
right eye in the face sub-image, respectively, and y;. and v,
denote the y-coordinate of the left eye and right eye in the
face sub-image, respectively.

Although the above estimation may not be entirely pre-
cise, as the facial landmarks utilized for calculation are 2D
image points rather than 3D real-world coordinates, the
angle information implicitly conveyed by the face land-
marks can act as a compensatory measure. As such, both
the estimated rotation angles and the facial landmarks are
input into the AMN.

6.3 Multi-view Face Feature Fusion

After processing the face features from all angles using
AMN, they must then be compared with the face features of
the target person. Traditional face identification algorithm
compares extracted feature vectors from different angles
with the target person’s face features one by one and selects
the vector which has minimum distance from the target
person’s face features as the optimal vector for identity.
However, such an approach ultimately still obtains identifi-
cation results based on the feature vector of one view /angle,
while the information from other angles’ feature vectors
is wasted. In SkyNet, we fuse face features from different
angles according to weights generated by a Fusion Weight
Network for more accurate identification.

6.3.1 Fusion Weight Network

As demonstrated in Section 2.2, face angle and resolution
can seriously affect the accuracy of face identification. In
order to establish a reasonable fusion method for images
of different angles and qualities, we design the FWN. As
shown in Figure 6, for each face image, the FWN takes
its resolution and landmarks of face features as input, and
outputs the fusion weight of the image. This is achieved
by neural networks capturing the hidden relationships be-
tween landmark vectors, resolution, and image legibility.
Intuitively, face images that are easier to identify should
be given higher fusion weights. To this end, weight loss for
training FWN is defined as follows:
N
: ). a2

1
N ; (y  |¢(Face) — ¢p(Facepm)|[?

where N is the number of samples in a training batch, y
denotes the fusion weight of an input image generated by
the FWN, d denotes the dimension of the feature vector,
Face and Facey,y, are the input image and the benchmark
image (i.e., a frontal view image with sufficient effective
pixel) of the person, respectively, and ¢(-) denotes the d-
dimensional face feature vector extracted by face feature
extraction. To(Face)= ¢( Facen)|2 is also called ground truth
weight. By minimizing the weight loss Leignt, an effective
FWN can be trained to output fusion weights that can
accurately reflect the legibility of each image, as shown in

Lweight =
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Figure 7b. Using the trained FWN, we can generate the
corresponding fusion weights for the same person’s face
sub-images from different views, which are then normalized
and fed into the fusion layer.

6.3.2 Fusion Layer and Identification Result

For each person, the MVFI first uses the fusion layer to
fuse his/her face sub-image features from different views
to obtain a fusion feature, and then calculates the distance
between it and the target person’s face feature. After getting
the feature distances between each person and the target
person, the minimum feature distance is compared with the
feature distance threshold, and if the minimum feature dis-
tance is lower than the threshold, its corresponding person
is identified as the target person to be found.

6.4 Parallel Heterogeneous Computing

To guarantee the real-time performance, we design a Parallel
Heterogeneous Computing (PHC) strategy. The PHC sets
up the thread pool to prepare for upcoming tasks. When
face sub-images of people from multiple views are passed
to the PHC, each sub-image is submitted to the thread pool
as a job. The thread pool creates a thread for each job to
realize multi-view parallel identification. To further reduce
the pipeline latency, we employ heterogeneous computation
within each thread by CPU-GPU collaboration. Specifically,
the AMN, FWN are executed by the CPU, while the heavy
feature extraction models are executed by the GPU to fully
utilize the overall computing power of the devices.

7 DYNAMIC TASK SCHEDULING FOR HETEROGE-
NEOUS DEVICES

The scheduling of tasks is executed by the home edge. When
the home edge schedules a task, it selects the DD from
all edges and the cloud server to complete the DD-side
task. To predict the EFT, the following information needs
to be considered: 1) the length of the current unfinished task
queue for each candidate device; 2) the computing power
of each candidate device, such as CPU and GPU resources;
3) the transmission latency between each candidate device
and drones. To this end, the home edge needs to be up to
date on these three aspects of devices.

In order to avoid frequently obtaining information from
all devices, the DTSH sets a scheduling period (e.g., 1
minute), which spans a series of tasks, denoted as Queue,,
which can be flexibly configured according to the system
needs. For further details of the scheduling period, please
refer to our supp. The scheduling process in one scheduling
period includes the following three steps.
1) Synchronization. At the beginning of each scheduling pe-
riod, the home edge obtains the latest device state informa-
tion from edge devices, including queue lengths, available
GPU/CPU resources, and current transmission latency.
2) Scheduling. The scheduling decision of one scheduling
period includes selecting the suitable DD for each task
within the period. When a device is already assigned for
multiple tasks, its queue length becomes longer, so it is less
likely to be selected again. The home edge selects DDs for
tasks one by one in chronological order of tasks, because
there is the temporal dependency between tasks.
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Figure 8: Dynamic Task Scheduling for Heterogeneous
Devices.

3) Schedule decision dissemination. After all tasks are
scheduled, the home edge sends the scheduling decision,
i.e., the sequence of selected DDs, to all drones, edge devices
and the cloud server.

In the following, we explain how to select the DD for
a task within a scheduling period. Consider N drones
D = {Di,---,D;,---,Dn}, M edge devices E =
{E\,---,Ej,--- ,Eym} and a cloud server, denoted as
Ey. Suppose the current unfinished tasks queue of E; is
Queue;, and the CPU and GPU computing powers of device
E; are CPU; and GPU; (unit: TOPS), respectively. The
transmission latency of £ is calculated as the maximum
transmission delay between it and all drones Delay; =
..161[112%] Delay; ;, where Delay;; is the transmission delay
K 5
between E; and D;.

For a task, the home edge selects the device with the
smallest EFT as the task’s DD. If the EFTs of all edge devices
for one task are higher than the shooting interval (e.g., 1s),
indicating all of them are busy, the cloud server is selected as
the task’s DD. The estimated finishing time EFF'T}; of device
E; can be predicted by an adaptive Multi-variable Linear
Regression (MLR) model:

EFT; =M LR(Delay;, ||Queue,||, CPU;, GPU,)
=0y + 91Delayj + 92Queuej + 93GPUj + 94CPUj.
(13)

To train the MLR model, a trace pool is built to store the
real historical traces. Each trace is a pair of data that records
the MLR input vector (Delay;, Queue;, CPU;, GPU;) and
the real finishing time (ground truth). The MLR is updated
through training with the real traces in the trace pool in each
updating period (e.g., 2 minutes).

The training purpose of MLR is to find out a parameter
set 0 = (0p,01,02,03,04), which is as close to the real
parameter set 6 = (0, 61, 02,03, 04) as possible. Because the
real € is unknown, we cannot directly compare the two. To
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Algorithm 2. Dynamic Task Scheduling Algorithm (DTS)

Input: Queue,, N, each D;, M, each E;;[CPU;, GPU;,
Queue;, Delay;]
1: while DTS is running do
2:  assignments < {}
3:  while Queue, is not empty do
4: taskld < Queue,.front()
5: for j in [1,M] do
6 EFTJmSkId —
MLR(Delay,, ||Queue;||, CPU;, GPU)

: end for
8: if min EFT}‘”Md < shooting interval then
9: DD < argmin, EFT;“SkM
10: else
11: DD + E
12: end if
13: push (taskld, DD) into assignments
14: push taskld into Quevepp

15:  end while

16: foriin [1,N] do

17: sync assignments with D;
18:  end for

19: end while

describe how close 8 is to 0, we introduce a loss function:

K
1 -
Loss = - > (EFT; - EFTy),

j=1

(14)

where K is the number of traces, E'F TJ; is the real task fin-
ishing time of a completed task, and F'F'T} is the estimated
EFT. The pseudo code of DTSH is shown in Algorithm 2.

8 IMPLEMENTATION
8.1 Hardware

Drones. We use the self-assembled F450 quadcopter as
the drone in SkyNet. The quadcopter is equipped with a
PIXHAWK [55] 2.4.8 flight control, an M8N GPS [56], and a
4K action camera. An Al edge computing platform, NVIDIA
Jetson Xavier NX, is also deployed on the drone to provide
14 TOPS of computing power (low power mode).

Edge devices. We use the NVIDIA Jetson Xavier NX as
the edge device in SkyNet, which can provide 21 TOPS of
computing power due to the more abundant power supply.
Cloud server. The cloud server in SkyNet is implemented
on a server running an Ubuntu 20.04 system with two Intel
Xeno Silver 4210 @2.20GHz CPUs and four NVIDIA RTX
2080Ti GPUs with 12 GB of video memory.

8.2 Syetem Setup

We implement SkyNet on the above hardware. The source
code of the SkyNet system is currently available for use 2.

Algorithms and DNNs. We use python and pytorch to
implement the algorithms and DNNs in SkyNet. For the
face detection pipeline on drones, we use YOLOX-Tiny [44]

as the person detector and RetinaFace-10g [42] as the face

2. https://doi.org/10.5281/zenodo.7467108
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detector. For the localization and identification pipeline on
edges and cloud, we use ArcFace based on ResNet50 [1] and
CLIP based on Transformer [37] as feature extractors. The
MMEFC, AMN, and FWN are all implemented by Pytorch
1.8.0. The MLR in DTSH is implemented by scikit-learn.
Wireless Connection. We use socket to achieve communi-
cation between devices, based on the TCP protocol. Data
transfer between devices via WLAN (WiFi protocol 802.11
ac) at 18 Mbps upload/download rate.

9 DATASET EVALUTION
9.1 Datasets

We evaluate SkyNet on the following public datasets. For
further details of datasets, please refer to our supp.

o CFP [52] provides frontal and side images for each
person. SkyNet uses 3 input channels for identifica-
tion, corresponding to 3 images of a person.

o DroneFace [51] provides face images captured from
different distances and depression angles, which
could be used to simulate the FoV of drones.

e TinyFace [53] provides low-resolution images of
faces gathered from public web data, which covers
a wide range of imaging scenarios captured under
uncontrolled viewing conditions.

e SurvFace [54] provides surveillance facial images
captured in real-world uncooperative surveillance
scenes, which can be used to simulate finding targets
from a large crowd in complex scenarios.

e AgeDB [57] provides images of the same person with
different ages, which could be used to evaluate the
attribute hallucination of MMFC.

9.2 Baseline Methods

We select four mainstream face identification algorithms as
baselines for comparison, which are implemented in the
standard face identification library [58]. We use RetinaFace-
10g for face detection in each baseline. The difference
between baselines lies in the face extractors used, which
include the following extractors:

e VGG-Face (VGG) [59]. A heavyweight face identifi-
cation algorithm which use a “very deep” convolu-
tional network [60] trained on a large scale dataset.

e FaceNet (FN) [61]. A classical face identification al-
gorithm that learns a mapping from face images to
a compact Euclidean space where distances directly
correspond to a measure of face similarity.

e SFace (SF) [62]. A lightweight algorithm trained by
the sigmoid-constrained hypersphere loss.

o ArcFace (AF) [1]. A powerful face identification al-
gorithm trained by the additive angular margin loss.

9.3 Evaluation Results on Public Dataset
9.3.1 Evaluation of face identification

Overall accuracy on various datasets. As shown in Figure
9a, the accuracy of SkyNet on four datasets (CFP, DroneFace,
TinyFace, and SurvFace datasets) is 95.3%, 85.3%, 75.4%, and
77.2% respectively, which is 36.0%, 33.4%, 43.8%, and 40.5%
higher than the optimal baseline method respectively.
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Figure 9: Overall Comparison on Four Public Datasets: CFP [52], DroneFace [51], TinyFace [53], and SurvFace [54].

On one hand, the facial images in the CFP dataset
are high-resolution that have large proportions and more
abundant features, so the VGG-Face and FaceNet with
heavy networks achieve better accuracy than lightweight
SFace and ArcFace. But the profile faces in the CFP dataset
have more invalid information, which interferes with the
extracted face features by VGG-Face and FaceNet, resulting
in unsatisfactory accuracy. SkyNet uses single-view face
feature masking and multi-view face fusion to ensemble
feature information from multiple views, thus achieving the
highest accuracy.

On the other hand, the facial images in DroneFace,

TinyFace, and SurvFace are low-resolution, occupying only
a small portion of the entire image and lacking many details.
Therefore, the large-scale features extracted by heavyweight
VGG-Face and FaceNet even have more noise, resulting
in a decrease in accuracy. In addition, the images in Tiny-
Face and SurvFace are captured in complex and uncon-
trolled scenarios, e.g., stations, campus, and stadium stands,
which present significant challenges for small face detection.
SkyNet’s advantages shine even brighter in these complex
scenarios, because it begins by searching for areas where
faces are likely to appear with a person detector, then
utilizes a face detector for precise face detection, successfully
detecting small faces. The results also show the robustness
of SkyNet in diverse commonly used scenarios.
Overall latency on various datasets. As shown in Figure
9b, the latency of SkyNet on four datasets is on average
3 times faster than the fastest baseline method. In general,
the inference latency of all methods is longer on higher-
resolution facial images, while lower-resolution facial im-
ages can speed up DNNs inference. Heavyweight models
such as VGG-Face and FaceNet can bring high accuracy on
high-resolution facial images, but their inference latency is
intolerable. Lightweight models like ArcFace and SFace can
infer fast but are stuck in the sequential execution of nu-
merous images. Benefiting from the PHC, SkyNet’s latency
is significantly lower than other algorithms. In addition,
even if the resolution of the facial images is low, full image
input at high resolution slows down the traditional face
identification pipeline. SkyNet uses pre-emptive lightweight
person detection to make the face detector unnecessary to
detect all areas in high-resolution full images. Therefore,
even if the same face detector and extractor are used, SkyNet
is still much faster than traditional pipelines.

9.3.2 Evaluation of the attribute hallucination

Accuracy improvement on CFP dataset. We evaluate
the face identification accuracy improvement from using

TABLE 1: Identification accuracy improvement of the at-
tribute hallucination on dataset evaluation.
[ Dataset | Opt. Baseline | SN w/o MMFC | SN with MMFC ||

CFP 59.4% 91.1% 95.3%
AgeDB 82.9% 82.9% 97.2%

MMEFC for attribute hallucination on the CFP dataset. For
each person, we use one of his/her frontal images as the
target image for identification. During identification, MMFC
corrects profile face features into frontal face features to
improve the accuracy of identification. Table 1 shows the
improvement in identification accuracy resulting from using
MMEFC on the CFP dataset. The accuracy of SkyNet with
MMEFC is 95.3%, which is 4.2% higher than SkyNet without
MMEFC. By transforming the profile face into the frontal face,
we can improve the accuracy of face identification.
Accuracy improvement on AgeDB dataset. We evaluate
the face identification accuracy improvement from using
MMEC for attribute hallucination on the AgeDB dataset.
For each person, we use an image of his/her youth (10-30)
as the target image for identification. During identification,
MMEFC corrects old age face features into young age face
features to improve accuracy (since the target image used
for identification is the young image). Table 1 shows the
improvement in identification accuracy resulting from using
MMEFC on the AgeDB dataset. SkyNet without MMFC is not
optimized for age, which does not differ from the baseline
on the AgeDB dataset. After hallucinating age by MMFC,
the facial features at old age are transformed into facial
features at a young age, so that the features are closer to
the target images at a young age.

10 REAL-WORLD EVALUATION
10.1

We deploy and evaluate SkyNet on four drones, three edge
devices and a cloud server in real-world experiments. In
two scenes with 20 people moving freely indoors at 81m?
and outdoors at 554m?2, we use three drones to capture 4K
images and one drone to capture 1080p images, and each
experiment is performed for 5 minutes. The four drones
are located at the four corners of each scene, 5m above
the ground indoors and 10m above the ground outdoors.
We run a total of nine experiments, including five indoor
experiments and four outdoor experiments. 3

Real-flight Experiment Setup

3. We will open source the image dataset collected during the experi-
ments, which are taken simultaneously by multiple drones on the same
site, totaling 48.7K images and 736.8 GB.

Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on December 31,2025 at 03:00:16 UTC from IEEE Xplore. Restrictions apply.
© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TMC.2025.3619530

IEEE TRANSACTIONS ON MOBILE COMPUTING

12

g :GG;:atceg QLCT\?C: 12| EXN Calculation latency

;\3100 [Fe%)] Sangee yg;g 10 EEE Transmission latency
> 82.5 <
g 80 67.4 731 >
c N c
5 60151.0 I
2) 40 ® 4

20 5

0 0 0

N7 7777777

(Sl i%%a%a%a%a% %%

VGG FN SF AF SN
Comparison methods

VGG FN SF AF SN
Comparison methods

(a) Accuracy. (b) Latency.

Figure 10: The Overall Performance of SkyNet.
10.2 SkyNet Overall Performance

We first evaluate the overall performance of SkyNet.

10.2.1 Baseline Methods and Operations

We select the four mainstream face identification algorithms
as baselines for comparison, which are the same as the
baseline methods in §9. At a once-per-second shooting in-
stant, each drone takes a photo of the crowd. The baseline
methods offload photos from all drones to an edge device
for face identification, which sequentially searches for the
target person from all the photos. We define this entire
operation flow of transmitting and recognizing the target
person to be found as a task.

10.2.2 Evaluation Metrics

o Latency. the time spent executing one task, including
transmission latency and computational latency.

e Accuracy. Top-1 identification accuracy at a specific
False Accept Rate (FAR), e.g., FAR=1075.

e Precision (P). the percentage of tasks that correctly
identify the target person among the tasks which
identify a target person (note that the identified
person may not be the actual target).

e Recall (R). the percentage of tasks that correctly
identify the target person among the tasks in which
the target person exists.

o False Alarm (FA). the percentage of tasks which
incorrectly identify the target person among all tasks.

o F1 score (F1). the harmonic average of precision and

: __ 2XPXR
recall, i.e., F1 = je ot

10.2.3 Evaluation Results

Accuracy. Figure 10a shows the overall accuracy of SkyNet
and baselines. SkyNet has the highest accuracy of 95.87%,
which is 44.83%, 28.52%, 22.76%, and 13.33% higher than
VGG-Face, FaceNet, SFace and ArcFace baselines, respec-
tively. VGG and FaceNet use traditional Euclidean Distance
Loss for learning, resulting in poor accuracy in identifying
small faces in drone views. SFace and ArcFace achieve
acceptable accuracy of face identification on drones by their
designed loss function. However, some of their success is
due to the multi-angle faces provided by the multiple drones
(i.e., even if a person’s face cannot be found in a drone’s
photo, his/her identity can still be identified from other
drones’ photos that may capture his/her face), which are
also wasted by these single-view face identification base-
lines. SkyNet uses single-view face feature mask to filter out
invalid information of a single face and multi-view fusion
identification to fuse the feature from multi-angle faces,
which makes full use of the effective information from all
angle faces and achieves the highest accuracy.

Distance Threshold

(c) Other metrics.

(a) Image captured from (b) Image captured from
drone-view at 45°. drone-view at 225°.

Figure 11: On-Board Output Example.

Latency. Figure 10b shows the comparison of the latency
in completing once face identification (i.e., one task) be-
tween SkyNet and the baselines. SkyNet has the lowest
latency of 0.845 seconds, which is 9.31 times, 7.42 times, 5.31
times, and 6.31 times faster than VGG-Face, FaceNet, SFace
and ArcFace baselines, respectively. Heavy neural networks
bring high calculation latency to VGG and FaceNet. The
lightweight SFace has the lowest calculation latency, but
transmitting a full 4K image makes it have a high transmis-
sion latency. By transmitting only face sub-images and fast
PHC for processing multiple faces simultaneously, SkyNet
reduces the transmission latency and calculation latency
respectively, thus achieves the lowest overall latency.
Precision and recall. As shown in Figure 10c, when the
threshold is 25, SkyNet can achieve an 89.33% recall while
maintaining a 94.56% precision. In general, smaller distance
thresholds increase the number of tasks that miss the tar-
get, which leads to a lower recall. On the contrary, higher
distance thresholds bring more false positives, which leads
to lower precision. With the threshold increasing, SkyNet’s
precision decreases slightly, but the recall increases greatly.
False alarm and F1 score. As shown in Figure 10c, when
the threshold is 25, SkyNet can maintain a 5.06% false
alarm rate and can achieve a 91.87% F1 score. Even with
a large distance threshold, the false alarm is still within an
acceptable range, meaning that SkyNet correctly detects the
target person in most of the tasks.

10.3 SkyNet Framework Performance

We analyze the effect of SkyNet’s framework on accuracy
and latency. At a once-per-second shooting instant, each
drone takes a photo of the crowd. Using the same definition
as in §10.2, we define the entire operation flow of locating
and recognizing the target person to be found as a fask.

10.3.1 Baseline Frameworks

We compare SkyNet with the following four baseline frame-
works that for drone vision analysis:

o Baseline of single drone (B-D). This baseline runs
RetinaFace for face detection and ArcFace for face
identification using a single drone with on-board
computing power.

e Baseline with full offloading (B-O). In this baseline,
four drones transmit images to an edge device. The
edge device then runs the face detection model, Reti-
naFace, to find all the people in the drone’s view and
calculate the feature distance between each person
and the target person. If the shortest feature distance
is lower than the threshold, the corresponding per-
son is regarded as the target person.
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Figure 12: The Framework Performance of SkyNet.

o Baseline with down sampling (B-S). This baseline
is different from B-O because the drone transmits the
down-sampled image (640 640) to the edge device.

e SkyNet with full offloading (S-O). SkyNet runs
without DTSH, i.e., the cloud always serves as DD.

10.3.2 Evaluation Metrics

o Task latency. the time spent executing a task, includ-
ing transmission latency and computational latency.

e Accuracy. Top-1 identification accuracy at a specific
False Accept Rate (FAR), e.g., FAR=1075.

10.3.3 Evaluation Results

Task latency. The latency of SkyNet is much smaller than
all baselines. As shown in Figure 12a, SkyNet is 6.31 times
faster than the B-O baseline, which transmits 4K images
with a transmission latency of up to 4.154 seconds. SkyNet
is also 2.91 times faster than the B-D baseline. Due to the
limited computing resources of drones, B-D has a large com-
putational latency, reaching 2.455s. We further investigate
the cost of each sub-task (i.e., detection, localization, identi-
fication, and transfer) in the SkyNet task pipeline. As shown
in Figure 12b, the detection sub-task has the largest latency,
while the optimized localization and identification sub-tasks
have less latency. It can be found that the transmission
latency is greater than the computational latency. SkyNet
with task scheduling can utilize the computing resources
of multiple devices, thereby reducing the computational
latency. Moreover, because only face sub-images are trans-
mitted, the transmission latency is also reduced.

Accuracy. As shown in Figure 12c, SkyNet has the highest
accuracy of 95.87%, which is 13.33%, 35.34% and 47.78%
higher than the B-O, B-D, and B-S baselines, respectively.
The accuracy of the B-S baseline is the lowest because it
loses much information during down sampling. Figure 11
shows two images taken by two drones with the face bound-
ing boxes generated by drone on-board computations. In
SkyNet, full-resolution face sub-images are transferred to
the DD. Furthermore, the multi-view fused face feature pro-
vides more information than any single-view face feature.
Therefore, even if a person’s face cannot be detected in a
drone’s FoV (e.g., a person with his/her back to the drone),
his/her identity can still be identified because other drones
may be able to capture his/her face.

10.4 Evaluation of SkyNet’s Correction Performance

We evaluate the accuracy improvement from using MMFC
on real-world evaluation. For each person, we use his/her
face image taken at level angle as the target image for
identification. MMFC converts the tilted face features into

Comparison methods

(c) Accuracy comparison.

Person number

X coordinate (m)

(a) Localization error. (b) Track visualization.

Figure 13: Evaluation of Localization.

TABLE 2: Identification accuracy improvement of the at-
tribute hallucination on real-world evaluation.

[ Metrics [ SN w/o MMFC [ SN with MMFC ]|

Accuracy 91.36% 95.87%
Precision 94.87% 95.66%

Recall 87.52% 96.23%
F1-score 91.05% 95.79%

level face features to improve the accuracy of identification.
Table 2 shows the improvement in accuracy resulting from
using MMFC on the real-world evaluation. The accuracy of
SkyNet with MMEFC is 95.87%, which is 4.51% higher than
SkyNet without MMFC. In addition, SkyNet with MMFC
can achieve a 96.23% recall while maintaining a 95.66% pre-
cision, which means that SkyNet with MMFC can identify
the faces missed by SkyNet without MMFC.

10.5 Evaluation of SkyNet’s Localization Performance

We evaluate the localization performance of SkyNet in 5
experiments with different numbers of people. We calculate
the localization error, i.e., the error between the MDPL
output position and the true position, and the latency in
completing the localization task.

Localization error. As shown in Figure 13a, the average
error of each task collection is about 18.65 cm. Figure 13b
visually shows the comparison of the two real tracks of
the experimental participant and a series of consecutive
positions output by SkyNet in one minute. The SkyNet-
outputted positions are very close to the real tracks, which
means that SkyNet has a high positioning accuracy.
Localization latency. As shown in Figure 13a, the latency
of MDPL increases with the number of people. With the
increase in the number of people, the latency of MDPL
positioning is also growing. The MDPL latency for twenty
people is 0.071 seconds, which means that MDPL can locate
a person in real time and align faces under multiple drones.

10.6 Evaluation of SkyNet’s Scheduling Performance

We analyze the impact of the DTSH module to evaluate the
performance improvement brought by scheduling.

Latency. We compare the latency of SkyNet with and with-
out the DTSH under different numbers of tasks. As shown
in Figure 14b, the latency of SkyNet with the DTSH is about
15% lower than that of SkyNet without the DTSH.

Device queue length. Given 100 tasks, as shown in the
figure 14a, if SkyNet runs without the DTSH, all tasks
are assigned to the cloud server (device0 in the figure).
If SkyNet runs with the DTSH module, the 100 tasks are
assigned almost evenly to each device, so the length of the
task waiting queue for each device over time is shorter when
SkyNet runs with the DTSH module.
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Figure 14: Evaluation of Scheduling.

10.7 Effect of Different Parameters

We analyze the effect of the crowd size, the drone number,
and the edge number on SkyNet’s accuracy and latency. To
achieve this goal, we run SkyNet on different-sized crowds
(from 1 to 10) using different numbers of drones (from 1 to
4) and edge devices (from 1 to 5).

Effect of crowd size. As shown in Figure 15a, larger
crowds lead to lower accuracy due to mutual occlusion
between people. Figure 15b also shows that as the number
of people increases, the end-to-end latency increases due
to the increase in sub-images to be processed and data to
be transmitted due to computational offloading. End-to-
end latency increases faster when the crowd size exceeds
5 people. Notice that the edge number is fixed to 3.

Effect of drone number. As shown in Figure 15a, using
more drones can alleviate the problem of accuracy degrada-
tion caused by a large crowd as more details from multiple
drones are captured. When the number of drones exceeds 3,
the performance gain from adding drones decreases. Figure
15b shows that using more drones leads to higher end-to-
end latency. Notice that the edge number is fixed to 3.
Effect of edge number. As shown in Figure 15¢, utilizing ad-
ditional edges can help alleviate the issue of latency surges
caused by more drones, as the workload is distributed
among more edge devices. When the number of edges ex-
ceeds 4, the performance gain from adding edges decreases.
In addition, adding edges could not lead to higher accuracy.
Notice that the crowd size is fixed at 10.

10.8 Deployment Recommendations

In both public datasets and the real-life flight experiment,
SkyNet demonstrated its superior performance. Based on
the above results, we provide recommended deployment
methods for readers to better deploy SkyNet. To identify
more than 10 people in an urban area of 500m? and achieve
80% accuracy and decimeter-level positioning error, SkyNet
needs 4 drones to complete identification in about 0.9s.
These drones should be deployed in the four corners of
the area, between 5m and 10m above the ground. After
reaching the designated position, the flight speed of drones
should be kept below 1m/s. The vertical view of the camera
should be between 20° and 70° and the horizontal view
should be between +20° to the center axis, and WLAN is
recommended for communication.

11 RELATED WORK
11.1 Multi-drone Cooperation Systems

Multi-drone systems are increasingly used to collaboratively
perform various visual tasks, such as crowd monitoring [63],

(a) Effect of crowd size and (b) Effect of crowd size and (c) Effect of edge and drone
drone number on accuracy. drone number on latency.

number on latency.

Figure 15: Effect of Different Parameters on Performance.

[64], target identification [65], tracking [26], [66], etc. By uti-
lizing redundancy and complementarity between the visual
information of different drones, the multi-drone system can
often outperform a single drone. Moraes et al. [64] design a
multi-drone-based crowd monitoring system to periodically
monitor a group of moving walking individuals, which uses
auction protocols to assign different monitoring targets to
drones to maximize the monitoring time of all targets in the
scene. Patrizi et al. [66] propose a multi-drone framework to
track and sense multiple targets. By capturing the tracking
preferences of drones and targets, the system intelligently
determines the target each drone should track. The above
studies aim to reduce the redundancy of visual information
between different drones, e.g., assigning each drone to track
different targets. In contrast, SkyNet leverages the redun-
dancy of visual information between multiple drones, i.e.,
multi-view facial images of the same target. By exploring
the complementarity of these images, SkyNet can further
improve the performance of person identification.

11.2 Face Identification on Drones

Recently, computer vision techniques have been applied to
drones to detect faces [67]. Face identification on drones is
an admittedly challenging task, due to noise, motion blur,
and other factors unique to aerial photography. Fysh et al.
[68] demonstrate recent work about face identification on
drones, and focus on factors that are likely to affect iden-
tification performance from drone-recorded footage, such
as image quality, and additional person-related information
from the body and gait. This work suggests that person
identification from drones is likely to be very challenging
indeed, especially in real-world settings. Naser et al. [69]
demonstrate how drones can be used for crowd surveillance
by applying face identification technology. Erina et al. [70]
propose a method for facial identification from drone-view
images. Hwai-Jung Hsu et al. [71] propose that Face™™
and ReKognition are limited by the height, distance, and
depression angle of drones. Triantafyllidou et al. [72] design
a lightweight CNN for face detection, which is suitable
for deployment in resources-limited drones. Amato et al.
[73] focus on the impact of face multi-resolution on facial
recognition and address the issue of facial recognition on
drone video footage. There are some research projects aimed
at improving the performance of face identification in nor-
mal scenes and completing high-precision face identification
[74]. However, a single drone often suffers from limited
face pixels due to its high-flying height and varying drone-
person angles, which prevents general face identification
algorithms from being deployed directly on drones.
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Another limitation of face identification on drones is
the limited computing resources of drones, which results
that the powerful and heavy models can not be deployed
on drones. An effective solution is to offload the comput-
ing tasks to the cloud server [75], latency requirements of
which is a concern. Dick et al. [76] propose the use of a
server on the network edge to optimize both processing
capability as well as latency for applications requiring real-
time communication between a drone and a cloud server.
FCSD [77] architecture is proposed to minimize the energy
consumption under the constraints of latency and reliability.
Wang et al. [78] propose a fog-networking based system
architecture to associate each drone to an optimally matched
server. However, the above work generally make simulation
tests in a predetermined environment, which make them
difficult to be applied to dynamic real drones-based systems.

11.3 Multi-camera Computer Vision

Compared with single cameras, multiple cameras/drones
can expand the field of view and get more information [79].
Pierre Baque et al. [80] combines CNN and CRF to model
potential occlusions and combine multi-view information.
DyGLIP [81] uses both link prediction and dynamic graph in
the MC-MOT framework and produces highly accurate link
prediction results. MDOT [26] proposes the first multi-drone
single target tracking benchmark dataset and an integrated
framework ASNet to improve the tracking accuracy.

One main challenge in face identification using multiple
cameras/drones is aligning multi-view information [82].
Many studies of multi-view alignment use carefully selected
feature markers to extract object features and match them
into another view, such as Scale-Invariant Feature Transform
(SIFT) [83], Speeded-Up Robust Features (SURF) [84], and
Histogram of Oriented Gradients (HOG) [85]. These studies
use machine learning models such as SVM [86], Adaboost
[87] for feature matching, and use the sliding window
technique [88] to search images of other views, with high
matching complexity and computational latency. These limit
their effectiveness and applicability.

11.4 Localization and tracking

Most 3D localization solutions acquire additional sensory
information through specialized devices such as RGB-D
cameras and LiDARs. Knoppe et al. [89] propose a drone
system with a stereo camera that collects spectral image
patches with stereoscopic overlaps to get ground surface
scanning data. Guo et al. [90] propose a framework to
implement 3D object co-localization from mobile LiDAR
point clouds, which can extract the objects of the same
category from different point-cloud scenes. Li et al. [32]
propose a camera localization workflow based on a 3D prior
map optimized by RGB-D SLAM method. Wang et al. [91]
use the collaboration of drones equipped with MIMO radar
to locate marine targets based on triangulation. However,
the reliance on specialized equipment makes these solutions
expensive and difficult to deploy widely. Moreover, these
advanced sensors could increase the power consumption
of drones and RGB-D cameras cannot obtain accurate and
consistent 3D data in the immense outdoor.

15

Object tracking is critical for scenarios that require con-
tinuous targeting of objects, such as capture and child
searches. Zhang et al. [92] back-project target objects from
drone’s 2D image plane to 3D world coordinates by camera
geometry, thus achieve object tracking. Silva et al. propose
a face identification and tracking system [93], in which the
same person in different video frames is re-identified based
on the face embedding vectors obtained through CNN. ML-
LocNet [94] performs multi-view co-training to enhance
localization and tracking performance. PML-LocNet [95]
exploits both view diversity and sample diver sity which
performs more stable compared with ML-LocNet. However,
the target’s position is relative to image coordinates rather
than world coordinates, making it difficult to accurately
track targets in the real world.

11.5 Vision-Language Models for Face Identification

In recent years, there has been a growing interest in de-
veloping vision-language models [36], which aim to bridge
the gap between visual understanding and natural language
processing. Radford et al. [37] propose the Contrastive
Language-Image Pre-training (CLIP) model, which uses a
text encoder and an image encoder to represent the text
and image to an image-language embedding space. CLIP
is trained by contrastive learning on a vast dataset of 400
million image-text pairs, resulting in a cohesive image-
language space and has demonstrated robust zero-shot clas-
sification capabilities.

Motivated by the impressive performance of these
vision-language models, some follow-ups have been pro-
posed for face identification. Srivatsan et al. [96] use the
image encoder in CLIP for Face anti-spoofing (FAS), achiev-
ing better zero-shot transfer performance on unseen spoof
types. Shahid et al. [97] evaluate the performance of the
CLIP model as a zero-shot face recognizer and proposed
an unsupervised dual modality prompt learning framework
for facial expression recognition. Shen et al. [40] propose
an attribute hallucination framework named CLIP-Cluster,
which could cluster the images of the same identity but with
different face attributes, e.g., age, pose, and expression. The
above work demonstrates promising results in face identi-
fication tasks, showing the potential of utilizing the visual-
language models for enhanced recognition performance.

12 CONCLUSION

In this paper, we propose SkyNet, a multi-drone cooper-
ation system for accurate and real-time identification and
localization. SkyNet can accurately locate a person in 3D
real world using only conventional 2D cameras and can
align face sub-images of one person from different drone
views. To improve identification accuracy, we design a
novel fusion identification pipeline, which exploits images
from different views by fusing them according to weights
reflecting legibility. SkyNet can also correct the tilted faces
in drone-view image to enhance legibility. Moreover, SkyNet
can achieve real-time localization and identification through
its ability of dynamic task scheduling. We implement and
evaluate SkyNet in real life, and the result shows that
SkyNet achieves 91.36% identification accuracy, less than
0.18m localization error and less than 0.84s latency.
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