
IEEE TRANSACTIONS ON NETWORKING 1

JumpDASH: LLM-Based Content Perception for
Intelligent Jumping DASH in Mobile Adaptive

Video Streaming
Hanling Wang , Tianli Zhou, Qing Li , Senior Member, IEEE, Yong Jiang , Member, IEEE,

and Gabriel-Miro Muntean , Fellow, IEEE

Abstract—Traditional Adaptive Bitrate (ABR) schemes assume
that users watch videos sequentially, focusing solely on the
sequential downloading of video chunks. However, these schemes
often result in significant degradation of Quality of Experience
(QoE) when users skip directly to their preferred segments. To
address this issue, we propose JumpDASH, which leverages Large
Language Model (LLM)-based content perception to enhance
mobile adaptive video streaming. First, JumpDASH incorporates
a low-cost video text summarization module based on large
language models, enabling users to identify and navigate to the
most relevant sections of videos. Second, we introduce a dynamic
partitioned buffer and a Proximal Policy Optimization (PPO)-
based ABR algorithm to facilitate prefetching video chunks
corresponding to the perceived points of interest, along with dif-
ferentiated encoding techniques to further minimize rebuffering.
Extensive experiments conducted using real trace datasets under
actual network conditions show that JumpDASH improves QoE
by 13.82% to 262.94% compared to existing ABR technologies.

Index Terms—Mobile video streaming, large language model,
jumping prefetch, video content perception.

I. INTRODUCTION

ACCORDING to recent reports [1], [2], video streaming
accounts for about 82% of the total Internet traffic, with

Video on Demand (VoD) representing a significant share.
Unfortunately, the highly dynamic nature of mobile net-
works, poses significant challenges when providing consistent
high-quality video transmission to users. To address these
challenges, Dynamic Adaptive Streaming over HTTP (DASH)
[3] and Adaptive Bitrate (ABR) algorithms [4], [5], [6], [7],

Received 24 December 2024; revised 25 July 2025; accepted 14 September
2025; approved by IEEE TRANSACTIONS ON NETWORKING Editor H.
Hassanieh. This work was supported in part by the Project of the Department
of Strategic and Advanced Interdisciplinary Research of the Pengcheng
Laboratory under Grant 2025QYA001, in part by the National Key Research
and Development Program of China under Grant 2022YFB3105000, and in
part by Shenzhen Key Laboratory of Software Defined Networking under
Grant ZDSYS20140509172959989. (Corresponding author: Qing Li.)

Hanling Wang, Tianli Zhou, and Yong Jiang are with the Pengcheng Labora-
tory, Shenzhen, Guangdong 518055, China, and also with Tsinghua Shenzhen
International Graduate School, Tsinghua University, Shenzhen, Guangdong
518055, China (e-mail: wanghl03@pcl.ac.cn; ztl21@mails.tsinghua.edu.cn;
jiangy@sz.tsinghua.edu.cn).

Qing Li is with the Pengcheng Laboratory, Shenzhen, Guangdong 518055,
China (e-mail: liq@pcl.ac.cn).

Gabriel-Miro Muntean is with the Performance Engineering Lab-
oratory, Dublin City University, Dublin, D09 V209 Ireland (e-mail:
gabriel.muntean@dcu.ie).

Digital Object Identifier 10.1109/TON.2025.3611495

[8], [9], [10] were proposed to adjust video encoding and
delivery rates in response to fluctuating network conditions.

Since the advent of DASH, researchers have shown that
different segments of a video often attract varying levels of
user attention and interest [11], [12], [13], [14], [15]. For
instance, in movies, ensuring smooth playback of a high-
action scene can have a more significant impact on overall
user Quality of Experience (QoE) levels than on movie closing
credits. Despite this, most existing ABRs (e.g., Pensieve [4],
MPC [6], BOLA [5], Fugu [7], and Merina [16]) treat all
video segments uniformly, focusing on optimizing overall
video quality through adaptive bitrate adjustments without
accounting for content differences between video chunks.

To date, some content-aware ABRs [11], [13], [17], [18]
classify video chunks into high priority (hp) chunks and
low priority (lp) chunks, where hp chunks are those that
offer higher perceptual quality gain or carry more semantic
information. By allocating bandwidth to download higher-
bitrate versions of hp chunks and lower-bitrate versions of
lp chunks, these schemes have been shown to be effective
for good quality video playback. However, most popular on-
demand video platforms (e.g., YouTube [19], Netflix [20],
Bilibili [21]) allow users to skip ahead using the progress bar
to access more interesting video parts. When users skip video
content, the priority schemes encounter issues such as buffer
underflow and prolonged rebuffering for hp chunks, as they
rely on the buffer to handle network throughput fluctuations.

To address these issues, it is essential to design a mechanism
capable of differentiating video content, enabling users to
quickly locate segments of interest within a video. Existing
methods for video content understanding typically leverage
perceptual quality [11], [13], [18] or semantic information
[12], [14], [15], [22], [23], [24], [25]. Perceptual quality mea-
sures how the human eye perceives video quality degradation
during transmission, but does not aid in understanding video
content. Semantic information reflects the level of interest in
the events shown in video frames, but current methods [12],
[14], [15], [22], [25] largely rely on labor-intensive processes
or lightweight deep learning models, both of which have
limitations. On one hand, labor-intensive techniques [12], [14],
[22] typically require humans to watch each video (e.g., crowd-
sourcing) to understand the content, making them prohibitively
expensive and impractical for large-scale deployment. On the

2998-4157 © 2025 IEEE. All rights reserved, including rights for text and data mining, and training of artificial intelligence and
similar technologies. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on December 31,2025 at 02:54:29 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0001-8463-5211
https://orcid.org/0000-0002-6071-473X
https://orcid.org/0000-0002-4260-1395
https://orcid.org/0000-0002-9332-4770


2 IEEE TRANSACTIONS ON NETWORKING

other hand, lightweight deep learning models [23], [24] often
struggle to effectively interpret User Generated Videos (UGV),
which generally encompass a wide variety of video types.

In this paper, we propose JumpDASH, an innovative solution
to leverage Large Language Model (LLM)-based content
perception to enhance mobile video streaming quality. Jump-
DASH introduces two key innovations: low-cost video content
perception based on Multimodal LLMs (MLLMs) and jump
prefetching to efficiently load key content when users skip to
interesting segments.

First, performing a straightforward full-frame analysis using
MLLMs for video content perception is prohibitively expen-
sive. To address this challenge, we propose a low-cost method
to generate text summaries from videos, which features
three key components: a Textual Content Agent (TCA), a
Visual Content Agent (VCA), and a Video Segment Summary
Module (VSSM). TCA leverages subtitle gap and coherence
analysis to identify video segments that can be understood
solely through subtitles. For segments requiring visual anal-
ysis, VCA employs video encoding data to select critical
frames from a local perspective and utilizes deep learning
to globally filter out unnecessary frames based on content
and temporal diversity. This eliminates redundant analysis,
ensuring that only the most relevant frames are processed by
MLLMs. VSSM constructs a Chain of Thought (CoT) using
LLMs to combine subtitle data and visual text descriptions
into a cohesive and comprehensive text summary of the entire
video.

Second, to support high quality video transmission, unlike
traditional methods, JumpDASH employs a non-sequential
prefetching strategy (denoted “jump prefetching”). For high-
quality hp chunks, JumpDASH prioritizes content significance
over strict sequential retrieval. Additionally, it mitigates poten-
tial increases in rebuffering times caused by jump prefetching
while reducing image quality fluctuations in hp chunks. This
is achieved through fine-grained encoding and efficient bitrate
allocation, ensuring a seamless viewing experience.

To evaluate JumpDASH, we implemented a prototype
featuring a Nginx-based content server and a ffplay-based
prefetch client. Comprehensive experimental results show that
JumpDASH significantly improves overall QoE, achieving
enhancements ranging from 13.82% to 262.94%, outperform-
ing the latest ABR technologies by a large margin. This
evaluation highlights that JumpDASH is a robust solution
for enhancing video streaming experience across diverse and
dynamic network conditions. Our contributions are:

• We design a novel video streaming solution, JumpDASH,
which seamlessly integrates a video text summarization
module with optimized video transmission strategies to
improve QoE during non-sequential video viewing.

• We introduce a low-cost video text summarization mod-
ule that efficiently derives content insights from subtitles
and video frames, enabling users to locate their desired
video segments accurately and effortlessly.

• We propose adaptive streaming enhancement modules
that facilitate the prefetching of important video segments
with minimal disruption to ongoing playback.

II. RELATED WORKS

A. Assessing Video Content

User experience when interacting with videos is influenced
by various factors. However, the major user experience influ-
encing factors can be related to user perception of quality and
content semantic information.

Perceptual quality refers to human-perceived video quality.
In early works [26], visual quality assessment (VQA) was
conducted through objective evaluation metrics such as Peak
Signal-to-Noise Ratio (PSNR) and the Structural Similarity
Index Measure (SSIM), but they did not fully capture the
human video experience. Subjective video quality evalua-
tion in terms of metrics, such as the Mean Opinion Score
(MOS), offers a numerical measure of the human-judged
overall quality of an event or experience and is both more
appropriate and more accurate, but it is time consuming
and complex. Recently, some machine learning-based VQA
techniques that combine both subjective and objective metrics
have been proposed. For example, Netflix introduced the
Video Multi-Method Assessment Fusion (VMAF), a video
quality metric which uses a reference video and outper-
formed all other metrics on all recent compression standards
[11], while ITU-T proposed P1204.3, a no-reference video
quality metric very useful for real-time video quality esti-
mation [27]. However, the drawback of perceptual quality
assessment is that it does not understand the video content
and it cannot be used to identify the key elements within
the video.

Semantic information refers to the specific data within the
video frames that users find interesting. To identify semantic
information within videos, three primary approaches are used:
(i) Crowdsourcing-based solutions [12], [14] involve engaging
a large number of human workers to watch videos and
manually select preferred segments to identify key moments;
(ii) Highlight detection-based methods [23], [24] leverage
lightweight DNN models to automatically detect interest-
ing video segments; (iii) User retention-based approaches
[15], [25] determine the most engaging frames by analyzing
viewer retention rates for each frame. Crowdsourcing and
user retention-based methods require extensive viewership to
determine the semantic information of videos, limiting their
applicability to only a small subset of videos. For example,
Sensei [22] conducted separate crowdsourcing experiments for
each video to assess users’ quality sensitivity by collecting
quality ratings on multiple degraded renderings, which is
both time-consuming and costly. Similarly, highlight detection-
based approaches require training multiple deep learning
models to identify specific moments, making them impractical
for extracting semantic information from large number of
UGVs.

In addition, a series of studies [28], [29], [30] have explored
the use of LLMs/VLMs for video content understanding,
typically focusing on novel model designs or relying solely on
frame-based inputs to filter content and reduce computational
cost. In contrast, our work leverages existing LLMs and
emphasizes the combined use of subtitles and selective frame
sampling to enhance efficiency.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on December 31,2025 at 02:54:29 UTC from IEEE Xplore.  Restrictions apply. 



WANG et al.: JumpDASH: LLM-BASED CONTENT PERCEPTION FOR INTELLIGENT JUMPING DASH 3

Fig. 1. Comparison of ABR performance between the ideal scenario, where videos are viewed sequentially, and the non-ideal scenario, where users jump to
segments of interest.

B. Content-Aware ABR

An important goal for research is to design solutions to
improve the perceived quality of the videos delivered across
various networks and ABR approaches were among the most
successful. Some ABR schemes (e.g., Pensieve [4], MPC [6],
BOLA [5], and Merina [16]) treat all video chunks equally
without considering content differences when assigning adap-
tive bitrates. However, user QoE is inherently influenced by
video (and scene) content [13], [22]. For instance, scenes with
rapid motion and higher user engagement benefit more from
higher bitrates compared to less critical video segments.

Considering this observation, some ABR schemes assign
different bitrates to video chunks based on their estimated
importance. For example, HotDASH [17] prioritizes the down-
load of users’ preferred video chunks. It employs three deep
reinforcement learning (DRL) models to make prefetching
decisions and select the bitrate for video chunks. Comyco
[18] determines chunk bitrates by feeding video chunk size
and VMAF into a model with expert policies. It also accounts
for network condition drift and periodically updates the DRL
model using selected data. DAVS [13] explicitly considers
video content differences by categorizing video chunks into
dynamic chunks (i.e., scenes with dynamic and complex
content) and static chunks, assigning higher bitrates to the
dynamic chunks for enhanced QoE. These solutions are very
good for classic video consumption, but are very limited in
their usefulness in context where there is non-sequential user
viewing pattern (e.g., the users are allowed to jump and view
any video segments of interest, regardless of their location
within the video stream).

III. RESEARCH MOTIVATION

A. Challenges of Non-Sequential Video Viewing

Existing ABR solutions typically assume that users watch
videos sequentially, and therefore, the video chunks are down-
loaded sequentially. However, most video platforms (e.g.,
YouTube, Netflix, and Bilibili) provide users with the ability
to skip to specific video segments by sliding the progress
bar. If a user jumps to play a hp chunk, existing ABRs
often suffer from prolonged video rebuffering or are forced
to significantly reduce the bitrate of the video chunk. This
leads to a substantial degradation in QoE levels for users.

To demonstrate this phenomenon, we conducted a real trace-
driven test using widely adopted video encoding settings [4],
[16], [18] in ABR scenarios. The test utilized a dataset of
20 videos collected from YouTube, including genres such as
games, news, sports, and documentaries. We designate the first
K video chunks at the beginning of each key segment as hp
chunks, as in Section § V-D, because these regions are where
users are more likely to seek or jump to. For each video, we
randomly selected five jump combinations from the set of hp
chunks to represent user behaviors at various playback times.
These jump targets simulate scenarios in which users drag the
progress bar to reach their desired segments. We evaluated
five state-of-the-art ABRs: (i) MPC [6], (ii) BOLA [5], (iii)
Pensieve [4], (iv) Comyco [18], and (v) Merina [16].

To examine whether existing ABRs can maintain high QoE
in non-sequential viewing scenarios, we divided the exper-
iment into two groups. The first group represents the ideal
scenario, where users watch videos sequentially. The second
group simulates realistic non-ideal user behavior, where users
jump to specific segments (i.e., hp chunks) while viewing.
Figure 1 presents the results, where we evaluated three key
metrics: the average quality of hp video chunks, the average hp
rebuffering time (defined as the rebuffering time specifically
when viewing hp chunks), and the average rebuffering time
across all video chunks.

In the non-ideal scenario, where users jump to segments
of interest, the average quality of hp chunks decreases sig-
nificantly by approximately 22.67%-76.92%. Additionally,
the average hp rebuffering time increases dramatically by
904.37%-4812.37%, while the overall rebuffering time rises
noticeably by 117.44%-366.94%. This increase in rebuffering
time further exacerbates the decline in QoE under real-world
conditions. These findings highlight that existing ABRs are
unsuitable for real-world scenarios involving potential user
“jumps”.

Given these observations, we argue it is crucial to rethink
traditional ABR strategies to account for the dynamic viewing
habits of users. The inability of current ABR systems to
handle non-sequential viewing patterns highlights the need for
a more flexible and user-centric approach. To address this gap,
this paper introduces a novel solution aimed at transforming
how video streaming services adapt to user behavior, with a
particular emphasis on improving the viewing experience in
scenarios involving jumps.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on December 31,2025 at 02:54:29 UTC from IEEE Xplore.  Restrictions apply. 



4 IEEE TRANSACTIONS ON NETWORKING

B. Large Language Models for Content Perception

Currently, the video transmission domain lacks an effective
method for understanding diverse UGV content from a seman-
tic perspective. Fortunately, with the release of ChatGPT by
OpenAI [31], LLMs based on the Transformer architecture
have achieved remarkable success. Further advancements in
these models have led to the development of MLLMs [32],
[33], [34], [35], which have also shown strong performance
across various image and video types. These models high-
light the potential for a deeper semantic understanding of
diverse video content. However, directly applying MLLMs
for video understanding incurs significant computational costs.
For example, using OpenAI’s public GPT4-V API [36] to
analyze a 1-hour video at 512×512 resolution frame by frame,
the cost of input tokens alone1 can reach 220.32.

In this paper, we aim to leverage the powerful capabilities
of MLLMs for video content perception while mitigating
the associated high computational costs. To achieve this, we
propose a novel method that combines subtitle information
analysis with selective frame sampling, enabling the genera-
tion of video text summaries at a much lower cost.

IV. JUMPDASH OVERVIEW

A. JumpDASH Workflow

Figure 2 illustrates JumpDASH’s system architecture. It
consists of a Content Server and a Prefetch Client, which
exchange metadata and video chunks during the streaming
session. The JumpDASH solution’s major steps are indicated
in the figure and are briefly introduced next.
• Step 1: The raw video is processed by a Low-Cost Video

Text Summary Module to generate a text summary and
determine the sequence numbers of hp chunks;

• Steps 2-3: The Differentiated Encoding Module retrieves
the sequence numbers of hp chunks. It first encodes the
entire video at a fixed bitrate and then encodes the hp
chunks into finer-grained sub-chunks;

• Step 4: The video text summary is delivered to users,
allowing them to quickly grasp key points of the video;

• Steps 5-8: The ABR mechanism collects data on the video
streaming status and determines which video chunks to
download. The downloaded chunks are stored in the
Dynamic Buffer while the user watches the video;

• Step 9: Users can navigate the video using the progress
bar, selecting segments of interest based on the provided
video text summary.

B. Content Server

The Content Server utilizes LLMs to enable efficient com-
prehension of video content. By extracting textual summaries
and identifying key points from subtitles and selected video
frames, it performs intelligent segmentation and summariza-
tion of video content. This process integrates a Textual Content
Agent (TCA) to analyze subtitles using the Subtitle Gap Index
and coherence analysis, alongside a Visual Content Agent

1Typically, the computational cost for LLMs or MLLMs is calculated based
on the total number of input and output tokens.

Fig. 2. The workflow of JumpDASH.

(VCA) to evaluate selected critical frames. Together, these
agents generate video text summaries that enable users to
navigate quickly to segments of interest while significantly
reducing computational overhead.

The Content Server processes video requests through an
HTTP service, encoding videos at multiple bitrates to create
various representations. These representations are segmented
into chunks and classified as hp chunks or lp chunks based
on semantic content analysis. To further enhance the viewing
experience, the server employs a Differentiated Encoding
module to minimize quality fluctuations and reduce rebuffering
time. Specifically, it subdivides hp chunks into smaller sub-
chunks using SSIM-based sub-chunk boundary selection and
assigns different bitrates to the sub-chunks through VMAF-
guided optimization with simulated annealing. This ensures
smoother streaming performance, particularly within critical
video segments.

Additionally, the Content Server compiles all relevant video
information (e.g., chunk size, duration, quality) and hp chunk
descriptions (start times and fine-grained durations) into a
Media Presentation Description (MPD) file, facilitating seam-
less adaptive video delivery and playback using DASH.

C. Prefetch Client

The Dynamic Buffer manages chunk buffering by dynami-
cally adjusting buffer sizes for sequential and non-sequential
prefetching based on current network conditions and buffer
status. This approach ensures efficient bandwidth utilization,
with a focus on prioritizing the download of future hp chunks.

The ABR Controller employs a reinforcement learning
algorithm to determine whether to download the next video
chunk in sequence or prefetch a non-sequential hp chunk. This
decision-making process optimizes QoE by considering factors
such as anticipated network throughput, client cache status,
and the contextual significance of the video content.

V. LOW-COST VIDEO TEXT SUMMARY

Low-cost video text summary was introduced to analyze
video content efficiently. By identifying the hp chunks in the
video, it ensures that the most valuable segments for users are
prioritized and streamed at high quality in real-time according
to the network conditions.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on December 31,2025 at 02:54:29 UTC from IEEE Xplore.  Restrictions apply. 



WANG et al.: JumpDASH: LLM-BASED CONTENT PERCEPTION FOR INTELLIGENT JUMPING DASH 5

Fig. 3. Low-cost video text summary.

The workflow of low-cost video text summary is illustrated
in Figure 3. It comprises three key components: (i) TCA,
which extracts and evaluates critical textual information from
subtitles or audio to identify segments understandable through
text alone; (ii) VCA, which uses advanced frame filtering
to detect and analyze visually significant frames, effectively
determining hp chunks requiring visual interpretation; and
(iii) VSSM, which combines insights from TCA and VCA to
segment the video into coherent parts and generate concise
summaries for each segment, providing an organized and
comprehensive content overview.

A. Textual Content Analysis

TCA extracts key textual information from subtitles and
audio to identify video segments that do not require addi-
tional visual context for comprehension. Initially, TCA checks
whether the input video contains subtitle information. If sub-
titles are unavailable, speech recognition is performed using
Whisper [37] to generate subtitles with timestamps. This tran-
scription process provides a textual representation of the video
content, preserving key temporal information synchronized
with the audio-visual experience, forming the foundation for
detailed content analysis. Based on the generated subtitle files,
TCA performs a thorough analysis to pinpoint video segments
that can be analyzed with textual information alone.

We employ a novel Text Information Sufficiency Evaluator
comprising two key components: SGI (Subtitle Gap Index)
evaluation and textual coherence judgment. SGI quantifies the
time intervals between subtitles, assessing how much of the
content can be comprehended using subtitles alone. Textual
coherence judgment further assesses the completeness and
clarity of the subtitle content.

SGI Evaluation. To assess whether video content can be
fully understood using subtitles and audio alone, we introduced
a metric called Subtitle Gap Index (SGI). SGI is defined
as the average gap (in seconds) of adjacent subtitles in a
video. It quantifies the continuity of subtitles in a video
by measuring the time intervals between subtitles. A higher
SGI value indicates larger gaps between subtitles, potentially
hindering viewers’ ability to comprehend the video content
solely through text. If the calculated SGI exceeds a specified

Fig. 4. The CDF of SGI.

Fig. 5. Subtitle coherence distribution.

threshold θ, it suggests that the subtitle information may
be insufficient for a complete understanding of the con-
tent, requiring visual support. Conversely, an SGI below this
threshold indicates that the subtitles alone provide adequate
information for comprehensive video understanding.

Setting threshold θ. Videos of explanatory types, such as
sports commentary, movies, TV series narrations, and docu-
mentaries, are often meticulously prepared, enabling viewers
to understand the content well through text alone. To determine
a suitable threshold θ, we collected subtitles from 1,784
YouTube videos of these types, totaling 1,588 hours, and
calculated their SGI values. Figure 4 illustrates the Cumulative
Distribution Function (CDF) of SGI values across all videos.
The SGI values at the 90th percentile range from 0.32 to
4.16 across different categories. To accommodate the diversity
of subtitles in videos, we set the threshold θ at 4.16. This
means that if the SGI exceeds 4.16, the video content is
deemed incomprehensible through text alone, necessitating
visual analysis.

Subtitle Coherence Judgment. Subtitle coherence plays a
critical role in audience comprehension. To evaluate subtitle
coherence, we employ a pretrained GPT-2 model [38] for
analysis. GPT-2 assigns a coherence score to each subtitle
segment by processing the subtitle text and using the loss of
the output text as the coherence score. This loss reflects the
narrative fluidity and logical consistency of each segment, with
lower scores indicating greater clarity and more likely to be
understood independently.

By analyzing subtitles from the same 1,784 YouTube videos
already mentioned, we generated a histogram of coherence
scores, shown in Figure 5. Most videos exhibit coherence
scores concentrated around 7, indicating consistent coherence
across different categories of explanatory videos. Additionally,
Figure 6 illustrates the CDF of coherence scores, revealing
that over 90% of subtitle scores fall below a coherence score
of 7.27. Based on this analysis, we set the coherence score
threshold at 7.27, ensuring that the majority of video content

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on December 31,2025 at 02:54:29 UTC from IEEE Xplore.  Restrictions apply. 



6 IEEE TRANSACTIONS ON NETWORKING

Fig. 6. CDF of subtitle coherence scores.

can be comprehended through subtitles alone without requiring
additional visual information.

In summary, SGI values capture the temporal gaps between
subtitles, while coherence scores quantitatively measure the
textual coherence of subtitle segments. By combining these
metrics, we can identify video segments that require visual
information for better comprehension, thereby avoiding unnec-
essary visual analysis for most video segments.

B. Visual Content Analysis

VCA is designed to identify video segments that require
visual information for comprehension. Initially, it leverages
video encoding data to filter frames, minimizing local redun-
dancy within the frame sequence. Next, an unsupervised
learning-based filter is applied holistically across the entire
video to retain only the most significant frames. Finally,
MLLMs are used to analyze the key content of these frames,
translating it into textual information for better understanding.

Frame Preprocessing based on Encoding Information.
Considering the inherent dependencies and relative sizes
among encoded frames in a video, we first eliminate frames to
remove local redundancy using video encoding information.
Specifically, we extract all I-frames from the original video
Fo, sort the P-frames associated with each I-frame by their
sizes, and select the I-frame along with the top K most
informative P-frames to form the candidate video frame set
Fc. This approach reduces the number of frames for subse-
quent processing and lowers computational costs. B-frames
are excluded from Fc due to their reliance on bidirectional
encoding between I-frames and P-frames.

Unsupervised Learning-based Frame Selector. Even after
frame preprocessing, the subset Fc may still pose high com-
putational costs for processing by MLLMs, especially for
lengthy videos with substantial redundancy across long frame
sequences. To address this, we designed an unsupervised
learning-based frame selector to further reduce computational
overhead and improve efficiency.

The unsupervised learning-based frame selector focuses on
identifying frames essential for visual comprehension, trans-
forming their key content into textual information for further
analysis. Specifically, it employs a Residual Neural Network
(ResNet) to extract deep features from frames and utilizes a
self-attention mechanism to capture the temporal character-
istics within the frame sequence. This process highlights and
selects the most representative frames with significant dynamic
variations. The loss function guiding the selection process is

defined as follows:

L(Ff ) = R(Ff ) +D(Ff ), (1)

where L(Ff ) combines content diversity loss R(Ff ) and
temporal diversity loss D(Ff ). The goal is to ensure that the
selected frames effectively capture the video’s overall content
while preserving diversity within the set Ff . The content
diversity loss promotes a comprehensive representation of the
video’s key elements, while the temporal diversity loss encour-
ages a well-dispersed temporal distribution of the selected
frames across the video, enhancing their representativeness
and diversity over time.

The content diversity loss, R(Ff ), measures the similarity
between the selected frame set Ff and the preprocessed frame
set Fc, as well as the diversity among frames within Ff , as
defined by the following equation:

R(Ff ) =
1

|Ff | · |Fc|
∑
i∈Ff

∑
j∈Fc

sij

+
1

|Ff | · (|Ff | − 1)

∑
i 6=j

(1− sij), (2)

where sij represents the cosine similarity between frame i
and frame j. The first term evaluates the similarity between
the selected frame set Ff and the preprocessed frame set Fc,
ensuring that the selected frames retain relevance to the pre-
processed frames. The second term calculates the dissimilarity
among frames within Ff , encouraging internal diversity to
enhance the representativeness of the selected set.

The temporal diversity loss, D(Ff ), ensures that the
selected frame set Ff is evenly distributed across the video
timeline and distinguishable from the preprocessed set Fc.
By employing trigonometric positional encoding (denoted as
E(·)) to represent each frame’s position within the video
sequence, it quantifies the temporal differences between
frames. This loss is designed to promote not only content
diversity but also temporal dispersion, enabling the selected
frames to effectively represent various segments of the video.
The temporal diversity loss is defined as follows:

D(Ff ) =
1

|Ff | · |Fc|
∑

pi∈Ff ,pj∈Fc

|E(pi, k)− E(pj , k)|

− 1

|Ff | · (|Ff | − 1)

∑
pi,pj∈Ff ,pi 6=pj

|E(pi, k)− E(pj , k)|

(3)

The first term quantifies the temporal differences between
the selected frames and the preprocessed frames. It ensures
that Ff uniformly spans the entire video timeline, reflecting
content from diverse time points. The second term encourages
temporal dispersion among frames within Ff , reducing clus-
tering and enhancing the set’s internal temporal diversity. This
design ensures that the selected frame set comprehensively
represents different parts of the video over time, effectively
capturing its temporal dynamics.

By utilizing trigonometric positional encoding to represent
frame positions, the model’s ability to perceive temporal
differences is enhanced, enabling it to better identify and

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on December 31,2025 at 02:54:29 UTC from IEEE Xplore.  Restrictions apply. 



WANG et al.: JumpDASH: LLM-BASED CONTENT PERCEPTION FOR INTELLIGENT JUMPING DASH 7

preserve critical moments while capturing long-term depen-
dencies within the video.

Ultimately, this unsupervised learning-based video frame
selector efficiently and accurately extracts key frames across
diverse content categories, optimizing subsequent video anal-
ysis. Compared to uniform sampling of the original video,
this approach reduces the number of tokens required for
LLM analysis, significantly lowering computational costs. The
detailed training methodology of the algorithm follows a
similar approach to that outlined in [39].

C. Video Segment Summary Module

The VSSM processes subtitle information ~t from TCA and
visual descriptions ~d from VCA to automatically segment
the video and generate summaries for each segment, aiming
to create a structured overview of the video content. To
address the challenges of summarizing the entire video and
determining segment timings, we draw inspiration from [40]
and adopt the Chain of Thought (CoT) technique. This method
organizes the inference process into three sequential steps:
information integration, content segmentation, and summary
output. By explicitly articulating the reasoning process, CoT
enhances the quality of the generated output and provides a
clear structure for the video content.

Information Integration. Given the subtitle information ~t
and visual description ~d, we first design a prompt (Appendix
A) to extract detailed events from them. These extracted events
form the unified narrative vector ~r, which encapsulates the
video’s context and content.

Content Segmentation. Based on narrative vector ~r, we
divide the video into n segments using the prompt in Appendix
B. Segmentation is guided by key transitions or new events
within the narrative flow, providing a natural structure for
generating detailed summaries of each segment.

Summary Output. Finally, a concise summary, title and stop
time is generated for each video segment using the prompt in
Appendix C.

D. Differentiated Video Chunk

Since each video segment generated from VSSM represents
a distinct subtheme or narrative phase, the beginnings of these
segments are regions where users are more likely to seek or
jump to. Therefore, we designate the first K chunks of each
key segments as hp chunks, ensuring they are prioritized for
preloading or streaming in higher quality. A larger K value
improves the content coverage but also increases prefetching
overhead and limits bitrate flexibility. Experimentally, we have
found that K = 3 provides a good balance between percep-
tual quality and system responsiveness in dynamic network
environments. The remaining chunks are categorized as lp
chunks. This differentiation helps minimize rebuffering time
and prevents users from experiencing degraded quality when
jumping to these segments.

VI. ADAPTIVE STREAMING ENHANCEMENT

The Adaptive Streaming Enhancement is performed using
three key components designed to optimize video stream-
ing performance and enhance the QoE: the Differentiated

Fig. 7. Differentiated Encoding Module for DASH Video Streaming.

Fig. 8. Illustration of Split Points Selection.

Encoding module, the Dynamic Buffer module, and the ABR
Controller module. They are discussed next.

A. Differentiated Encoding Module

The server-located Differentiated Encoding module encodes
each video at multiple bitrates to support adaptive streaming.
Initially, the video is encoded using the standard maximum
video chunk length of T = 4s. However, high-bitrate hp
chunks can take longer to download, and significant network
fluctuations during this process may lead to rebuffering. To
address this issue, we introduce the concept of a sub-chunk.
Instead of encoding the video solely at the fixed 4-second
chunk level, hp chunks are further divided and encoded into
smaller units, referred to as sub-chunks. This finer-grained
encoding approach is motivated by recent research showing
that smaller video chunks enhance the system’s ability to
adapt to network fluctuations [41], [42], [43]. Each hp chunk
is divided into M sub-chunks, ci, enabling faster responses
to changes in network throughput. The duration of the i-
th sub-chunk is denoted as T subi , with the total duration

satisfying T =
M∑
i=1

T subi . The resulting DASH video streaming

workflow, incorporating the Differentiated Encoding module,
is illustrated in Figure 7.

Selection of Split Points for Coding. The first thing is to
determine how to segment hp chunks into sub-chunks. Assume
the hp chunks are divided into equal-length sub-chunks, i.e.,
Ti
sub = T

M . In this case, when the I-frame and its subsequent
reference frame have low similarity, the total size of a video
chunk might exceed that of encoding without sub-chunks,
which is undesirable. To address this, we segment the hp
chunks into sub-chunks based on their similarity.

As shown in Figure 8, the split points selection process
consists of two steps. Assume a hp chunk contains Nf frames,
i.e., F =

{
f1, . . . , fNf

}
. In Step 1, we divide F into M − 1

segments at equal intervals, where the set of frames in the i-th

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on December 31,2025 at 02:54:29 UTC from IEEE Xplore.  Restrictions apply. 



8 IEEE TRANSACTIONS ON NETWORKING

segment is denoted as Fi. Then, f1 and fNf
are designated

as the split points for the first and last segments, respectively.
In Step 2, for each remaining segment Fi, we select a frame
fsj that is the least like the previous split point fsj−1 as the
split point sj . The frame similarity is measured using SSIM.
The frames identified as split points are enforced as I-frames.
Formally, fsj is defined as:

fsj =


f1, j = 1

min
fk∈Fj

SSIM(fsj−1 , fk), j = 2, . . . ,M

fNf
, j =M + 1

(4)

Finally, the hp chunk is divided into M sub-chunks using
the M + 1 split points {s1, . . . , sj , . . . , sM+1} obtained.

Assigning Bitrate to Sub-Chunks. Next, the Differentiated
Encoding Module assigns a bitrate to each sub-chunk. Assign-
ing the same target bitrate Ravg directly to all sub-chunks
would fail to maximize the average perceived quality of the hp
chunks and would also result in significant quality variations
across sub-chunks.

This issue arises because each sub-chunk contains only one
I-frame, which consumes the majority of the allocated bitrate
(while the remaining bitrate is distributed among P and B
frames). Longer sub-chunks allocate more bitrate to P and
B frames, leading to potentially higher quality compared to
shorter sub-chunks. Consequently, it is necessary to assign
different target bitrates to each sub-chunk.

To achieve this, the bitrate allocation is formulated as an
optimization problem that maximizes the harmonic mean of
the perceived quality of the sub-chunks while keeping the total
size of all sub-chunks constant.

max
R1,...,Ri

M∑M
i=1

1
q(ci)

(5)

s.t.

M∑
i=1

RiT
sub
i = RavgT (6)

where q(ci) denotes the average VMAF of the sub-chunk ci.
To solve this optimization problem, we employ the Sim-

ulated Annealing method [44], a probabilistic and greedy
algorithm that approximates the global optimum. To enhance
search efficiency, the minimum step size for adjusting the
bitrate is set to R∆ = 100kbps, and the initial solution is
defined as Sinit = {Ri | Ri = Rsub, i = 1, . . . ,M}, indicat-
ing that the search begins with an equal bitrate allocation.

B. Dynamic Buffer Module

This module dynamically adjusts the ratio of buffer space
reserved for prefetching future hp chunks.

Composition of the Dynamic Buffer. As illustrated in Fig-
ure 9, to ensure high quality of hp chunks without increasing
the overall buffer size, we propose a dynamic buffer ratio
strategy. The dynamic buffer adheres to the following two
principles:

1) The buffer consists of a sequence buffer and a prefetch
buffer. The total space allocated to these two buffers is
fixed (e.g., 60 seconds), but the ratio of space assigned
to each can be adjusted dynamically.

2) The sequence buffer downloads video chunks in sequen-
tial order, while the prefetch buffer prefetches non-
consecutive hp chunks (i.e., jumps). When a video chunk
in the prefetch buffer is about to play, it is automatically
moved to the sequence buffer.

Updating the Dynamic Buffer Ratio. The dynamic buffer
ratio plays a key role in performance. A too small sequence
buffer may lead to rebuffering during sudden network jitter,
while an excessively large sequence buffer can waste down-
loaded chunks when they are skipped and degrade the quality
of hp chunks due to insufficient prefetch buffer space. By
dynamically adjusting the length of sequence buffer ls to
accommodate network conditions and user viewing behavior,
we can optimize resource allocation between the sequence
buffer and the prefetch buffer.

Ideally, knowing precisely “when” and “where” a user will
jump could prevent bandwidth waste. However, it is impossible
to accurately predict if and when a user will jump to an hp
chunk. Thus, our approach does not rely on predicting user
jumps. Instead, we control the length of the sequence buffer
to ensure video quality does not significantly degrade during
prefetching. Specifically, the length of the sequence buffer ls
is calculated as:

ls = d(shp +Rlast × T )/Ĉavge, (7)

where shp denotes the size of the next hp chunk, Rlast is
the bitrate of the previous chunk, and Ĉavg is the estimated
average throughput. To prevent the sequence buffer from being
too short to sustain playback, ls is always set to be greater
than half of the total buffer size. Additionally, when the
prefetch buffer is sufficient to support streaming the hp chunk
at the highest bitrate, ls is set to the remaining portion of the
total buffer, i.e., prefetching is paused. This strategy enables
JumpDASH to maintain strong performance during long-term
network fluctuations, even when users do not jump.

C. ABR Controller Module

This module determines whether the client should sequen-
tially download the next video chunk or “jump” to prefetch a
later (non-sequential) hp chunk. The decision is based on the
sequential buffer length ls and the estimated throughput.

Actions. Traditional ABR algorithms do not account for
users’ nonlinear viewing patterns, and their action spaces
lack support for jump prefetching. To address this limitation,
we expand the ABR action space. We define the i-th step
decision of ABR as oi, where oi ∈ R∪{P}. Here, P denotes
prefetching the first sub-chunk into the prefetch buffer, while
R represents the bitrate set of the chunks. When the buffer size
Bi ≥ ls, we set oi = P , indicating that the ABR controller
decides to prefetch the highest bitrate version of the sub-
chunks. Conversely, when Bi < ls, the controller makes a
sequential bitrate decision, with oi ∈ R.

Inputs. After completing the download of
each chunk i, the system provides state inputs
Si = (Ci, si, bi,di, vi, pbi, psi, ri) to the model. Here,
Ci represents the throughput for the past L chunks, si
indicates the sizes of the next sequential chunk, bi and

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on December 31,2025 at 02:54:29 UTC from IEEE Xplore.  Restrictions apply. 



WANG et al.: JumpDASH: LLM-BASED CONTENT PERCEPTION FOR INTELLIGENT JUMPING DASH 9

di denote the past buffer occupancy and download times,
respectively, vi is the average bitrate of the previously
downloaded chunk, pbi represents the prefetch buffer size,
psi is the size of the next prefetched sub-chunk, and ri
signifies the normalized count of remaining video chunks.

Reward Function. The reward function is defined to incor-
porate both sequential download and prefetching decisions:

Ri =

{
q(Ri)− α1Ti − |q (Ri)− q (Ri−1)| , oi ∈ R
α2q(Rmax)− α3 max(0, Bmin −Bcur), oi = P

(8)
In the sequential download decision, represented by oi ∈ R,

the reward Ri consists of the following components:
• q(Ri): The quality of the current bitrate selection Ri,

reflecting the quality of the video chunk.
• Ti: The rebuffering time for the current chunk, which

negatively impacts the QoE.
• |q(Ri)− q(Ri−1)|: The absolute difference in quality

between consecutive chunks, with a weighting factor α1

that balances the importance of video quality, the impact
of rebuffering, and playback smoothness.

For the prefetching decision, represented by oi = P , the
reward function prioritizes the following:
• q(Rmax): The quality associated with prefetching at the

highest bitrate, Rmax, reflecting the benefit of obtaining
high-quality video content in advance.

• A penalty mechanism, max(0, Bmin − Bcur), which is
activated if the current buffer size Bcur drops below
the minimum required buffer size Bmin. This penalizes
situations where prefetching risks depleting the buffer and
causing playback interruptions.

The weights α2 and α3 adjust the relative importance
of achieving high-quality prefetching and mitigating the
impact of buffer underflow, respectively. This comprehensive
approach to defining Ri dynamically adapts the streaming
strategy, prioritizing optimal video quality while ensuring
smooth and uninterrupted playback. By balancing high-quality
prefetching with maintaining sufficient buffer levels to avoid
rebuffering events, it effectively maximizes the overall QoE.

Training Method. The network architecture consists of an
Actor and a Critic, each processing input state data through
separate pathways. Sequence data is handled by linear layers
that simulate convolutions, while scalar data is processed using
fully connected (FC) layers. The outputs from these pathways
are merged and further processed through additional FC layers.

In the Actor module, the integrated output is passed through
an FC layer that applies a softmax function to produce action
probabilities. Meanwhile, the Critic module outputs a single
value estimate through an FC layer, representing the expected
return of the current state. During training with PPO, distinct
computational and optimization strategies are applied to the
Critic and Actor networks, ensuring effective learning of the
policy and value functions within the environment.

Synchronous Parallel Training. Similar to Pensieve, we
employ a parallel training methodology to accelerate the
training process by using multiple agents. However, unlike
Pensieve [4], which uses asynchronous updates in its A3C
algorithm, we opt for synchronous updates. This shift to

synchronous updating aims to harmonize the training process
by ensuring that updates across all parallel environments are
coordinated and consistent, thereby accelerating convergence.
By adopting synchronous updates, the algorithm’s ability to
explore a broader spectrum of states is enhanced, and the
training timeline is also shortened.

VII. EXPERIMENTAL ASSESSMENT

Our experiments are divided into five parts with following
objectives: (i) Can JumpDASH comprehend the video effec-
tively and generate accurate text summaries with fewer tokens
(Section § VII-A)? (ii) How is the performance of JumpDASH
compared to other ABR schemes under various simulated
network conditions (Section § VII-B)? (iii) How is the perfor-
mance of JumpDASH compared to other ABR algorithms in
real-world network conditions (Section § VII-C)? (iv) How is
the impact of each component on overall performance (Section
§ VII-D)? and (v)How is the performance of JumpDASH
with different user viewing behavior and maximum buffer
lengths (Section § VII-E and § VII-F)? (vi) How is the system
overhead of JumpDASH (Section § VII-G)?

A. Performance of Low-Cost Video Understanding

Experiment Details. Experiment A is conducted on an
Ubuntu 20.04 LTS system equipped with eight NVIDIA
GeForce V100 GPUs. We utilized the LLaMA-VID [34]
model, which has a parameter size of 7B. This open-source
visual MLLM has demonstrated remarkable performance
across multiple video datasets and is capable of understanding
long video content, making it the visual content understanding
module for this study. In the VSSM module, due to the often
lengthy nature of video subtitles, we employed an open-source
large language model, ChatGLM3 [45], with a 6B parameter
size.

Design of Experiment A.1. We selected the VideoIn-
struct100K video dataset from Video-ChatGPT [46], which
contains 500 videos without subtitles and 2000 related video
questions. This dataset is used to evaluate the MLLM’s capa-
bilities in five aspects: accuracy of information, understanding
of details, context comprehension, temporal understanding,
and consistency. It is employed to systematically assess the
impact of the frame selection ratio P on the MLLM’s ability
to understand the entire video, as well as to determine the
optimal value for P .

The evaluation process follows the approach outlined in
Video-ChatGPT [46]. Specifically, first we generated answers
to the corresponding questions in the video dataset using
MLLM when the video is sampled every 15 frames (i.e., uni-
form sampling) as a baseline. Next, we sampled video frames
with different frame selection ratios P using the unsupervised
learning-based frame selector described in Section § V-B to
generate answers. Subsequently, ChatGPT-3.5 was employed
to assess how well each aspect (e.g., information accuracy)
sits between the ground truth answers from the dataset and the
answers generated from the sampled video frames (including
both uniform sampling and our frame selector) on a scale from
0 (lowest match) to 5 (highest match). Finally, we compute

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on December 31,2025 at 02:54:29 UTC from IEEE Xplore.  Restrictions apply. 



10 IEEE TRANSACTIONS ON NETWORKING

the relative score change by subtracting the score of uniform
sampling from the score of our frame selector.

Design of Experiment A.2. We randomly select 20 videos
with subtitle information from YouTube to assess the overall
effectiveness of the low-cost video understanding strategy in
JumpDASH. Three methods were set up for comparison to
validate the effectiveness of the frame selection-based low-
cost video text summary module in comprehending the video
content with reduced computational cost:

• Method 1: Analysis of the subtitle file only using the
VSSM module;

• Method 2: Uniform sampling of the entire video to
obtain a complete video description using LLaMA-VID,
followed by the analysis of both the subtitle file and video
description using the VSSM module;

• Method 3: Analysis of the entire video using the frame
selection-based low-cost video understanding strategy
(including TCA, VCA and VSSM).

We first manually segmented the 20 videos and wrote
corresponding summaries and titles to serve as ground truth
for evaluation. Then, we applied the three video understanding
methods to generate summaries and titles for the segments.
Finally, OpenAI ChatGPT-3.5 and ChatGPT-4.1 were used to
score the degree of match between the ground truth and the
outputs of each method on a scale from 0 (lowest match)
to 5 (highest match), demonstrating the effectiveness of each
video understanding approach. We did not report the segment
accuracy separately as the segments are primarily used to
help users navigate the video. Therefore, precise segment
boundaries are not important provided that the content is
meaningfully summarized and understood. Additionally, we
recorded the total token counts of subtitle text and video frame
inputs to assess the cost-effectiveness of the different methods.

Design of Experiment A.3. Experiment A.3 follows the
same setup as Experiment A.2, except that we randomly
select 10 videos from each of the four video categories (i.e.,
film, documentary, sports, and news) and evaluate them using
ChatGPT-3.5. This experiment is designed to assess the video
understanding effectiveness of the low-cost video understand-
ing strategy in JumpDASH across different categories.

Results of Experiment A.1. From the analysis of the results
of the video frame filter experiment, as shown in Table I, the
following conclusions can be drawn:

• Adjusting the video frame selection ratio P has an
impact on various evaluation metrics of the model, but
importantly the magnitude of this impact is limited, as the
relative changes fall within the [−0.1, 0.1] range, while
the relative scores range from [−5, 5]. This suggests that
our proposed frame selection strategy can enhance com-
putational efficiency without significantly compromising
the quality of understanding.

• When the P value is moderately increased (such as to
0.05 and 0.10), the temporal understanding ability is
enhanced. This is due to the video frame filter effectively
removing redundancy in the video frames It allows the
model to focus on information-rich frames, thereby opti-
mizing the understanding quality.

TABLE I
EVALUATION RESULTS FOR THE EFFECT OF DIFFERENT P SETTINGS ON

THE MLLM (RELATIVE CHANGE)

TABLE II
COST AND VIDEO UNDERSTANDING EFFECTIVENESS FOR NARRATED

VIDEOS

• At lower P values (such as 0.01), information accuracy
decreases significantly, reflecting that extensive filtering
weakens the model’s ability to capture key information.

• Regarding consistency, changes under various parameter
settings are not significant, indicating that video frame
selection has little impact on the model’s consistency.

These results indicate that with the video frame filter pro-
posed, we can effectively reduce the tokens used by the current
MLLMs while still performing well in visual understanding
tasks. Considering the performance difference between P =
0.05 and P = 0.10 is negligible, we choose to use P = 0.05
due to its lower computational cost.

Results of Experiment A.2. Table II presents the average
input token number and video understanding scores (evaluated
by both ChatGPT-3.5 and ChatGPT-4.1) for the three methods
on a custom YouTube video dataset. The token number for
Method 1 serves as a baseline, whereas the token number for
Method 3 is only slightly higher than Method 1, i.e., only 50%
higher than that of Method 1. Despite this, Method 3 achieved
a video understanding score of 4.02, surpassing Method 1’s
score of 3.81, clearly demonstrating that integrating visual
information enhances understanding. Compared to Method 2,
the token number of Method 3 is much smaller, indicating
that the proposed TCA and VCA modules significantly reduce
resource consumption while providing a higher video under-
standing score (4.02 compared to 3.78). We also evaluate
the video understanding score using the newer ChatGPT-4.1
model. The results show that while GPT-4.1 assigns lower
scores than GPT-3.5, the overall trends in video understanding
performance remain consistent across both models. Specifi-
cally, Method 2 achieves scores comparable to Method 1, and
Method 3 attains the highest score.

Results of Experiment A.3. Table III presents the average
input token count and video understanding scores for the three
methods across four video categories. Compared to Method 1,
Method 3 achieves comparable or higher video understanding
scores with only a moderate increase in cost. For instance,
in the news category, Method 3 outperforms Method 1 by

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on December 31,2025 at 02:54:29 UTC from IEEE Xplore.  Restrictions apply. 



WANG et al.: JumpDASH: LLM-BASED CONTENT PERCEPTION FOR INTELLIGENT JUMPING DASH 11

TABLE III
COST AND VIDEO UNDERSTANDING EFFECTIVENESS FOR DIFFERENT

CATEGORIES

0.41 in score, while incurring only a 13% higher cost. In
comparison to Method 2, Method 3 significantly reduces cost
while maintaining similar performance. For example, in the
sports category, Method 3’s score is just 0.05 lower than that
of Method 2, but the cost is reduced by 99.7%. These findings
are consistent with the results shown in Table II.

B. Performance Under Simulated Network Conditions

Test setup. To evaluate JumpDASH, the video server is
implemented using Nginx, and the client player is based on
Python. We configure the round-trip time to 80 ms and use
Mahimahi [47] to simulate the bandwidth between the video
server and the client by replaying network traces. Meanwhile,
the Pensieve simulator [4] is modified for training learning
models and parameter validation.

Network trace. We use 3G [48], Oboe [49], and 4G [50]
traces to test the performance of JumpDASH under various
network conditions. These traces are collected in different
scenarios and contain throughput information recorded per
second for different durations. The mean and standard devi-
ation (represented as µ ± σ) of the throughput values in 3G,
Oboe, and 4G are 1.67± 0.99 Mbps, 2.84± 1.60 Mbps, and
5.07 ± 4.08 Mbps, respectively. We randomly select 70% of
the traces for training and 30% for testing.

Video dataset. To test the performance of JumpDASH,
we utilized the video dataset mentioned earlier. Within this
dataset, we set the first K = 3 chunks of each segment as hp
chunks and the number of sub-chunks M = 4. For fairness,
we used the same settings as [4], [16], and [18], which are
encoded as [300, 750, 1200, 1850, 2850, 4300] Kbps. Each
video duration is limited to 360 seconds. We utilized FFmpeg
to encode all videos using x264 and convert them to DASH
format.

User setting. Each individual user may choose different hp
chunks. Each user selects a different time node to play the hp
chunk. Therefore, we randomly generate 5 time points between
the first video chunk and the first hp chunk, representing when
5 different users jump to hp chunks.

ABR scheme baselines. In the experiments, we compare
our scheme with the following existing ABRs: 1) BOLA [5]:

TABLE IV

ABR ALGORITHM COMPARISON ON THE 3G DATASET

TABLE V

ABR ALGORITHM COMPARISON ON THE OBOE DATASET

TABLE VI

ABR ALGORITHM COMPARISON ON THE 4G DATASET

A near-optimal buffer-based algorithm that determines the
bitrate based only on the state of the buffer, used in Dash.js;
2) RobustMPC [6]: The video chunk bitrate is selected by
predicting the throughput and using control theory; 3) Pensieve
[4]: The A3C reinforcement learning method is used to select
the video chunk bitrate; 4) Comyco [18]: A content-aware
DRL algorithm with expert policies; and 5) Merina [16]:
A meta-reinforcement learning-based neural adaptive bitrate
streaming algorithm.

QoE metric. To ensure fairness, we adopt a widely used
QoE setting [4], [6], [16], where q(Ri) = R represents the
video quality for an average L-second length video chunk,
with β = 4.3, as described by the following equation:

QoE =
∑
i∈W

q (Ri)− β
N∑
i=1

Ti−
∑
i∈W
|q (Ri+1)− q (Ri)| (9)

W represents the set of video chunks that have been watched.
Differently, we only calculate the quality gain and smoothness
penalty for the video chunks that users have watched, instead
of all downloaded video chunks.

Results of Experiment B. Tables IV, V, and VI present
performance of several ABR algorithms across three datasets:
3G, Oboe, and 4G. hp rebuffering time refers to the rebuffering
time encountered by users while watching hp chunks.

From the results, we observe that JumpDASH consistently
outperforms other algorithms across all key performance indi-
cators on the 3G, Oboe, and 4G datasets. Notably, in terms of

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on December 31,2025 at 02:54:29 UTC from IEEE Xplore.  Restrictions apply. 



12 IEEE TRANSACTIONS ON NETWORKING

Fig. 9. The composition of dynamic buffer.

Fig. 10. CDF of QoE in a 3G network.

Fig. 11. CDF of QoE in an Oboe network.

Fig. 12. CDF of QoE in a 4G network.

average QoE, JumpDASH shows an improvement of approxi-
mately 30.77%-264.29% over the other ABR algorithms in the
3G dataset, 21.29%-84.31% in the Oboe dataset, and 13.82%-
47.37% in the 4G dataset. These significant improvements
highlight JumpDASH’s superior ability to optimize user QoE
under diverse network conditions.

Figures 10, 11, and 12 present the CDFs of QoE, illustrating
the distribution of quality experiences across different network
environments. Specifically, we simulate the streaming of the
same video on each testing trace, referred to as a session. For
each session, we calculate the average QoE value of the video
chunks and depict the cumulative distribution of all sessions.
Notably, in over 90% of the sessions, JumpDASH consistently
exhibits the highest QoE.

Furthermore, across all three datasets, JumpDASH effec-
tively enhances the hp chunk quality and reduces hp

Fig. 13. QoE improvement of JumpDASH over other methods.

rebuffering time, while maintaining a relatively low total
rebuffering time. This is particularly evident in the Oboe
dataset, where JumpDASH’s hp chunk quality is significantly
higher than that of its closest competitor, while still achiev-
ing the lowest hp rebuffering time. These results highlight
JumpDASH’s strengths in scenarios involving nonlinear view-
ing patterns, ensuring high hp chunk quality without frequent
rebuffering.

Moreover, we observe that reinforcement learning-based
ABR algorithms generally underperform in nonlinear viewing
scenarios. Notably, the Comyco algorithm, which utilizes
inverse reinforcement learning, demonstrates markedly poor
performance. This suggests that without specific modifications
and adaptations, such algorithms may lead to suboptimal user
experiences when viewers manipulate the playback timeline,
as commonly occurs in real-world usage.

To further demonstrate the improvements brought by Jump-
DASH, we conducted additional experiments where baseline
ABR methods were augmented with JumpDASH’s sub-chunk
encoding and jump prefetching mechanisms. The results,
shown in Figure 13, indicate that JumpDASH outperforms the
best-performing baselines in 93.10% of 3G and 90.01% of
4G network traces. These results highlight the effectiveness
of JumpDASH even when the baselines are equipped with the
same fine-grained bitrate control capabilities.

C. Performance Under Real-World Network Conditions

Test setup. In the real-world experiment, the setup is similar
to Experiment B, with the following differences:
• On the client side, we modified the open-source video

player ffplay to support jump prefetching for down-
loading video chunks and a dynamic buffer module.
Additionally, an interface program was implemented to
receive ABR commands in a Python environment.

• We conducted tests using a real 4G cellular network
and a public Wi-Fi network on campus, with a mean
and standard deviation of recorded throughput values of
5.01± 0.31 Mbps and 3.53± 0.54 Mbps, respectively.

• Due to the limitations of real-network testing, where
it is not possible to fast-forward network speed during
playback acceleration, we selected the heuristic-based
RobustMPC, the reinforcement learning-based methods
Merina, and our JumpDASH for comparison.

Results of Experiment C. As shown in Tables VII
and VIII, JumpDASH consistently outperforms other ABR
schemes in both real-world 4G and WiFi environments. This

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on December 31,2025 at 02:54:29 UTC from IEEE Xplore.  Restrictions apply. 



WANG et al.: JumpDASH: LLM-BASED CONTENT PERCEPTION FOR INTELLIGENT JUMPING DASH 13

TABLE VII

COMPARISON OF ABR ALG. IN A REAL 4G NETWORK

TABLE VIII

ABR ALGORITHM COMPARISON IN REAL WIFI NETWORK

TABLE IX
COMPARISON OF ABLATION STUDY RESULTS FOR JUMPDASH VERSIONS

ON ABR PERFORMANCE

highlights JumpDASH’s ability to optimize streaming expe-
riences across diverse network conditions. Specifically, in
the high-throughput and stable real 4G conditions, Jump-
DASH significantly improves user QoE by reducing hp rebuff
times and increasing hp chunk quality through its preemptive
prefetching strategies. This also suggests that as network
technologies advance, JumpDASH is likely to demonstrate
greater superiority in scenarios where network throughput
exceeds video bitrate requirements, compared to other ABR
algorithms.

D. Ablation Study

Test setup. This experiment is configured similarly to Exper-
iment B, with the main difference being the comparison of the
performance of three algorithms on the 4G dataset.
• JumpDASH-v0, which does not perform hp chunk

prefetching;
• JumpDASH-v1, which performs prefetching of hp chunks

but does not implement a differentiated encoding strategy;
• JumpDASH-v2, which implements the complete scheme.
Results of Experiment D. The data from Table IX shows

that JumpDASH-v2 significantly improves the quality of hp
chunks compared to JumpDASH-v0. Specifically, the hp chunk
quality in JumpDASH-v2 is 3.97, a notable improvement
from 2.08 in JumpDASH-v0, representing an approximate
increase of 90.86%. Additionally, compared to JumpDASH-
v1, JumpDASH-v2 effectively reduces hp rebuffering times
from 0.59 to 0.34. This reduction, approximately 42.37%,
suggests that the strategy of varying the length of encoded
hp chunks in JumpDASH-v2 plays a significant role in min-
imizing rebuffering times caused by prefetching operations.
The results also show that JumpDASH-v2 achieves the highest
QoE across all datasets, with a value of 2.80, compared to 2.13
for JumpDASH-v0 and 2.47 for JumpDASH-v1.

Fig. 14. Performance comparison when the user views videos sequentially.

These results confirm the effectiveness of the hp
chunk prefetching and differentiated encoding strategy in
JumpDASH-v2, which improves hp chunk quality, reduces
rebuffering time, and enhances overall QoE. This makes
JumpDASH-v2 an optimal solution for streaming under
diverse network conditions.

E. Impact of User Viewing Behaviors

Test Setup. In this section, we evaluate the performance
of JumpDASH when users watch videos sequentially, i.e.,
without jumping. Specifically, we divide the 4G traces into
low fluctuation and high fluctuation based on the coefficient
of variation of bandwidth (cv). cv is defined as cv = δ

µ , where
δ and µ are the standard deviation and mean of the trace
throughput, respectively. Low fluctuation (cv ∈ [0, 50%]) indi-
cates short-term bandwidth variation, while high fluctuation
(cv ∈ [100%, 300%]) reflects long-term bandwidth variation.
Similar to Experiment B, we compare JumpDASH against
five existing ABR algorithms: BOLA, RobustMPC, Pensieve,
Comyco, and Merina.

Results of Experiment E. Figure 14a shows the QoE
of the six approaches under different bandwidth fluctuation
conditions when users view videos sequentially. The results
indicate that JumpDASH outperforms other ABRs in both
settings. Under low bandwidth fluctuation, the QoE differences
between ABRs are relatively small (<8%), whereas under
high bandwidth fluctuation, the QoE advantage of JumpDASH
becomes more pronounced. Specifically, Figure 14b presents
the hp chunk quality and rebuffering time—two key factors
influencing QoE—across the compared approaches. Jump-
DASH consistently achieves the highest hp chunk quality and
the lowest rebuffering time. Compared to the best-performing
baseline (BOLA), JumpDASH reduces rebuffering time by
18.97%. These results demonstrate that JumpDASH delivers
superior performance even when users watch videos without
jumping.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on December 31,2025 at 02:54:29 UTC from IEEE Xplore.  Restrictions apply. 



14 IEEE TRANSACTIONS ON NETWORKING

Fig. 15. Performance comparison of JumpDASH and Robust MPC under
different buffer lengths.

F. Impact of Buffer Length

Test setup. This experiment is set up similarly to Exper-
iment B. The main difference in Experiment F is that it
primarily tests the QoE comparison between Robust MPC and
JumpDASH at 60s, 120s, and 240s to explore JumpDASH’s
performance under different maximum buffer lengths. In this
experiment, only the 4G dataset is used.

Results of Experiment F. Figure 15 compares QoE between
Robust MPC and JumpDASH across different maximum buffer
lengths. It is clear that JumpDASH consistently maintains a
significantly higher QoE across all three buffer sizes. This
highlights JumpDASH’s strong adaptability to buffer size,
effectively ensuring an optimal viewing experience for users,
even with variations in buffer lengths.

G. System Overhead

Training Cost. JumpDASH involves training two modules:
(i) unsupervised learning-based frame selector (Section § V-B),
and (ii) ABR controller module (Section § VI-C). On our
server equipped with eight NVIDIA GeForce V100 GPUs,
training the frame selector on the VideoInstruct100K dataset
takes approximately 2 hours. The ABR controller module,
trained with 16 parallel agents, requires about 1 hour. Since
both modules are trained only once, the overall training cost
is low.

Processing Delay. In JumpDASH, only the ABR controller
module operates online during each viewing session, while all
other modules are processed offline with a one-time cost. The
ABR controller module employs a lightweight DRL model
for decision-making, with an inference latency of 3–10 ms on
standard client devices, ensuring no playback delay. For a 360-
second video, the processing latency of the offline modules
is as follows: (i) TCA: 0.5s, (ii) VCA: 9s, (iii) VSSM: 30s,
and (iv) Differentiated Encoding Module: 26s. In total, the
offline processing latency amounts to 66 seconds. Since these
modules are executed only once per video on the server side
prior to playback, the overhead is acceptable.

Overhead of Sub-Chunk Encoding. While sub-chunk encod-
ing improves bitrate adaptability and reduces quality fluc-
tuations, it introduces trade-offs in processing and storage.
(i) Processing Overhead: Each hp chunk is divided into
4 sub-chunks, with each sub-chunk encoded into 6 bitrate
versions. This increases the total number of encoding tasks.
For example, in a 360-second video with 90 chunks, the
number of encoding jobs rises from 540 (90 chunks ×6
bitrates) to 864 (18 hp chunks ×4 sub-chunks ×6 bitrates +

72 standard chunks ×6 bitrates). (ii) Storage Cost: Traditional
DASH stores 6 versions per chunk, whereas our approach
stores 6 versions per sub-chunk for hp chunks. For each hp
chunk split into 4 sub-chunks, this results in a 2–2.5× increase
in storage for those chunks. Despite this, the process is entirely
offline and parallelizable. With GPU acceleration, the end-
to-end processing time remains manageable. Moreover, this
overhead is limited to hp chunks only, which comprise just
30–40% of the total video content. For the remaining chunks,
standard encoding is retained.

VIII. CONCLUSION

This paper introduces JumpDASH, a significant advance-
ment over traditional ABR algorithms that improves user video
streaming experience. Unlike existing ABR systems, which
assume sequential video playback and overlook user-driven
navigation through video content, JumpDASH supports the
highly dynamic viewing habits of modern users. By incor-
porating a low-cost video text summary module, JumpDASH
enables users to quickly understand and locate segments
of interest within videos, enhancing user engagement and
satisfaction. Furthermore, an innovative jump prefetching tech-
nique is introduced to optimize network resource allocation by
preloading the video chunks of high user interest. Experimen-
tal results demonstrate that JumpDASH significantly improves
viewer QoE by 13.82% to 264.29% compared to existing
ABR strategies. These show that JumpDASH offers a highly
valuable user-centric solution that aligns with the nonlinear
viewing preferences of today’s digital audience.

APPENDIX
PROMPTS FOR THE VSSM MODULE

A. Prompt for Information Integration

Given a complete set of video subtitles and description, your
task is to analyze the text and identify detailed, sequential
events throughout the video. Please ensure that these events are
in chronological order, reflecting the progression of the video’s
narrative. Your output should provide a granular breakdown of
the content, focusing on key developments, character actions,
and significant dialogue or scenes. This detailed event list will
serve as a foundational analysis for further video segmentation.
The subtitle text to be analyzed is provided below: {subtitle
text}. The video description to be analyzed is provided below:
{video description}.

The {subtitle text} and {video description} are replaced
with the subtitle information ~t and visual descriptions ~d.

B. Prompt for Content Segmentation

Analyze the provided detailed event to identify distinct
changes in the theme or narrative within the video. Your
objective is to segment the video into several distinct segments.
Focus on the video in its entirety, ensuring that no segment
is overlooked. Each segment should encapsulate a unique
subtheme or a specific phase in the narrative’s evolution. This
segmentation task is crucial for breaking down the video’s
complex content into digestible and coherent segments, facil-
itating an enhanced viewing experience. Ensure that each

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on December 31,2025 at 02:54:29 UTC from IEEE Xplore.  Restrictions apply. 



WANG et al.: JumpDASH: LLM-BASED CONTENT PERCEPTION FOR INTELLIGENT JUMPING DASH 15

segment you identify represents a logical transition, capturing
the essence of the video’s evolving storyline or thematic
progression. Aim for clarity and precision in demarcating
the boundaries of each segment to aid viewers in grasping
the nuanced content without being overwhelmed. The video
description to be analyzed is provided below: {narrative
vector}.

The above prompt is used to segment the video, then the
following prompt is used to obtain the number of video
segments for later processing.

Analyze the segmented video content you provided earlier
and indicate the total number of segments identified. Format
your response as a solitary number without additional text or
context. For example, simply respond with “4” if you identified
4 segments.

C. Prompt for Summary Output

Provide a concise summary for segment {n}, capturing the
essence and distinguishing features of this segment in relation
to the overall video narrative. Ensure the summary is compact
and focused, offering valuable insight into the segment’s
content and purpose. Respond only with the summary, without
additional explanations or text.

Create a concise and descriptive title for segment {n},
encapsulating its main theme or content succinctly. Your
response should only include the title, free from any supple-
mentary text or context.

Identify the stop time for segment {n} and provide it in a
clear, standardized format such as “HH:MM:SS”. Ensure that
your response contains only the time information, formatted
correctly, without additional commentary or details.

This prompt is executed n times to generate the results for
all segments.

REFERENCES

[1] DemandSage.Video Marketing Statistics 2025. Accessed: Jul. 8, 2025.
[Online]. Available: https://www.demandsage.com/video-marketing-
statistics/

[2] Insivia.Video Marketing Statistics You Must Know in 2025. Accessed:
Jul. 8, 2025. [Online]. Available: https://www.insivia.com/video-
marketing-statistics-you-must-know-in-2025

[3] Dash Industry Forum. Accessed: Aug. 25, 2024. [Online]. Available:
https://dashif.org/

[4] H. Mao, R. Netravali, and M. Alizadeh, “Neural adaptive video stream-
ing with pensieve,” in Proc. Conf. ACM Special Interest Group Data
Commun., Aug. 2017, pp. 197–210.

[5] K. Spiteri, R. Urgaonkar, and R. K. Sitaraman, “BOLA: Near-optimal
bitrate adaptation for online videos,” IEEE/ACM Trans. Netw., vol. 28,
no. 4, pp. 1698–1711, Aug. 2020.

[6] X. Yin, A. Jindal, V. Sekar, and B. Sinopoli, “A control-theoretic
approach for dynamic adaptive video streaming over HTTP,” in Proc.
ACM Conf. Special Interest Group Data Commun., Aug. 2015, pp.
325–338.

[7] F. Y. Yan et al., “Learning in situ: A randomized experiment in video
streaming,” in Proc. 17th USENIX Symp. Networked Syst. Design
Implement. (NSDI), 2019, pp. 1–12.

[8] Z. Wang et al., “MultiLive: Adaptive bitrate control for low-delay multi-
party interactive live streaming,” IEEE/ACM Trans. Netw., vol. 30, no. 2,
pp. 923–938, Apr. 2022.

[9] J. Jiang, V. Sekar, and H. Zhang, “Improving fairness, efficiency,
and stability in HTTP-based adaptive video streaming with festive,”
IEEE/ACM Trans. Netw., vol. 22, no. 1, pp. 326–340, Feb. 2014.

[10] Z. Meng et al., “Practically deploying heavyweight adaptive bitrate
algorithms with teacher–student learning,” IEEE/ACM Trans. Netw.,
vol. 29, no. 2, pp. 723–736, Apr. 2021.

[11] R. Rassool, “VMAF reproducibility: Validating a perceptual practical
video quality metric,” in Proc. IEEE Int. Symp. Broadband Multimedia
Syst. Broadcast. (BMSB), Jun. 2017, pp. 1–2.

[12] M. Sun, A. Farhadi, and S. Seitz, “Ranking domain-specific highlights
by analyzing edited videos,” in Proc. 13th Eur. Conf. Comput. Vis.-
ECCV, Sep. 2014, pp. 787–802.

[13] W. Li, J. Huang, S. Wang, S. Liu, and J. Wang, “DAVS: Dynamic-chunk
quality aware adaptive video streaming using apprenticeship learning,”
in Proc. IEEE Global Commun. Conf., Taipei, Taiwan, Dec. 2020,
pp. 1–6.

[14] A. Garcia del Molino and M. Gygli, “PHD-GIFs: Personalized highlight
detection for automatic GIF creation,” in Proc. 26th ACM Int. Conf.
Multimedia, Oct. 2018, pp. 600–608.

[15] S. Kim, H. Oh, and C. Kim, “Eff-HAS: Achieve higher efficiency in
data and energy usage on dynamic adaptive streaming,” J. Commun.
Netw., vol. 20, no. 3, pp. 325–342, Jun. 2018.

[16] N. Kan, Y. Jiang, C. Li, W. Dai, J. Zou, and H. Xiong, “Improving
generalization for neural adaptive video streaming via meta reinforce-
ment learning,” in Proc. 30th ACM Int. Conf. Multimedia, Oct. 2022,
pp. 3006–3016.

[17] S. Sengupta, N. Ganguly, S. Chakraborty, and P. De, “HotDASH:
Hotspot aware adaptive video streaming using deep reinforcement
learning,” in Proc. IEEE 26th Int. Conf. Netw. Protocols (ICNP), Sep.
2018, pp. 165–175.

[18] T. Huang, C. Zhou, R.-X. Zhang, C. Wu, X. Yao, and L. Sun, “Comyco:
Quality-aware adaptive video streaming via imitation learning,” in Proc.
27th ACM Int. Conf. Multimedia, Oct. 2019, pp. 429–437.

[19] YouTube. Accessed: Dec. 4, 2024. [Online]. Available: https://
www.youtube.com

[20] Netflix. Accessed: Dec. 4, 2024. [Online]. Available: https://
www.netflix.com

[21] Bilibili. Accessed: Dec. 4, 2024. [Online]. Available: https://
www.bilibili.com

[22] X. Zhang, Y. Ou, S. Sen, and J. Jiang, “SENSEI: Aligning video stream-
ing quality with dynamic user sensitivity,” in Proc. 18th USENIX Symp.
Networked Syst. Design Implement. (NSDI 21), Apr. 2020, pp. 303–320.

[23] T. Badamdorj, M. Rochan, Y. Wang, and L. Cheng, “Joint visual and
audio learning for video highlight detection,” in Proc. IEEE/CVF Int.
Conf. Comput. Vis. (ICCV), Oct. 2021, pp. 8107–8117.

[24] F.-T. Hong, X. Huang, W. Li, and W. Zheng, “MINI-Net: Multiple
instance ranking network for video highlight detection,” in Proc. 16th
Eur. Conf. Comput. Vis.-ECCV, Aug. 2020, pp. 345–360.

[25] R. Zhan et al., “Deconfounding duration bias in watch-time prediction
for video recommendation,” in Proc. 28th ACM SIGKDD Conf. Knowl.
Discovery Data Mining, Aug. 2022, pp. 4472–4481.

[26] A. Hore and D. Ziou, “Image quality metrics: PSNR vs. SSIM,” in
Proc. 20th Int. Conf. Pattern Recognit., Istanbul, Turkey, Aug. 2010,
pp. 2366–2369.

[27] R. R. R. Rao et al., “Bitstream-based model standard for 4K/UHD:
ITU-T P.1204.3—Model details, evaluation, analysis and open source
implementation,” in Proc. 12th Int. Conf. Quality Multimedia Exper.
(QoMEX), May 2020, pp. 1–6.

[28] R. Qian et al., “Streaming long video understanding with large language
models,” in Proc. 38th Int. Conf. Neural Inf. Process. Syst., Dec. 2024,
pp. 119336–119360.

[29] X. Tang, J. Qiu, L. Xie, Y. Tian, J. Jiao, and Q. Ye,
“Adaptive keyframe sampling for long video understanding,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2025,
pp. 29118–29128.

[30] B. He et al., “MA-LMM: Memory-augmented large multimodal model
for long-term video understanding,” in Proc. IEEE/CVF Conf. Comput.
Vis. Pattern Recognit. (CVPR), Jun. 2024, pp. 13504–13514.

[31] ChatGPT. Accessed: Mar. 8, 2024. [Online]. Available: https://
openai.com/blog/chatgpt

[32] GPT4-Vision. Accessed: Mar. 8, 2024. [Online]. Available: https://
chat.openai.com/g/g-NHeYHA2ik-gpt-vision-builder

[33] H. Liu, C. Li, Q. Wu, and Y. J. Lee, “Visual instruction
tuning,” in Proc. Adv. Neural Inf. Process. Syst., 2023,
pp. 34892–34916.

[34] Y. Li, C. Wang, and J. Jia, “LLaMA-VID: An image is worth 2 tokens
in large language models,” 2023, arXiv:2311.17043.

[35] Y. Li, B. Hu, X. Chen, L. Ma, Y. Xu, and M. Zhang, “LMEye: An
interactive perception network for large language models,” IEEE Trans.
Multimedia, vol. 26, pp. 10952–10964, 2024.

[36] OpenAI Price. Accessed: Mar. 8, 2024. [Online]. Available: https://
openai.com/pricing

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on December 31,2025 at 02:54:29 UTC from IEEE Xplore.  Restrictions apply. 



16 IEEE TRANSACTIONS ON NETWORKING

[37] A. Radford, J. W. Kim, T. Xu, G. Brockman, C. McLeavey,
and I. Sutskever, “Robust speech recognition via large-scale
weak supervision,” in Proc. Int. Conf. Mach. Learn., Jul. 2022,
pp. 28492–28518.

[38] K. Lagler, M. Schindelegger, J. Böhm, H. Krásná, and T. Nils-
son, “GPT2: Empirical slant delay model for radio space geodetic
techniques,” Geophys. Res. Lett., vol. 40, no. 6, pp. 1069–1073, Mar.
2013.

[39] K. Zhou, Y. Qiao, and T. Xiang, “Deep reinforcement learning for unsu-
pervised video summarization with diversity-representativeness reward,”
in Proc. AAAI Conf. Artif. Intell., 2018, pp. 7582–7589.

[40] J. S. Park, J. O’Brien, C. J. Cai, M. R. Morris, P. Liang, and M. S. Bern-
stein, “Generative agents: Interactive simulacra of human behavior,” in
Proc. 36th Annu. ACM Symp. User Interface Softw. Technol., Oct. 2023,
pp. 1–22.

[41] A. Narayanan et al., “A variegated look at 5G in the wild: Performance,
power, and QoE implications,” in Proc. ACM SIGCOMM Conf., Aug.
2021, pp. 610–625.

[42] M. Dasari, K. Kahatapitiya, S. R. Das, A. Balasubramanian, and
D. Samaras, “Swift: Adaptive video streaming with layered neural
codecs,” in Proc. 19th USENIX Symp. Networked Syst. Design Imple-
ment., Apr. 2022, pp. 103–118.

[43] Y. Liu, B. Jiang, T. Guo, R. K. Sitaraman, D. Towsley, and X. Wang,
“Grad: Learning for overhead-aware adaptive video streaming with
scalable video coding,” in Proc. 28th ACM Int. Conf. Multimedia, Oct.
2020, pp. 349–357.

[44] S. Kirkpatrick, C. D. Gelatt Jr., and M. P. Vecchi, “Optimization by
simulated annealing,” J. Stat. Phys., vol. 34, no. 5, pp. 975–986, 1983.

[45] Z. Du et al., “GLM: General language model pretraining with autore-
gressive blank infilling,” in Proc. 60th Annu. Meeting Assoc. Comput.
Linguistics, May 2022, pp. 320–335.

[46] M. Maaz, H. Rasheed, S. Khan, and F. S. Khan, “Video-ChatGPT:
Towards detailed video understanding via large vision and language
models,” 2023, arXiv:2306.05424.

[47] R. Netravali, A. Sivaraman, K. Winstein, S. Das, A. Goyal, and
H. Balakrishnan, “Mahimahi: A lightweight toolkit for reproducible Web
measurement,” ACM SIGCOMM Comput. Commun. Rev., vol. 44, no. 4,
pp. 129–130, 2014.

[48] H. Riiser, P. Vigmostad, C. Griwodz, and P. Halvorsen, “Commute path
bandwidth traces from 3G networks: Analysis and applications,” in Proc.
4th ACM Multimedia Syst. Conf., Feb. 2013, pp. 114–118.

[49] Z. Akhtar et al., “Oboe: Auto-tuning video ABR algorithms to network
conditions,” in Proc. Conf. ACM Special Interest Group Data Commun.,
Aug. 2018, pp. 44–58.

[50] D. Raca, J. J. Quinlan, A. H. Zahran, and C. J. Sreenan, “Beyond
throughput: A 4G LTE dataset with channel and context metrics,” in
Proc. 9th ACM Multimedia Syst. Conf., Amsterdam, Netherlands, Jun.
2018, pp. 460–465.

Hanling Wang received the B.S. degree from Cen-
tral South University, China, in 2017, and the M.S.
and Ph.D. degrees from Tsinghua University, China,
in 2020 and 2025, respectively. He is currently an
Assistant Researcher at the Peng Cheng Laboratory,
China. His main research interests include video
transmission and analytics, edge computing, and
deep learning.

Tianli Zhou received the master’s degree from
Tsinghua Shenzhen International Graduate School,
Shenzhen, China, in 2024. He is currently working
with the AI Business Department, Alibaba Interna-
tional, focusing on large language model inference
acceleration. His research interests include video
transmission, video analysis using multimodal mod-
els, and AI infrastructure.

Qing Li (Senior Member, IEEE) received the B.S.
degree in computer science and technology from
Dalian University of Technology, Dalian, China,
in 2008, and the Ph.D. degree in computer sci-
ence and technology from Tsinghua University,
Beijing, China, in 2013. He is currently a Full
Professor at the Peng Cheng Laboratory, Shenzhen,
China. His research interests include reliable and
scalable routing of the internet, software-defined net-
working, network function virtualization, in-network
caching/computing, edge computing, traffic schedul-

ing, transmission control, and video delivery.

Yong Jiang (Member, IEEE) received the B.S.
and Ph.D. degrees from Tsinghua University, Bei-
jing, China, in 1998 and 2002, respectively. He is
currently a Full Professor with the Division of Infor-
mation Science and Technology, Tsinghua Shenzhen
International Graduate School, Shenzhen, China, and
the Department of Mathematics and Theories, Peng
Cheng Laboratory, Shenzhen. He mainly focuses
on the future internet architecture, the Internet of
Things, edge computing, and AI for networks.

Gabriel-Miro Muntean (Fellow, IEEE) received the
Ph.D. degree from Dublin City University (DCU),
Ireland, in 2004, for research on adaptive multime-
dia transmission. He is currently a Professor with
the School of Electronic Engineering and the Co-
Director of the Performance Engineering Laboratory,
DCU. He has authored over 500 papers in presti-
gious international journals and conferences, written
four books and 29 book chapters, and edited six
additional volumes. He managed the EU Project
NEWTON and directed the DCU Team in the EU

projects TRACTION and HEAT, as well as other significant Irish research
projects, such as eStream and FRADIS. His research interests include quality,
performance, and energy efficiency concerns associated with multimedia and
multisensory media delivery, technology-enhanced learning, and various data
transfers across heterogeneous networks. He was the chair, a reviewer, and an
assessor of other prominent international conferences, journals, and funding
organizations. He serves as an Associate Editor for IEEE TRANSACTIONS ON
BROADCASTING and IEEE TRANSACTIONS ON NETWORK SCIENCE AND
ENGINEERING. He is the Multimedia Communications Area Editor of IEEE
COMMUNICATIONS SURVEYS AND TUTORIALS.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on December 31,2025 at 02:54:29 UTC from IEEE Xplore.  Restrictions apply. 


