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Abstract—Machine Learning-based Network Intrusion Detec-
tion Systems (ML-NIDSes) are vital for cyber-security, yet their
inherent vulnerability to adversarial attacks poses a persis-
tent challenge. Among these, zero-query transfer-based attacks
present a particularly realistic and formidable threat, as adver-
saries operate with no knowledge of or interaction with the target
NIDS. However, the efficacy of such attacks is critically hampered
by poor adversarial transferability across diverse NIDS model
architectures and by strict protocol-defined constraints on net-
work traffic modifications. To probe the robustness of NIDSes
under zero-query attacks, we introduce ARTEMIS, a novel
hybrid attack framework engineered to dramatically enhance
adversarial transferability for zero-query attacks. ARTEMIS
leverages the generalization capabilities of meta-learning to
adapt to unknown target models by simulating diverse black-
box transfer tasks. Simultaneously, it combines a reinforcement
learning-inspired adaptive reweighing mechanism to maximize
transfer potential by promoting the effective use of heterogeneous
substitute ensembles. Extensive evaluations on the BCCC-CIC-
IDS2017/2018 datasets across closed-set, open-set, and cross-
set zero-query scenarios confirm that ARTEMIS significantly
outperforms state-of-the-art baselines. Our work presents a
powerful methodology for NIDS vulnerability assessment and
provides crucial insights for developing defenses against transfer-
based evasions.

Index Terms—adversarial attack, zero-query, black-box, NIDS

I. INTRODUCTION

In recent years, the application of Machine Learning-based
Network Intrusion Detection Systems (ML-NIDSes) to detect
malicious traffic has become a significant trend [1]–[3]. Com-
pared with classical signature-based techniques, ML models
yield richer feature representations and improved detection
of zero-day attacks [4]–[6]. However, despite the superior
detection accuracy and automation capabilities of ML-based
NIDSes, their robustness are usually overlooked, exhibiting
significant vulnerability, particularly when facing adversarial
attacks [7]–[9]. Once a malicious flow is misclassified as
benign, adversaries can easily bypass defense, leading to se-
vere consequences. Therefore, investigating adversarial attack
mechanisms targeting ML-NIDSes, and providing insights for
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developing defenses against such attacks is of paramount
importance.

Currently, most research on adversarial attacks against
NIDSes assumes a white-box setting, where the adversary
has access to the model architecture and even the training
data [4], [10]. However, this is often unrealistic in prac-
tice. Due to security and privacy concerns, deployed NIDSes
typically operate as closed systems, only outputting final
prediction labels (normal or abnormal) without disclosing
model structures or returning any confidence scores or proba-
bility information, representing a typical decision-based hard-
label black-box scenario [11]–[13]. Research on black-box
attacks primarily employs two strategies: 1) Query-based
attacks [14]–[16], which use model outputs (scores/labels)
from crafted queries to estimate gradients or decision bound-
aries; and 2) Transferability-based attacks [17]–[19], which
generate adversarial examples using local substitute models
and exploit their transferability to unknown target models.
While effective in domains like image processing, query-
based methods face challenges when generating adversarial
traffic targeting NIDSes. NIDSes often return only hard labels
and are sensitive to abnormal query patterns or excessive
query rates, making query-based attacks easily detectable and
likely to trigger defenses [20], [21]. Therefore, studying how
the stealthier, non-interactive transferability-based adversarial
methods would affect the defensive performance of NIDSes
become a more realistic proposition.

However, effectively applying such transferability-based
black-box attack strategies to NIDSes presents numerous
unique challenges. First, NID models exhibit high diversity,
ranging from traditional machine learning models (e.g., deci-
sion tree ensembles [22]) to complex deep neural networks
[1], [23]–[25]. These models vary significantly in structure,
decision boundaries, and sensitivity to inputs [7], [26], making
it exceptionally difficult to find universally effective adversar-
ial perturbations. Moreover, most prior transfer-based attacks
[27], [28] rely on gradient information to probe transferability
between neural networks, and therefore break down when
confronted with non-differentiable tree models. Second, unlike
the image domain [29], [30], modifications to network traffic
are subject to strict constraints compared to pixel values [31],
[32]. Traffic features exhibit complex interdependencies and979-8-3315-0376-5/25/$31.00 ©2025 IEEE
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must adhere to the specifications of underlying network pro-
tocols (e.g., TCP/IP) to be transmitted and processed correctly.
Furthermore, many feature values have fixed numerical ranges
or can only take discrete values. Any non-compliant modifi-
cation can render the sample invalid or fail to achieve the
attack objective. Lastly, as previously mentioned, black-box
NIDS typically provide only hard-label outputs and are highly
sensitive to query behavior. Therefore, any queries to the target
NIDS is impractical, making attack methods difficult to obtain
valuable information for generating adversarial traffic.

To address these challenges, we propose ARTEMIS, a
novel hybrid adversarial attack framework under the zero-
query setting. ARTEMIS systematically tackles these critical
issues through its unique design: First, to counter the zero-
query unknown target model problem, it employs a meta-
learning paradigm. This involves constructing a diverse pool
of substitute models, comprising both differentiable and non-
differentiable architectures to reflect NIDS heterogeneity, and
simulating varied black-box transfer scenarios to learn gen-
eralizable evasion strategies. Second, ARTEMIS addresses
the challenge of substitute ensemble heterogeneity by in-
corporating an RL-inspired adaptive reweighing mechanism.
This mechanism dynamically optimizes the influence of each
model, guiding the adversarial example generation towards
shared adversarial subspaces. The integration of diverse model
types is further achieved by a unified momentum accumulation
approach, which consolidates directional information from
both differentiable models (e.g., attacked via MI-FGSM with
Bayesian weight sampling [33]) and non-differentiable tree
models (e.g., attacked via Leaf Tuple Attack [34] with input
Gaussian sampling). Third, to ensure the generated adversarial
traffic adheres to strict network data modification constraints,
ARTEMIS incorporates a dedicated Protocol-Aware projection
constraint module that enforces protocol specifications and
feature validity.

Through this integrated approach, ARTEMIS iteratively re-
fines perturbations. By learning to exploit common vulnerabil-
ities across numerous simulated transfer tasks, it significantly
enhances the ability of adversarial examples to successfully
transfer to unknown NIDSes in zero-query settings.

The main contributions of this paper can be summarized as
follows:

1) Hybrid Zero-Query Framework. We introduce a meta-
learning–reinforcement-learning framework that crafts
adversarial traffic without querying the target NIDSes.
The outer meta-learner simulates diverse black-box con-
ditions, while an inner RL agent adaptively adjusts
substitute-model weights, yielding highly transferable
perturbations.

2) Protocol-Aware Transferability Maximization. Our at-
tack explicitly respects TCP/IP field semantics and dis-
crete feature ranges, yet remains effective across het-
erogeneous NIDS architectures—including both gradient-
based deep networks and non-differentiable tree en-
sembles—thereby overcoming a key limitation of prior
gradient-dependent transfer attacks.

3) Comprehensive Empirical Validation. Experiments on
standard datasets BCCC-CIC-IDS2017 [35] and BCCC-
CSE-CIC-IDS2018 [36] under closed-set, open-set, and
cross-set scenarios demonstrate consistent gains in attack
success rate over state-of-the-art black-box baselines,
confirming both robustness and practical applicability.

II. BACKGROUND AND RELATED WORK

This section introduces the fundamental concepts of Ma-
chine Learning-based Network Intrusion Detection Systems
and Adversarial Learning techniques.

A. ML-based Network Intrusion Detection Systems

Based on the learning paradigm and detection objectives,
ML-based NIDSes can be broadly categorized as follows.

Supervised Learning-based Classifiers: These NIDSes
are trained on labeled datasets containing both benign and
malicious traffic to learn decision boundaries that distinguish
between different traffic classes. Common NID models using
Support Vector Machines, Decision Trees, Random Forests,
Logistic Regression, and various Deep Neural Network ar-
chitectures such as Multi-Layer Perceptrons, Convolutional
Neural Networks, and Recurrent Neural Networks and their
variants (e.g., LSTM [25]). Research efforts like AlertNet [23],
IdsNet [37], and DeepNet [24] have explored different DNN
architectures for NID applications.

Unsupervised Learning-based Anomaly Detectors: These
NIDSes primarily learn the patterns of normal network traffic
and identify deviations from these patterns as anomalies or
potential attacks. This approach is particularly suited for de-
tecting zero-day attacks. Representative works include KitNET
[1], which uses an ensemble of autoencoders, and methods
based on isolation forests or clustering [22].

Hybrid or Ensemble Methods: To combine the strengths
of different models, many studies employ ensemble learning
strategies, such as XGBoost, Deep Forest, or construct systems
integrating multiple base models [38], [39]. Some works also
explore models based on temporal features, utilizing Markov
models [40] or RNNs [41] to analyze packet sequences.

B. Adversarial Attacks against NIDSes

Adversarial attacks aim to deceive ML models by adding
carefully crafted, often imperceptible perturbations to input
data, causing the model to make incorrect predictions and thus
bypass NIDS detection. Based on the adversary’s knowledge
of the target NIDS, adversarial attacks can be mainly classified
as two categories.

1) White-box Attacks: White-box attacks assume the adver-
sary has complete knowledge of the target model’s structure,
parameters, training data, etc. [4], [10], [42]. Adversaries can
leverage this information (e.g., gradients) to precisely compute
and generate the most effective adversarial perturbations. Early
white-box attacks against NIDSes adapted gradient methods
from the image domain to NID models [42]. Authors in [4]
evaluate the effectiveness of different gradient attack algo-
rithms against DNN-based NIDSes. Although these studies
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revealed the vulnerability of ML-based NIDSes, the white-box
assumption is generally unrealistic in real-world scenarios.

2) Black-box Attacks: Black-box typically assumes that the
adversary cannot access the target model’s internal informa-
tion and must rely on interaction (queries) or general model
vulnerabilities (transferability) to conduct the attack.

Query-based Attacks: The core strategy of these attacks
involves interacting with the target NIDSes by sending probe
traffic and observing the output (typically a binary label,
benign or malicious). This feedback is then used to infer
information about the model or directly guide the generation
of adversarial examples. Several query-based techniques have
been explored within the NIDS domain. For instance, Zolbayar
et al. [43] adopts a GAN-based framework that directly
leverages feedback from the target model to train a generator,
aiming to produce realistic adversarial traffic. Model extraction
techniques also represent a significant category, where queries
are used to gather data for training a local substitute model
that mimics the target [8]. Despite demonstrating the feasibility
of black-box attacks, these methods generally suffer from low
query efficiency, high cost, and high detectability, making them
challenging to apply against well-defended NIDSes.

Transfer-based Attacks: These attacks exploit the property
that adversarial examples carefully-crafted against one sub-
stitute model can often successfully deceive other unknown
target models [11], [44]. Adversaries train or obtain one or
more substitute models locally, generate adversarial examples
on them, and then directly use these examples to attack the
target NIDSes without any queries or interactions.The success
of such attacks heavily depends on the transferability of the ad-
versarial examples. Zero-query attack research specifically
for NIDS is relatively scarce and more challenging. Han
et al. [45] combined GANs for adversarial feature generation
with PSO for traffic vector optimization, improving attack
effectiveness in gray/black-box settings. Nasr et al. [46] sought
universal perturbations under traffic constraints against DNN-
based traffic analysis systems. However, due to the strong
heterogeneity of NIDS models and strict constraints on traffic
features, achieving high transferability in zero-query attacks
remains difficult. Zhang et al. [7] noted that existing black-
box attacks struggle with low success rates due to weak
transferability between different model types (e.g., neural
networks and tree models).

In summary, while ML-based NIDSes, encompassing di-
verse architectures from neural networks to tree-based en-
sembles, offer advanced threat detection capabilities, their
vulnerability to adversarial attacks is a significant concern.
White-box attacks, though demonstrating model weaknesses,
rely on unrealistic assumptions of complete knowledge re-
garding the target NIDS. Black-box attacks present a more
practical threat model but are themselves challenged: query-
based approaches often suffer from inefficiency and high
detectability when applied to NIDSes, which typically provide
limited feedback. Consequently, transfer-based attacks, which
generate adversarial examples on local substitute models with-
out querying the target, are more aligned with realistic zero-

query scenarios. However, the efficacy of such attacks is often
hindered by the poor transferability of adversarial examples
across heterogeneous NIDS models and the strict constraints
imposed by network traffic validity. This paper introduces
ARTEMIS, a framework designed to specifically address these
critical challenges in achieving effective zero-query, transfer-
based adversarial attacks against diverse ML-NIDSes.

III. THREAT MODEL

In this section, we define the threat model considered for ad-
versarial attacks against ML-based NIDSes. As a conclusion,
the threat model investigated in this paper is a realistic and
challenging zero-query black-box scenario. The adversary
attempts to evade detection by constructing substitute models
and leveraging the transferability of adversarial examples,
while ensuring that the generated adversarial traffic adheres
to network protocol and functional constraints.

A. Adversary’s Knowledge

We consider a black-box attacker who cannot access the
target NIDS architecture, parameters, or decision scores and
receives no feedback during the attack (zero-query setting).
Within this constraint, the adversary has the following concrete
capabilities:

Training Data. The attacker cannot obtain the exact dataset
used to train the target NIDS. Instead, she can access public
traffic corpora (e.g., BCCC-CIC-IDS2017/2018 [35], [36]) or
collect her own traffic to train local substitute models.

Feature Extractor. We assume the target NIDS relies on
the flow-level statistics. Because these features are publicly
documented, the adversary can reproduce the same extractor
offline. When the feature sets coincide, our experiments give a
strong-attacker upper bound; if the target employs additional
proprietary fields, the shared subset still provides a realistic
transfer channel.

Building Substitute Models. Using the available data and
replicated features, the adversary trains one or more local
substitute models to approximate the unseen target NIDS.

B. Notation

Key symbols used in this paper to describe the attack are
summarized in Table I.

C. Formal Problem Statement

The adversary’s primary objective is to generate a pertur-
bation ∆x that, when applied to an original malicious sample
X , creates an adversarial sample x̂ = X+∆x. This sample x̂
should be misclassified by the unknown target NIDS ftgt while
the perturbation remains imperceptible, i.e., ||∆x||∞ ≤ ϵ, and
x̂ adheres to network traffic constraints.

In the zero-query black-box setting, since ftgt is unknown
and unqueriable, the challenge lies in crafting an adversar-
ial example x̂ that maximizes transferability from a diverse
ensemble of locally accessible substitute models Fpool. The
adversary’s goal is to find a final adversarial sample x̂ that
maximizes the expected attack success rate against unseen
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TABLE I: Summary of Notations

Symbol Description

X Original malicious network traffic sample
y True label of the original malicious sample
x̂ Adversarial example (final output)
ϵ Maximum perturbation magnitude (L∞ norm)
ftgt Unknown true target black-box NIDS model
F ,Fpool Pool of n (or N ) pre-trained substitute models
Fdiff , Fnondiff Subsets of differentiable and non-differentiable models in F , respectively
Fsrc Subset of m models sampled as source ensemble
W Weights {w1, . . . , wm} for models in Fsrc

fsim tgt Model sampled from F \ Fsrc as simulated target for a meta-task
J(·, ·) Loss function (e.g., cross-entropy)
I Number of meta-task iterations
T Number of outer loop (reweighing) iterations
K Number of inner loop (perturbation generation) iterations
α Step size for perturbation updates
µ Momentum decay factor
Project(·, X, ϵ) Projection function for constraints
x(i), x̄(t), x̃(k) Adversarial samples at meta-task i, outer loop t, and inner loop k, respectively
g0, g̃0, gt, g̃k Momentum terms
fξ Model sampled from Fsrc (index ξ)
∇J

(k)
ξ Gradient for a differentiable model fξ

Lsim Simulated logits for a non-differentiable model
∇J

(k)
sim Pseudo-gradient for a non-differentiable model

Rt Reward signal at outer loop t (based on Fsrc loss)
gi,target Gradient w.r.t. simulated target fsim tgt (for meta-task update)

target models drawn from a distribution Ptarget. This can be
formulated as:

x̂ ≈ argmax
x′

Ef ′
tgt∼Ptarget

[I(f ′
tgt(x

′) ̸= y)] (1)

subject to ||x′ − X||∞ ≤ ϵ and traffic validity. I(·) is the
indicator function, and f ′

tgt here represents a model drawn
from the distribution of potential true targets. How such an
optimization for x̂ can be approached, particularly by lever-
aging strategies like ensemble reweighing internally within a
meta-learning structure to improve the quality of x′, will be
detailed in the subsequent sections.

IV. SYSTEM DESIGN

A. Overall Framework

To solve the optimization problem of enhancing zero-query
black-box attack transferability against diverse ML-NIDSes
(Section III-C, Eq. 1), we propose ARTEMIS, a novel hybrid
adversarial attack framework (Fig. 1, Algorithm 1). ARTEMIS
systematically addresses critical challenges: it counters the
zero-query unknown target model issue by performing meta-
learning over an ensemble of substitute models (Fpool) to
simulate black-box attacks; it tackles ensemble model hetero-
geneity, including differentiable and non-differentiable types,
using an RL-inspired reweighing mechanism to explore shared
adversarial subspaces, with a unified momentum accumula-
tion approach bridging the gap between model types; and
it respects network data modification limits via a dedicated
projection constraint module.

The meta-learning strategy is operationalized through a
series of meta-tasks. Each meta-task is divided into a training
phase and a testing phase. In the training phase, given a
source ensemble Fsrc sampled from Fpool, ARTEMIS per-
forms a joint optimization. An inner loop iteratively crafts
an adversarial perturbation. This loop uses momentum-based
attacks (e.g., MI-FGSM) with Bayesian sampling for differ-
entiable models in Fsrc, and Leaf Tuple Attack for non-
differentiable models, with a unified momentum term guiding
the process. Concurrently, an outer loop uses an RL-inspired

Algorithm 1 Hybrid Adversarial Attack

Input: Malicious sample X , true label y, surrogate ensem-
ble F = {f1, . . . , fn}, initial weights W = {w1, . . . , wn},
loss function J , iterations I, T,K, step size α, decay
factor µ, bound ϵ, projection function Project(·, X, ϵ).
Output: Final adversarial sample x̂.

1: Initialize main sample x(0) ← X; W = Winitial

2: for i = 0 to I − 1 do ▷ Meta-task loop
3: Sample source models Fsrc ⊆ F , target ft ∈ F \Fsrc

4: x̄(0) ← x(i) ; g0 ← 0
5: for t = 0 to T − 1 do ▷ Outer loop (Reweighing)
6: x̃(0) ← x̄(t); g̃0 ← 0
7: for k = 0 to K − 1 do ▷ Inner loop (Perturbation

generation)
8: Sample model fξ from Fsrc (index ξ)
9: if fξ is differentiable then

10: Compute gradient ∇J (k)
ξ using Bayesian

sampling (Eq. 10)
11: else (fξ is non-differentiable)
12: Compute simulated logits Lsim (Eq. 13)
13: Compute pseudo-gradient ∇J (k)

sim based on
J(w

(t)
ξ Lsim(x̃(k)), y)

14: Let ∇J (k)
ξ ← ∇J (k)

sim

15: end if
16: g̃k+1 ← µ · g̃k +

∇J
(k)
ξ

||∇J
(k)
ξ ||1

17: x̃′(k+1) ← x̃(k) + α · sign(g̃k+1)
18: x̃(k+1) ← Project(x̃′(k+1), X, ϵ)
19: end for ▷ Result x̃(K), final inner momentum g̃K
20: Calculate Reward Rt (Eq. 6)
21: Update weights W (t+1) based on Reward

Rt(Eq. 7)
22: gt+1 ← µ · gt + g̃K

||g̃K ||1
23: x̄′(t+1) ← x̄(t) + α · sign(gt+1)
24: x̄(t+1) ← Project(x̄′(t+1), X, ϵ)
25: end for ▷ Result x̄(T ) after T reweighing steps
26: gi,target ← ∇x̄(T )J(ft(x̄

(T )), y)
27: x′(i+1) ← x̄(T ) + α · sign(gi,target)
28: x(i+1) ← Project(x′(i+1), X, ϵ)
29: end for ▷ Final result x(I) after I meta-tasks
30: x̂← x(I)

31: return x̂

mechanism to adaptively reweigh models in Fsrc based on the
inner loop’s output. This phase yields an optimized adversarial
sample x(T ) and ensemble weights W (T ). In the subsequent
testing phase, x(T ) is evaluated against a simulated target
model fsim tgt (sampled from Fpool \ Fsrc). This black-box
evaluation feedback is used to refine the main adversarial
sample for the next meta-task.

Through iterative execution of these meta-tasks, ARTEMIS
learns to produce adversarial samples with significantly im-
proved transferability to unknown true target NIDS ftgt. The
detailed mechanisms of each component are elaborated in the
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Meta Task 1

x̄ ⁽T⁾ Meta TestMeta Train
x(1)

Meta Task i

x̄ ⁽T⁾ Meta TestMeta Train

Meta Task 2

x̄ ⁽T⁾ Meta TestMeta Train x(2) x(i-1) xi xI

2. Outer RL-inspired Ensemble Reweighing

f1 f2 ... fm

w1 w2 wm...

Ensemble  models Fsrc 

Inner Adaptive Iterative Attackx̄ ⁽ᵗ⁾ Loops K 

g̃K

Reward  CaculateUpdate

Eq 7

Eq 6
x̃⁽ᴷ⁾

Update  x̄ ⁽ᵗ+1⁾ Eq 8

Reweighing

x̄ ⁽0⁾=x⁽ⁱ⁾ x̄ ⁽T⁾ Loops T

Bayesian weight
sample

MI-FGSM Attack

Input Gaussian
sample

Leaf Tuple Attack

No

x̃⁽k⁾g̃k

Is  differentiable?Yes

Fsrc fξSample

3. Inner Adaptive Iterative Attack

1. Meta-Task based Black-Box Simulation

Model pool

Task Sample

malicious traffic adversarial traffic

x(0)

Fig. 1: The overview of our hybrid adversarial attack framework.

subsequent sections.

B. Meta-Task based Black-Box Simulation

We employ meta-learning to simulate the zero-query trans-
fer challenge via I iterative meta-tasks. Each meta-task sam-
ples a source ensemble F (i)

src and a simulated target f (i)
sim tgt

from a diverse model pool Fpool.
Within meta-task i, an inner joint optimization (detailed in

Sections IV-D) seeks an effective adversarial example x(T )
i and

optimized ensemble weights W (T ) for F (i)
src. Conceptually, this

aims to achieve:

(x
(T )
i ,W (T )) ≈ argmax

x′,w′
J

 ∑
fj∈F(i)

src

w′
jfj(x

′), y

 (2)

Here, W (T ) represents the weights after T reweighing itera-
tions within this meta-task.

The resulting x
(T )
i then guides the update of the main

adversarial sample from x(i) to x(i+1), based on its evaluation
against f (i)

sim tgt. Let g(i)src ens represent the effective gradient
direction obtained from attacking the source ensemble F (i)

src

with weights W (T ) at sample x
(T )
i :

g(i)src ens = sign(∇
x
(T )
i

J(
∑

fj∈F(i)
src

W
(T )
j fj(x

(T )
i ), y)) (3)

This meta-test conceptually optimizes x(i+1) by maximizing
the loss on f

(i)
sim tgt after taking a step from x

(T )
i in the

direction g
(i)
src ens:

x(i+1) ≈ argmax
x′′

J
(
f
(i)
sim tgt

(
x
(T )
i + α · g(i)src ens

)
, y
)

(4)

The overall objective across I meta-tasks is to find the final
adversarial sample x̂ = x(I) that maximizes expected attack
success against unseen true target models ftgt ∼ Ptarget:

x̂ ≈ argmax
x′

Eftgt∼Ptarget [I(ftgt(x′) ̸= y)] (5)

subject to ||x′ − X||∞ ≤ ϵ and traffic validity. This bi-level
structure aims to approximate this objective for enhanced zero-
query transferability.

C. Outer RL-inspired Ensemble Reweighing

To dynamically harness the diverse contributions of models
in F (i)

src, the outer loop adjusts the ensemble weights w(t) =

(w
(t)
1 , . . . , w

(t)
m ) using an RL-inspired approach and refines

the adversarial sample x(t). The update for weights is driven
by a reward signal Rt(w

(t)), which is precisely the weighted
ensemble loss of the inner loop’s output x̃(K) (generated from
x(t) using weights w(t)) on the source ensemble F (i)

src:

Rt(w
(t)) = J

 m∑
j=1

w
(t)
j fj(x̃

(K)), y

 (6)

The weights are updated to maximize this reward:

w(t+1) = argmax
w′

Rt(w
′) (7)

To practically implement the weight update, we transform this
reward function into a minimization problem by considering
the loss JR = − ln(Rt(w

(t))), which is then optimized using
Stochastic Gradient Descent (SGD) to update the weights w(t)

to w(t+1).
Concurrently, within this outer loop, the adversarial sample

x(t) is updated to x(t+1). The conceptual objective for this
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update is to find an x(t+1) that maximizes the loss against the
source ensemble F (i)

src using the current weights w(t):

x(t+1) ≈ argmax
x′

J

 m∑
j=1

w
(t)
j fj(x

′), y

 (8)

subject to ||x′ − X||∞ ≤ ϵ and traffic validity constraints.
This maximization is practically achieved by taking a gradient-
based step, leveraging the aggregated momentum from the
inner loop’s attack, as detailed in Algorithm 1 (lines 23-25).

This adaptive reweighing of models and iterative refinement
of the adversarial sample allows the framework to focus
on promising subspace directions for generating universally
effective adversarial examples. After T iterations, this outer
loop yields an optimized sample x

(T )
i and corresponding

weights W (T ) for the current meta-task i.

D. Inner Adaptive Iterative Attack

Given a source ensemble F (i)
src and weights w(t), the inner

loop iteratively generates an adversarial example x̃(K) from
a starting point x(t) over K steps. At each step k, a model
fξ is sampled from F (i)

src. The perturbation ∆xk is computed
using strategies tailored to the model type, aiming to maximize
the weighted loss J(w

(t)
ξ fξ(x̃

(k)), y), where y is the original
malicious label. A key aspect is the unified accumulation of
directional information via a momentum term g̃k, even when
handling non-differentiable models.

1) Attacking Differentiable Models (Fdiff ): Inspired by
[33], when fξ is differentiable, we enhance transferability
by attacking a distribution over model parameters. We aim
to optimize the expected loss over an approximate Bayesian
posterior p(w|D):

max
∥∆x∥p≤ϵ

Ew∼p(w|D)[J(w
(t)
ξ fξ(x0 +∆x;w), y)] (9)

Solving this optimization question directly is challenging, so
we use a Monte Carlo approach within the MI-FGSM [47]
iterative framework. At each inner step k, we first sample a
specific model instance by drawing weights w(t,k)

ξ ∼ p(w|D).
We then compute the gradient of the loss for this sampled
instance:

∇J (k)
ξ = ∇x̃(k)J(w

(t)
ξ fξ(x̃

(k);w
(t,k)
ξ ), y) (10)

This per-sample gradient ∇J (k)
ξ is used to update the momen-

tum term g̃k:

g̃k+1 = µg̃k +
∇J (k)

ξ

||∇J (k)
ξ ||1

(11)

Finally, the adversarial example is updated using the momen-
tum direction and projected back into the allowed space:

x̃(k+1) = ProjectX,ϵ(x̃
(k) + α · sign(g̃k+1)) (12)

The projection function ProjectX,ϵ(·) is crucial for ensuring
generated adversarial examples are both evasive and realistic,
embodying our protocol-aware approach by enforcing key

”traffic validity” constraints. Specifically, ProjectX,ϵ(·) en-
sures that adversarial examples remain within the ϵ-ball of the
original sample X and adhere to necessary feature constraints.
All numerical feature values are clipped to the minimum and
maximum values observed in the training set. Flag-based fea-
tures are kept unchanged to maintain protocol validity. Rate-
based features (e.g., byte rate, down up rate) are recalculated
based on the perturbed flow features (like total packets, total
bytes) and the (potentially perturbed) duration features after
each update step. Other features with inherent mathematical
dependencies (e.g., max > mean > min for packet sizes)
are adjusted post-perturbation to preserve these valid relation-
ships. By applying these constraints, ProjectX,ϵ(·) ensures
ARTEMIS generates adversarial traffic that is effective, ad-
heres to network communication rules.

2) Attacking Non-Differentiable Models (Fnondiff ): For
tree ensembles fξ ∈ Fnondiff , where gradients are undefined,
the primary mechanism to find an effective perturbation ∆x is
the Leaf Tuple Attack [34]. This method efficiently searches
the discrete leaf space to find a nearby adversarial leaf tuple C∗
minimizing distp(C∗, x0) such that fξ(x0 +∆x) ̸= y. During
the attack, input Gaussian sampling is performed.

To integrate these models into the unified momentum
framework (Eq. 11), we derive simulated logits, denoted
as Lsim(x̃(k)), from the ensemble’s output probabilities
Pξ(y|x̃(k)). For binary classification, this can be the logit
function:

Lsim(x̃(k)) = logit(Pξ(y|x̃(k))) = log

(
Pξ(y|x̃(k))

1− Pξ(y|x̃(k))

)
(13)

While the Leaf Tuple Attack identifies the actual perturbation,
we can compute a pseudo-gradient, denoted as ∇J (k)

sim, based
on the loss using these simulated logits, J(w(t)

ξ Lsim(x̃(k)), y).
This pseudo-gradient ∇J (k)

sim is then used in the momentum
update (Eq. 11), replacing ∇J (k)

ξ . This allows the momen-
tum term g̃k to consistently aggregate directional information
across both differentiable and non-differentiable models, guid-
ing the overall search direction, even though the step ∆x itself
for tree models is determined by the Leaf Tuple Attack. The
sample update then follows Eq. 12.

V. EXPERIMENTS

In this section, we conduct a series of comprehensive
experiments to rigorously evaluate the performance and char-
acteristics of our proposed ARTEMIS framework. We begin
by detailing the common experimental setup in Section V-A
Subsequently, our evaluation is structured as follows: First,
we assess the transferability of adversarial examples generated
by ARTEMIS under three distinct scenarios(detailed in Sec-
tions V-B, V-C, and V-D), representing varying degrees of data
distribution similarity between substitute and target models:

• Closed-set scenario: Substitute and target models are
trained and tested on data from the same dataset distri-
bution.
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• Open-set scenario: Substitute and target models are
trained on mutually exclusive data subsets drawn from
the same underlying dataset distribution, simulating a
common practical challenge.

• Cross-set scenario: Substitute models are trained on one
dataset and target models on another, and vice-versa,
to evaluate robustness against significant distributional
shifts.

Second, we compare ARTEMIS against several state-of-the-
art baseline attack methods (Section V-A4) to demonstrate
its relative advantages in the zero-query black-box setting.
Finally, we delve into the internal workings of ARTEMIS
through a framework analysis(Section V-E), which includes
an examination of the meta-task optimization process and a
component ablation study to quantify the contributions of
its key mechanisms.

A. Experimental Setup

1) Datasets: Our experiments utilize the BCCC-CIC-
IDS2017 (henceforth IDS2017) [35] and BCCC-CSE-CIC-
IDS2018 (henceforth IDS2018) [36] datasets. These datasets
represent enhanced versions of the original CIC-IDS2017/2018
benchmarks [6].

We employ the NTLFlowLyzer [35] as the feature extractor.
From its extensive feature set, we select 60 commonly used
features for network intrusion detection, covering categories
such as time-based, rate-based, payload-based, flag-based, and
header-based characteristics, ensuring relevance and compara-
bility. For the IDS2018 dataset, we randomly sample 50,000
instances for each attack type. Due to smaller data volumes for
the Brute force and Botnet attack types in the IDS2017 dataset,
all available instances are utilized for these specific categories;
for other attack types in IDS2017, 50,000 instances are also
randomly sampled. All datasets are subsequently partitioned
into training and testing sets using a 4:1 ratio.

For the closed-set and open-set scenarios, we generate ad-
versarial examples from 500 malicious samples per attack type
(Brute force, Botnet, DDoS, DoS Hulk), which are all initially
correctly classified by the respective target models. For the
cross-dataset experiment—for example, transferring attacks
from IDS2017 (source) to IDS2018 (target)—we randomly
sample 500 malicious flows from IDS2017, retain only those
that the target NIDS trained on IDS2018 initially classifies
correctly, generate adversarial versions of this filtered set with
substitute models trained on IDS2017, and then submit the
resulting adversarial flows to the IDS2018 model to measure
cross-dataset transferability.

2) Models: Our substitute-model pool Fpool comprises five
diverse architectures commonly used in NIDS: XGBoost
(XGB), Random Forest (RF), Multi-Layer Perceptron (MLP),
LeNet [48], and Long Short-Term Memory (LSTM) networks.
These cover both non-differentiable (ND) models (XGB, RF)
and differentiable (D) models (MLP, LeNet, LSTM).

We evaluate transferability against 14 target models: five in
the white-box (WB) setting and nine in the black-box (BB)

setting. Their names, types, and differentiability status are
summarized in Table II.

TABLE II: Target Model Definitions. WB denotes white-box;
BB denotes black-box.

White-box Models Black-box Models

ID Name Type (ND/D) ID Name Type (ND/D)

WB1 XGBoost-WB Ensemble (ND) BB1 RF-BB Ensemble (ND)
WB2 RF-WB Ensemble (ND) BB2 XGBoost-BB Ensemble (ND)
WB3 MLP-WB Neural Net (D) BB3 KitNET [1] Autoencoder (D)
WB4 LeNet-WB CNN (D) BB4 MAMPF [40] Markov (ND)
WB5 LSTM-WB RNN (D) BB5 FS-Net [41] RNN (D)

BB6 AlexNet-NIDS CNN (D)
BB7 AlertNet [23] CNN (D)
BB8 DeepNet [24] DNN (D)
BB9 IdsNet [37] DNN (D)

3) Attack Implementation: We implement ARTEMIS as
detailed in Algorithm 1. The source code for our framework is
publicly available to facilitate reproducibility1. We adopt the
default hyper-parameters summarized in Table III.

TABLE III: Default hyper-parameters for all attack experi-
ments

Parameter Default setting

Perturbation constraint (L∞) ϵ ∈ {0.05, 0.10}
Meta-task iterations (I) 10
Weight-update iterations (T ) 5
Adaptive attack iterations(K) 10
Bayesian weight samples (diff.) 5
Gaussian input samples (non-diff.) 5
Step size (α) ϵ/T
Momentum decay (µ) 1.0

4) Baseline Methods: We compare our hybrid attack frame-
work against five representative adversarial attack methods. All
baselines are implemented under a unified black-box setting:
adversarial examples are generated by attacking ensemble
substitute models and then transferred to multiple target NID
models for evaluation. Four of the attacks (JSMA, C&W, ZOO,
HSJA) are implemented using the Adversarial Robustness
Toolbox (ART v1.16.0 [49]), whereas ETA is re-implemented
from its original publication.

• Jacobian-based Saliency Map Attack (JSMA) [50]: A
white-box attack that perturbs input features based on
their saliency with respect to the target class.

• Carlini & Wagner (C&W) [9]: An optimization-based
attack that minimizes the L2 norm of perturbations while
achieving misclassification.

• Zeroth Order Optimization (ZOO) [14]: A score-based
attack that approximates gradients using finite differences
on output confidence scores.

• HopSkipJumpAttack (HSJA) [51]: A decision-based at-
tack that finds adversarial examples by iteratively approx-
imating the decision boundary using hard-label outputs.

• Explainable and Transferable Attack (ETA) [7]: A
recent saliency-guided transfer attack designed for NIDS

1https://github.com/wanglei0208/ARTIMIS
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that perturbs inputs based on ensemble gradient attribu-
tions.

All attacks are applied to a shared subset of 500 correctly
classified malicious flows. ART-based attacks are configured
with consistent parameters: C&W and ZOO use 50 optimiza-
tion steps with confidence set to 0.0; JSMA uses θ = 0.05
and γ = 0.1; HSJA runs for 30 boundary evaluations.
All adversarial examples are clipped to the [0, 1] range and
refined using protocol-aware constraints to ensure semantic
plausibility.

5) Evaluation Metrics: 1. Detection Performance (Base-
line): We report the standard classification Accuracy and F1-
Score of the target models on the original (non-adversarial)
test data to establish their baseline detection capabilities. It is
noteworthy that all models, when trained on their respective
training sets as defined in Section V-A1, achieve both F1-
scores and Accuracy values exceeding 0.98 on the correspond-
ing clean test sets.

2. Attack Success Rate (ASR): The Attack Success Rate
(ASR) quantifies the effectiveness of the adversarial attack by
measuring the proportion of generated examples that success-
fully mislead the target model to output an incorrect prediction.
It can be calculated as:

ASR =
Number of successful attacks

Total number of attack attempts
(14)

Here, the “Total number of attack attempts” refers to the set of
malicious samples selected for adversarial example generation,
as detailed in Section V-A1.

B. Transferability Evaluation: Closed-set Scenario

1) Performance of ARTEMIS: In the closed-set scenario,
our proposed ARTEMIS framework demonstrated strong per-
formance. As shown in Table IV, on the IDS2018 dataset with
ϵ = 0.1, the average Attack Success Rate (ASR) across all 14
target models is 86.7%, and 88.9% on the IDS2017 dataset.
Even with a smaller perturbation (ϵ = 0.05), the average ASRs
remained 80.3% on IDS2018 and 83.4% on IDS2017.

2) Comparison with Baseline Methods: Figure 2 further
illustrates that ARTEMIS consistently achieves a higher aver-
age ASR across all four evaluated attack types compared to
the other black-box attack methods. This superior performance
stems from our framework’s integration of meta-learning for
generalizable attack strategies, RL-inspired dynamic weighting
of substitute models, and a hybrid attack mechanism tailored
for both differentiable and non-differentiable models, all op-
erating in a zero-query manner. In contrast, baseline methods
either rely on query feedback (e.g., ZOO, HSJA), which is
not applicable here, or exhibit lower transferability in this
challenging zero-query NIDS environment.

C. Transferability Evaluation: Open-set Scenario

In the open-set scenario, our method continues to demon-
strate effective transferability, albeit with an expected slight
decrease in performance compared to the closed-set scenario,
reflecting the challenges of data distribution shifts.
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Fig. 2: Average attack success rate (ASR) of six black-box
methods on four attack types.

Comparing these results with the closed-set performance on
IDS2018 (Table IV, ϵ = 0.1), where the average ASR for Brute
force is 90.2% and for Botnet is 89.7%, we observe a modest
reduction. This reduction highlights the challenge posed by
variations in training data. Nevertheless, the consistently high
ASRs underscore our framework’s robustness and its ability
to generate transferable adversarial examples even when the
adversary lacks access to the target model’s exact training data
distribution.

D. Transferability Evaluation: Cross-set Scenario

The cross-set scenario represents the most challenging test
for transferability. Results in Table VI (with ϵ = 0.1) show
Filtered Num (malicious samples out of 500 correctly identi-
fied by the target model from the other dataset) and the ASR
on these filtered samples.

Transfer from IDS2017 to IDS2018 (17→18): When at-
tacking IDS2018 targets using substitutes trained on IDS2017,
the initial susceptibility of these targets to the out-of-
distribution IDS2017 samples varies significantly, as evidenced
by considerable fluctuations in Filtered Num. This variability
highlights differing decision boundary sensitivities of models
trained on distinct data distributions. Despite this, for the
Filtered Num samples that are initially correctly identified, our
method often achieves high ASRs, indicating ARTEMIS ef-
fectively crafts potent adversarial examples against recognized
out-of-distribution attacks.

Transfer from IDS2018 to IDS2017 (18→17): Conversely,
we observe that transfer from IDS2018 to IDS2017 generally
yields stronger results. In this direction, Filtered Num is often
higher, and subsequent ASRs are consistently strong across
attack types. This suggests that adversarial examples derived
from models trained on more extensive data (IDS2018) exhibit
higher potency against models trained on less extensive data
(IDS2017).

Overall, these cross-set findings highlight the inherent dif-
ficulties of transferring attacks across disparate data distri-
butions. Nevertheless, ARTEMIS consistently achieves high
ASRs on recognized out-of-distribution samples, and the
observed asymmetry in transferability suggests that dataset
characteristics, such as volume and diversity, play a crucial
role in attack potency.
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TABLE IV: ASR (%) of ARTEMIS for IDS2017 in the Closed-set Scenario

Attack Type ϵ
White-Box Models Black-Box Models

XGB RF MLP LeNet LSTM XGB RF MAMPF FSNET KITNET AlexNet AlertNet DeepNet IdsNet

brute force 0.05 97.6 100.0 87.2 85.8 85.2 97.6 99.0 94.0 77.2 100.0 73.8 88.8 79.2 89.8
0.1 94.6 99.2 96.2 90.6 95.8 94.6 97.4 94.6 90.0 100.0 73.6 95.2 94.2 95.8

botnet 0.05 84.6 83.8 64.0 98.4 89.2 84.6 96.8 90.4 37.2 96.8 32.4 95.8 49.0 96.8
0.1 92.8 86.4 91.4 99.4 99.8 92.8 95.8 97.4 62.4 99.6 30.4 99.8 63.8 99.8

ddos 0.05 98.8 97.0 93.2 60.2 70.2 97.0 99.0 96.2 94.0 97.8 56.0 96.4 90.2 92.2
0.1 99.0 97.2 93.4 65.8 95.2 99.4 97.0 90.6 95.2 98.8 64.8 90.8 93.8 90.8

dos hulk 0.05 90.8 90.0 70.4 45.0 82.0 92.8 92.2 89.2 53.8 98.6 66.8 80.0 60.0 65.0
0.1 96.8 92.0 75.4 65.2 94.8 94.8 94.2 92.2 65.8 98.8 75.8 82.0 70.6 85.0

TABLE V: ASR(%) of the ARTEMIS for IDS2018 in the Open-set Scenario

Attack Type ϵ
White-Box Models Black-Box Models

XGB RF MLP LeNet LSTM XGB RF MAMPF FSNET KITNET AlexNet AlertNet DeepNet IdsNet

brute force 0.05 98.6 100.0 79.0 77.4 85.2 98.6 96.8 85.0 90.0 90.0 60.0 71.2 79.0 84.6
0.10 99.4 99.8 85.8 70.6 94.4 95.2 99.4 87.2 95.6 94.0 66.2 77.2 87.6 91.6

botnet 0.05 87.0 92.4 15.2 29.8 70.8 89.8 87.0 53.2 79.8 93.0 7.4 38.2 43.0 15.0
0.10 99.0 99.2 56.6 80.2 98.2 93.6 99.0 96.8 98.6 94.0 28.4 93.8 77.2 70.4

dos hulk 0.05 84.6 96.6 35.6 21.2 42.0 84.6 97.8 29.0 32.4 92.0 33.2 35.6 31.6 28.6
0.10 84.6 96.6 69.2 46.0 72.8 79.8 72.0 63.0 75.4 90.0 50.2 70.4 62.2 72.8

ddos 0.05 99.8 100.0 92.4 26.2 90.6 99.4 99.8 95.2 77.2 92.0 54.0 94.2 92.0 94.2
0.10 99.6 99.8 88.8 25.6 95.2 99.0 99.6 88.8 87.2 94.0 61.2 88.8 88.4 88.4

TABLE VI: ASR(%) of the ARTEMIS for IDS2018 in the Cross-set Scenario

Cross-Set Attack Metric White-Box Models Black-Box Models

XGB RF MLP LeNet LSTM XGB RF MAMPF FSNET KITNET AlexNet AlertNet DeepNet IdsNet

17→18
brute force Filtered Num 82 77 190 157 134 80 82 141 196 79 214 132 131 135

ASR (%) 100.0 100.0 83.2 73.8 32.0 100.0 100.0 84.4 66.8 98.8 68.2 58.4 67.2 87.4

botnet Filtered Num 0 59 65 78 63 0 63 435 65 350 435 65 435 435
ASR (%) — 100.0 96.0 69.2 95.2 — 96.8 77.7 100.0 100.0 2.3 64.6 94.9 53.5

18→17
brute force Filtered Num 372 0 81 115 150 372 0 134 269 0 33 271 146 165

ASR (%) 82.8 — 100.0 49.6 75.3 82.8 — 78.4 34.9 — 78.8 83.4 100.0 90.3

botnet Filtered Num 246 0 246 246 246 246 5 246 246 246 190 246 246 246
ASR (%) 61.8 0.0 100.0 97.9 100.0 61.8 100.0 100.0 100.0 100.0 76.0 100.0 100.0 100.0

E. Framework Analysis and Ablation Study

1) Effectiveness of the Meta-task Optimization: To verify
that our meta-learning strategy effectively guides adversarial
samples towards the adversarial subspace intersection of the
substitute models, we track six metrics after each meta-task.
These metrics, averaged over 50 randomly selected malicious
flows from the IDS-2018 dataset (Brute-Force attacks) and
smoothed using a centered moving average window of three
tasks, are defined as follows:
• Ensemble Loss — cross-entropy of the weighted substitute

ensemble;
• E2M(Ensemble-to-Member alignment) — average co-

sine similarity between each substitute’s gradient and the
weighted ensemble gradient;

• VictAlign(Victim-Gradient Alignment) — cosine simi-
larity between the weighted ensemble gradient and the
simulated victim-model gradient;

• W-PCS(Weight-averaged Pairwise Cosine Similarity) —
mean pairwise cosine similarity of substitute gradients,
weighted by their current meta-weights;

As illustrated in Figure 3, we can make the following key
observations:

(a) Loss increase. The Ensemble Loss climbs from 10.5 to 27.4,
confirming that the perturbations are consistently moving to
regions of higher ensemble risk.

(b) Gradient alignment. Both E2M and VictAlign rise from ≈
0.85 to > 0.99, indicating that the learned momentum
quickly aligns with the ensemble gradient and, more im-
portantly, with the (unseen) simulated target.

These converging trends provide strong evidence that the
proposed meta-learning mechanism fulfills its design goal:
every meta-task acts as a projection step towards the common
adversarial intersection, thereby facilitating high transferability
in the zero-query setting.
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Fig. 3: Convergence of loss- and gradient-based metrics over
20 meta-tasks. Shaded bands represent mean ± 1 standard
deviation.
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Fig. 4: Impact of key components (RW: adaptive reweighing,
SP: Bayesian/Input sampling) on average ASR across four
target models using IDS-2018 brute-force flows (ϵ = 0.05,
10 meta-tasks, 500 samples).

2) Component Ablation: To assess the individual contribu-
tions of our framework’s core components, we conducted an
ablation study, with results presented in Figure 4. The Base
configuration, relying solely on meta-task iterations, achieved
an average Attack Success Rate (ASR) of 82.8% across four
diverse target models. Introducing the adaptive reweighing
mechanism (RW) or the Bayesian/input sampling strategy
(SP) independently improved the ASR to 83.4% and 84.1%,
respectively. Notably, enabling both RW and SP components
concurrently yielded the highest ASR of 85.7%, an overall
increase of 2.9 percentage points over the Base. This demon-
strates that while each component offers a distinct benefit,
their synergy provides the most significant enhancement to
attack transferability, with the largest individual gain of 3.8
percentage points observed on AlertNet, underscoring their

complementary nature.

VI. DISCUSSION

In this section, we discuss two practical considerations for
ARTEMIS: computational cost and the generation of actual
attack traffic.

A. On Computational Cost

The computational cost of ARTEMIS is composed of two
parts: a one-time, offline training phase for the substitute mod-
els, and an online, iterative process to generate each adversarial
sample. The overhead of this process, while considerable,
is acceptable as it is designed as an offline vulnerability
assessment tool, not a real-time attack system. Its purpose is
to conduct in-depth robustness analysis, justifying the compu-
tational investment.

B. On Generating Actual Attack Traffic

Reverse-mapping feature perturbations to network packets
is a known challenge due to the many-to-one relationship. Our
framework operates at the feature level to efficiently identify
shared vulnerability directions. These findings can then guide
the manual or semi-automated modification of real traffic
captures. We consider the module to generate real adversarial
traffic a parallel research topic, and hence it is not the focus
of our study here. A key direction for future work is to
establish a more formulaic correlation between the feature and
traffic spaces. Such a correlation would allow traffic-domain
constraints to be directly translated into the feature space, thus
enabling the crafting of adversarial examples that are both
more realistic and effective.

VII. CONCLUSION

In this paper, we propose ARTEMIS, an attack framework
that can successfully enhances zero-query black-box attack
transferability against diverse NIDSes by synergistically com-
bining meta-learning, RL-inspired adaptive reweighing, and
hybrid attack techniques tailored for both differentiable and
non-differentiable models. The comprehensive experiments
validate its superior performance compared to baselines. Over-
all, ARTEMIS offers a robust methodology for assessing
NIDS vulnerabilities in realistic zero-query settings and un-
derscores the importance of developing defenses resilient to
sophisticated, transfer-based attacks. While ARTEMIS shows
significant promise, it still faces several limitations, including
the limited scope of datasets and substitute models used, the
complexity of fully enforcing network traffic constraints, and
the computational cost of the meta-learning process. Our future
work will focus on broader evaluations on real-world and
encrypted traffic, integration with adaptive defenses, advanced
constraint optimization and efficiency improvements.
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